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FOREWORD 
  

During the year 2020, the CRESCO high performance computing clusters have provided 108 million 

KRXUV�RI�³FRUH´�FRPSXWLQJ�WLPH��DW�D�high availability rate, to about 150 users, supporting ENEA research 

and development activities in many relevant scientific and technological domains. In the framework of 

joint programs with ENEA researchers and technologists, computational services have been provided 

also to academic and industrial communities. 
  

This report, the twelfth of a series started in 2008, is a collection of 51 papers illustrating the main results 

obtained during 2020 using the CRESCO/ENEAGRID HPC facilities. The significant number of 

contributions proves the importance of the HPC facilities in ENEA for the research community. The 

topics cover various fields of research, such as materials science, efficient combustion, climate research, 

nuclear technology, plasma physics, biotechnology, aerospace, complex systems physics, geophysical 

flow, renewable energies, environmental issues, HPC technology. In particular, cause to the pandemic 

situation related to COVID-19, in 2020 part of the computational resources were devoted to work related 

to this considerable issue. These researchers employed about 15 % of the overall computing time and 

yielded 8 works. The report shows the wide spectrum of applications of high performance computing, 

which has become an all-round enabling technology for science and engineering. 
  

Since 2008, the main ENEA computational resources are located near Naples, in Portici Research 

Centre. This is a result of the CRESCO Project (Computational Centre for Research on Complex 

Systems), co-funded, in the framework of the 2001-2006 PON (European Regional Development Funds 

Program), by the Italian Ministry of Education, University and Research (MIUR). 

The CRESCO Project provided the financial resources to set up the first HPC x86_64 Linux cluster in 

ENEA; a major computing installation for both the Italian and the International context: it ranked 126 

in the HPC Top 500 June 2008 world list, with 17.1 Tflops and 2504 cpu cores. It was later decided to 

keep CRESCO as the name for all the Linux clusters in the ENEAGRID infrastructure, which integrates 

all ENEA scientific computing systems, and is currently distributed in six Italian sites. 

CRESCO computing resources were later upgraded in the framework of PON 2007-2013 with the 

project TEDAT and the cluster CRESCO4, 100 Tflops computing power. In 2020 the ENEAGRID 

computational resources consist of a25000 computing cores and a raw data storage of about 5 PB. 

 In 2015 ENEA and CINECA, the main HPC institution in Italy, signed a collaboration agreement to 

promote joint activities and projects in HPC. In this framework, CINECA and ENEA participated 

successfully to a selection launched by EUROfusion, the European Consortium for the Development of 

Fusion Energy, for the procurement of a several PFlops HPC system, beating the competition of 7 other 

institutions. The new system MARCONI-FUSION started operation in July 2016 at 1 Pflops 

computation power level which has been increased to 5 Pflops in the summer of 2017 and thanks to a 

new awarded tender, the HPC services of MARCONI Fusion have been extend until 2023 with a power 

peak of 8 PFlops of conventional processors Intel Skylake and 2 PFlops of accelerated GPU partition of 

CINECA Marconi 100. 

The ENEA-CINECA agreement is the key basis for ENEA HPC developments. The CRESCO6 cluster 

has been installed in 2018 and its own 1.4 PFlops peak computing power, ranked 420th in November 

2018 Top500 list. CRESCO6 has been a challenge in HPC co-design system thanks to implement a 

multi-fabric network able for working Infiniband and Omni-Path on a single GPFS cluster using the 

same storage systems of CRESCO data centre. 
  

The success and the quality of the results produced by CRESCO stress the role that HPC facilities can 

play in supporting science and technology for all ENEA activities, national and international 

collaborations, and the ongoing renewal of the infrastructure provides the basis for an upkeep of this 

role in the forthcoming years. 
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The host WP6, yet to be featured in previous SAMPL challenges, is structurally similar to 

cucurbit[n]urils (CBn) used in SAMPL6-SAMPL8[2,3] with important differences. Unlike the neutral 

CBn host, the quasi-D6h WP6 bears six carboxylated moieties on the upper and lower rims that can be 

in part protonated at pH=���>���@��$V�WKH�S.D¶V�RI�:3��DUH�QRW�DYDLODEOH�H[SHULPHQWDOO\��VXFK�D�IHDWXUH�

represents an important challenge in the blind prediction of WP6-guest binding affinities.    Participants 

will in fact need to deal with this complication. 

In this report, we present the dissociation free energies of the fully anionic WP6-12 for the thirteen 

cationic guests of  Figure 1 plus five additional guest molecules with known dissociation constants, 

namely methylene blue (G14)[6],  GNF-Pf-3194 (G15)[7], M2 (G16)[7], choline (G17)[8] and betaine 

(G18)[8]. The calculations have been performed on the CRESCO6-ENEA cluster[9] in Portici (Italy) 

using the so-called virtual Double System Single Box (vDSSB) method[10], based on a production of a 

swarm of concurrent nonequilibrium (NE) alchemical simulations that are started from end-state 

canonical configurations sampled using Hamiltonian Replica Exchange (HREM). 
 

2 Methods 
$V�VWDWHG�SUHYLRXVO\��WKH�WZHOYH�S.D¶V�RI�:3��KRVW�DUH�QRW�NQRZQ��6WULFWO\�VSHDNLQJ��LQ�SUHVHQFH�RI�

multiple host-guest complexes with various protonation states, the overall observed association constant 

for Gn-WP6 complexes is given by  

 

-Ô L Ã 9Þ-Ô
:Þ;

                            (1) 

 

where -Ô
:Þ;

is the association constant for the k-th protonated WP6 species and 9Þis the corresponding 

normalized weight. The Gn-WP6 dissociation free energyÂ)× should be hence calculated as  

 

Â)× L 46HJ @Ã 9ÞA
	ñÀÏ

:Ö;A          (2) 

 

whereÂ)is the dissociation free energy with the host in the k-th protonation state. The predicted pKa of 

the WP6 template monobasic acid 2-(2,5-dimethylphenoxy) acetic acid is  3.23  [11]. Assuming a pKa 

distribution of the twelve equivalent protonation states modulated by the so-called statistical factor [12], 

we obtain that the prevalent species at pH=7.4 is the 12-anion with all deprotonated carboxylated groups 

(9 L rä{z). We hence computed the dissociation constant for the WP612- species only.  

 

The vDSSB methodology is thoroughly described in Ref. [10]. In brief, the method consists of two 

massively parallel computational steps, the HREM stage and the nonequilibrium alchemical stage. The 

HREM stage relies on the enhanced sampling of the host-guest bound state in explicit water and of the 

isolated guest molecule. The initial configurations for the unbound state are obtained by combining the 

HREM-sampled (decoupled) ligand gas-phase snapshots with a pre-equilibrated box filled with explicit 

water.   H-REM uses n=16 and n=8 replicas for the bound and unbound states respectively, with a 

maximum scaling factor of S=0.1 (corresponding to a temperature of 3000 K) involving only the intra-

solute interactions. The scaling factors along the replica progression are computed according to the 

protocolOà L 5
:Ø7-;
Ù with m=1..n.  Only scaling factors are exchanged among neighboring replicas to 

minimize the communication overhead on the MPI layer. HREM simulations are run for 48 ns and 16 

ns for the bound and gas-phase state, respectively. 

In the NE alchemical stage, the bound state leg of the alchemical cycle is performed by rapidly 

decoupling the bound ligand in a swarm of 720 independent NE simulations, each lasting for 0.72 ns. 

The unbound leg of the cycle is done by growing (recoupling) the ghost ligand in the solvent in 480 NE 

alchemical simulations lasting 0.36 ns. For further details on the ligand coupling/decoupling protocols, 

we refer to Ref. [10]. The number of concurrent alchemical simulations in a parallel job corresponds to 

the number of requested MPI processes.  

The final bound and unbound resulting alchemical work distribution are combined in the convolution 

 

2:9; L 2Õ Û 2è:9; L ì @S2Õ:9;2è:9 FS;                    (3) 
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The dissociation free estimate can be performed by way of the Jarzynski identity[13] 

 

Â)é½ÌÌ» L F46HJ @ì 2:9;A?	Ð@9A                                  (4) 

 

or using the Crooks theorem in the assumption that  the convolution 2:9;can be described by a mixture 

of three normal distribution [10,14], i.e  

 

Â)é½ÌÌ» L F46HJLÃ ?ÜA
?	F�Ô?��Ô.. GM                                      (5) 

 

where ?Üá äÜ áêÜ
6are the normalized weight, mean and variance of the i-th normal component, determined 

via the expectation-maximization algorithm [15].  Estimates based on eq. (4) or eq. (5) are used 

depending on the width and character of the work distribution as assessed by the Anderson-Darling 

normality test[16].  

The free energy estimates are corrected  for a volume and a charge term  (for non-neutral ligand) given 

by  

 

Â)Ïâß L 46HJ @vè :6�;/:7Ï,;A                                           (6) 

Â)ä L
�

�.
Bä¸.>6ä¸ä¹

ÏÍ
F

ä¸
.

Ïà
C                                                 (7) 

 

where êis the standard deviation of the host-guest COM-COM distance distribution in the bound state, 

84is the standard state volume, MÀand MÁare the net charges of the guest and the host, and  8Õ á8èare the 

mean volume of the MD box for the bound and unbound state respectively, and Ù is the Ewald 

convergence parameter. The final blind prediction for the standard dissociation free energy is given by     

 

Â)× L Â)é½ÌÌ» E Â)éâß E Â)ä                                                 (8) 

 

The Force Field (FF) parameters and topology of the host and guests molecules were prepared using the 

PrimaDORAC interface [17] based on the GAFF2[18] parameter set. The initial bound state was 

prepared using the Autodock Vina code[19]. The bound complexes and the ghost ligands were solvated 

in about 1600 OPC3[20] and 512   water molecules, respectively. A background neutralizing plasma 

was assumed within the PBC Ewald method (PME[21]). All simulations, HREM or nonequilibrium, 

were performed in the NPT ensemble in standard conditions using an isotropic Parrinello-Rahman 

/DQJUDQJLDQ>��@� DQG� D� VHULHV� RI� 1RVH¶� WKHUPRVWDWV>��@� IRU� SUHVVXUH� DQG� WHPSHUDWXUH� FRQWURO��

respectively.  All simulations have been performed using the hybrid OpenMP-MPI program ORAC[24] 

on the CRESCO6 cluster[9]. 

 

3 Results and Discussion 
In Table 1 we show the results obtained for the dissociation free energy for the eighteen host-guest pairs.  

The correlation coefficient and the Kendall rank coefficient for the guests with known dissociation free 

HQHUJ\�DUH�5 �����DQG�2 ������ UHVSHFWLYHO\�ZLWK�D�PHDQ� signed error of  -3.3 kcal/mol, indicating a 

systematic overestimate of the dissociation free energies. 
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Table 1: Blind predictions for the host-guest SAMPL9 set dissociation free energies.  Free energies are 

given in kcal/mol.êÕand êèare the standard deviation in kcal/mol of bound and unbound work 

GLVWULEXWLRQ��³7\SH´�UHIHUV�WR�WKH�HVWLPDWH�W\SH��-5��HT������*0n eq (7) with n normal components). 

Experimental dissociation free energies, Â)Øëãá have been taken from the Refs. in the square bracket. 

 

Host-guest Â)× Â)éâß E Â)ä êÕ êè Type Â)Øëãä 

G1-WP6 7.7Øsä{ -4.6 3.9 1.9 JR - 

G2-WP6 17.0Øräv -7.2 2.8 1.1 JR - 

G3-WP6 11.5Øräx -6.5 3.1 0.8 JR - 

G4-WP6 7.0Ørä{ -6.2 2.6 0.8 GM1 - 

G5-WP6 9.5Øräw -8.8 3.0 1.3 JR - 

G6-WP6 14.7Øsäu -6.3 3.1 0.9 GM1 - 

G7-WP6 12.2Øsäy -7.0 3.2 0.8 GM3 - 

G8-WP6 12.2Øsäx -3.3 3.9 1.6 GM3 - 

G9-WP6 12.5Øräx -5.6 3.3 1.0 JR - 

G10-WP6 13.5Øsäs -6.9 2.8 1.1 GM1 - 

G11-WP6 8.7Øräx -6.2 2.6 0.8 GM3 - 

G12-WP6 18.6Øsät -7.7 2.9 1.1 GM3 - 

G13-WP6 8.3Øräz -7.3 3.0 0.9 GM3 8.5 [5] 

G14-WP6 17.2Øräv -4.8 2.5 1.1 GM3 9.7 [6] 

G15-WP6 11.2Øsäx -4.8 2.8 0.9 GM3 8.4 [7] 

G16-WP6 14.5Øsäw -4.7 2.6 1.1 GM3 10.6 [7] 

G17-WP6 7.9Øräz -6.3 2.1 0.7 GM3 6.5 [8] 

G18-WP6 4.1Øsäu -3.7 2.2 0.9 GM3 < 1 [8] 

 

 

Such discrepancies might be due to systematic force field deficiencies in the ammonium/diammonium 

guests or in the host, or to missing contributions to the dissociation free energies due to species with 

protonation state differing from the fully anionic WP6.  Predicted WP6-Gn dissociation free energies 

using vDSSB are quite high and comparable to those observed for CB8 in past SAMPL challenges with 

similar cationic guests. Nonetheless, due to the smaller cavity of the host, WP6 affinities are expected 

to be sensibly smaller than that of the structurally related (but larger) CB8 host with similar cationic 

guests. We may thus infer that our blind prediction of the standard Gn-WP6 dissociation free energies 

can be affected by a systematic positive bias,  due to the presence of partially protonated WP6 species 

at pH=7.4.   SAMPL9 organizers are working to obtain pKa values of the WP6 carboxy groups via pH-

metric titration so it is possible this information may be available at some point, potentially before the 

challenge close. In that case, we may try to update our blind prediction by computing the dissociation 

free energies of the existing WP6 protonated species at the experimental pH using eq (2). 
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