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Hyperglycemia and microRNAs in prostate cancer
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BACKGROUND: Hyperglycemia can promote the development of prostate cancer (PCa). Differential expression levels of miRNAs
between PCa patients and controls were also reported. Therefore, we examined the relationship between hyperglycemia and
miRNA levels in PCa.
METHODS: Relative expression of urinary miR-574-3p, miR-375, miR-205-5p, miR-200b-3p, miR-187-3p, miR-182-5p, and miR-100-5p
were investigated in 105 PCa patients and 138 noncancer controls by Real-Time quantitative PCR. Fasting plasma glucose
measurements were retrieved from clinical records. The differential miRNA expressions among groups were compared using non-
parametric tests. Correlations with glucose and prostate-specific antigen (PSA) were tested using Pearson correlation coefficient.
RESULTS: When we analyzed miRNA expression according to glycemic state, significant down-regulations were found for miR-
200b-3p, miR-187-3p, miR-182-5p, and miR-100-5p in noncancer controls with high glucose. The lowest down-regulations were
observed for miR-187-3p, miR-182-5p, and miR-100-5p. Subsequently, when hyperglycemia was considered in PCa, significant
dysregulations of selected miRNAs were found in hyperglycemic PCa patients than in controls with high glucose. In particular, miR-
375 and miR-182-5p showed a 3-FC in hyperglycemic PCa patients than controls who left hyperglycemia untreated. Conversely,
only a down-regulation of miR-574-3p was observed in PCa patients regardless of glycemic status and only modest down-
regulation of miR-574-3p, miR-200b-3p, miR-187-3p and miR-182-5p were found in normoglycemic PCa patients. Next, significant
correlations between miRNAs and glucose (miR-200b-3p, miR-100-5p) and PSA (miR-205-5p and miR-187-3p) were detected in
controls. Similarly, miR-205-5p and miR-187-3p were correlated with glucose in PCa patients, while miR-574-3p and miR-375
showed inverse relationships.
CONCLUSIONS: miRNA dysregulations can occur in hyperglycemic PCa patients as compared to noncancer controls who left
hyperglycemia untreated. Hyperglycemia can consistently promote the expression of miR-375 and miR-182-5p. Uncontrolled
hyperglycemic state could contribute to the creation of a suitable microenvironment for later PCa development by promoting gene
expression.
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INTRODUCTION
Prostate cancer (PCa) is the most common male cancer in Western
countries and the second cause of death due to malignancy
among men [1]. The introduction of serum prostate specific
antigen (PSA) testing for early detection and screening resulted in
lower PCa mortality but also in significantly increased cancer
incidence [2]. PSA screening has even caused an increment of
over-diagnosis, and over-treatments [2]. Transrectal ultrasound
and, recently, multiparametric Magnetic Resonance Imaging (MRI)
guided tumor biopsies remain the gold standard methods for PCa

prostate diagnosis [3], but cause important stress and health risk
for urological patients.
Over the last years, much emphasis has been given to

microRNAs (miRNAs), a large family of evolutionarily conserved
small noncoding RNAs with a main role in gene regulation by
acting at the posttranscriptional level [4]. At functional level,
miRNAs modulate the expression of their target genes by
imperfect base pairing to the 3′-untranslated regions of mRNAs
inducing silencing of target mRNAs [4]. miRNA family plays a role
in various biological and pathological processes, including cellular
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proliferation, differentiation, metastasis and cell death [5]. Early
works showed that dysregulated miRNA expression contribute to
human cancer through diverse mechanisms by acting as
oncogene or tumor suppressor [6]. Specific signatures of miRNAs
were identified in solid tumors [7], including PCa [8]. Moreover, a
number of studies demonstrated differential expression levels of
urinary miRNAs between PCa patients and controls [9].
In the last years, a growing body of evidence has shown a main

role of glucose in PCa [10–12]. A 52% higher risk of PCa was found
in hyperglycemic men as compared to normoglycemic subjects
[11]. Later, an elevated risk of cancer death in men with high
glucose was reported by the same Authors [12]. Increments of
150% and 220% risks of lethal and fatal PCa, respectively, were
demonstrated in a communities cohort study [10]. Besides, high
sugar and triglycerides have been linked to PCa aggressiveness
and severity [13].
In the current study, we analyzed the expression of urinary miR-

574-3p, miR-375, miR-205-5p, miR-200b-3p, miR-187-3p, miR-182-
5p and miR-100-5p, as target miRNAs for PCa [14] in a case-cohort
study considering the concentrations of glucose, a determinant of
miRNA expression [15]. Relative expression levels of miRNAs were
analyzed in urinary cell-free fraction by Real-Time quantitative
PCR. Our aim was to examine the relationship between miRNAs
and PCa in men with low and high sugar levels.

METHODS
Study population
The case-cohort study included 243 patients undergoing clinical prostatic
examination and standard biopsy template (at least 16 cores) at Careggi
University Hospital, Florence, Italy. The inclusion criteria were to be 50–70
years aged and have clinical suspect of PCa by PSA ≥ 3.0 ng/ml. The
exclusion criteria were previous positive biopsy; presence of specific PCa
symptoms; treatments with 5-alpha reductase and other tumors. Data,
including Gleason score (GS), pre-biopsy total serum PSA and fasting
plasma glucose measurements were retrieved from clinical records.
Study procedures were done in accordance with the Declaration of
Helsinki for human studies. The study protocol was approved by the
Institutional Review Boards and registered in the Regional Trial Register
(N. bio16001).

MicroRNA analysis
After informed consent, urines were collected on the day of biopsy. Total
RNA was isolated from urine supernatant using miRNeasy Mini Kit
(Qiagen, Venlo, The Netherlands) according to protocol’s instructions and
stored at –80°C. miR-specific cDNA synthesis was performed using
miScript II Reverse Transcription Kit (Qiagen, Venlo, The Netherlands) in
PTC-100™ Thermal Cycler (MJ Research, inc., Québec, Canada). cDNAs
were preamplified using miScript PreAMP PCR Kit (Qiagen) and miScript
PreAMP Custom Primer Mix (Qiagen). Mature miRNA expression profiling
was determined by RT-qPCR using custom miScript miRNA PCR Arrays
(Qiagen, Venlo, The Netherlands) and miScript SYBR Green PCR Kit
(Qiagen, Venlo, The Netherlands) using 7900 RT-PCR System (Applied
Biosystems™, Thermo Fisher Scientific, Massachusetts, USA). Samples
were blindly analyzed in duplicated. microRNA expression was normal-
ized against an endogenous normalizer [16]. The ΔΔCt method was used
for the calculation of the relative expression of miRNAs and fold-change
(FC).

Statistical methods
miRNAs levels were reported as median and range. Study participants were
grouped according to clinicopathological parameters. Glycemic state was
based on WHO criteria [17]. Levene’s statistic was used to assess if there
was a significant difference in variance between groups. Distribution of
data was determined using Shapiro-Wilk Test and non-parametric tests
were used as appropriate. Continuous variables were compared using
Mann-Whitney U (two-sided) and Kruskal-Wallis rank tests. The levels of
miRNA expression were tested for correlation with glucose levels and PSA
using the Pearson correlation coefficient. Statistical significance was taken
as p < 0.05. Data were analyzed using IBM SPSS Statistics® software (version
20.0, Chicago. IL, USA).

RESULTS
Patient characteristics
After inclusion, there were 243 men with PSA ≥ 3 ng/ml in the final
cohort. Based on biopsy outcome, the cohort consisted of 105 PCa
patients of whom 46% patients with GS ≥ 4+ 3, and 138 patients,
who tested negative to prostate biopsy, who were included as
noncancer controls. In PCa patients, 85 men were normoglycemic
and 20 had high glucose. Among noncancer controls, 107 men
were normoglycemic and 31 were hyperglycemic. There was no
significant difference in variance between groups. Clinicopatho-
logic characteristics are summarized in Table 1.

Glucose and microRNAs
We first decided to analyze the expression of urinary miRNAs (miR-
574-3p, miR-375, miR-205-5p, miR-200b-3p, miR-187-3p, miR-182-
5p, and miR-100-5p) in controls according to glycemic state.
Median ΔCT and range of miRNAs are shown in Table 2 and Fig. 1.
Results show a general tendency of urinary miRNAs to be down-
regulated at high glucose levels. As reported in Table 2, the
expression of miR-200b-3p, miR-187-3p, miR-182-5p, and miR-100-
5p were significantly reduced in hyperglycemic controls with
respect to those with normal glucose (p values of 0.048, 0.001,
0.010 and 0.022, respectively). The lowest down-regulations were
observed for miR-187-3p, miR-182-5p, and miR-100-5p with FC
value of 0.5.

Glucose, prostate cancer, and microRNAs
The expression of miRNAs was initially examined regardless of
glycemic status (Table 3). Findings revealed that only a modest
statistically significant down-regulation of miR-574-3p was present
in PCa patient group than in controls. Subsequently, we explored
the relationship between miRNAs and PCa at the level of each
layer of glucose, hyperglycemic and normoglycemic one. Table 3
and Fig. 1 report that significant dysregulations of miR-574-3p,
miR-375, miR-205-5p, miR-187-3p and miR-182-5p occurred in
hyperglycemic PCa patients than in controls with high glucose. In
particular, the relative expression of miR-574-3p, miR-375 and miR-
182-5p were significantly over-expressed, p values of 0.014, 0.041
and 0.043, respectively. As shown in Fig. 1, data suggest that
hyperglycemia over induce the expression of miR-375 and miR-
182-5p in PCa patients with an FC expression value of 3.0.
Specifically, the median ΔCT and range values of miR-375 and miR-
182-5p were −3.1 (−6.5, 0.4) and 2.9 (−0.5, 5.9) in hyperglycemic
controls and −4.6 (−7.2, −0.8) and 1.3 (0.4, 5.1) in PCa patients
with high glucose, p-values of 0.041 and 0.043, respectively. Also,
modest but significant decrements were determined for miR-205-
5p and miR-187-3p (p values of 0.042 and <0.0001) in the

Table 1. Clinicopathological characteristics of the study population,
according to cancer status, prostate-specific antigen (PSA), Gleason
score (GS) and glycemic state.

Characteristics N

Study population 243 61.7 years ± 5.4 (SD)

Prostate cancer patients 105 62.9 years ± 4.5 (SD)

PSA 105 10.9 ng/ml ± 11.4 (SD)

Gleason score 57 GS ≤ 3+ 4

48 GS ≥ 4+ 3

Normoglycemic patients 85 <110mg/dl plasma glucose

Hyperglycemic patients 20 ≥110mg/dl plasma glucose

Noncancer controls 138 60.8 years ± 5.9 (SD)

PSA 136 7.6 ng/ml ± 3.5 (SD)

Normoglycemic controls 107 <110mg/dl plasma glucose

Hyperglycemic controls 31 ≥110mg/dl plasma glucose
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hyperglycemic group. On the other hand, when we investi-
gated the patterns of expression of miRNAs in normoglycemic
PCa patients and controls (Table 3 and Fig. 1), we observed
modest significant downregulations of the relative expression
levels of miR-574-3p, miR-200b-3p, miR-187-3p, and miR-182-
5p in normoglycemic PCa patient group, p values of 0.004,
0.029, 0.002, and 0.040, respectively.

Glucose, prostate-specific antigen and microRNAs
Then, we investigated the occurrence of correlations between
the expression levels of miRNAs, glucose and PSA in controls
and PCa patients (Table 4). In controls, significant relationships
were determined between miR-200b-3p, miR-100-5p and
glucose, p values of 0.047 and 0.018, respectively. Findings
show that the expression of 2 miRNAs varied with increasing
PSA in controls. Specifically, the correlations of miR-205-5p and
miR-187-3p with PSA were significant, p values of 0.021 and
0.017, respectively. Conversely, in PCa group, miRNAs were
significantly correlated only with glucose. In more detail, miR-
205-5p and miR-187-3p were positively correlated with
glucose, p values of 0.039 and 0.020, respectively. Whereas
574-3p and miR-375 showed inverse relationships, p-values of
0.011 and 0.005, respectively. A heatmap illustrating the
correlations between miRNA expression levels, fasting plasma
glucose, and serum PSA in both noncancer controls and PCa
patients is presented to easily identify patterns of associations
(Fig. 2).

DISCUSSION
Despite the relevance of high glucose in PCa [11], little is
known about how sugar influences miRNA expression in this
malignant pathology. Therefore, we have initially compared
the expression levels of seven target miRNAs (miR-574-3p, miR-
375, miR-205-5p, miR-200b-3p, miR-187-3p, miR-182-5p and
miR-100-5p) [14] in urinary cell-free fraction of controls with
and without high glucose. As a result, we observed that
significant dysregulations of miRNA expression occur in
response to hyperglycemic state. In noncancer controls, the
expression of miR-200b-3p, miR-187-3p, miR-182-5p and miR-
100-5p was significantly down-regulated in those with high
glucose compared to normoglycemic one. The most consistent
alterations were observed for miR-187-3p, miR-182-5p and
miR-100-5p in controls with high glucose. Our findings are in
line with early reports showing that dysregulated miRNA levels
occur in response to high glucose. Formerly, the study of Oger
et al. [18] reported that down-regulated expression of miR-
200b was present in obese diabetic patients with high glucose.
A down-regulation of miR-182-5p was found in individuals with
prediabetes and type 2 diabetes mellitus [19]. Similarly, Pek
et al. [20] reported lower expression levels of miR-100 in
diabetic patients.
Our main result provides information within the pathology

of PCa, highlighting the link between hyperglycemia and
cancer development. In fact, when we examined if hypergly-
cemia was a confounder of the relationship between miRNAs
and PCa, we observed that the relationship was different at the
level of each layer of glucose. An effective influence of high
glucose on the expression of selected miRNAs was found after
stratification for glycemic state. Consistent up-regulations were
observed for miR-574-3p, miR-375 and miR-182-5p, whereas
low decrements were determined for miR-205-5p and miR-187-
3p. As mentioned above, miR-375 and miR-182-5p had a 3-fold
expression change in hyperglycemic PCa patients as compared
to noncancer controls who left hyperglycemia untreated. On
the other hand, only the expression of miR-574-3p was
significantly dysregulated in PCa patients when compared to
controls regardless of glycemic status, and modest down-Ta
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regulations of miR-574-3p, miR-200b-3p and miR-182-5p were
found in PCa patients with normal glycemic state.
Overall, findings suggest that miR-375 and miR-182-5p could be

up-regulated in hyperglycemic PCa patients and be involved in
PCa development. Our results are in agreement with the study of
Xiaojuan et al. [21], who showed that hyperglycemia induces the
expression of miR-186, miR-301a, miR-365 and miR-193 in rodent
models. Gajeton et al. [22] showed that a miR-467-dependent
pathway, capable of promoting tumor growth, was activated by
hyperglycemia in experimental rodents. Furthermore, Hudson [23]
demonstrated that miR-574-3p was up-regulated in primary
prostate tumors. Similarly, increased levels of miR-375 were
reported in patients with PCa as compared to controls [24, 25].
Abramovic et al. [24] reported a pattern of miR-182 up-regulation
in PCa patients relative to controls. In another investigation,
Konoshenko et al. [26] showed that the levels of miR-182 were
effective in discriminating PCa patients from controls but in
combination with miR-125 or miR-30. Wang et al. [27] reported
that miR-205 was frequently downregulated in PCa. Also, the
expression of miRNA-187 was found to be decreased in PCa tissue
specimens [28]. In the opposite direction, it is possible that
hyperglycemic state could not be associated to PCa development
by gene expression promotion. Dysregulations of miRNAs could
simply be a reflection of the existence of PCa, a condition that
could lead to a sensitivity to hyperglycemia.
Next, the relationships of miRNAs with glucose and PSA showed

differences among PCa patients and controls. The levels of miR-
574-3p and miR-375 showed inverse relationships with glucose in
PCa patients, in keeping with previous studies [29, 30], and
reflecting their different potential involvements in prostate
carcinogenesis, possibly by androgen receptor regulation [31].
Whereas, miR-205-5p and miR-187-3p levels were correlated with
PSA in controls, perhaps predicting increased cancer risk [32].
Knowing the gene regulatory action of miRNAs [5], glycemic

derangements could contribute to the creation of a favorable
microenvironment for later PCa development. Dysregulated

expression can be caused by hyperglycemic state through
different mechanisms including transcriptional modifications
affecting transcriptional factors and miRNA expression [33] and
oxidative stress [34]. Xiaojuan et al. [21] reported that high glucose
induces miR-301a expression in prostate tissues and PCa cell lines.
The oncogenic properties of miR-375 can be due to its ability of
regulating homolog A, COPII coat complex component A, fibroblast
growth factor 2, and pyruvate dehydrogenase kinase 1 [35] and the
Wnt signaling pathway promoting cell differentiation [36, 37].
Besides, up-regulation of miR-182 expression promotes cancer cell
proliferation and invasion role in PCa by targeting multiple genes
in experimental PCa cells [38]. The up-regulation of miR-182 in PCa
contributes to Epithelial-Mesenchymal Transition (EMT) by target-
ing the expression of microphthalmia-associated transcription
factor [39]. Overexpression of miR-182 in prostate experimental
cells even decreases the transcript levels of snail family transcrip-
tional repressor 2 (SNAI2), an important regulator of EMT pathway
[40]. On the other hand, hyperglycemia causes cell distress by
glucose auto-oxidation and the production of reactive oxygen
species [41], compounds capable of inducing aberrant DNA
methylation, a mechanism able to dysregulate miRNA expression
[42], by oxidative damage [43]. Early, we showed significant
inverse relationships between oxidative damage and DNA
methylation aberrations at long interspersed nuclear element-1
and at the promoter domain of interleukin-6 among the
participants to the Map Ta Phut study, who were exposed to
complex mixtures of environmental and industrial toxicants [44].
As result of hyperglycemic state, increased oxidative stress could
cause PCa through DNA damage and subsequent DNA methyla-
tion alterations in PCa-related genes.
This study has several strengths such as a prospective case-

cohort study design and reliable glucose measurements; profiling
miRNAs from urine is an accepted surrogate tissue for PCa [14],
which offers key advantages for the urological patient since it is an
easier and non-invasive sampling method compared to biopsy
and peripheral blood [45]. In addition, the urinary cell-free fraction

Fig. 1 Relative expression levels of miR-574-3p, miR-375, miR-205-5p, miR-200b-3p, miR-187-3p, miR-182-5p, and miR-100-5p according
to prostate cancer and glycemic state. Interval confidences and significances (*) are shown.
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is free of contaminants whereas urine sediment contains renal
tubular cells, urothelial cells, erythrocytes and tumor cells that
could be a source of bias [46].
Hyperglycemia-related dysregulations with over and under

expression of miRNAs are yet to be fully understood. Current
knowledge indicates that miRNAs play a role in glucose
metabolism and hyperglycemia-associated cancer grow [21]. For
instance, mir-375 down-regulation enhances insulin secretion
whereas mir-375 over-expression decreases insulin secretion and
transcription altering glucose metabolism, leading to chronic
hyperglycemia and promoting proliferation, invasion and migra-
tion of cancer cells [47, 48]. Currently, PSA is the most employed
biomarker for PCa, however, PSA has limited specificity and leads
to overdiagnosis which in turn results in overtreatment. To
increase specificity and reduce the number of unnecessary
biopsies, multiparametric MRI and several biomarkers, such the
4 K score, the prostate cancer 3 (PCA3), a long non-coding RNA,
the Mi-prostate score, a predictive algorithm including PSA, PCA3
and TMPRSS2:ERG [49], have become available. Interestingly, the
differential expression of miR-375 and miR-182-5p between
hyperglycemic PCa patients and controls (3-fold expression
change) was higher than that of miR- PCA3 (2-fold expression
change) [50]. The expression levels of urinary miR-375 and miR-
182-5p as possible biomarkers of PCa will have a role as a future
clinically relevant test alone or in combination with other
biomarkers in reducing overdiagnoses in indolent disease and
identifying at higher-risk individuals. Next steps for this research
will involve potential validation studies in independent cohorts.
These approaches would enhance the reproducibility and
reliability of the reported results. Other specific avenues for
further investigations will be based on experiments to elucidate
the mechanisms through which hyperglycemia influences miRNA

expression and on clinical trials aimed to validate the diagnostic
and therapeutic potential of miR-375 and miR-182-5p. Such
investigations will have the potential to achieve an accurate
molecular risk stratification. PCa patients under high glucose and
high levels of miR-375 and miR-182-5p could be monitored and
targeted with inhibitors to block cell proliferation and
differentiation.

CONCLUSIONS
miRNA dysregulations occur in hyperglycemic PCa patients as
compared to noncancer controls who left hyperglycemia
untreated. Hyperglycemia can promote miR-375 and miR-182
expression. Given the known gene regulatory action of miRNAs,
uncontrolled hyperglycemic state could contribute to the creation
of a suitable microenvironment for later PCa development by
gene expression promotion. Future studies should be performed
to examine if miR-375 and miR-182-5p represent useful biomar-
kers for early diagnosis and promising therapeutic targets.

DATA AVAILABILITY
The dataset used during the current study is available from the corresponding author
upon reasonable request.
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