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Reflecting and unfolding

Andrea Cantini

Notionis distinctae primitivae non alia datur cognitio, quam intuitiva, ut compositarum
plerumque cogitatio non nisi symbolica est (G.W. Leibniz, 16841)

Abstract

The philosophical problem of implicit commitment can be roughly stated in the
form:

(*)What are we implicitly committed to in accepting a theory S and what can we
justifiably accept?

As is well-known, (*) has its roots in the work by Kreisel (1958),Kreisel (1970).2
Our aim is to consider two possible routes towards a solution, as given over the

years by the late Solomon Feferman, starting already in the Sixties and the early
Seventies with the work on Predicative Analysis (Feferman (1968)), thereafter with
the investigation of self-referential truth in Feferman (1991), and eventually fully
transformed by Feferman himself together with Thomas Strahm in Feferman and
Strahm (2000).

While the first route – reflecting – directly leads into the land of truth theories,
the second one – unfolding, see section 2 – is more mathematical in spirit and hinges
upon a point of view, which drives us to the very notion of operation.

Andrea Cantini
Department of Letters and Philosophy, via della Pergola 58-60, e-mail: andrea.cantini@unifi.it

1 Meditationes de cognitione, veritate et ideis,1684.
2 As rightly noticed by a referee, the problem has a much broader and longer history. But we here
do not aim to a survey or a historical appreciation of the topics.
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Our presentation consists of a survey of the two alternatives, while the implicit
commitment issue is specifically dealt within the final section.3 4

Keywords: operation, truth, unfolding, implicit commitment.

2010 Mathematics Subject Classification: 03F03, 03F25, 03F35, 3F40, 03A05.

1 On reflective closure

Let us consider Gödel (1990), p.151, vol II: why is a formalism incomplete? Well,
contemplating a fixed system gives rise to new axioms, which are as evident as those
we start with. But the extension process goes on forever and can be iterated into the
transfinite. Hence, if we reflect upon a system, we are apparently left with an infinite
task, and involved or committed to a number of statements which are to be made
explicit, at least partially and potentially.

Are we then forced to use the so-called ordinals? In the last century this choice
has been implemented in several directions, e.g. along the lines of the so-called
ordinal logics in the sense of Turing, predicative mathematics, or else progressions
of theories; and some conceptual as well as technical difficulties arise, that we list
below.

I Ordinals are external notions, and we have to cope with a metabasis eis allo
genos. The difficulty shows that there are abstract higher type notions as required
by incompletenss.

II We have to justify the view that ordinals or wellorderings are implicit in the
given body of, say, arithmetical knowledge. This is technically much involved,
as it essentially hinges upon the use of complex and abstract notions (higher
notation systems, collapsing functions, etc.).

III We have to pass from closed systems to open-ended systems. But how to express
in a definite fashion this open-endedness?

Of course, it is impossible to explicitly and completely address I-III within the
boundaries of this paper. We can nonetheless make an attempt to fix some points
at least informally and intuitively. To this aim, let us remind that ordinals are gen-
eralizations of numbers, which were created by Cantor in order to control suitable
topological processes, and in fact they are reifications5 of iteration procedures,
that go definitely beyond the realm of finite numbers into the so-called transfi-
nite. Their role has become essential for assigning invariants to computations and

3 The proposals we consider are extensively and fully developed in Feferman (1991), Feferman
and Strahm (2000), Feferman and Strahm (2010), Buchholtz (2013), Buchholtz et al. (2016); as to
their connections with the general theme of abstraction, they can also be supplemented by means
of results in Cantini (1989), Cantini (1996), Cantini (2016).
4 This work was supported by the Italian Ministry of Education, University and Research through
the PRIN 2017 Program The Manifest Image and the Scientic Image (Prot.2017ZNWW7F004
5 If a traditional philosophical terminology is here allowed.
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proof-theoretic investigations, which involve consistency, as well as the structure
of proofs. In general, one has to cope with order-theoretic structures, which in the
standard cases must be well-founded ( = no infinite regress is possible) and yet can
be represented by elementary means, e.g. notation systems, i.e. symbolic structures
(Leibniz). Moreover ordinals have been crucial – since the Thirties with Gentzen,
and later with Schũtte’s school, Takeuti, the Bern school, Feferman, the investiga-
tions of Girard, Arai, Rathjen’s “ art of ordinal analysis” Rathjen (2006), etc., till
most recent contributions Freund and Rathjen (2021).

1.1 The Kripke–Feferman theory KF

The so-called theory of reflective emerges from the attempt to (partially) overcome
difficulty I above. More precisely, if we try to make these ideas formally precise,
we are naturally driven to formalize the clauses of Kleene’s strong three valued
semantical schema for self-referential truth, and hence to the well known KF-theory
(over PA, as given in Feferman (1991)). For the reader’s sake, let us summarize the
essential points about KF.

Firstly, as a starting intuitive point, Kreisel (1970) suggested to study principles
of proof and definition that are recognized as valid, once we have understood certain
given concepts: the typical example was predicativism, as the conception unfolding
what is implicit in accepting the notion of natural number. Formally, this view leads
to articulating some form of self-reflection that developed along the so-called au-
tonomous transfinite progressions of theories in the Sixties (Feferman (1968)); which
is not so natural and technically involved, as it has to deal with well-foundedness by
means of elementary methods.

If one avoids transfinite iterations along well-orderings, two routes have been
opened (see below and 2).

The first route is to develop a direct finite ordinal-free alternative via the notion
of reflective closure of a system, with its full-schematic variant. Let us recall the
preliminary axioms for the simple non-schematic reflective closure. For the sake of
a smoother formalization, we adopt some abbreviations.

• In general, we follow the conventional notations of (Halbach, 2011, pp.32-
33); hence we use the underscore-dot notation for naming expressions defining
function symbols corresponding to logical operations and predicates of our
formal language (e.g. 𝑇. , ¬. , ∀. , ∧. , etc.);

• 𝐹 (𝑠) is a shortening for 𝑇 (¬. 𝑥);
• 𝑠◦ stands for the arithmetical value of the term 𝑠 (and this can be defined in the

arithmetical language of Peano Arithmetic, see (Halbach, 2011, p.32)).

First of all, the language of reflective closure over PA (alsoknown as KF) expands
the language of PA with a monadic predicate 𝑇 for truth, and 𝐹 (𝑠) is a shortening
for 𝑇 (¬. 𝑥). The axioms of KF comprise PA, full induction schema, and
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(i). ∀𝑠∀𝑡
( (
𝑇 (𝑠=. 𝑡) ↔ 𝑠◦ = 𝑡◦)

)
∧

(
𝐹 (𝑠=. 𝑡) ↔ 𝑠◦ ≠ 𝑡◦)

)
, and similarly for other

predicates other than =, except for the special predicates 𝑇 and 𝐹;
(ii). ∀𝑠

(
(𝑇 (𝑇. 𝑠) ↔ 𝑇 (𝑠◦)) ∧ (𝐹 (𝑇. 𝑠) ↔ 𝐹 (𝑠◦))

)
;

(iii). ∀𝑠
(
(𝑇 (𝐹. 𝑠) ↔ 𝐹 (𝑠◦)) ∧ (𝐹 (𝐹. 𝑠) ↔ 𝑇 (𝑠◦))

)
;

(iv). ∀𝑥
(
SentKF (𝑥) → (𝑇 (¬. 𝑥) ↔ 𝐹 (𝑥)) ∧ (𝐹 (¬. 𝑥) ↔ 𝑇 (𝑥))

)
;

(v). ∀𝑥 ∀𝑦
(
SentKF (𝑥∧. 𝑦) → (𝑇 (𝑥∧. 𝑦) ↔ 𝑇 (𝑥)∧𝑇 (𝑦))∧(𝐹 (𝑥∧. 𝑦) ↔ 𝐹 (𝑥)∨𝐹 (𝑦))

)
;

(vi). ∀𝑣 ∀𝑥
(
SentKF (∀. 𝑣𝑥) → (𝑇 (∀. 𝑣𝑥) ↔ ∀𝑡 𝑇 (𝑥 [𝑡/𝑣]))∧(𝐹 (∀. 𝑣𝑥) ↔ ∃𝑡 𝐹 (𝑥 [𝑡/𝑣]))

)
.

Incidentally, it is worth mentioning that KF is intimately related to a logical de-
velopment of non-extensional concepts (classification, operation) and semantical
investigations; see Cantini (1996) for the connections with Aczel’s Frege structures
and explicit mathematics. Furthermore, KF has an interesting model theory (rich
lattice theoretical results); it is also related to the standard fixed point theory ÎD1 (see
Feferman (1982)); in turn, this leads towards the foundations of intuitionistic type
theory (see Hancock’s conjecture, again Feferman (1982)). KF can also be seen as a
generalization of the standard theory of compositional truth, and, more naturally, as
a generalization of a theory of a positive inductive definition of truth and falsity (see
Halbach (2011), §8.7).

1.2 Basic results on KF

For the reader’s sake, we add a reminder on significant fragments and their proof
theory.

(i) KF⌈ is KF with induction for 𝑇-free formulas;
(ii) KF𝑐 is KF with induction restricted to total predicates, i.e. such that∀𝑥𝑇 (𝑎(𝑥)∨
𝑇 ( ¤¬𝑎(𝑥)));

(iii) KF𝑝 is KF with induction restricted to internal predicates.

KF and its variants can be compared with subsystems of second order arithmetic,
see e.g. Simpson’s monograph (Simpson (1999)). Indeed, let (Π0

1 −CA)<_ stand for
(an axiomatic version of) ramified analysis up to any level < _ (_ being a constructive
ordinal). Let CONS be the formal statement corresponding to the consistency of the
truth predicate, i.e., to

∀𝑠(¬(𝑇 (𝑠) ∧ 𝑇 ( ¤¬𝑠))

Then:

Theorem 1

(i) PA ≡ KF⌈ + CONS ≡ KF𝑐;
(ii) KF⌈ has non-elementary speed-up over PA (see corollary 5.13 of Fischer

(2014));6
(iii) (Π0

1 − CA)<𝜔𝜔 ≡ KF𝑝 + CONS;

6 It is open if KF⌈ has non-elementary speed-up over its positive compositional fragments.
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(iv) (Π0
1 − CA)<Y0 ≡ KF + CONS.

For the proof, see Cantini (1989).
The theorem is paradigmatic, in order to grasp at least some flavour of this

research. There the function played by the ordinals is made transparent: ordinals are
intended to classify truth-theoretic principles and to compare their strength. Infact,
they measure how far we can proceed to iterate the arithmetical comprehension
principle, which grants the existence of sets, e.g. up to 𝜔𝜔 or higher up to 𝜖0.

Remark 1 As to the notion of speed-up and its precise definition, see (Fischer, 2014,
definition 2.3). This technical notion can be informally clarified by the intuition that,
as already discovered by Gödel (1936) in the Thirties, adopting abstract notions
and principles thereof – like truth or set – usually provide sensible reduction in
length for (an infinite number of) already available proofs. More explicitly, there are
arithmetical theorems, which are provable in KF⌈ with derivations, which are much
shorter than those that can be found to exist in PA. 7

1.3 Schematic reflective closure

Objection III of section 1 above can be overcome with the idea that a schema does
not apply to a fixed language, but to any language which one comes to recognize
as embodying meaningful basic notions (see p. 189, Strahm (2017)). Informally,
this suggests a rule which allows to make inferences from schemata accepted in the
original arithmetical language to schemata of the full language. In particular, we
can extend KF by a suitable substitution rule of the form

𝜑(𝑃)
𝜑(𝑥𝜓(𝑥))

where 𝜑 is a formula of LPA, the language of Peano arithmetic with an additional
predicate symbol 𝑃, 𝜓 is arbitrary (hence 𝑇 , 𝑃 can occur in 𝜓). 𝜑(𝑥𝜓(𝑥)) stands
as an abbreviation for the formula resulting from 𝜑(𝑃) when each occurrence of a
subformula 𝑃(𝑡) in 𝜑(𝑃) is replaced by 𝜓(𝑡).8

The resulting system yields the schematic reflective closure Ref ∗ (PA(𝑃)), another
way to characterize predicativity in the sense of Feferman and Schütte:

Theorem 2 (Feferman (1991))

Ref ∗ (PA(𝑃)) ≡ (Π0
1 − CA)<Γ0

7 I.e. if 𝑚 is the length of a proof of 𝐴 in KF⌈ then the length of a proof 𝑝 of 𝐴 in PA might require
many iterations of the exponential 𝑒𝑥𝑝2 (𝑥 ) = 2𝑥 , i.e. a tower 𝑒𝑥𝑝2 (𝑒𝑥𝑝2 (. . . 𝑒𝑥 𝑝2 (𝑚) ) ) . . .) ,
in order to find an upper bound in terms of 𝑚 to the length of a purely arithmetical proof of A in
PA.
8 �̂�𝜓 (𝑥 ) is the classical Russell-Whitehead notation for the class defined by 𝜓 (𝑥 ); it is assumed
that substitutions are correct, i.e. no confusion of variables can occur.
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Here Γ0 is the well-known Feferman-Schütte upper bound of the predicative ordinals,
and hence of those inductive methods that can be accepted predicatively and rely
upon reflection and reflective closure. Is it possible to fix more structural routes?
The answer is positive, as seen from the next section.

2 Feferman-Strahm’s unfolding

Objections can be raised against reflective closures of theories (Strahm (2017) p.189):
Feferman (2016), p. 282) states that the resulting theories have still an air of artifi-
ciality. More specifically:

(1) it is questionable whether the truth axioms have the same evidence as the
ground axioms without truth;

(2) the formalization of syntax is an essential ingredient together with the coding
machinery, and this somewhat conceals the ontological nature. Indeed, it tends
to conceal the conceptual depth, yielding an air of taxonomy and mere linguistic
reality.

It follows that, as stated in the opening abstract, a second operational route to the
analysis of implicit commitment deserves due attention: one has to cope with (1)-(2),
and the point is to attain a syntax-free formalization of the main notions. In other
words, in order to understand the truth axioms, you assume suitable operations –
mainly on numbers and finitary structures such as syntactical expressions, but also
quantifiers – which ought to be made explicit as direct objects of our reflecting
procedure.

2.1 Unfolding informally presented

The idea is that, given a system S, unfolding S means to define a theoretical frame-
work, where

• we have operations and predicates understood as partial operations;
• logical operations on propositions and predicates are given;
• operations may be applied to operations, so that self-application is not forbidden,

i.e. a theory of untyped operations is assumed;
• partial recursive operations can be regarded as a possible model of our operations

and hence non-extensionality holds.

Indeed, it turns out that the system of operations is at least as expressive as untyped
lambda calculus and combinatory logic; and this step is a natural way to achieve
independence on encoding. More explicitly, one assumes to live in an applicative
structure, indeed a partial combinatory algebra, whose language consists of:
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• application terms 𝑡𝑠 for expressing the application of 𝑡 to 𝑠, 𝑡 ↓ for expressing
that 𝑡 converges; application is strict, i.e. if 𝑡𝑠 is defined then both 𝑡, 𝑠 are defined;

• a logic of partial terms and the relation 𝑡 ≃ 𝑠 for expressing that 𝑡 = 𝑠, whenever
𝑡, 𝑠 are both defined;

• the so-called basic combinators 𝐾 ,𝑆 with standard axioms 𝐾𝑡𝑠 ≃ 𝑡 and 𝑆𝑡𝑠𝑟 ≃
𝑡𝑟 (𝑠𝑟), whence _ abstraction and recursion operators become available; the
system of operations is also equipped by pairing and projections, definition by
cases.

For the reader’s sake, we like to stress the informal reading, i.e. the natural effective
interpretation of 𝑥𝑦 ≃ 𝑧 as: the algorithm repesented by 𝑥 halts (i.e. converges) on
the input 𝑦 providing 𝑧 as output. For details, see (Eberhard and Strahm, 2015, pp.
158–160).

2.2 Unfolding axiomatized

Let me now describe a few details for the unfolding of NFA – an acronym for non-
finitist arithmetic –, which is regarded as the paradigmatic ur-system. The axioms
of NFA itself are simply the usual ones for 0, 𝑠𝑐 (successor) and 𝑝𝑑 (predecessor),
together with the induction axiom, given as 𝑃(0) ∧ ∀𝑥 [𝑃(𝑥) → 𝑃(𝑠𝑐(𝑥))] →
∀𝑥(𝑃(𝑥)), where 𝑃 is a free predicate variable. The language of the unfolding of
NFA adds a number of constants, the predicate symbol 𝑁 (𝑥) (x is natural number),
the predicate symbol Π(𝑥) (= ’𝑥 is a predicate), and the intensional membership
relation 𝑦 ∈ 𝑥 for 𝑥 such that Π(𝑥).

Then the proper axioms of the unfolding U(NFA) for non-finitist arithmetic consist
of the following groups9 :

(I) the axioms of NFA relativized to 𝑁 , the collection of natural numbers;
(II) the partial combinatory axioms, with pairing, projections and definition by cases;

(III) an axiom for the characteristic function of equality on 𝑁;
(IV) axioms for various constants in the domain Π of predicates, namely for the

natural numbers, equality, the free predicate variable 𝑃, and for the logical
operations ¬, ∧, ∀ and inverse image of 𝑓 along 𝑎; 10

(V) an axiom (join)) for the disjoint union j(f) of a sequence 𝑓 of predicates over
numbers: whenever 𝑓 : 𝑁 → Π, j(f) is the collection of all ordered pairs (𝑢, 𝑣)
where 𝑢 ∈ 𝑓 (𝑣), 𝑣 being a natural number.

In analogy with the case of schematic reflective closure, the full unfolding U(NFA)
is then obtained by applying the substitution rule 𝐴(𝑃)/𝐴(𝐵), where 𝐵 is an arbitrary
formula of the unfolding language.

9 For formal definitions and details, see Strahm (2017).
10 The inverse image of an operation 𝑓 along a predicate 𝑎 is - extensionally - the collection of all
𝑥 such that 𝑓 𝑥 ∈ 𝑎.
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The operational unfolding U0 (NFA)) is simply obtained by restricting to axiom
groups (I)-(III) and with the formulas 𝐵 in the substitution rule restricted accord-
ingly. In U0 (NFA) one successively constructs terms 𝑡 (𝑥) intended to represent each
primitive recursive function, by means of the recursion operator and definition by
cases. By applying the substitution rule, it is then shown by induction on the formula
𝑡 (𝑥) ↓ that each such term defines a total operation on the natural numbers. Thus the
language of PA may be interpreted in that of U0 (NFA) and hence – by application
of the substitution rule once more – we have that PA itself included in that system.

In U(NFA) the domain of predicates is considerably expanded by use of the join
operation. Once we have established that a primitive recursive ordering < satisfies
the schematic transfinite induction principle𝑇 𝐼 (<, 𝑃) with the free predicate variable
𝑃, we can apply the substitution rule, in order to carry out proofs by induction on
< with respect to arbitrary formulas. In particular, one can establish the existence
of a predicate corresponding to the the so-called hyperarithmetical hierarchy11 along
such an ordering, relative to any given predicate 𝑝 in Π, as naturally axiomatized
by iterating arithmetical comprehension. Then by means of the usual arguments, if
one has established in U(NFA) the schematic principle of transfinite induction along
a standard ordering for an ordinal 𝛼, one can lift it upwards to a wellordering of
type 𝜑𝛼0,12 and hence the same for each ordinal less than Γ0, the upper bound for
predicative reasoning. Thus U(NFA) can deal with the ramified analytic systems up
to Γ0 and it essentially matches up with the theory of theorem 2.

The main results of Feferman and Strahm (2000) are that (i) U0 (NFA) is proof-
theoretically equivalent to PA and is conservative over it; (ii) U(NFA) is proof-
theoretically equivalent to the union of the ramified analytic systems up to Γ0 and is
conservative over it.

In other words, U(NFA) is proof-theoretically equivalent to predicative analysis as
charaterized in theorem 2. In addition, the intermediate system𝑈1 (𝑁𝐹𝐴) without the
join axiom (V) is proof-theoretically equivalent to the union of the ramified systems
of finite level. While the unfolding of non-finitist arithmetic attains the limits of
predicativism, it is proper to the essence of predicativism that ascent towards more
complex sets is only allowed through restricted quantification, i.e. quantifications
over totalities that can be regarded as already given, and hence only predicative
ordinals are accepted, i.e. ordinals which can be recognized by exclusive appeal to
notions that have already been secured and are generated from below, bottom-up.

Indeed, these ideas have a more general import: constructive theories – Martin-Löf
type theory, and Myhill and Aczel set theory – feature predicativity as a distinctive
form of constructivity (see Crosilla (2017), Crosilla (2018)). This may be condensed
into a constructibility requirement for sets, which ought to be finitely specifiable in
terms of uncontroversial primitive objects and simple operations over them. Histor-
ically, predicativity emerged at the beginning of the 20th century as a component of
an influential analysis of the paradoxes by Poincaré and Russell. According to this
analysis, the paradoxes are caused by vicious circles in definitions; and adherence

11 In essence a version of the ramified hierarchy in sense of Russell which is iterated up to the first
non-recursive ordinal.
12 𝜑𝛼𝛽 is the so-called Veblen hierarchy; for details, see Feferman (1991) , Rathjen (2006).
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to predicativity was therefore proposed as a systematic method for preventing such
problematic circularity.

Now a subtler role of ordinals occurs in the case of impredicative definitions,
which can be analyzed up to a certain point via ordinal-theoretic methods, but
with a distinctive feature: the unfolding of certain definitions and processes dealing
with finite objects, e.g. proofs, requires to climb up to and to compute with certain
ordinals, which surpass the first uncountable ordinal. But then we have to collapse
down onto a countable ordinal, in order to recover information on usual proofs
and definitions! Typically – as in the case of the so called ordinal 𝜓(ΓΩ+1) defined
in Buchholtz (2013), Buchholtz et al. (2016), which parallels the ordinal Γ0 of
predicative analysis – one defines a countable ordinal, which necessarily requires –
to be defined – the uncountable ordinal Ω and 𝜓(ΓΩ+1) < Ω.

Incidentally, let me conclude by mentioning that these investigations contribute
to the research program of metapredicativity (Jäger and the Bern school; see Ranzi
and Strahm (2019)). The idea is that, while predicative methods build up objects
from below, impredicative methods assume the existence of large objects in order
to construct smaller ones. In the case of metapredicativity, one generalizes methods
from predicative proof theory to investigate theories that are impredicative in the
sense of Feferman and Schütte.

2.2.1 Unfolding classified

It is interesting to look for generalizations, and hence to define the unfolding U(S) for
given S. Indeed, for special choices, significant theories arise. Just to give concrete
instances of this sort of phenomena, let us choose for S two standard theories:
an axiomatization of Polynomial Time Arithmetic PTCA, as given, say, by Ferreira
(1990) or Eberhard and Strahm (2015), and PRA, a standard version of Primitive
Recursive Arithmetic. Now it is also known that the two systems can be rephrased as
applicative theories, as based on the notion of self-applicable operation, and yet their
computable content (the algorithms recognized as well-defined in the two systems)
coincide – respectively – with the polytime operations and the primitive recursive
operations. In other words, we are led to consider:

• FEA, a version of feasible arithmetic as defined by Eberhard and Strahm
(2015)[pp.156–57]. Roughly, FEA is an axiomatization of partial combinatory
logic together with an underlying structure: the theory of binary strings (finite
sequences of bits), as endowed with the natural operations of concatenation and
string product and with a relation 𝜏 ≤ 𝜎, meaning that the length of the string
𝜏 is less than the string 𝜎.

• FA, the basic system of finitist arithmetic, which includes a basic theory of oper-
ations as based on partial application with the basic constructions for producing
constant operations and substitutions, and includes standard partial combinatory
logic, succcessor, predecessor, pairing operations and projections. As is well-
known, partial combinatory logic allows self-application; in order to understand
it, it is enough to follow the informal reading 𝑥𝑦 ≃ 𝑧 as: the algorithm coded by 𝑥
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applied to the input 𝑦 converges and produces 𝑧 as output. Besides application,
the intended universe includes natural numbers; hence three basic statements
are possible: 𝑁 (𝑡), 𝑡 = 𝑠, 𝑡𝑠 ≃ 𝑟 .
The essential point is that the logical operations now are restricted to ∧, ∨, ∃
existential quantifiers. Provable propositions 𝐴(𝑥) are interpreted as verifying
𝐴(𝑛) for each natural number 𝑛, but we do not have universal quantification
over the natural numbers as a logical operation. Nor do we have negation (except
of numerical equations), which, when applied to existential formulas, could be
interpreted as having the effect of universal quantification.

• U(FEA) = PTCA (Eberhard and Strahm (2015)); this is related to feasibility,
and only bounded quantification on binary strings is allowed, while one has a
weak notion of truth closed under bounded quantification, ∧, ∨, positive prime
conditions;

• U(FA) = PRA; this corresponds to finitism in the sense of Tait (Feferman and
Strahm (2000));

• Let BR be the so-called bar rule, i.e. the inference which roughly states: if < is a
well-founded ordering relation – in symbols WF(<) –, then each instance of the
transfinite induction schema TI(<,B) on < is allowed (𝐵 arbitrary formula of
the full language). Then U(FA + BR) = PA; this is inspired by Kreisel’s idea that
PA is the least upper limit of finitism, as characterized by means of Gentzen’s
consistency proof via transfinite induction on a suitable natural well-orderings;

• U(ID1), the unfolding of the elementary theory of inductive definitions, corre-
sponds to overcome the limits of standard predicativity towards metapredicativ-
ity and beyond; this yields is a theory of strength 𝜓(ΓΩ+1), but other equivalent
systems can be found in Buchholtz et al. (2016).

Feferman and Strahm (2000), Feferman and Strahm (2010), Buchholtz et al.
(2016) develop a suitable proof-theoretic analysis of the systems.

Let us mention an alternative strategy to the proof-theoretic results given in Fefer-
man and Strahm (2000), Feferman and Strahm (2010): they can be easily obtained by
interpreting the unfolding systems into theories of abstract truth over combinatory
structures, as outlined in Cantini (2016), Cantini (1996), thus establishing another
bridge with appplicative systems.

More explicitly, let PT be a theory of propositions and truth, which, roughly,
consists of (i) the axioms for combinatory logic enriched by numbers; (ii) natural
compositional axioms for truth 𝑇 and propositions 𝑃; (ii) the schema of number
theoretic induction (for details, see Cantini (2016)).

Now in PT the collections of propositional functions can simulate a rather rich
structure of types; in particular it is closed under elementary comprehension and
join, and it turns out:

Theorem 3 U(NFA) without substitution rule is interpretable into the system PT.

Remark 2 As to the import of U(NFA), observe that PT without substitution is known
to have the same upper bound as ramified analysis of any level below 𝜖0 (𝜖0 being
the well-known proof theoretic ordinal discovered by Gentzen in the thirties and



Reflecting and unfolding 11

associated to the consistency of PA). Of course, this means that U(NFA) is a highly
non-trivial system and worth considering.

Remark 3 The theories of propositions and truth we just cited are in a sense in-
termediate betweem reflective closures and unfolding, as they fully integrate the
operational side, while making sense of an abstract notion of truth.

3 On the Implicit Commitment Thesis ICT

The implicit commitment thesis ICT (Dean, 2014, p.32) states that in accepting a
formal systems S one is also committed to additional resources not available in the
starting theory S but whose acceptance is implicit in the acceptance of S. Of course,
this is only an informal statement and one might want to look for a more definite
form of it. For instance, if we accept the axioms of a theory S together with logical
inferences and principles, we can accept as basic the notion of proof in S. Eventually,
we are led to accept formal proofs in S as sound (whence the formal consistency of
S), which formally corresponds to the acceptance of a reflection principle RFN(S)
for S:

• if S proves a statement 𝜑, then 𝜑 is true.

As to RFN(S), either we regard it as a schema in the given formula 𝜑, or else we
explicitly add a truth predicate (see the next subsection).

Recently, this step has been questioned by Dean (2014), essentially on the ground
of the following argument: certain systems – incompleteness notwithstanding – are
plausibly complete with respect to a given body of knowledge, typically PRA for
finitism in the sense of Tait (1981), or PA with respect to genuine 1st order number
theoretic properties (this is known as Isaacson’s thesis, see Isaacson (1987)). Here
by genuine 1st order it is meant that there are no hidden higher order notions around:
or, put differently, the content is essentially arithmetical, no reference to the notion
of set of natural numbers.

But, e.g., if we accept Isaacson’s thesis IT, we cannot be committed to a reflection
principle RFN(PA) as implicit, since it goes far beyond the boundaries of PA, and
hence the principle makes PA unstable, in the sense that it is naturally amendable,
and also incomplete, against the thesis. Hence this fact conflicts with ICT; and it
seems that we have to give up ICT or to modify ICT in some sense.

Furthermore ICT apparently yields ontological consequences. For instance, con-
sistency, which follows from ICT, implies the existence of structures and models by
the so-called arithmetized completeness theorem (see Dean (2020)), and this fact
apparently conflicts with the idea that truth is accepted as a thin notion, according
to deflationism Cieslinski (2017). Hence assuming ICT conflicts with deflationism.
i.e. the thesis that truth is thin and unsubstantial.
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3.1 ICT sharpened: semantical way-out

Let us try a fresh start. Taking ICT seriously leads to extend the ground system S
with a notion of truth. Just to be concrete, choose S to be PA. Accepting PA, we
are then committed to a theory of arithmetical truth CT(PA), which embodies the
standard compositional clauses. Essentially, CT(PA) embodies the axioms of KF
restricted to the codes of PA-formulas. Therefore, if we also allow full induction
– namely also applied to formulas where 𝑇 occurs –, we can prove the reflection
schema (and hence the consistency) of PA in the form:

∀𝑥(𝑆𝑒𝑛𝑡𝑆 (𝑥) ∧ 𝐴𝑥𝑖𝑜𝑚𝑆 (𝑥) → 𝑇 (𝑥))

But, if we accept the criticism above, CT(PA) is inadequate. We simply ought to
consider weaker systems with restricted induction, e.g. CT(PA) ⌈, i.e. the extension
of PA in the truth-theoretic language, as given above, which contains

1. the compositional axioms for truth, as applied to (codes of) PA-sentences;
2. the axiom stating that ∀𝑥(𝐹𝑜𝑟PA (𝑥) → 𝑇 𝐼𝑛𝑑 (𝑥) where 𝐼𝑛𝑑 (𝑥) formalizes that
𝑥 is the code of an arithmetical instance of the induction schema (for details see
Halbach (2011)).

At this stage, it turns out that we can apply non-trivial results in Kotlarski et al.
(1981), Leigh (2015), Enayat and Visser (2015) about theories endowed with a truth
predicate, implying that

Theorem 4 CT(PA) ⌈ has the same arithmetical content as PA.

Recently, the theorem has triggered a new proposal, put forward by Nicolai and
Piazza (2019). In essence, it amounts to state that the implicit commitment IC has a
composite nature, a variable component and an invariable one, the so-called semantic
core, i.e. a set of of semantical principles about truth we are naturally committed
to accept, and yet these principles are conservative over the ground system. More
explicitly, the semantic core should include, besides the compositional truth axioms
for PA-sentences, the axioms stating the truth of all propositional tautologies, the
fact that the inference rules (modus ponens is enough) preserve truth, the truth of all
its non-logical axioms.

However, it is not clear yet whether the theorem above can be strengthened to the
effect that the conservation result keeps holding for the extended system (compare
with Nicolai and Piazza (2019), p.929, footnote.).

Lastly, let us mention that another route is viable via KF, i.e. we can propose
a notion of reflective semantic core. This means that we can regard truth as self-
referential truth, and hence subscribe the axioms in KF, including the axiom 𝐿𝑜𝑔𝑇

formalizing the statement: all logical PA-axioms in the language of PA are true. This
can easily be stated in a standard formalization of the syntax of PA:

• ∀𝑥(𝐴𝑥PA (𝑥) → 𝑇 (𝑥))
Of course, we may choose KFc as a variant of semantic core, i.e. a sort of reflective

semantic core, i.e. KFc. However, adopting KFc is not really a panacea: there remain
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problems similar to those of CT(PA) ⌈, which are left open as well, e.g. it remains to
be seen if KFc with 𝐿𝑜𝑔𝑇 is still conservative over PA.

And a crucial point ought to be clarified though: once truth as a resource is
introduced, the reflection process should be applied to induction instances applied
for total conditions. Why should it be so?

3.2 Ontological way-out

Assume we consider the unfolding approach: can we avoid the previous difficulties?
Well, we can rephrase ICT as an attempt of extracting genuine mathematical notions.
Truth is no more accepted as a starting point, against a metatheoretical approach, but
operations form the basic constituents.

Of course, operations are understood intensionally, as rules, and not defined via
set theoretical methods. Operations should be regarded as acting on the intended
universe of individuals of the underlying theory, as well as on a domain of predicates
and operations themselves. Both domains are included in a comprehensive domain V
and the closure conditions ensure, as already stated, that we have a ground applicative
structure, typically a partial combinatory algebra.

It also turns out that, as Strahm puts it, the basic aim for implicit commitment be-
comes wider in scope: given a schematic system S, which operations and predicates,
and which principles concerning them ought to be accepted if one has accepted S?
Eventually, elaborating the unfolding program directly leads to a confluence within
the framework of the so-called applicative frameworks, that have been developed at
length in the context of the so-called program of explicit mathematics (see section 2
in Feferman (2016)).

4 Conclusion

Let us recall ICT, as stated by Dean (2014), p.32, in the form of a thesis:

Anyone who accepts the axioms of a mathematical theory S is thereby also
committed to accepting various additional statements Δ which are expressible in
the language of S but which are formally independent of its axioms.

We wonder whether there might be a sensible restatement of Dean’s ICT. We observed
that unfolding induces a switch away from reflection principles: the problem is not
quite to guess suitable reflection principles – as schemata or axioms – but to look
for new operations or predicates, and corresponding closure properties, possibly in
search of new tangible, significant features of the objects involved.

Hence we depart from the issue of implicit commitment and from a problem
involving the limits of the axiomatic method, and we are moving to a problem
of mathematical content. What is the effect of reflection principles on the kind
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of entities a given theory is calling into existence? In order to handle increasing
logical complexity, we are pushed towards possibly higher type operations, more
than stronger and stronger kind of inferences rules: think of the use of notion of
universe in type theory (Martin-Löf, Feferman) and the emerging of abstract objects
which concern proofs but are not merely logico-linguistic, as already envisaged in
several contexts (Hilbert himself, Schütte and the Münich school, Girard).

As to the traditional ideas underlying ICT, and in order to make clear the open
character of this note, we like to conclude with a few open questions: is there
any objectual counterpart of the conceptual frame supporting a reflection principle
somewhat implicit in accepting the axioms of PA? Is there a structural content of the
idea of semantic core? What is the use of the semantic core? Does it help in making
proofs more perspicuous or elegant or shorter?
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Gödel, K. (1936). Über die Länge von Beweisen. In K. Menger (Ed.), Ergebnisse

eines Mathematischen Kolloquiums, Volume 7, pp. 23–24.
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