
Temba et al. eLife 2023;12:e82297. DOI: https://doi.org/10.7554/eLife.82297 � 1 of 18

Differences in the inflammatory 
proteome of East African and Western 
European adults and associations with 
environmental and dietary factors
Godfrey S Temba1,2, Nadira Vadaq1, Vesla Kullaya2,3, Tal Pecht4,5, Paolo Lionetti6, 
Duccio Cavalieri7, Joachim L Schultze4,5,8, Reginald Kavishe2, Leo AB Joosten1,9, 
Andre J van der Ven1, Blandina T Mmbaga3,10, Mihai G Netea1,11, Quirijn de Mast1*

1Department of Internal Medicine, Radboudumc Center for Infectious Diseases, 
Radboudumc Research Institute for Medical innovation (RIMI), Radboud University 
Medical Center, Nijmegen, Netherlands; 2Department of Medical Biochemistry and 
Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, United 
Republic of Tanzania; 3Kilimanjaro Clinical Research Institute, Kilimanjaro Christian 
Medical Center, Moshi, United Republic of Tanzania; 4Department for Genomics and 
Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 
Bonn, Germany; 5Systems Medicine, German Center for Neurodegenerative Diseases 
(DZNE), Bonn, Germany; 6Departement NEUROFARBA, University of Florence – 
Gastroenterology and Nutrition Unit, Meyer Children's Hospital, Florence, Italy; 
7Department of Biology, University of Florence, Florence, Italy; 8PRECISE Platform 
for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative 
Diseases (DZNE) and University of Bonn, Bonn, Germany; 9Department of Medical 
Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 
Romania; 10Department of Paediatrics, Kilimanjaro Christian Medical University 
College, Moshi, United Republic of Tanzania; 11Department of Immunology and 
Metabolism, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, 
Germany

Abstract Non-communicable diseases (NCDs) are rising rapidly in urbanizing populations in 
sub-Saharan Africa. Assessment of inflammatory and metabolic characteristics of a urbanizing 
African population and the comparison with populations outside Africa could provide insight 
in the pathophysiology of the rapidly increasing epidemic of NCDs, including the role of envi-
ronmental and dietary changes. Using a proteomic plasma profiling approach comprising 92 
inflammation-related molecules, we examined differences in the inflammatory proteome in 
healthy Tanzanian and healthy Dutch adults. We show that healthy Tanzanians display a pro-
inflammatory phenotype compared to Dutch subjects, with enhanced activity of the Wnt/β-cat-
enin signalling pathway and higher concentrations of different metabolic regulators such as 
4E-BP1 and fibroblast growth factor 21. Among the Tanzanian volunteers, food-derived metabo-
lites were identified as an important driver of variation in inflammation-related molecules, empha-
sizing the potential importance of lifestyle changes. These findings endorse the importance 
of the current dietary transition and the inclusion of underrepresented populations in systems 
immunology studies.
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Editor's evaluation
The manuscript by Temba and colleagues describe an essential aspect of human research, i.e., the 
variability of different populations which have different genetic backgrounds and are exposed to 
different diets and environments. As most research is carried out in developed countries, we need 
to understand and generate background data in other populations, such as the described here 
in Tanzania. The fundamental findings refer to enhanced pro-inflammatory phenotype in plasma 
of individuals from Tanzania as compared to individuals from Holland. Food-derived metabolites 
were identified as a driver of variation in inflammation-related molecule expression. Whether pro-
inflammatory phenotypes associate with changes in life span or risk of chronic disease and whether 
changes in life style will reverse this pro-inflammatory phenotype and related outcomes clearly 
deserve further investigation in the future.

Introduction
The human immune response is tightly regulated by a complex and intricate network of pro-and 
anti-inflammatory cytokines, chemokines and other immuno-metabolic mediators. Prolonged dysreg-
ulation of this network may result in an unresolved pro-inflammatory state, which is central to the 
development of a wide range of non-communicable diseases (NCDs), including cardiovascular 
disease, diabetes, rheumatic and inflammatory bowel diseases, and even malignancies (Choi et al., 
2015; Moore and Tabas, 2011; Seyedsadjadi and Grant, 2021). The inflammatory response is highly 
variable among healthy individuals as a consequence of genetic and non-genetic factors (Brodin and 
Davis, 2017). These include intrinsic factors such as age and sex, as well as environmental expo-
sures such as diet and past infections (Liston et al., 2021). Not surprisingly, variation in inflammatory 
proteins between populations has been reported (Schutte et al., 2012; Schutte et al., 2006). Under-
standing the nature of this variation and the factors involved is key for understanding the dynamics of 
infectious as well as immune-mediated pathology across populations.

Worldwide, many communities are currently undergoing a rapid urbanization process with a tran-
sition of lifestyle, and diet, characterized by a more sedentary lifestyle and a shift from traditional 
high-fiber diets to a diet richer in processed foods, animal fat and simple carbohydrates. Also, envi-
ronmental exposures change from close contact with animals and smoke from burning wood to petrol 
gasses. This is accompanied by an epidemiologic transition in which the burden of disease shifts 
from infectious diseases to NCDs (Beaglehole et al., 2011; Unwin et al., 2010). This epidemiologic 
transition is at least partly mediated through effects on the immune system of individuals across 
communities. We recently reported that urban-living Tanzanians display a pro-inflammatory gene 
signature and higher ex-vivo cytokine responses compared to rural-living individuals (Temba et al., 
2021) and that food-derived metabolites are an important driver of this difference. In communities in 
sub-Saharan Africa, this effect may also be more pronounced than in other populations, as the histor-
ically high burden of infectious diseases may have resulted in the selection of genotypes favoring a 
robust immune response (Karlsson et al., 2014). Indeed, we recently showed important differences 
in the genetic regulation of cytokine responses between healthy Tanzanian and Dutch individuals, 
with enrichment of interferon pathways in the Tanzanians (Boahen et al., 2022). In a context with a 
declining burden of infectious diseases, alongside a shift to an unhealthy Western-type lifestyle, such 
a heritable pro-inflammatory phenotype may particularly drive a health-to-disease transition with the 
onset of NCDs (Bickler et al., 2018).

Studies on non-Western populations outside historically wealthy countries are underrepresented 
in systems-immunology literature, despite the fact that these populations are representative of the 
majority of the world’s population. In addition, these populations offer unique opportunities to 
increase our understanding of the pathophysiology of NCDs, including the role of diet and environ-
mental exposures. Our present knowledge of the regulation of the immune system in individuals in 
sub-Saharan Africa and how this compares to individuals in the industrialized world is limited. We 
investigated the hypothesis that healthy individuals in East Africa have a pro-inflammatory phenotype 
in comparison to individuals from North-western Europe and that these differences are partly driven 
by common environmental factors, including diet. Using a 92-plex proteomic panel based on a prox-
imity extension assay technology, we compared the inflammatory proteome of healthy Tanzanians of 
African origin residing in Tanzania with that of healthy individuals of Western-European ancestry living 
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in the Netherlands. Next, we studied associations between the proteome with intrinsic factors and 
environmental exposures, with special emphasis on the food-derived metabolites.

Results
Demographics
Data from plasma samples of 318 Tanzanian and 416 Dutch individuals were included in this study. 
Characteristics of study participants are summarized in Table  1, Figure  1—figure supplement 1. 
The Tanzanians had a significantly higher median (IQR) age (30.2 years; 23.4–39.9) than the Dutch 
(23.0  years; 21.0–26.0; p-value <0.0001) (Figure  1—figure supplement 1A). Tanzanian females 
also had a higher BMI than Dutch females (25.7; 22.6–29.9 vs. 21.5; 20.4–23.1; p-value <0.0001) 
(Figure 1—figure supplement 1B).

Differences in inflammatory proteome between Tanzanians and Dutch
The inflammatory proteome was measured simultaneously in samples from the Tanzanian and Dutch 
participants using the Olink ‘inflammation’ panel, which targets 92 cytokines, chemokines and other 
inflammation and metabolism-related proteins (Olink Proteomics AB, Uppsala, Sweden). Relative 
protein concentrations are reported as normalized protein expression (NPX) units, which are on a 
Log2 scale. Eighteen proteins were excluded from further analysis because their value was below 
the lower limit of detection in more than 25% of samples in both cohorts (Figure 1—figure supple-
ment 2). Principal component analysis (PCA) of the remaining 74 proteins revealed a clear separation 
between Tanzanian and Dutch samples (Figure 1A). A volcano plot of differentially expressed proteins 
(Figure 1B) showed that 35 (47%) proteins were significantly higher in the Tanzanians and 20 (27%) 
lower at an FDR p<0.05, with correction for age and sex and BMI. The most prominently (fold change 
(FC)) upregulated proteins were two regulators of metabolism: the mTOR substrate and translational 
repressor 4E-BP1 (log2 FC 1.9; FDR p=1.3 × 10–60) and FGF21 (fibroblast growth factor 21; log2 FC 1.3; 
p=1.3 × 10–30), a hormone produced by the liver that functions as a major regulator of glucose and 
lipid homeostasis. Obesity and excess carbohydrate and/or insufficient protein intake were reported 
to increase FGF21 concentrations (Hill et al., 2018). Other prominently upregulated proteins in the 
Tanzanians were interleukin (IL)–17 A (log2 FC 0.7; p=9.6 × 10–34) and IL-17C (log2 FC 0.7; p=1.1 × 
10–74), and the CC-chemokine family members CCL11/eotaxin (eosinophil chemoattractant; log2 FC 
0.7; p=7.3 × 10–63), CCL3/MIP-1α (macrophage inflammatory protein-1α; log2 FC 0.6; p=5.6 × 10–10), 
CCL7/MCP3 (monocyte chemotactic protein 3; log2 FC 0.6; p=7.4 × 10–42) and CCL8/MCP2 (log2 
FC 0.5; p=8.4 × 10–23). The cytokines Tumour Necrosis Factor (TNF), IL-6, IL-10, and IL-18, as well as 
oncostatin-M (OSM) and adenosine deaminase (ADA) were also significantly higher in the Tanzanians.

The most prominently downregulated proteins in Tanzanians were ST1A1 (sulfotransferase 1A1; 
log2 FC –0.8; p=2.2 × 10–16) and AXIN1 (axis inhibition protein 1; log2 FC –0.7; p=6.5 × 10–18). ST1A1 is 
a cytosolic sulfotransferase that catalyzes the sulfonation of endogenous and exogenous compounds 
(Wang et al., 2016). AXIN1 is a negative regulator of the Wnt/β-catenin signaling pathway (Kikuchi, 
1999). This pathway is increasingly recognized to play an important role in inflammatory diseases, 
diabetes and cancer (Jridi et al., 2020; Das et al., 2021). Conversely, CDCP1 (CUB domain-containing 
protein 1), a transmembrane receptor that is a Wnt signaling promoter (He et al., 2020) was signifi-
cantly up-regulated (log2 FC 0.7; p=1.8 × 10–61) in the Tanzanian cohort, suggesting enhanced activity 
of the Wnt/β-catenin signaling pathway in the Tanzanian participants. Finally, Tanzanians had lower 
levels of the CXC chemokine family members CXCL1, CXCL5, CXCL6, and CXCL8 (IL8). These chemo-
kines mediate among others neutrophil trafficking (Palomino and Marti, 2015).

The Olink platform used in this study does not contain adipocytokines and provides relative, rather 
than absolute, protein concentrations. Therefore, we measured absolute concentrations of a selection 
of cytokines using an ELLA microfluidics platform, and concentrations of adipocytokines by ELISA. 
The data have been reported previously (Temba et al., 2022), and confirm that Tanzanian participants 
have significantly higher plasma concentrations of IL-1 receptor antagonist (IL-1Ra), IL-6, and IL-18, 
together with significantly higher leptin and lower adiponectin concentrations than Dutch partici-
pants after correcting for age, sex, and BMI (Figure 1C). In addition, Tanzanian females regardless 
of BMI had higher plasma concentrations of leptin compared to Dutch females (Figure 1—figure 
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Table 1. Descriptive characteristics of study participants.

Tanzanians Dutch p-value

Number 318 416

Sex, females 163 (51.3) 214 (51.4) ns

Age, years 30 (23–40) 23 (21–26) <0.0001

Age category <0.0001

18–30 years 155 (48.7) 351 (85.8)

31–40 years 84 (26.4) 15 (3.7)

41–50 years 50 (15.7) 4 (1.0)

50–60 years 25 (7.9) 13 (3.2)

≥60 years 4 (1.3) 26 (6.4)

BMI 23.8 (21.4–27.3) 22.3 (20.7–24.3) <0.0001

BMI category <0.0001

≤24.9 194 (61.0) 337 (84.0)

≥25–29.9 76 (23.9) 57 (14.2)

≥30 48 (15.1) 7 (1.7)

BMI by sex

Male 22.8 (20.8–24.9) 23 (21.7–24.6) ns

Female 25.7 (22.6–29.9) 21.5 (20.4–23.1) <0.0001

Smoking (N, %) 50 (15.7) 57 (13.7) ns

Study characteristics only relevant for the Tanzanian cohort

Residency (N, %)

Urban 250 (78.6)

Rural 68 (21.4)

Highest level of education (N, %)

Primary 119 (37.4)

Secondary 69 (21.7)

College 61 (19.2)

University 25 (7.9)

In training 44 (13.8)

Occupational status (N, %)

Student 57 (17.9)

Employed with qualification 66 (20.8)

Service or shop sales worker 133 (41.8)

Elementary occupation 62 (19.5)

Toilet facility (N, %)

Pit latrine 75 (23.6)

Water closet 243 (76.4)

Cooking fuel (N, %)*

Smoky 113 (35.5)

Table 1 continued on next page
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supplement 3) in line with the previous findings (Abbas et al., 2004). There were no significant differ-
ences in plasma concentrations of resistin and alpha-1 antitrypsin (AAT).

In a previous study in the same cohort, we identified different genetic loci that were associated 
with whole-blood cytokine responses to a variety of microbial and synthetic ligands (Boahen et al., 
2022). We assessed whether these genetic variants were also associated with plasma protein levels. 
We utilized the top six independent SNP-cytokine response loci and performed matrix pQTL analysis. 
Different associations were identified, but none reached genome-wide (p=5 × 10–8) or suggestive 
(p=5 × 10–6) significance (Supplementary file 1; P-value unadjusted).

Associations between inflammation-related proteins and intrinsic and 
environmental factors
Next, we investigated associations between the inflammation-related proteins with host intrinsic factors 
such as age and sex, BMI and environmental exposures relevant to the Tanzanian setting. The analyses 
were variously corrected for age, sex and BMI to assess the impact of one specific factor. In high-
income countries, age is a potent driver of immune variation with a shift toward a pro-inflammatory 
state (Brüünsgaard and Pedersen, 2003, Ferrucci et al., 2005). In the Dutch participants, advancing 
age was indeed associated with an increase in inflammation-related proteins, including inflammatory 
cytokines (IL-6, IL-7, IL-18), IL-15RA, monocyte chemoattractant proteins (MCP2-4), matrix metallopro-
tease1 (MMP1), the chemokine IL-8 and hepatocyte growth factor (HGF). In contrast, these significant 
associations were largely absent in the Tanzanians (Figure 2A, B, Supplementary file 2). An excep-
tion was a strong significant positive association of advancing age with CDCP1, CCL11, and CCL25, 
which was also observed in the Dutch cohort. Overall, these results show that the association between 
advancing age and inflammatory markers is much weaker in Tanzanians.

Females in both cohorts overall had lower concentrations of inflammatory proteins than males 
(Figure  2A), which is consistent with our earlier findings that females had lower ex vivo cytokine 
responses (Temba et al., 2021; Ter Horst et al., 2016). Results also showed that Tanzanian females 
had significantly higher concentrations of TNF-beta (TNFB), IL12-beta and CCL28 than Tanzanian 
males.

Tanzanians Dutch p-value

Non-smoky 205 (64.5)

Exposure to animals, yes (N, %) 138 (43.4)

The course of antibiotics in the past year (N, 
%)

1–3 courses 164 (50.8)

>3 courses 28 (8.7)

None 131 (40.6)

Last time antibiotic use (N, %)

3–6 months ago 44 (13.6)

6–12 months ago 65 (20.1)

12 months ago, 83 (25.7)

None 131 (40.6)

Access to clean water (N, %)

Tap water 314 (97.2)

Well, canal or river water 9 (2.8)

Comparison between characteristics of the Tanzanian and the Dutch participants was done using Chi-square and, 
Mann-Whitney U tests; for categorical and continuous variables respectively.
*categories of cooking fuel include firewood, charcoal or kerosene (smoky), or gas and electrical (non-smoky).

Table 1 continued

https://doi.org/10.7554/eLife.82297


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Temba et al. eLife 2023;12:e82297. DOI: https://doi.org/10.7554/eLife.82297 � 6 of 18

−10

−5

0

5

10

−10 −5 0 5 10
PC1 (20.7% explained var.)

PC
2 

(1
1.

9%
 e

xp
la

in
ed

 v
ar

.)

A

B

Cohort

Dutch

Tanzania

C

DNER IL−17C

CCL11

CDCP1LIF−R 4E−BP1
ADA

TGF−alpha
MCP−3

CCL28

IL−17ACST5CD5
FGF−21

MCP−1 SLAMF1

TRAIL
TWEAK

MCP−2

CD6 OSM

TNF

CASP−8 IL18AXIN1

HGF
CCL23

ST1A1

CCL4

CD8AEN−RAGECXCL6 CCL25
CCL20

CD40

IL10

uPA
IL7

CCL3SCFIL−15RA

LAP.TGF−beta−1

MMP−10
IL8MMP−1CXCL5

CXCL1 CXCL10

Flt3L

IL6

PD−L1

FGF−19
NT−3

STAMBPSIRT20

20

40

60

80

−2 −1 0 1 2

Log2fold change

−L
og

10
p−

va
lu

e 
(fd

r) 

Increase in Dutch Increase in Tanzanians

IL-1RA

0

250

500

750

1000

AAT

0

2

4

6

Adipo/Leptin

0

3

6

9

Resistin

0

10

20

30

40

50

IL-18

0

250

500

750

Adiponectin

0

5

10

15

IL-6

0.0

2.5

5.0

7.5

Leptin

0

40

80

120

IL-1beta

0.0

0.5

1.0

1.5

2.0

ng
/m

l
pg

/m
l

m
g/

m
l

ng
/m

l

m
g/

m
l

pg
/m

l

pg
/m

l

pg
/m

l

P=1.3x10-11

P=1.8x10-24

P=2.3x10-5

P=8.8x10-11 P=1.8x10-38

P=1.2x10-13P=7.4x10-35

P=3.0x10- 62

Legend

Figure 1. Differentially expressed inflammatory protein profiles among Dutch and Tanzanian participants. (A) Principal component analysis depicting the 
sample distribution of Dutch (N=416) vs. Tanzanian (N=318) healthy individuals across PC1 and PC2, indicating significant differences in the inflammatory 
protein profiles of the two cohorts. (B) Volcano plot showing differentially expressed proteins (DEPs) between the Dutch and Tanzanian cohorts (Dutch 
cohort; N=74 and Tanzanian cohort; N=72 inflammatory proteins; analyzed by Limma, linear models for microarray data, R package). The x-axis shows 
the Log2 fold change (Log2 FC) of the normalized protein expression (NPX), while the y-axis shows the -Log10 of the adjusted p-values (FDR <0.05); 
dotted lines represent the cut-off value Log2FC < 0.5 and> 0.5. (C) Violin plots showing concentrations of circulating adipokines and inflammatory 
cytokines in the Dutch and Tanzanian participants (data previously reported (Temba et al., 2022); differences analyzed by linear regression with age, sex 
and BMI as covariates). Results were declared significant after correcting for multiple testing using False discovered rate (FDR). AAT; alpha-1 antitrypsin; 
BMI; Body Mass Index.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Histograms and pie charts showing the distribution of cohorts characteristics comparing Tanzanian and Dutch samples.

Figure supplement 2. Schematic diagram showing the sample pre-processing according to the measured inflammatory protein in both cohorts.

Figure supplement 3. Scatter plot showing the association of plasma concentration of leptin with BMI in Tanzanian females compared to Dutch 
females.
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Figure 2. Associations of age, BMI, sex and seasonality with inflammatory proteins in Dutch and Tanzanian participants. (A) Heat map illustrating the 
regression beta-coefficient of plasma inflammatory proteins with host and environmental factors in the Dutch and Tanzanian cohorts. Red and turquoise 
indicate higher and lower concentrations of inflammatory proteins associated with seasonality, higher BMI, female sex, and advanced age in the Dutch 
cohort, and with urban living, rainy season, higher BMI, female sex, and advanced age in the Tanzanian cohort, respectively. p-Values of the significant 
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Finally, since environmental exposures are potential drivers of inflammation, we determined the 
relationship between relevant exposures for Tanzanians and the proteome. Such exposures included 
type of toilet, exposure to wood smoke for cooking, farm-animal exposure, access to clean water, 
previous infections and prior use of antibiotics (Table 1). Our results did not show a significant associ-
ation between inflammatory proteins with one of these exposures.

Associations with food-derived metabolites and dietary habits
We recently reported that diet, and especially the transition between a rural traditional diet to an 
urban Western-type diet, had a major influence on ex vivo cytokine immune responses in the Tanza-
nian cohort (Temba et  al., 2021). We postulated that diet also explained part of the variation in 
inflammatory proteins. To test this hypothesis, we selected food-derived metabolites (n=288) from an 
untargeted plasma metabolome, as previously described (Temba et al., 2021). Using these metab-
olites, we first performed unsupervised hierarchical clustering, which yielded two different clusters 
(food-metabolome clusters one and two) (Figure 3—figure supplement 1A). Weekly food consump-
tion was associated with these food-metabolome clusters: participants in cluster one more frequently 
consumed ugali (a traditional porridge made from maize), plantain (cooking banana) and green vege-
tables, and less frequently rice and fried potato chips (Figure 3—figure supplement 1B). Next, we 
performed unsupervised clustering of the inflammatory proteome with age, sex, BMI, geolocation 
(i.e. rural vs. urban living), seasonality and the food-metabolome clusters as input variables. This anal-
ysis revealed two significant inflammatory proteome clusters: one with lower and one with higher 
expressed inflammatory proteins (Figure  3). Participants belonging to food-metabolome cluster 
one (i.e. more ‘traditional’ Tanzanian diet) were overrepresented in the cluster with lower-expressed 
inflammatory proteins, whereas participants belonging to cluster two were overrepresented in the 
cluster of higher-expressed inflammatory proteins (Supplementary file 3). Other factors such as age, 
sex or season were not associated with the inflammatory clustering.

Next, we performed a correlation analysis to assess the relationship between diet-related metab-
olites and inflammatory proteins. Results show different negative associations between plant-derived 
polyphenols (apigenin, naringenin, cyanidin 3-(6-caffeoyl glucoside) 5-glucoside, licoagrodin, shoyu-
flavone C and phenolic acids such as gallic acid) and inflammatory proteins, particularly the MCP 
and CXCL families (Figure 4). In contrast, positive associations were observed between inflammatory 
proteins, and especially members of the MCP and CXCL families, with plasma metabolites belonging 
to the following classes: carboxylic acids and derivatives (e.g. aminobutanoic acid-ABA), organoox-
ygen compounds (for example, triose), and prenol lipids such as resveratrol 4"-(6-) galloylglucoside 
(Figure 4, Supplementary file 4). The detailed classifications of various diet-derived metabolites and 
their correlations with various inflammatory proteins are presented in Supplementary file 4. Overall, 
these findings support the notion that a traditional plant-based Tanzanian diet in healthy Tanzanians 
has an important impact on circulating inflammatory proteins.

To confirm the impact of diet on the mTORC and Wnt/β-catenin pathways in Tanzanians, we utilized 
preliminary data from a proof-of-concept dietary intervention study that was conducted in the same 
region in Tanzania (ISCRTN15619939). To validate the importance of these pathways, we analyzed data 
from 23 young, healthy males residing in an urban area who underwent a 2-week dietary switch from a 
westernized to a traditional Tanzanian, high-fiber, plant-based diet. Using the same Olink proteomics 
platform, we observed a significant reduction in plasma levels of proteins associated with the mTOR 
pathway, including 4E-BP1 (beta coeff. –1.87; p=0.003) and FGF-19 (beta coeff. –1.253; p=0.0001). 
Additionally, we noticed a trend towards a reduction in the Wnt/ β -catenin signaling protein AXIN1 
(beta coeff. –0.555; p=0.063), while CDCP1 levels remained unchanged (beta coeff. 0.049; p=0.464).

associations are depicted, and the results were declared significant after correcting for multiple testing using the False discovered rate (FDR); p-value 
<0.05(*), <0.005(**), and <0.0001(***). (B) Four-quadrant plot depicting the association between the inflammatory protein expression with either age, 
sex, or BMI in the Dutch and Tanzania cohorts related to panel A.

Figure 2 continued
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Discussion
Genetic and environmental variations, including diet, lifestyle and infectious diseases burden, are 
important for modulating immune responses and may result in differences in immune phenotypes 
across populations. Our analysis of the inflammatory proteome shows that healthy Tanzanians have 
a more prominent pro-inflammatory phenotype compared to healthy Dutch individuals. Among 
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Food-metabolome clusters and their associations with weekly food consumption within the Tanzanian cohort.
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Figure 4. Association between inflammatory proteins and food-derived metabolites in the Tanzanian cohort. The heat map illustrates the associations 
between inflammatory proteins and food-derived metabolites in Tanzanian participants. The left panel displays the formulas obtained from accurate 
mass and natural abundance isotopic mass spectrometry data, along with the putative annotated food-derived metabolites. The β coefficients of the 
multiple linear regression model, including age and sex as covariates, are shown in the heat map using red and turquoise colors to indicate positive 
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the Tanzanians, food-derived metabolites were identified as an important driver of variation in 
inflammation-related proteins, emphasizing the potential importance of lifestyle changes.

In the same European and African cohorts, we recently showed remarkable differences in the 
genetic regulation of immune responses, with ancestry-specific pathways regulating induced cytokine 
responses and significant enrichment of the interferon pathway in the Tanzanians (Boahen et  al., 
2022). From a historical perspective, the natural selection of genotypes that mediate a strong inflam-
matory response offers an obvious advantage in areas with a high infectious diseases burden such as 
sub-Saharan Africa. In addition, epigenetic regulation as a conduit that mirrors environmental expo-
sure (e.g. diet, lifestyle or exposure to infectious diseases) may also promote an inflammatory signa-
ture. However, while a strong inflammatory response can be advantageous in the host’s response 
against infections, it may become disadvantageous when the environment changes with a reduction 
in the infectious burden and a shift toward an unhealthy lifestyle. Many areas in sub-Saharan Africa 
are currently witnessing such changes and this is one of the important drivers of the rapid increase in 
non-communicable diseases and other inflammation-associated pathologies.

A healthy diet is an important component of a healthy lifestyle. In the present study, we show 
that Tanzanians who consumed more traditional staple foods, such as ugali (porridge made from 
maize or millet) or plantain, as well as green vegetables, had lower concentrations of inflammation-
related proteins. We also observed several significant associations between food-derived metabolites 
and inflammatory proteins. Specifically, plant-derived polyphenols were negatively associated with 
members of the MCP and CXCL families. Especially gallic acid, a natural phenic acid with different 
health benefits, which is present in mangos and other edible plants (Kim et al., 2021), had different 
negative associations with immune-derived proteins. These data confirm our earlier findings that diet 
has an important impact on cytokine responses (Temba et al., 2021) as well as plasmatic coagula-
tion (Temba et al., 2022). Traditional foods, particularly plant-based diets, are increasingly recog-
nized for their cardiovascular health benefits (Hemler and Hu, 2019), and our findings support the 
notion that promoting traditional diets may be a viable public health strategy for curbing the NCDs 
epidemic. Other environmental exposures may potentially confound the diet-inflammation associ-
ations, for example, individuals with a traditional diet may also use more frequently a pit latrine or 
smoky fuels and may have more infections, but we found no significant associations between inflam-
matory proteins and any of these other environmental exposures.

An interesting observation was the limited number of associations between advancing age and 
inflammation-related proteins in the Tanzanians. In historically wealthy countries, aging is associated 
with a blunted response of immune cells to stimulation, while having a chronic low-inflammation state 
(Yashin and Jazwinski, 2014; Liberale et al., 2020), as also observed in Dutch in this study. Cytokine 
responses decline in the Tanzanians with advancing age (Temba et al., 2021), similar to Europeans, 
but the reasons why systemic inflammation does not increase remain uncertain. Possible explanations 
are the already present inflammatory signature at a younger age, possibly because of higher cumu-
lative exposure to infections or other environmental insults, or that older participants in Tanzania 
manage to control the inflammatory state by a healthier lifestyle.

The two most upregulated proteins in the Tanzanians, 4E-BP1 and FGF21, are regulators of metab-
olism. FGF21 has received much attention recently as an endocrine regulator of glucose, lipid, and 
energy metabolism (Hill et al., 2018). FGF21 is an insulin sensitizer, and its secretion is increased by 
a high intake of carbohydrates and low dietary protein intake (Maekawa et al., 2017; Lundsgaard 
et al., 2017). FGF21 inhibits age-associated metabolic syndrome and protects against diabetic cardio-
myopathy (Yan et al., 2021). FGF21, therefore, acts differently from classic energy balance signals 
like leptin (Hill et al., 2018). Traditional Tanzanian diets are high in carbohydrates and low in proteins, 
which may explain the high FGF21 among the Tanzanians. FGF21 was also reported to be higher 
in obesity (Zhang et al., 2008), but we did not find an association with BMI. Tanzanians also had 
higher leptin and lower adiponectin concentrations than the Dutch. This is in line with the results of 
an earlier study among non-obese and obese subjects with type 2 diabetes in Tanzania and Sweden, 
which showed that leptin concentrations were 50% higher in the Tanzanians (Abbas et al., 2004). 

and negative correlations, respectively. Significance was determined after correcting for multiple testing using False Discovery Rate (FDR); p-value 
<0.05(*),<0.005(**), and <0.0001(***).
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This supports the importance of potential ethnic differences in metabolic profiles and adipocytokines 
(Mente et  al., 2010). To our knowledge, this study is the first to compare FGF21 levels between 
healthy individuals from sub-Saharan Africa and Europe.

Another interesting finding was the significant differences in CDCP1 and AXIN1, pointing towards 
an enhanced activity of the Wnt/β-catenin pathway in the Tanzanians. The Wnt/β-catenin pathway is 
a key regulator of inflammation, playing a role in both the inflammatory and anti-inflammatory path-
ways (Ma and Hottiger, 2016). Dysregulated activation of the Wnt/β-catenin pathway is increasingly 
recognized to play a role in the pathogenesis of chronic inflammatory diseases, metabolic inflamma-
tory diseases and cancer (Jridi et al., 2020). Mice fed on a high-fat Western-type diet expressed high 
concentrations of Wnt2 protein in atherosclerotic lesions, suggesting that the Wnt/β-catenin pathway 
also contributes to atherosclerosis (Zhang et al., 2021).

The resolution of inflammation is typically coordinated by key lipids, proteins, and peptides (such 
as annexin, lipoxins, and resolvins) (Headland and Norling, 2015). It would be interesting to examine 
whether a decrease in the production of these endogenous mediators by immune cells could poten-
tially contribute to the pro-inflammatory phenotype observed in the Tanzanians.

To summarize, our findings reveal significant differences in inflammatory and metabolic proteins 
and pathways between healthy individuals living in East Africa and individuals living in Western 
Europe. This is especially important in light of the current epidemiological transition and lifestyle 
changes in sub-Saharan Africa, which coincides with a sharp increase in non-communicable diseases 
in the region. Our study also endorses the importance of including underrepresented populations in 
systems-immunology studies.

Materials and methods
Study design and population
The present study used samples from two cross-sectional cohorts of healthy volunteers: the 
300-Tanzania-FG (300TZFG) and the Dutch 500FG. Both cohorts were enrolled within the Human 
Functional Genomics Project (https://www.humanfunctionalgenomics.org). The demographic char-
acteristics of both cohorts have been described previously (Temba et al., 2021; Ter Horst et al., 
2016). Briefly, the 300TZFG cohort consists of 323 healthy Tanzanian individuals aged between 18 and 
65 years residing in the Kilimanjaro region in Northern Tanzania. The cohort was enrolled between 
March and December 2017. Exclusion criteria were participants with any acute or chronic disease, use 
of antibiotics or anti-malaria medication in the three months before blood sampling, tuberculosis in the 
past year, a blood pressure ≤90/60 mmHg or ≥140/90 mmHg, or random blood glucose >8.0 mmol/L. 
Pregnant, postpartum, or breastfeeding females were excluded. The 500FG cohort consists of 534 
Dutch individuals of Western-European background, aged 18  years and older. Data was collected 
between August 2013 and December 2014 at the Radboud university medical center (Radboudumc) 
in the Netherlands. Exclusion criteria were: the use of any medication in the past month and acute or 
chronic diseases at the time of blood sampling. Pregnant, postpartum, or breastfeeding females were 
excluded.

Sample collection and preparation
The current study is part of the Human Functional Genomics Project (HFGP; humanfunctionalgenomics.​
org), which employs standardized procedures for sample collection, handling, and pre-processing. 
Blood was obtained in the morning via antecubital puncture into ethylenediaminetetraacetic acid 
(EDTA) tubes (Monoject; Covidien, Ireland). Within two to three hours after blood collection, plasma 
was collected by centrifugation at 3800 rpm for 8 min at room temperature. The obtained plasma 
were stored at −80 °C, as recommended by the ISBER biobanking organization (Garcia et al., 2014). 
Plasma samples for the Tanzania cohort were shipped to the Netherlands on dry ice.

Inflammatory proteome
Plasma proteins were measured with the Olink 92 Inflammation panel using proximity extension tech-
nology (Olink Proteomics AB, Uppsala, Sweden) (Assarsson et  al., 2014). This panel includes 92 
inflammation-related proteins. This assay utilizes the binding of target proteins by paired oligonucle-
otide antibody probes, followed by hybridization and amplification. Data are reported as normalized 
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protein expression values (NPX), which is an arbitrary unit in a Log2 scale that is calculated from 
normalized Ct values. Validation data of the assay are available on the Olink website (https://www.​
olink.com). All samples were measured in the same batch in a single run. Proteins were excluded from 
analysis when values were both below the detection limit in more than 25% of all samples. Plasma 
samples from the Tanzanian and Dutch cohorts were on their first and second freeze-thawed cycles, 
respectively. Pre-analytical processing such as freeze-thawed cycles and storage time has limited influ-
ence on the measured proteins reported in this study (Shen et al., 2018; Enroth et al., 2016; Lee 
et al., 2015).

Measurement of the circulating inflammatory mediators
Plasma concentrations of the cytokines IL-6, IL-1β, IL-1 receptor antagonist (IL-1Ra) and IL-18 (lot 
number Bio-Tech/R&D; SPCKC-PS-001559) and IL-18 binding protein (IL-18BPa) (lot number Bio-
Tech/R&D; SPCKB-PS-000502) were measured in EDTA plasma using the Simple Plex cartridges run 
on the Ella platform (Protein Simple, San Jose, USA) following the manufacturer’s instructions.

Plasma metabolome
Plasma samples of the Tanzanian cohort were measured using the untargeted metabolomics workflow 
by General Metabolics (Boston, MA) with procedures as previously described (Fuhrer et al., 2011). 
In short, metabolites were measured by a high throughput mass spectrometry technique using the 
Agilent Series 1100 LC pump coupled to a Gerstel MPS2 autosampler and the Agilent 6520 Series 
Quadrupole Time-of-flight mass spectrometer (Agilent, Santa Clara, CA). Our non-targeted high-
throughput method relies on flow injection and does not involve separation of compounds based 
on an LC gradient. This is because many different species would be fragmented simultaneously. 
Historically, the decision to collect high-accuracy flow injection has been a technological trade-off 
to enable efficient analysis of large cohorts. Therefore, metabolites detected in the high-throughput 
non-targeted metabolomics screening method, which enables the screening of these large cohorts 
for metabolomic feature patterns, are based on accurate mass (approximately 1 ppm accuracy) and 
natural isotope detection consistent with the assigned formulae; final assignments are pending valida-
tion with LC-MS/MS. For this study, the MS spectra files (accessible at http://www.ebi.ac.uk/metaboLi-
ghts/MTBLS2267) contain 70 scans, each of which contains the full MS1 profile data from m/z 50–1050 
for two subsequent injections from the same needle draw of any given sample. The analytical method 
and approach to data processing and annotation were previously described (Fuhrer et al., 2011). 
The selection of food-derived metabolites was performed based on the ontology given in the HMDB 
(https://www.hmdb.ca/) as described previously (Temba et al., 2021).

Statistical analysis
The proteomic data from the Dutch and Tanzanian cohorts were normalized using inter-plate controls 
for batch variation correction and presented in the log2 scale. Normalizing for batch effects was done 
using pooled plasma standards on all plates. Eight samples of plasma pool controls were measured 
in each cohort (two per plate, a total of 4 plates per cohort). We performed bridging normalization 
based on median differences between plasma pool controls in the 300TZFG and 500FG cohorts. The 
following steps were applied for each protein: (1) Determine the median value from the eight bridging 
samples for each protein in the 300TZFG and 500FG cohort. (2) Calculate the median differences 
(300TZFG-500FG) as median differences X. (3) Take the NXP values of each protein in the 300TZFG 
cohort and subtract the median difference (the X value). This created a normalized data set for the 
300TZFG cohort.

Data values below the limit of detection (LOD) were handled using the actual measured values to 
increase the statistical power and give a complete data distribution. Outliers detection were done 
using principal component analysis (PCA) in which data points that fall in more than 3 standard devi-
ations from the mean of principal component one (PC1) and two (PC2) were excluded. This pre-
analytical process led to exclusion of 12 participants (N=7 Dutch and N=5 Tanzanians) as potential 
outliers. Proteins with >25% data values below LOD in both cohorts were excluded (N=18 in the 
Duch and N=20 in the Tanzania cohorts), leaving 74 and 72 inflammatory proteins for the downstream 
data analysis in the Dutch and Tanzanian cohorts respectively. In total, 416 Dutch and 318 Tanzania 
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participants were available after the pre-analytical process. Details of preanalytical steps for both 
cohorts are described in Figure 1—figure supplement 2.

To analyze the similarities and dissimilarities between the samples, unsupervised PCA was 
performed using 'prcomp' function in R package. Heatmap of unsupervised hierarchical clustering 
(k-nearest neighbors with 100 repetitions) of the samples was generated using 'ComplexHeatmap' 
R package by calculating the matrix of Euclidean distances from the log2 NPX value. Limma (linear 
models for microarray data) R package was used for differential expression analysis of plasma inflam-
matory proteins between cohorts. Proteins with adjusted P-value (FDR)<0.05 were selected as signifi-
cantly differentially expressed (DE). Proteins with a positive and negative value of log2-fold-change 
were considered as upregulated and downregulated, respectively.
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