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DOUBLE LAYER CONCENTRATION AND HOMOGENIZATION
FOR THE HEAT DIFFUSION IN A COMPOSITE MATERIAL

MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

We investigate the possibility of deriving “nonstandard” transmission conditions,
across a sharp contact interface, for a heat equation (in its static, i.e., elliptic,
counterpart), by means of a concentration approach performed on a composite
“thick” interface separating two thermally conductive media. Subsequently, a
homogenization limit is performed via two-scale asymptotic expansions on the
system of equations thus obtained.

1. Introduction

In the literature, many models describing the evolution of the temperature across
an interface have been studied. For example, if the contact between the two media
is deemed to be “thermally perfect”, we have that the temperature u and its flux
A∇u · ν are continuous across the interface 0 (where A is the conductivity and
ν is the unit normal vector to 0). On the other hand, if the thermal contact is
“imperfect”, we have the well-known Newton boundary conditions, in which the
heat flux is continuous across 0 while the temperature u is not. Namely we have

[A∇u · ν] = Aout
∇uout

· ν− Aint
∇uint

· ν = 0 on 0,

[u] = uout
− uint

= Aout
∇uout

· ν = Aint
∇uint

· ν on 0,

where [ · ] denotes the jump across 0.
Similar models appear in the context of electrical conduction where, denoting by

u the potential, the current j (the flux of u) is continuous across a capacitor, while
the time derivative of the potential jump is proportional to the flux (see, for instance,
[5; 6; 7; 8; 10; 13; 15; 26]); namely

[A∇u · ν] = 0 and
∂[u]
∂t
= Aout

∇uout
· ν on 0.
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102 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

Going back to heat conduction, we see that, in recent years, different models
to describe the thermal behavior of the interface 0 have appeared ([19; 20; 22;
24; 25; 29]). In particular, in [2; 3] the temperature is continuous across 0 but
the flux is not. This is due to the fact that the jump of the flux [A∇u · ν], i.e., the
“missing energy”, is transported along the interface which is assumed to be “highly
conductive” and, therefore, it appears as a source term for a differential equation,
satisfied on 0, governed by the Laplace–Beltrami operator.

Previous models, where the interface represents the mathematical approximation
of a physical membrane having a very small thickness, are usually obtained via
concentration or suitable Taylor expansions. Similar techniques were used by some
of the authors in [4; 6; 9] to derive models to describe the behavior of active
interfaces for electrical conduction and heat diffusion. In particular, in [6], it
has been proven that a thick interface in which diffusion occurs with transversal
diffusivity vanishing as the thickness η of the interface goes to zero leads to a model
for which the flux is continuous but the unknown u has a jump across 0. On the
other hand, in [4], it is assumed that the transversal diffusivity remains stable while
the tangential one tends to infinity, as η tends to zero, leading to a model where
the heat flux is discontinuous, while u is continuous on 0 and satisfies a diffusion
equation whose source term is just the jump of the flux.

It is, therefore, natural to investigate if it is possible to conceive particular
structures for a “fat” (N -dimensional) interface that, via concentration (letting the
thickness of the interface go to zero), give rise to a new set of interface conditions,
in which both the temperature and its flux are discontinuous across 0 (see, for
example, [27]).

Motivated by the previous considerations, we study, in this paper, the con-
centration limit of a problem in which two different media are separated by a
composite thick interface made of two materials with dissimilar physical properties.
In this structure, the two materials are disposed in such a way that one of them is
encapsulated in the other and, as the thickness goes to zero, in the internal material
the tangential diffusivity stays stable and the transversal one goes to zero, while in
the external material the transversal diffusivity remains stable and the tangential one
goes to infinity. In the concentration limit, we obtain a problem in which both the
state variable u and its flux are discontinuous across the limiting sharp interface 0.
However, besides the jump operator [ · ], the new average operator { · }, where
{ f } = f int

+ f out (with the usual meanings of the superscripts), appears and plays
a relevant role in this new model. In fact, on 0 the jump of the flux [A∇u ·ν] is the
source term of a Laplace–Beltrami equation for {u}, while [u] solves a diffusion equa-
tion still involving the Laplace–Beltrami operator having as a source term {A∇u ·ν}.

In this framework, it is worthwhile to recall [11], in which the concentration is
performed for a similarly layered interface, with the difference that the roles of
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 103

the external and the internal layer are interchanged. It turns out that, as expected,
in the spatially one-dimensional case (i.e., when the interface is just a point), our
concentrated model reduces to the well-known Newton model for imperfect thermal
contact.

The system of PDEs associated to the quoted model is well posed (see Section 3)
and it is possible to find a reasonable energy estimate for it, thus providing a further
physical validation of our problem.

We stress the fact that our concentration limit is performed under the simplifying
assumption that the thick interface, as well as the sharp one, is flat. Once we have
obtained the concentrated model, we consider a composite medium � having a
microstructure constituted by an array of periodic cells, with a very small charac-
teristic dimension ε, made up of two different materials �int

ε and �out
ε separated

by an (N−1)-dimensional interface 0ε acting according to the concentration limit
equations found before. Therefore, in the spirit of homogenization, we proceed
to perform the limit ε → 0 for this new set of equations. The homogenization
limit will be done via formal two-scale expansions, following the technique devised
by Bensoussan, Lions and Papanicolau in [14]. As done in other papers (see,
for instance, [6; 13; 15; 16]), we consider a hierarchy of different scalings of
the physical constants present in our system of equations. Essentially, we will
study three different scalings m = −1, 0, 1 (see 3-1), which, in accordance with
the previous literature, are the main ones, and we will prove that, only in the
case m =−1, the macroscopic model preserves memory of the complete physical
structure of the interface. This seems to be the correct physical scaling leading to
the more relevant model, which describes the problem under investigation.

The problem here studied is, up to our knowledge, mathematically new and
quite interesting, since it provides a new mechanism by which heat is transmitted
through an (N−1)-dimensional interface. However, in the engineering literature,
similar problems, involving simultaneously the jump, the average and the Laplace–
Beltrami operators acting both on the solution and on the flux, have already appeared
(see, for instance, [18; 27; 28]). With respect to such models, not fully studied
from a rigorous mathematical point of view, the concentration procedure formally
provided in this paper (as well as the homogenization one) can be made rigorous
(see [11; 12]). This fact gives the novelty and the relevance of the present paper
and also hints at possible applications of the models contained therein to real-life
problems.

The paper is organized as follows. In Section 2, we recall the main properties
of the tangential operators, state our geometrical settings and introduce the proper
functional spaces needed in the sequel. Section 3 is devoted to the well-posedness
of the microscopic problems considered in this paper. In Section 4, in a simpler
two-dimensional flat geometry, we formally derive the microscopic model via a
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104 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

concentration procedure. Finally, in Section 5, by means of the two-scale expansion
technique, we perform the homogenization limit of our model for three different
scalings.

2. Notation and preliminaries

Notation. We will assume that �⊂RN (N ≥ 3) is a bounded open set with smooth
boundary ∂�.

The sets Ck
c (�), with k ∈ N (C∞c (�), respectively), will denote the subset of

the functions belonging to the standard space Ck(�) (C∞(�), respectively) with
compact support in �.

Also, H 1(�), H 1
0 (�) and H 1

loc(�) will denote the usual Sobolev spaces.
Since, in the sequel, we will also deal with periodic functions, we recall here

the main associated functional spaces. Let Y = (0, 1)N be the reference unit cell
in RN . We will denote by Ck

per(Y ) the set of the Y -periodic functions in Ck(RN ),
by L p

per(Y ) the set of the Y -periodic functions in L p
loc(R

N ) and by H 1
per(Y ) the set

of the Y -periodic functions in H 1
loc(R

N ).
Finally, C will be a strictly positive constant, which may vary from line to line.

Tangential differential operators. We recall that for a function φ ∈ C1(�) and a
smooth surface S ⊂�⊆ RN , the tangential gradient ∇Bφ on S is the projection of
∇φ on the tangent hyperplane to S, that is,

∇
Bφ := ∇φ− (n · ∇φ)n, (2-1)

where n is the normal unit vector to S and ∇ is the classical gradient.
For a vector-valued function 8 ∈ C1(�), the tangential divergence of 8 on S is

defined as
divB 8 := div(8− (n ·8)n)

= div8− (n · ∇8i )ni − (div n)(n ·8),

where, taking into account the smoothness of S, the normal vector n can be naturally
defined in a small neighborhood of S as ∇d/|∇d|, where d is the signed distance
from S.

For a scalar function φ∈C2(�), the Laplace–Beltrami operator1Bφ is defined as

1Bφ := divB(∇Bφ)=1φ− nt
∇

2φ n− (n · ∇φ) div n

= (δi j − ni n j )∂
2
i jφ− (ni∂iφ)(∂ j n j ),

(2-2)

where δi j is the Kronecker delta and, as usual, we sum with respect to repeated
indices. Here, ∇2φ denotes the Hessian matrix of φ.
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 105

Eout

E int

0

�out
ε

0ε

�int
ε

Figure 1. Micro- and macroscopic view of the periodic structure
in the connected-disconnected geometrical settings.

We recall that, if S is a regular surface with no boundary, i.e., ∂S =∅, we have∫
S

divB 8 dσ = 0. (2-3)

Geometrical settings. The typical periodic geometrical settings are displayed in
Figures 1 and 2 and, in this section, we give their detailed formal definitions. Assume
that E is a periodic open subset of RN such that E + z = E for all z ∈ ZN . For the
sake of simplicity, assume that the boundaries of � and E are of class C∞. Set

E int
:= E ∩ Y, Eout

:= Y\Ē, 0 := ∂E ∩ Y,

so that Y is the union of the two disjoint open subsets E int and Eout and the common
boundary 0.

Let ε∈ (0, 1] be the small parameter accounting for the micro length-scale, which
will converge to zero. We define

• �int
ε :=�∩ εE to be the the inner conductive phase;

• �out
ε :=�\ε Ē =�\�int

ε to be the the outer conductive phase;

• 0ε := ∂�
int
ε ∩�= ∂�

out
ε ∩� to be the the interface between the two conductive

phases,

E int

T

Eout

Figure 2. Micro- and macroscopic view of the periodic structure
in the connected-connected geometrical settings.
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106 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

so that
�=�int

ε ∪�
out
ε ∪0ε.

We assume also that �out
ε is connected at each step ε > 0, whereas �int

ε will be
connected or disconnected. Indeed, we will consider the following two situations.

Connected-disconnected case: We assume that 0∩∂Y =∅, that is, the boundary of
E does not touch the boundary of the unit cell Y (see Figure 1). Here, the domain �
is the union of the connected domain �out

ε , the disconnected domain �int
ε and the

common boundary 0ε. We also assume that the cells intersecting the boundary ∂�
do not contain any inclusion, so that we have dist(0ε, ∂�)≥C0 ε, for some suitable
constant C0 > 0 independent of ε.

Connected-connected case: We assume that ∂E ∩ Y 6= ∅, but |∂E ∩ Y |N−1 =

0 (where | · |N−1 denotes the (N−1)-dimensional Hausdorff measure). In this
situation, we stipulate that E int, Eout, �int

ε , and �out
ε are connected and, without

any loss of generality, that they have Lipschitz continuous boundary (at least for a
suitable choice of a subsequence εn→ 0). In this case, at each level ε > 0, we have
that both ∂�∩ ∂�int

ε and ∂�∩ ∂�out
ε are nonempty (see Figure 2).

Finally, let ν be the normal unit vector to 0 pointing into Eout, extended by
periodicity to the whole of RN , so that νε(x)= ν

( x
ε

)
denotes the normal unit vector

to 0ε pointing into �out
ε .

The space Ĥε
0,m(�). We introduce here the proper functional setting for the ε-

microscopic problem we will analyze. For this purpose, given a function u defined
in �, we denote by uint and uout the restriction of u to �int

ε and �out
ε , respectively,

and, with abuse of notation, we use the same symbols also for the corresponding
traces on 0ε. We denote by [u] the jump of u across the interface 0ε, i.e.,

[u] = uout
− uint, (2-4)

and, similarly, {u} denotes the sum of the two potentials uint and uout at the interface
0ε, i.e.,

{u} = uout
+ uint. (2-5)

The same notation will be used for other quantities. Let us remark, for later use, that

uout
=

1
2({u}+ [u]) and uint

=
1
2({u}− [u]).

Definition 2.1. For a given ε ∈ (0, 1] and m =−1, 0, 1, let us define

Ĥε
0,m(�) :=

{
u = (uint,uout) : uint

∈ H 1(�int
ε ), uout

∈ H 1(�out
ε ),

[u] ∈ L2(0ε),∇
B
[u] ∈ L2(0ε), {u} ∈ L2(0ε),

∇
B
{u} ∈ L2(0ε), u = 0 on ∂�

}
(2-6)
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 107

endowed with the norm

‖u‖2Ĥε
0,m(�)

:= ‖∇u‖2L2(�int
ε )
+‖∇u‖2L2(�out

ε )
+
εm

2
‖[u]‖2L2(0ε)

+
εm+2

2
‖∇

B
[u]‖2L2(0ε)

+
εm+2

2
‖∇

B
{u}‖2L2(0ε)

. (2-7)

Clearly, (2-7) defines a norm. Indeed, the positive 1-homogeneity and the triangle
inequality are straightforward. On the other hand, when ||u||Ĥε

0,m(�)
= 0, it follows

that ∇u = 0 and, then, u is constant in �int
ε and �out

ε . However, from [u] = 0 on 0
and u = 0 on ∂�, we conclude that u = 0 in the whole of �.

The norm defined above is associated with the scalar product given by

(u, v)Ĥε
0,m(�)

=

∫
�int
ε

∇u · ∇v dx +
∫
�out
ε

∇u · ∇v dx + ε
m

2

∫
0ε

[u] [v] dσ

+
εm+2

2

∫
0ε

∇
B
[u] · ∇B

[v] dσ + ε
m+2

2

∫
0ε

∇
B
{u} · ∇B

{v} dσ, (2-8)

for any u, v ∈ Ĥε
0,m(�).

Notice that the space Ĥε
0,m(�) coincides with the space of the piecewise H 1-

functions in �int
ε and �out

ε , with zero boundary value, whose traces on 0ε from �int
ε

and �out
ε belong to the space H 1(0ε), where

H 1(0ε)= {v ∈ L2(0ε) : ∇
Bv ∈ L2(0ε)}.

We recall also that, for u ∈ Ĥε
0,m(�), the following Poincaré inequality holds

(see [23, Lemma 6 complemented with Lemma 4] for the connected-disconnected
case, and [1, Lemma A.4] for the connected-connected case):

‖u‖2L2(�)
≤C(‖∇u‖2L2(�out

ε )
+‖∇u‖2L2(�int

ε )
+ε‖[u]‖2L2(0ε)

)≤C ‖u‖2Ĥε
0,m(�)

, (2-9)

where the constant C is independent of ε.

Lemma 2.2. For any fixed ε ∈ (0, 1] and m = −1, 0, 1, the space Ĥε
0,m(�) is a

Banach space.

Proof. Consider an arbitrary Cauchy sequence (un) in Ĥε
0,m(�). From the in-

equality (2-9), it follows that (uint
n ) and (uout

n ) are Cauchy sequences in H 1(�int
ε )

and H 1(�out
ε ), respectively. Thus, they converge in such spaces to u∗int and u∗out ,

respectively, and, hence, u∗ = (u∗int, u∗out) has null trace on ∂�, as a consequence
of the fact that the sequence (un) satisfies the same property.

In particular, uint
n → u∗int and uout

n → u∗out strongly in L2(0ε); thus, [un] → [u∗]
and {un} → {u∗} strongly in L2(0ε).

Also, the sequences (∇Buint
n ) and (∇Buout

n ) are Cauchy sequences in L2(0ε);
hence, there exist two limit vectors ζ int and ζ out such that

∇
Buint

n → ζ int and ∇
Buout

n → ζ out strongly in L2(0ε). (2-10)
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108 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

It remains only to prove that ζ int
= ∇

Bu∗int and ζ out
= ∇

Bu∗out , respectively. For
every vector function 8 ∈ C∞c (�), we have∫
0ε

ζ int
·8 dσ ←

∫
0ε

∇
Buint

n ·8 dσ =−
∫
0ε

uint
n divB 8 dσ →−

∫
0ε

u∗int divB 8 dσ.

This implies that u∗int ∈ H 1(0ε) and ζ int
=∇

Bu∗int . Clearly, the same holds for ζ out

and ∇Bu∗out . In particular, we obtain ∇B
[un] → ∇

B
[u∗] and ∇B

{un} → ∇
B
{u∗},

which completes the proof. �

For later use, let us also define the periodic version of the previous space as

Ĥper(Y ) :=
{
u = (uint, uout) : uint

∈ H 1
per(E

int), uout
∈ H 1

per(E
out),

[u] ∈ H 1
per(0), {u} ∈ H 1

per(0)
}
. (2-11)

Here and in the following H 1
per(E

int) (H 1
per(E

out) and H 1
per(0), respectively) denotes

the space of the Y -periodic functions belonging to H 1
loc(E) (H 1

loc(R
N
\ Ē) and

H 1
loc(∂E), respectively).

3. Position and well-posedness of the problem Bε

The ε-microscopic model, which we are interested in, is given by

Bε :



−div(Aε∇uint
ε )= f in �int

ε , (3-1a)

−div(Aε∇uout
ε )= f in �out

ε , (3-1b)

−γ εm+2
4

B
{uε} = [Aε∇uε · νε] on 0ε, (3-1c)

αεm
[uε] −βεm+2

4
B
[uε] = {A∇uε · νε} on 0ε, (3-1d)

uε = 0 on ∂�, (3-1e)

where α, β, γ are strictly positive constants. The source term f ∈ L2(�) and the
diffusivity matrix Aε is given by Aε(x)= A

( x
ε

)
where A is a measurable, Y -periodic

symmetric matrix satisfying

λ |ζ |2 ≤ (A(y)ζ, ζ )≤3 |ζ |2 for a.e. y ∈ Y and any ζ ∈ RN , (3-2)

where 0 < λ < 3 < +∞ are suitable constants. The physical meaning of the
constants γ , β, α is inherited from the one of the corresponding constants in
problem (4-1), describing the heat distribution in the case where a thick membrane is
present and such quantities represent the tangential (β and γ ) and the transversal (α)
diffusivities, which can be experimentally measurable (see, for instance, [17; 21]).

On the other hand, the mathematical description of our problem is given by an
elliptic equation in each phase �int

ε and �out
ε , complemented with a homogenous

Dirichlet boundary condition on ∂�. The thermal potentials uint
ε and uout

ε of the
two phases are coupled by means of two interface conditions: the jump of the
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 109

flux of the solution uε is assumed to be proportional to the Laplace–Beltrami of
the sum {uε} of the traces of the two potentials at the interface, whereas the jump
[uε] of the solution across the interface is governed by an equation involving the
Laplace–Beltrami operator and having as a source the sum of the two fluxes from
the external and from the internal phase. Note that, if β = γ = 0, conditions (3-1c)
and (3-1d) reduce to the well-known Newton boundary conditions, describing the
imperfect thermal contact (see, for instance, [5; 23; 26]). On the other hand, if
α→+∞, we get the static counterpart of the problem studied in [3].

In the following, we will consider the problem Bε for different scalings of the
parameter ε, by taking into account the exponents m =−1, 0, 1. This is consistent
with what has been done, for instance, in [6; 7; 8; 10; 13; 15; 16], where it has been
proved that the only relevant cases, from the point of view of the homogenization,
appear when m ∈ [−1, 1]. In this situation, only three different regimes are possible,
which are precisely m=−1, m ∈ (−1, 1) (that is, m= 0, in our case where we adopt
the two-scale expansion technique) and m = 1. The different scalings in conditions
(3-1c)–(3-1d) are due to a homogeneity argument, since the Laplace–Beltrami is a
second-order operator, while the jump [ · ] is a zero-order one.

Since problem (3-1a)–(3-1e) is not standard, at the end of this section we will state
and prove an existence and uniqueness result, starting from its weak formulation.

Definition 3.1 (weak solution of Bε). We say that uε ∈ Ĥε
0,m(�) is a weak solution

of the problem Bε, given by (3-1a)–(3-1e), if∫
�int
ε

Aε∇uint
ε · ∇ϕ dx +

∫
�out
ε

Aε∇uout
ε · ∇ϕ dx +α ε

m

2

∫
0ε

[uε] [ϕ] dσ

+β
εm+2

2

∫
0ε

∇
B
[uε] · ∇B

[ϕ] dσ + γ ε
m+2

2

∫
0ε

∇
B
{uε} · ∇B

{ϕ} dσ =
∫
�

f ϕ dx, (3-3)

for every test function ϕ ∈ Ĥε
0,m(�). �

Proposition 3.2. If uε ∈ Ĥε
0,m(�) is a weak solution of problem (3-1), then there

exists a constant C (independent of ε) such that

‖uε‖2Ĥε
0,m(�)

≤ C ‖ f ‖2L2(�)
.

Proof. By choosing ϕ = uε in the weak formulation (3-3), recalling (3-2), using
Young’s inequality and the Poincaré inequality (2-9), we get

λ ‖∇uε‖2L2(�int
ε ∪�

out
ε )
+α

εm

2
‖[uε]‖2L2(0ε)

+β
εm+2

2
‖∇

B
[uε]‖2L2(0ε)

+ γ
εm+2

2
‖∇

B
{uε}‖2L2(0ε)

≤

∫
�int
ε ∪�

out
ε

Aε∇uε · ∇uε dx +α ε
m

2

∫
0ε

|[uε]|2 dσ

+β
εm+2

2

∫
0ε

|∇
B
[uε]|2 dσ + γ ε

m+2

2

∫
0ε

|∇
B
{uε}|2 dσ
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110 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

≤
1
δ
‖ f ‖2L2(�)

+ δ ‖uε‖2L2(�)

≤
1
δ
‖ f ‖2L2(�)

+Cδ
(
‖∇uε‖2L2(�int

ε ∪�
out
ε )
+ ε ‖[uε]‖2L2(0ε)

)
≤

1
δ
‖ f ‖2L2(�)

+Cδ
(
‖∇uε‖2L2(�int

ε ∪�
out
ε )
+ εm

‖[uε]‖2L2(0ε)

)
,

where δ>0 can be chosen arbitrarily. Thus, by choosing Cδ=min
(
λ
2 ,

α
4

)
, we obtain

‖uε‖2Ĥε
0,m(�)

= ‖∇uε‖2L2(�int
ε ∪�

out
ε )
+
εm

2
‖[uε]‖2L2(0ε)

+
εm+2

2
‖∇

B
[uε]‖2L2(0ε)

+
εm+2

2
‖∇

B
{uε}‖2L2(0ε)

≤ C ‖ f ‖2L2(�)
, (3-4)

where C is independent of ε. This completes the proof. �

Remark 3.3. By taking into account (3-4) and the Poincaré inequality (2-9), it
follows that there exists a function u0 ∈ L2(�), such that, up to a subsequence,
uε⇀ u0 weakly in L2(�), as ε→ 0. Our interest will be the characterization of
such a limit u0 as the solution of a suitable differential problem.

Equation (3-4) also implies that there exists a constant C ≥ 0, independent of ε,
such that

‖uint
ε ‖H1(�int

ε )
≤ C, ‖uout

ε ‖H1(�out
ε ) ≤ C, ‖[uε]‖L2(0ε) ≤ Cε−

m
2 ,

‖∇
B
[uε]‖L2(0ε) ≤ Cε−

m+2
2 , ‖∇B

{uε}‖L2(0ε) ≤ Cε−
m+2

2 . �

The last part of this section will be devoted to prove the existence and uniqueness
of the solution uε ∈ Ĥε

0,m(�) of the problem (3-1) for any fixed ε. To this end, let
us take ε = 1 and rewrite the problem Bε as

B :



−div(A∇uint)= f in �int, (3-5a)

−div(A∇uout)= f in �out, (3-5b)

−γ4B
{u} = [A∇u · ν] + g on 0, (3-5c)

α[u] −β4B
[u] = {A∇u · ν}+ h on 0, (3-5d)

u = 0 on ∂�. (3-5e)

Here, �int and �out denote the two phases and 0 is the interface between them;
g, h ∈ L2(0) are given source terms (in problem (3-1) they are assumed to be
identically zero).
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 111

Following (3-3), the rigorous weak formulation of (3-5a)–(3-5e) is∫
�int

A∇uint
· ∇v dx +

∫
�out

A∇uout
· ∇v dx + α

2

∫
0
[u] [v] dσ

+
β

2

∫
0
∇

B
[u] · ∇B

[v] dσ + γ
2

∫
0
∇

B
{u} · ∇B

{v} dσ

=

∫
�

f v dx + 1
2

∫
0

g{v} dσ + 1
2

∫
0

h[v] dσ, (3-6)

for every test function v ∈ Ĥ0(�). Here, the space Ĥ0(�) is defined analogously
to (2-6) as

Ĥ0(�) :=
{
u = (uint, uout) | uint

∈ H 1(�int), uout
∈ H 1(�out),

[u] ∈ L2(0), ∇B
[u] ∈ L2(0), {u} ∈ L2(0),

∇
B
{u} ∈ L2(0), u = 0 on ∂�

}
. (3-7)

Let us define the bilinear form b : Ĥ0(�)× Ĥ0(�)→ R as

b(u, v) :=
∫
�int

A∇uint
·∇vint dx+

∫
�out

A∇uout
·∇vout dx+ α

2

∫
0
[u] [v] dσ

+
β

2

∫
0
∇

B
[u] · ∇B

[v] dσ + γ
2

∫
0
∇

B
{u} · ∇B

{v} dσ, (3-8)

where α, β, γ and A are defined above and (3-2) is in force. It is not difficult to
see that the bilinear form b(u, v) is symmetric, continuous and coercive.

Theorem 3.4 (existence and uniqueness result for problem (3-5)). Let A ∈ L∞(�)
be a symmetric matrix satisfying (3-2), α, β, γ > 0, f ∈ L2(�) and g, h ∈ L2(0).
Then, problem (3-6) admits a unique solution u ∈ Ĥ0(�).

Proof. Clearly, the weak formulation (3-6) can be written as

b (u, v)= 〈F, v〉 for all v ∈ Ĥ0(�), (3-9)

where b(u, v) is the symmetric, continuous and coercive bilinear form defined in
(3-8) and

〈F, v〉 :=
∫
�

f v dx + 1
2

∫
0

g{v} dσ + 1
2

∫
0

h[v] dσ for all v ∈ Ĥ0(�)

is a linear and continuous functional. Hence, existence and uniqueness of a solution
u ∈ Ĥ0(�) of problem (3-6) is a direct consequence of the Lax–Milgram lemma. �

4. Concentration

We will formally derive problem (3-1) through a concentration limit of a more
realistic problem in which the two different diffusive phases are separated by a fat
membrane having its own diffusion properties. More precisely, the fat membrane
is assumed to be made of an internal material of thickness 2δ, having a stable
diffusivity in the tangential direction and a very low diffusivity (of order δ) in the
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7.50

δ+ 2η
δ+ η

δ

−δ
−δ− η
−δ− 2η

�out
δη

0

�int
δη

0δ

0δ+η

0δ+2η

η→ 0 δ

−δ

�out
δ

0

�int
δ

δ→ 0

�int

0

�out

Figure 3. Concentration: first η→ 0, then δ→ 0.

orthogonal direction, which is surrounded by an external material of thickness 2η,
having a stable diffusivity in the orthogonal direction and a very high diffusivity (of
order 1/η) in the tangential direction. Since the ratio δ, η between the characteristic
dimension of the separating membrane and the characteristic dimension of the
microstructure is very small, we will let it go to zero, in order to approximate the
physical model with a simpler mathematical description, in which the membrane is
replaced by a thin interface.

To this end, let us introduce the following geometrical setting. In order to avoid
technical difficulties, we assume to be in a bidimensional flat geometry, where
�= (0, 1)× (−1, 1) and we have three different physical phases: �int

δη, �
out
δη which,

in the limit η, δ→ 0, become �int and �out, respectively, and 0δ+η which, in the
limit η, δ→ 0, becomes 0. More precisely,

�=�int
δη ∪�

out
δη ∪0

δ+η
∪ (∂0δ+η ∩�),

where
�out
δη = (0, 1)× (δ+ η, 1),

�int
δη = (0, 1)× (−1,−δ− η),

0δ+η = (0, 1)× (−δ− η, δ+ η)= 0× (−δ− η, δ+ η),

with 0 = (0, 1)×{0}. We also set �int
δ = (0, 1)× (−1,−δ), �out

δ = (0, 1)× (δ, 1),
0δ = (0, 1) × (−δ, δ) = 0 × (−δ, δ), 0δ+2η

= (0, 1) × (−δ − 2η, δ + 2η) =
0× (−δ− 2η, δ+ 2η) and 0̃δη := 0δ+2η

\0δ+η (see Figure 3). Finally, we define

• 0
δ+η
+ = 0× (0, δ+ η),

• 0
δ+η
− = 0× (−δ− η, 0),

• 0̃
δη
+ = 0× (δ+ η, δ+ 2η),

• 0̃
δη
− = 0× (−δ− 2η,−δ− η),

• ∂�t,b
= ((0, 1)×{1})∪ ((0, 1)×{−1}),

• ∂�l,r
= ({0}× (−1, 1))∪ ({1}× (−1, 1)).
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 113

Let us consider, as a model case, the elliptic problem
−div(Aη,δ∇uη,δ)= f in �,
uη,δ = 0 on ∂�t,b,
uη,δ periodic on ∂�l,r ,

(4-1)

where f ∈ L2(�) and

Aη,δ =


Aη in 0δ+η \0δ,
Aδ in 0δ,
A in �int

δη ∪�
out
δη ,

(4-2)

with A given in (3-2),

Aη =
(
β/η 0

0 α

)
and Aδ =

(
β 0
0 αδ

)
, (4-3)

and α, β > 0.
Clearly, for η, δ fixed, due to the ellipticity of the matrix Aη,δ, problem (4-1)

admits existence and uniqueness of a solution uη,δ ∈ H 1(�), complemented with
the required boundary conditions. Its weak formulation is given by∫
�int
δη ∪�

out
δη

A∇uη,δ · ∇ϕ dx dy+ β
η

∫
0δ+η\0δ

uη,δx ϕx dx dy

+α
∫
0δ+η\0δ

uη,δy ϕy dx dy+β
∫
0δ

uη,δx ϕx dx dy+αδ
∫
0δ

uη,δy ϕy dx dy

=

∫
�

f ϕ dx dy, (4-4)

for every ϕ ∈ H 1(�), periodic in the horizontal direction and with null trace
on ∂�t,b.

In order to pass to the limit, first for η→ 0 and then for δ→ 0, we consider
the following test function ϕ(x, y)= φ(x)ψ(y), where φ ∈ C1(0, 1) is a periodic
function and ψ is defined as

ψ(y)=



ψ1(y) in �int
δη \ 0̃

δη
− ,

(ψ1(−δ)−ψ1(−δ− 2η)) y+(δ+η)
η
+ψ1(−δ) in 0̃δη− ,

ψ1(−δ) in 0δ+η− \0
δ,

(ψ2(δ)−ψ1(−δ))
y

2δ +
ψ2(δ)+ψ1(−δ)

2 in 0δ,
ψ2(δ) in 0δ+η+ \0

δ,

(ψ2(δ+ 2η)−ψ2(δ))
y−(δ+η)

η
+ψ2(δ) in 0̃δη+ ,

ψ2(y) in �out
δη \ 0̃

δη
+ ,

(4-5)

with ψ1 ∈ H 1(−1, 0), ψ2 ∈ H 1(0, 1) and ψ1(−1)= ψ2(1)= 0.
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114 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

Using such a test function in (4-4) and letting first η→ 0 and then δ→ 0, we get

(1)
∫
(�int

δη\0̃
δη
− )∪ (�

out
δη \0̃

δη
+ )

A∇uη,δ · ∇ϕ dx dy

η→0
−−→

∫
(�int

δ ∪�
out
δ )\0δ

A∇uδ · ∇ϕ dx dy

δ→0
−−→

∫
�int
∪�out

A∇u · ∇ϕ dx dy

=

∫
�int

A∇uint
· ∇(φψ1) dx dy+

∫
�out

A∇uout
· ∇(φψ2) dx dy;

(2)
∫
0̃
δη
− ∪ 0̃

δη
+

A∇uη,δ · ∇ϕ dx dy η→0
−−→ 0,

since |0̃δη− | = |0̃
δη
+ | ∼ η, ψ1(−δ)−ψ1(−δ−2η)→ 0 and ψ2(δ+2η)−ψ2(δ)→ 0,

while ∇uη,δ is bounded in L2(�int
δη ∪�

out
δη ) because of a standard energy estimate;

(3) β

η

∫
0
δ+η
− \0

δ
uη,δx ϕx dx dy η→0

−−→ β
∫
0×{−δ}

uδx(x,−δ)φxψ1(−δ) dσ

δ→0
−−→ β

∫
0

uint
x φxψ1(0) dσ,

β

η

∫
0
δ+η
+ \0

δ
uη,δx ϕx dx dy η→0

−−→ β
∫
0×{δ}

uδx(x, δ)φxψ2(δ) dσ

δ→0
−−→ β

∫
0

uout
x φxψ2(0) dσ,

(4) α
∫
0δ+η\0δ

uη,δy ϕy dx dy = 0,

since ϕ is independent of y;

(5) β
∫
0δ

uη,δx ϕx dx dy

=β
∫
0δ

uη,δx φx

(
(ψ2(δ)−ψ1(−δ))

y
2δ
+
ψ2(δ)+ψ1(−δ)

2

)
η→0
−−→ O(

√
δ)

δ→0
−−→ 0;

(6) αδ
∫
0δ

uη,δy ϕy dx dy η→0
−−→ αδ

∫
0δ

uδyφ
(ψ2(δ)−ψ1(−δ))

2δ
dx dy

=
α

2

∫
0
φ(x)(ψ2(δ)−ψ1(−δ))

( ∫ δ

−δ
uδy dy

)
dσ

δ→0
−−→

α

2

∫
0
φ(x)(ψ2(0)−ψ1(0))[u] dσ ;

(7)
∫
�

f ϕ dx dy η,δ→0
−−−→

∫
�int

f φψ1 dx dy+
∫
�out

f φψ2 dx dy.

Combining the previous results, we arrive at∫
�int

A∇uint
· ∇ϕ1 dx dy+

∫
�out

A∇uout
· ∇ϕ2 dx dy

+β
∫
0

uint
x ∂xϕ1 dσ +β

∫
0

uout
x ∂xϕ2 dσ + α

2

∫
0
[u] [ϕ] dσ
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 115

=

∫
�int

A∇uint
· ∇ϕ1 dx dy+

∫
�out

A∇uout
· ∇ϕ2 dx dy

+β
∫
0

uint
x
∂x {ϕ}−∂x [ϕ]

2
dσ +β

∫
0

uout
x
∂x {ϕ}+∂x [ϕ]

2
dσ + α

2

∫
0
[u] [ϕ] dσ

=

∫
�int

A∇uint
· ∇ϕ1 dx dy+

∫
�out

A∇uout
· ∇ϕ2 dx dy

+
β

2

∫
0
∇

B
[u] · ∇B

[ϕ] dσ + β
2

∫
0
∇

B
{u} · ∇B

{ϕ} dσ + α
2

∫
0
[u] [ϕ] dσ

=

∫
�int

f ϕ1 dx dy+
∫
�out

f ϕ2 dx dy, (4-6)

where we define ϕi = φψi , i = 1, 2. A standard localization procedure leads from
(4-6) to problem (3-5), with γ = β and g = h = 0.

5. Homogenization of the problem Bε

Following the ideas in [14], we will study the homogenization limit for the prob-
lem Bε introduced in Section 3, by using the formal two-scale asymptotic expansion
technique. As ε→0, we will find three different macroscopic models, corresponding
to the different scalings, which can be compared, for instance, with the models
obtained in [6; 7; 8; 10; 13; 15; 16; 26] in the framework of electrical conduction
or heat diffusion. More precisely, we have three cases:

• m = −1: the macroscopic model consists of a monodomain governed by an
elliptic equation whose diffusion matrix keeps memory of the geometry and all
the physical properties of the microscopic structure; i.e., the two phases E int and
Eout and the interface 0 (through the transversal diffusion coefficients α and the
tangential diffusion coefficients β and γ ) play an active role in the limit model.

• m = 0: the macroscopic model consists of a monodomain governed by an elliptic
equation whose homogenized diffusion matrix does not keep any memory of the
physical properties of the interface0 and, in the connected-disconnected geometrical
setting, not even of the phase E int. Hence, in the homogenization of problem (5-21)
below, only the geometry of the microscopic structure plays a role, i.e., the presence
of the interface affects the cell function, which is not continuous across 0, but α, β
and γ are not involved.

• m = 1: the macroscopic model is a bidomain system, where, in the limit, only the
geometry and the transversal diffusion α play a role, while the tangential diffusion
coefficients β and γ do not.

Following the standard technique, we set

uε(x, y)= u0(x, y)+ εu1(x, y)+ ε2u2(x, y)+ · · · , (5-1)
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116 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

where ui , i = 0, 1, 2, . . . , are assumed to be Y -periodic with respect to the second
variable y. Analogously, we have

[uε]= [u0]+ε[u1]+ε
2
[u2]+· · · and {uε}={u0}+ε{u1}+ε

2
{u2}+· · · . (5-2)

As a consequence, the total spatial derivatives become

∇ = ∇x +
1
ε
∇y, div= divx +

1
ε

divy, (5-3)

and 4
B
=

1
ε2
4

B
y +

1
ε
(divB

y ∇
B
x + divB

x ∇
B
y )+4

B
x . (5-4)

Inserting the previous expansion in (3-1) and matching the corresponding powers
of ε, we arrive at the expansions for the problems corresponding to m =−1, 0, 1.

Case m =−1. We consider the problem (3-1) for m =−1, namely

Qε :



−div(Aε∇uε)= f in �int
ε , (5-5a)

−div(Aε∇uε)= f in �out
ε , (5-5b)

−γ ε4B
{uε} = [Aε∇uε · νε] on 0ε, (5-5c)

α
ε
[uε] −βε4B

[uε] = {Aε∇uε · νε} on 0ε, (5-5d)

uε = 0 on ∂�. (5-5e)

Terms of order ε−2. By comparing the corresponding coefficients of the terms of
order ε−2, from the asymptotic expansion of (5-5a) and (5-5b) and, similarly, the
coefficients of order ε−1 in (5-5c) and (5-5d), we get

Q0 :


−divy(A∇yuint

0 )= 0 in E int, (5-6a)

−divy(A∇yuout
0 )= 0 in Eout, (5-6b)

−γ4B
y {u0} = [A∇yu0 · ν] on 0, (5-6c)

α[u0] −β4
B
y [u0] = {A∇yu0 · ν} on 0. (5-6d)

By a standard energy estimate for problem (5-6), we get

u0(x, y)= u0(x) for a.e. (x, y) ∈�× Y. (5-7)

Terms of order ε−1. By comparing the coefficients of ε−1 in (5-5a) and (5-5b) and
of ε0 in (5-5c) and (5-5d), and using (5-7), we obtain

Q1 :


−divy(A∇yuint

1 )= divy(A∇x u0) in E int, (5-8a)

−divy(A∇yuout
1 )= divy(A∇x u0) in Eout, (5-8b)

−γ (4B
y {u1}+ divB

y ∇
B
x {u0})= [A(∇yu1+∇x u0) · ν] on 0, (5-8c)

α[u1] −β4
B
y [u1] = {A(∇yu1+∇x u0) · ν} on 0. (5-8d)
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 117

Cell function. By following the classical approach, the solution of (5-8) can be
explicitly factorized in terms of ∇x u0 and the cell function χQ = (χ1

Q, . . . , χ
N
Q ) ∈

Ĥper(Y ) as

u1(x, y)=−χQ(y) · ∇x u0(x)+ ũ(x)=−χ j
Q(y)

∂u0(x)
∂x j

+ ũ(x), (5-9)

where, as usual, without loss of generality, we can assume ũ(x)= 0. Here, χQ =
(χ int

Q , χ
out
Q ) is a vector function, having components χ j

Q = (χ
j,int
Q , χ

j,out
Q ), with null

mean average over Y and, for j = 1, 2, . . . , N , satisfying the cell problem

−divy(A∇y(χ
j,int
Q − y j ))= 0 in E int, (5-10a)

−divy(A∇y(χ
j,out
Q − y j ))= 0 in Eout, (5-10b)

−γ4B
y {χ

j
Q− y j } = [A∇y(χ

j
Q− y j ) · ν] on 0, (5-10c)

α[χ
j
Q] −β4

B
y [χ

j
Q] = {A∇y(χ

j
Q− y j ) · ν} on 0. (5-10d)

In (5-10c), we use (5-13) and (5-14) below. The well-posedness of problem (5-10)
can be easily obtained as done in Theorem 3.4, but in a periodic setting.

Terms of order ε0. By comparing the coefficients of order ε0 in (5-5a), (5-5b) and
of order ε in (5-5c), (5-5d), we obtain

Q2 :



−divy(A∇yuint
2 )= f + divy(A∇x uint

1 )

+ divx(A∇yuint
1 )+ divx(A∇x u0)

in E int, (5-11a)

−divy(A∇yuout
2 )= f + divy(A∇x uout

1 )

+ divx(A∇yuout
1 )+ divx(A∇x u0)

in Eout, (5-11b)

−γ
(
4

B
y {u2}+ divB

x ∇
B
y {u1}+ divB

y ∇
B
x {u1}+4

B
x {u0}

)
= [A(∇yu2+∇x u1) · ν]

on 0, (5-11c)

α[u2] −β
(
4

B
y [u2] + divB

x ∇
B
y [u1] + divB

y ∇
B
x [u1]

)
= {A(∇yu2+∇x u1) · ν}

on 0, (5-11d)

where we have taken into account (5-7): [u0] = 0 and, then, 4B
x [u0] = 0.

Derivation of the homogenized equation. We will attain the limiting equation for
u0 as a compatibility condition for (5-11). To begin, let us integrate (5-11a), (5-11b)
by parts, respectively, in E int and in Eout. By adding the two contributions, we find∫
0
[A∇yu2 · ν] dσ =

∫
Y

f dy+
∫

E int
divy(A∇x uint

1 ) dy

+

∫
Eout

divy(A∇x uout
1 ) dy+

∫
E int

divx(A∇yuint
1 ) dy

+

∫
Eout

divx(A∇yuout
1 ) dy+

∫
E int
∪Eout

divx(A∇x u0) dy
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118 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

=

∫
Y

f dy−
∫
0
[A∇yu1 · ν] dσ

+

∫
E int
∪Eout

divx(A∇yu1) dy+
∫

E int
∪Eout

divx(A∇x u0) dy.

Then, using (5-11c), we obtain

−divx

( ∫
E int
∪Eout

A(∇x u0+∇yu1)
)

dy− γ
∫
0
4

B
y {u2} dσ

− γ
∫
0

divB
x ∇

B
y {u1} dσ − γ

∫
0

divB
y ∇

B
x {u1} dσ − γ

∫
0
4

B
x {u0} dσ = f,

which becomes the homogenized equation

−divx

( ∫
E int
∪Eout

A(∇x u0+∇yu1) dy+γ
∫
0
(∇B

y {u1}+∇
B
x {u0}) dσ

)
= f, (5-12)

after having taken into account that∫
0
4

B
y {u2} dσ = 0 and

∫
0

divB
y ∇

B
x {u1} dσ = 0.

Inserting now, in the homogenized equation (5-12) above, the factorization for u1

given in (5-9) and recalling that

∇
B
y {u1} = ∇y{u1}− (ν · ∇y{u1})ν

=−∇y{χQ}∇x u0+
(
ν · (∇y{χQ}∇x u0)

)
ν

=−(I − ν⊗ ν)∇y{χQ}∇x u0 =−∇
B
y {χQ}∇x u0, (5-13)

∇
B
x {u0} = 2∇B

x u0

= 2(∇x u0− (ν · ∇x u0)ν)

= 2(I − ν⊗ ν)∇x u0 =∇
B
y {y}∇x u0, (5-14)

we arrive at

f =−div
(( ∫

E int
∪ Eout

A(I −∇yχQ) dy+ γ
∫
0
∇

B
y {y−χQ} dσ

)
∇u0

)
=−div(AQ∇u0).

Here, the homogenized matrix is given by

AQ =
∫

E int
∪ Eout

A∇y(y−χQ) dy+ γ
∫
0
∇

B
y {y−χQ} dσ. (5-15)

From (5-15) and the definition of the cell function χQ in (5-10), we obtain that
the homogenized matrix AQ depends on the geometry and the whole physical
properties of the microstructure, described by A, α, β, γ .

Theorem 5.1. The homogenized matrix AQ is symmetric and positive definite.
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 119

Proof. First, we obtain∫
E int
∪ Eout

A∇y(χ
j
Q− y j ) · ∇y yi dy =

∫
E int
∪ Eout

(A∇y(y j −χ
j
Q))i dy (5-16)

and ∫
0
∇

B
y {χ

j
Q− y j } · ∇

B
y {yi } dσ = 2

∫
0
∇

B
y {χ

j
Q− y j } · ∇

B
y yi dσ

= 2
∫
0
∇

B
y {χ

j
Q− y j } · (ei − νiν) dσ

= 2
∫
0
(∇B

y {χ
j
Q− y j })i dσ, (5-17)

after having taken into account that the tangential gradient and the normal ν have
null scalar product. Hence, we can write (AQ)i j as

(AQ)i j =

−

∫
E int
∪ Eout

A∇y(χ
j
Q− y j ) · ∇y yi dy− γ

2

∫
0
∇

B
y {χ

j
Q− y j } · ∇

B
y {yi } dσ. (5-18)

By taking χ i,int
Q and χ i,out

Q as test functions in (5-10a) and (5-10b), respectively,
integrating by parts, summing the resulting equations and using (5-10c) and (5-10d),
we get

0=
∫

E int
∪ Eout

A∇y(χ
j
Q− y j ) · ∇yχ

i
Q dy+ α

2

∫
0
[χ

j
Q] [χ

i
Q] dσ

+
β

2

∫
0
∇

B
y [χ

j
Q] · ∇

B
y [χ

i
Q] dσ +

γ

2

∫
0
∇

B
y {χ

j
Q− y j } · ∇

B
y {χ

i
Q} dσ. (5-19)

By adding (5-18) and (5-19), we get

(AQ)i j =
∫

E int
∪ Eout

A∇y(χ
j
Q− y j ) · ∇y(χ

i
Q− yi ) dy

+
α

2

∫
0
[χ

j
Q] [χ

i
Q] dσ +

β

2

∫
0
∇

B
y [χ

j
Q] · ∇

B
y [χ

i
Q] dσ

+
γ

2

∫
0
∇

B
y {χ

j
Q− y j } · ∇

B
y {χ

i
Q− yi } dσ, (5-20)

which immediately gives the symmetry of AQ. To prove the ellipticity, we consider

N∑
i, j=1

(AQ)i jξiξ j =
∫

E int
∪Eout

N∑
i, j=1

A∇y(ξiχ
i
Q−ξi yi )·∇y(ξ jχ

j
Q−ξ j y j )dy

+
α

2

∫
0

N∑
i, j=1
[ξiχ

i
Q] [ξ jχ

j
Q]dσ

+
β

2

∫
0

N∑
i, j=1
∇

B
y [ξiχ

i
Q]·∇

B
y [ξ jχ

j
Q]dσ

+
γ

2

∫
0

N∑
i, j=1
∇

B
y {ξiχ

i
Q−ξi yi }·∇

B
y {ξ jχ

j
Q−ξ j y j }dσ
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120 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

≥ λ
∫

E int
∪Eout

∣∣∣ N∑
i=1
(∇yχ

i
Q ξi−eiξi )

∣∣∣2 dy+α
2

∫
0

∣∣∣ N∑
i=1
ξi [χ

i
Q]
∣∣∣2 dσ

+
β

2

∫
0

∣∣∣ N∑
i=1
ξi∇

B
y [χ

i
Q]
∣∣∣2 dσ+γ

2

∫
0

∣∣∣ N∑
i=1
ξi∇

B
y {χ

i
Q−yi }

∣∣∣2 dσ

≥ λ
(∫

E int

∣∣∣ N∑
i=1
(∇yχ

i
Qξi−eiξi )

∣∣∣2 dy+
∫

Eout

∣∣∣ N∑
i=1
(∇yχ

i
Qξi−eiξi )

∣∣∣2 dy
)

≥ 0.

In order to conclude, we exploit the periodicity of χQ, which implies that the
last inequality is actually strict for any ξ ∈ RN with |ξ | = 1. Then, the thesis is
achieved. �

Case m = 0. We consider the problem (3-1) for m = 0, namely

Rε :



−div(Aε∇uε)= f in �int
ε , (5-21a)

−div(Aε∇uε)= f in �out
ε , (5-21b)

−γ ε2
4

B
{uε} = [Aε∇uε · νε] on 0ε, (5-21c)

α[uε] −βε2
4

B
[uε] = {Aε∇uε · νε} on 0ε, (5-21d)

uε = 0 on ∂�, (5-21e)

and proceed as in case m =−1. Thus, for the terms of order ε−2, we get

R0 :


−divy(A∇y uint

0 )= 0 in E int, (5-22a)

−divy(A∇y uout
0 )= 0 in Eout, (5-22b)[

A∇y u0 · ν
]
= 0 on 0, (5-22c)

{A∇y u0 · ν} = 0 on 0, (5-22d)

which corresponds to two independent homogenous Neumann problems in E int and
Eout, respectively, with periodic boundary condition on ∂E int

∩ ∂Y and ∂Eout
∩ ∂Y ,

so that

u0(x, y)=

{
uint

0 (x) a.e. in �× E int, (5-23a)

uout
0 (x) a.e. in �× Eout. (5-23b)

On the other hand, for the terms of order ε−1 we obtain

R1 :


−divy(A∇y uint

1 )= divy(A∇x uint
0 ) in E int, (5-24a)

−divy(A∇y uout
1 )= divy(A∇x uout

0 ) in Eout, (5-24b)

[A(∇y u1+∇x u0) · ν] = 0 on 0, (5-24c)

α[u0] = {A(∇y u1+∇x u0) · ν} on 0. (5-24d)
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 121

By integrating (5-24b) in Eout and taking into account (5-24c) and (5-24d), we have

0=
∫
0
(A∇yu1 · ν)

out dσ +
∫
0
(A∇x u0 · ν)

out dσ = α

2

∫
0
[u0] dσ,

which proves that [u0] = 0. Thus, we get uout
0 (x)= uint

0 (x)= u0(x)= u0(x, y) a.e.
in �× Y . It follows that (5-24d) can be rewritten as

{A(∇yu1+∇x u0) · ν} = 0 on 0. (5-25)

Then, the system (5-24a)–(5-24c) and (5-25) turns out to be a decoupled pair of
standard Neumann problems. Therefore, we can factorize u1 (up to an irrelevant
additive function of x , which will, therefore, be taken equal to 0) as

u1(x, y)=−χM(y) · ∇x u0(x)=−χ
j
M(y)

∂u0(x)
∂x j

, (5-26)

where χM = (χ int
M, χ

out
M ) : Y → RN is a Y -periodic vector function such that χ int

M
and χout

M have null mean average in E int and Eout, respectively, and satisfy the cell
problem


−divy(A∇y(χ

j,int
M − y j ))= 0 in E int, (5-27a)

−divy(A∇y(χ
j,out
M − y j ))= 0 in Eout, (5-27b)

(A∇y(χ
j
M− y j ) · ν)

int
= 0 on 0, (5-27c)

(A∇y(χ
j
M− y j ) · ν)

out
= 0 on 0. (5-27d)

Notice that, again, (5-27) is a system of two decoupled Neumann problems in E int

and Eout, respectively; therefore, its well posedness is a classical matter.
Finally, for the terms of order ε0, we obtain

R2 :



−divy(A∇yuint
2 )= f + divy(A∇x uint

1 )

+ divx(A∇yuint
1 )+ divx(A∇x u0)

in E int, (5-28a)

−divy(A∇yuout
2 )= f + divy(A∇x uout

1 )

+ divx(A∇yuout
1 )+ divx(A∇x u0)

in Eout, (5-28b)

−γ (4B
y {u1}+ divB

y ∇
B
x {u0})= [A(∇yu2+∇x u1) · ν] on 0, (5-28c)

α[u1] −β(4
B
y [u1] + divB

y ∇
B
x [u0])

= {A(∇yu2+∇x u1) · ν}
on 0. (5-28d)
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122 MICOL AMAR, AFSHEEN AYUB AND ROBERTO GIANNI

As above, the limiting equation is obtained integrating (5-28a), (5-28b) by parts
in E int and in Eout, respectively, and by adding the two contributions. Thus, we find∫
0
[A∇yu2 · ν] dσ =

∫
Y

f dy+
∫

E int
∪ Eout

divy(A∇x u1) dy

+

∫
E int
∪ Eout

divx(A∇yu1) dy+
∫

E int
∪ Eout

divx(A∇x u0) dy

=

∫
Y

f dy−
∫
0
[A∇x u1 · ν] dσ

+

∫
E int
∪ Eout

divx(A∇yu1) dy+
∫

E int
∪ Eout

divx(A∇x u0) dy.

By taking into account condition (5-28c), the previous equation turns into the
homogenized one

f =−divx

( ∫
E int
∪ Eout

A(∇yu1+∇x u0) dy
)
, (5-29)

where we have used that∫
0
4

B
y {u1} dσ = 0 and

∫
0

divB
y ∇

B
x {u0} dσ = 0.

Finally, inserting in (5-29) the factorization of u1 given in (5-26), we arrive at

f =−div
(( ∫

E int
∪ Eout

A(I −∇yχM) dy
)
∇u0

)
=−div(AM∇u0),

where AM is given by

AM =
∫

E int
∪ Eout

A(I −∇yχM(y)) dy. (5-30)

As in the previous section, AM can be rewritten in the more meaningful form

(AM)i j =
∫

E int
∪ Eout

A∇y(χ
j
M− y j ) · ∇y(χ

i
M− yi ) dy, (5-31)

which immediately gives the symmetry. The positive definiteness of AM is a
standard matter in the literature (see, e.g., [1, Section 1] and [9, Proof of Lemma 4.7.],
for the same idea applied in a different framework).

Remark 5.2. Notice that, as remarked at the beginning of Section 5, the homoge-
nized matrix AM does not depend on the physical properties of the interface 0 (it
does not involve the coefficients α, β, γ ). The presence of the interface has only
the effect to produce a discontinuity across 0 of the cell function χM, i.e., only the
geometry of 0 has an influence on the limiting equation.

In the connected-disconnected case, it can be easily seen that

χ int
M(y)= y− |E int

|
−1
∫

E int
y dy,
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CONCENTRATION FOR HEAT DIFFUSION IN COMPOSITE MATERIAL 123

so that the homogenized matrix AM reduces to

AM =
∫

Eout
A∇y(χ

out
M − y) · ∇y(χ

out
M − y) dy;

that is, the physical properties of the inner phase (as well as the ones of the interface)
do not play any role in the macroscopic model. �

Case m = 1. We consider the problem (3-1) for m = 1, namely

Sε :



−div(Aε∇uε)= f in �int
ε , (5-32a)

−div(Aε∇uε)= f in �out
ε , (5-32b)

−γ ε3
4

B
{uε} = [Aε∇uε · νε] on 0ε, (5-32c)

αε[uε] −βε3
4

B
[uε] = {A∇uε · νε} on 0ε, (5-32d)

uε = 0 on ∂�. (5-32e)

Proceeding as in the previous cases m =−1, 0, we obtain, for the terms of order
ε−2 the same problem (5-22), so that (5-23) is in force. On the other hand, for the
term of order ε−1, we obtain

S1 :


−divy(A∇yuint

1 )= divy(A∇x uint
0 ) in E int, (5-33a)

−divy(A∇yuout
1 )= divy(A∇x uout

0 ) in Eout, (5-33b)

[A(∇yu1+∇x u0) · ν] = 0 on 0, (5-33c)

{A(∇yu1+∇x u0) · ν} = 0 on 0. (5-33d)

Again, the previous system is the same decoupled pair of standard Neumann
problems given in (5-24a)–(5-24c) and (5-25). Therefore, (up to irrelevant additive
functions of x , which will, therefore, be taken equal to 0) we can factor u1(x, y) as

u1(x, y)=

{
−χ int

M(y) · ∇x uint
0 (x) in E int, (5-34a)

−χout
M (y) · ∇x uout

0 (x) in Eout, (5-34b)

where χM is the Y -periodic solution of the cell problem (5-27) having null mean
average in E int and Eout, separately.

Terms of order ε0: By comparing the coefficients of ε0 in (5-32a), (5-32b) and of
ε in (5-32c), (5-32d), we obtain

S2 :



−divy(A∇yuint
2 )= f + divy(A∇x uint

1 )

+ divx(A∇yuint
1 )+ divx(A∇x uint

0 )
in E int, (5-35a)

−divy(A∇yuout
2 )= f + divy(A∇x uout

1 )

+ divx(A∇yuout
1 )+ divx(A∇x uout

0 )
in Eout, (5-35b)

[A(∇yu2+∇x u1) · ν] = 0 on 0, (5-35c)

α[u0] = {A(∇yu2+∇x u1) · ν} on 0, (5-35d)
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where we have used (5-23), which implies 4B
y [u0] = 0 and 4B

y {u0} = 0. Taking
into account that (5-35c) implies

{A(∇yu2+∇x u1) · ν} = 2(A(∇yu2+∇x u1) · ν)
out,

we can rewrite (5-35d) as

α

2
[u0] = (A(∇yu2+∇x u1) · ν)

out on 0. (5-36)

Formal derivation of the homogenized equation. To attain the limiting equation for
u0 as a compatibility condition for (5-35), let us integrate (5-35a), (5-35b) by parts
in E int and in Eout, separately. We find

−

∫
0
(A∇yu2 · ν)

int dσ =
∫

E int
f dy+

∫
0
(A∇x u1 · ν)

int dσ

+

∫
E int

divx(A∇yuint
1 ) dy+

∫
E int

divx(A∇x uint
0 ) dy,

and∫
0
(A∇yu2 · ν)

out dσ =
∫

Eout
f dy−

∫
0
(A∇x u1 · ν)

out dσ

+

∫
Eout

divx(A∇yuout
1 ) dy+

∫
Eout

divx(A∇x uout
0 ) dy.

Hence, by taking into account the interface conditions (5-35c) and (5-36), we find

−
α

2

∫
0
[u0] dσ = |E int

| f + divx

( ∫
E int

A(∇yuint
1 +∇x uint

0 ) dy
)
,

α

2

∫
0
[u0] dσ = |Eout

| f + divx

( ∫
Eout

A(∇yuout
1 +∇x uout

0 ) dy
)
.

Finally, by inserting the factorization of u1 given in (5-34), we get

f |E int
| = −div

(( ∫
E int

A(I −∇yχ
int
M (y)) dy

)
∇uint

0

)
−
α

2
|0| [u0]

= −div(Aint
M∇uint

0 )−
α

2
|0| [u0],

f |Eout
| = −div

(( ∫
Eout

A(I −∇yχ
out
M (y)) dy

)
· ∇uout

0

)
+
α

2
|0| [u0]

= −div(Aout
M∇uout

0 )+
α

2
|0| [u0],

(5-37)

where the homogenized matrices are defined as

Aint
M=

∫
E int

A(I−∇yχ
int
M(y)) dy and Aout

M=
∫

Eout
A(I−∇yχ

out
M (y)) dy. (5-38)

Notice that the homogenized matrix AM defined in (5-30) can be written as AM =

Aint
M+ Aout

M and that Aint
M, Aout

M can be written in the more meaningful form

(Aout
M)i j =

∫
Eout

A∇y(χ
j,out
M − y j ) · ∇y(χ

i,out
M − yi ) dy, (5-39)
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and, in the connected-connected case,

(Aint
M)i j =

∫
E int

A∇y(χ
j,int
M − y j ) · ∇y(χ

i,int
M − yi ) dy, (5-40)

which immediately give the symmetry (we recall that in the connected-disconnected
case Aint

M = 0). The positive definiteness of Aout
M and, in the connected-connected

case, also of Aint
M, is a standard matter, as in the previous subsection.

Remark 5.3. The system (5-37) describes a bidomain model, where two overlap-
ping macroscopic functions uint

0 and uout
0 appear. In the connected-connected case,

such a bidomain model is described by a coupled system of two elliptic equations.
On the other hand, in the connected-disconnected geometry, as recalled above,
Aint
M = 0 and the system (5-37) describing the bidomain model becomes

−
α

2
|0| [u0] = f |E int

|,

−div(Aout
M∇uout

0 (x))+ α
2
|0| [u0] = f |Eout

|,

which can be rewritten as

−div(Aout
M∇uout

0 (x))= f, (5-41)

uint
0 = uout

0 +
2 |E int

|

α |0|
f. (5-42)

More precisely, we obtain a decoupled system, where uout
0 is determined by a stan-

dard elliptic equation (see (5-41)), in which the homogenized matrix depends only
on the physical properties of the external phase, while uint

0 is explicitly computed
by means of uout

0 in (5-42). Note that the internal phase is involved only through its
measure, while its physical properties have no relevance in the macroscopic model.

Finally, we remark that in the connected-disconnected case, the solution uout
0 of

the leading phase of the bidomain system coincides with the homogenized limit u0

obtained in the case m = 0, when the same geometrical setting is considered. �

Remark 5.4. Notice that, as in case m = 0, β and γ do not play any role in the
homogenized limit. The only physical property of the interface which plays a role
in the limit is α, i.e., the transversal heat diffusivity. �
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