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The prescribed mean curvature equation
in weakly regular domains
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Abstract. We show that the characterization of existence and uniqueness
up to vertical translations of solutions to the prescribed mean curvature
equation, originally proved by Giusti in the smooth case, holds true for
domains satisfying very mild regularity assumptions. Our results apply
in particular to the non-parametric solutions of the capillary problem for
perfectly wetting fluids in zero gravity. Among the essential tools used
in the proofs, we mention a generalized Gauss–Green theorem based on
the construction of the weak normal trace of a vector field with bounded
divergence, in the spirit of classical results due to Anzellotti, and a weak
Young’s law for (Λ, r0)-minimizers of the perimeter.
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1. Introduction

Let Ω be an open bounded set in R
n and let H : Ω → R be a Lipschitz

continuous function. A classical solution to the Prescribed Mean Curvature
equation is a function u : Ω → R of class C2 satisfying

div

(
∇u(x)√

1 + |∇u(x)|2

)
= H(x) ∀x ∈ Ω . (PMC)

The left-hand side of (PMC) corresponds to the mean curvature of the graph
of u at the point (x, u(x)). The existence and the properties of solutions to
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(PMC), possibly satisfying some given boundary conditions, have been the
object of extensive studies in the past, also due to the close connection between
(PMC) and capillarity. After the pioneering works by Young [57], Laplace [36],
and Gauss [28], it is nowadays a well-known fact that the mean curvature of a
capillary surface in a cylindrical container with cross-section Ω is determined
by the surface tension, by the wetting properties of the fluid with respect to the
container, and by the presence of external forces such as gravity. The modern
theory of capillarity has its roots in a series of fundamental papers by Finn
[25], Concus–Finn [13–15], Emmer [20,21], Gerhardt [29–31], Giaquinta [32],
Giusti [33,34], and many others (see [26] and the references therein). Other
contributions to the theory have been obtained in various directions, see for
instance Tam [54,55], Finn [27], Concus–Finn [16], Caffarelli and Friedman
[5], as well as more recent works by De Philippis and Maggi [19], Caffarelli
and Mellet [6] and Lancaster [35]. However the above list is far from being
complete.

A necessary condition on the pair (Ω,H) for the existence of a solution to
(PMC) can be easily found by integrating (PMC) on any relatively compact
set A ⊂ Ω with smooth boundary. Indeed, by applying the divergence theorem
we get ∣∣∣ ∫

A

H dx
∣∣∣ ≤

∫
∂A

|〈Tu, ν〉| dHn−1 ,

where ν is the exterior normal to ∂A and Hn−1 is the Hausdorff (n − 1)-
dimensional measure in R

n. Then using the fact that the vector field

Tu(x) :=
∇u(x)√

1 + |∇u(x)|2
has modulus less than 1 on Ω, we obtain for every such A the strict inequality∣∣∣ ∫

A

H dx
∣∣∣ < P (A), (1)

where P (A) denotes the perimeter of A (when ∂A is smooth, P (A) = Hn−1

(∂A); more generally, P (A) has to be understood in the sense of Definition
2.1).

Notice that whenever H is a non-negative constant on Ω one obtains the
necessary condition H < P (A)

|A| for all relatively compact subsets A ⊂ Ω with
positive volume. Hence, the existence of solutions to (PMC) is closely related
to the so-called Cheeger problem, which consists in minimizing the quotient
P (A)
|A| among all A ⊂⊂ Ω (see for instance the review papers [37] and [46], and

references therein).
In the fundamental paper [34], Giusti proved that the necessary condition

(1) is also sufficient for the existence of solutions to (PMC) in any bounded
connected open set Ω with Lipschitz boundary. More specifically, he showed
that if (1) holds together with the strict inequality∣∣∣∣

∫
Ω

H dx

∣∣∣∣ < P (Ω) (2)
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then one can find many variational solutions (see [32]) attaining any given
Dirichlet L1(∂Ω) boundary datum in a weak sense. On the other hand, a
much more subtle situation occurs when the equality∣∣∣∣

∫
Ω

H dx

∣∣∣∣ = P (Ω) (3)

holds, as it corresponds to the so-called extremal case. Whenever the pair
(Ω,H) is such that both (1) and (3) are satisfied, we will call the pair extremal.

Concerning the existence of solutions to (PMC) in the extremal case,
one can essentially consider a suitably translated sequence of variational (non-
extremal) solutions ui of (PMC), defined on subsets Ωi that converge to Ω
both in volume and in perimeter, as i → ∞. Then, one obtains a so-called
generalized solution u defined on Ω as the limit of ui (in the sense of the
L1-convergence of the subgraphs, see [45]). The extremal case is particularly
relevant because it corresponds to capillarity for a perfectly wetting fluid under
zero-gravity conditions. By definition of perfect wetting, the fluid-gas interface
meets the (smooth) boundary of the cylindrical container with a zero contact
angle; in other words one expects that any solution u in the extremal case
automatically satisfies the boundary condition of Neumann type

〈Tu, ν〉 = 1 on ∂Ω . (4)

At the same time, one also experimentally observes that the solution u is
unique up to additive constants. This is what Giusti showed to be a conse-
quence of a more general equivalence result (see Theorem 2.1 in [34]) that he
proved for the extremal case under the strong regularity assumption ∂Ω ∈ C2.
Later, Finn observed that the regularity requirements on ∂Ω can be reduced
to piece-wise Lipschitz (see [26, Chapter 6]) if one is interested in the existence
of solutions to (PMC) in the 2-dimensional case, and to “C1 up to a Hn−1-
negligible set” if uniqueness up to vertical translations has to be shown in the
extremal case. However the question about the validity of Giusti’s result under
weaker assumptions on ∂Ω is still not completely answered.

In this paper we prove Giusti’s characterization of existence and unique-
ness of solutions to (PMC) under very mild regularity hypotheses on Ω, see
Theorems 4.3, 4.7, and 5.1. In particular, our results are valid for domains
with inner cusps or with some porosity (see Example 5.5), which of course fall
outside of the Lipschitz class.

Specifically, we assume that Ω ⊂ R
n is an open, bounded set with finite

perimeter, satisfying the following properties. First, we require that Ω coincides
with its measure-theoretic interior (roughly speaking, we do not allow Ω to
have “measure-zero holes”). Then we assume the existence of k = k(Ω) > 0
such that

min{P (E; Ωc), P (Ω\E; Ωc)} ≤ k P (E; Ω) (5)

for all E ⊂ Ω. Finally, we require that

P (Ω) = Hn−1(∂Ω). (6)
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Whenever an open set Ω satisfies (5) and (6), we say that Ω is weakly regular.
We stress that weak regularity can be regarded as a minimal assumption in the
following sense. On one hand, if one assumes (6), then (5) is equivalent to the
existence of a continuous and surjective trace operator from BV (Ω) to L1(∂Ω),
by well-known results about traces of functions in BV (Ω) (see Theorem 2.6).
On the other hand, by Federer’s Structure Theorem (see Theorem 2.5), (6)
amounts to requiring that the set of points of ∂Ω that are of density 0 or 1
for Ω is Hn−1-negligible, which can be considered as a very mild regularity
assumption on ∂Ω. Moreover, in the extremal case one can show that (5) is
automatically satisfied by Ω, thus only (6) needs to be assumed (see [49]).

The proofs of the above-mentioned theorems require some facts and pre-
liminary results of independent interest.

One of the key tools that we shall systematically use in our proofs is
Theorem 2.8 about the interior approximation of an open set Ω with finite
perimeter satisfying (6), by means of sequences of smooth sets that converge
to Ω in measure and in perimeter. This result has been proved by Schmidt
[51], here we only add to the statement the useful observation that, being Ω
connected, one can find a sequence of connected smooth sets with the above-
mentioned property. Another, more technical tool is the recent characterization
of W 1,1

0 (Ω) as the space of functions in W 1,1(Ω) having zero trace at ∂Ω, due
to Swanson [53] (see Theorem 2.7).

In Sect. 3 we introduce some notions and prove some results, that will
be needed in the following sections. Under the assumptions (5) and (6), we
prove Theorem 3.2 which states a generalized Gauss–Green formula valid for
bounded continuous vector fields with bounded divergence and for BV func-
tions on Ω. We recall that very general forms of the Gauss–Green Theorem
have been already obtained by several authors, see for instance [18,22,23],
[4,56], [1,58], and [47,48]. We recall in particular the extensions of the diver-
gence theorem for bounded, divergence-measure vector fields on sets with finite
perimeter [7–10]. These last results rely on a notion of weak normal trace of
a bounded, divergence-measure vector field ξ on the reduced boundary of E,
where E ⊂⊂ Ω is a set of finite perimeter and Ω is the domain of the vector
field, see [11,17,42]. This notion of trace already appears in [1], in the special
case of E being an open bounded set with Lipschitz boundary. A crucial tool
used in [10] (see also [12]) is the approximation of E by smooth sets which
are “mostly” contained in the measure-theoretic interior of E with respect to
the measure μ = div ξ. Actually, this is the main reason why E needs to be
compactly contained in the domain of the vector field ξ. On the other hand,
if such a domain Ω has finite perimeter and P (Ω) = Hn−1(∂Ω) then one can
consider the vector field ξ̂ defined as ξ̂ = ξ on Ω and ξ̂ = 0 on R

n\Ω, so that
by relying on Theorem 2.8 it is possible to show that div ξ̂ is a finite measure
on R

n. Then by applying [10, Theorem 25.1] one might show the validity of
the divergence theorem for the field ξ on E = Ω, which in turn leads to the
generalized Gauss–Green formula∫

Ω

ϕ div ξ +
∫

Ω

∇ϕ · ξ =
∫

∂Ω

ϕ [ξ · ν] dHn−1 , (7)
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where ν is the exterior weak normal to ∂∗Ω, [ξ · ν] denotes the weak normal
trace of ξ on ∂∗Ω, and ϕ ∈ C∞

c (Rn). However, also in view of the results of
Sect. 5, in Sect. 3.1 we give a very direct proof of (7) when Ω ⊂ R

n is an open
bounded set satisfying (5) and (6). This will be accomplished by adapting
the construction proposed by Anzellotti in [1] (see also [3,50]). More precisely,
we will show that (7) holds for every bounded continuous vector field ξ with
divergence in L∞(Ω) and for any ϕ ∈ BV (Ω). We remark that the extra
assumptions on ξ that we are requiring reflect the properties of the vector
field Tu when u is a solution of (PMC) on Ω. We also stress that all bounded
and connected Lipschitz domains, as well as some domains with inner cusps
or with some controlled porosity (see for instance Example 5.5), are weakly
regular and therefore (7) holds on them.

Finally, in the proof of Theorem 5.1 we shall use a so-called weak Young’s
law for (Λ, r0)-minimizers of the perimeter, Theorem 3.5, that was originally
shown in [38, Proposition 2.5] in the special case of Cheeger sets.

Some final observations about the stability of the solution to (PMC) in
the extremal case are made. On one hand it is well-known in capillarity theory
that even small and smooth deformations of Ω typically produce discontinuous
changes in the solution of the capillary problem in Ω, and even the existence
of such a solution in the non-parametric setting may instantaneously drop
(see [26]). On the other hand, in Proposition 5.4 we give an answer to the
question whether or not it is possible to obtain some stability result for the
solution u = uΩ of (PMC) when the pair (Ω,H) is extremal. Then, by coupling
Proposition 5.4 with the construction described in Example 5.5, a sequence of
non-smooth perturbations of a 2-dimensional disk can be constructed, in such
a way that the corresponding sequence of solutions to the capillary problem for
perfectly wetting fluids in zero gravity converge (up to suitable translations,
and in the sense of L1

loc-convergence of the epigraphs) to the solution of the
problem in the disk.

2. Preliminaries

We first introduce some basic notations. We fix n ≥ 2 and denote by R
n

the Euclidean n-space. Let E ⊂ R
n, then we denote by χE the characteristic

function of E. For any x ∈ R
n and r > 0 we denote by Br(x) the Euclidean

open ball of center x and radius r. Given two sets E,F , we denote by EΔF =
(E\F )∪(F\E) their symmetric difference. In order to define rescalings of sets,
we conveniently introduce the notation Ex,r = r−1(E − x), where E ⊂ R

n,
x ∈ R

n, and r > 0. Let E ⊂ Ω ⊂ R
n with Ω open; we write E ⊂⊂ Ω whenever

the topological closure of E, E, is a compact subset of Ω. Given a Borel set E
we denote by |E| its n-dimensional Lebesgue measure. Whenever a measurable
function, or vector field, f is defined on R

n, we set ‖f‖∞ for the L∞-norm of
f on R

n.

Definition 2.1. (Perimeter) Let E be a Borel set in R
n. We define the perimeter

of E in an open set Ω ⊂ R
n as



 9 Page 6 of 29 G. P. Leonardi and G. Saracco NoDEA

P (E; Ω) := sup
{∫

Ω

χE(x) div g(x) dx : g ∈ C1
c (Ω; R

n) , ‖g‖∞ ≤ 1
}

.

We set P (E) = P (E; Rn). If P (E; Ω) < ∞ we say that E is a set of finite
perimeter in Ω. In this case (see [41]) one has that the perimeter of E coincides
with the total variation |DχE | of the vector–valued Radon measure DχE (the
distributional gradient of χE), which is defined for all Borel subsets of Ω thanks
to Riesz Theorem.

Definition 2.2. (Points of density α) Let E be a Borel set in R
n, x ∈ R

n. If
the limit

θ(E)(x) := lim
r→0+

|E ∩ Br(x)|
ωnrn

exists, it is called the density of E at x. We define the set of points of density
α ∈ [0, 1] of E as

E(α) := {x ∈ R
n : θ(E)(x) = α} .

We also define the essential boundary ∂eE := R
n\(E(0) ∪ E(1)).

Definition 2.3. (Approximate limit) Let f be a measurable function or vector
field defined on Ω. Given z ∈ Ω we write

ap-lim
x→z

f(x) = w

if for every α > 0 the set {x ∈ Ω : |f(x) − w| ≥ α} has density 0 at z.

Theorem 2.4. (De Giorgi Structure Theorem) Let E be a set of finite perimeter
and let ∂∗E be the reduced boundary of E defined as

∂∗E :=
{

x ∈ ∂eE : lim
r→0+

DχE(Br(x))
|DχE |(Br(x))

= −νE(x) ∈ S
n−1

}
.

Then,
(i) ∂∗E is countably Hn−1-rectifiable in the sense of Federer [24];
(ii) for all x ∈ ∂∗E, χEx,r

→ χHνE(x) in L1
loc(R

n) as r → 0+, where HνE(x)

denotes the half-space through 0 whose exterior normal is νE(x);
(iii) for any Borel set A, P (E;A) = Hn−1(A ∩ ∂∗E), thus in particular

P (E) = Hn−1(∂∗E);
(iv)

∫
E

div g =
∫

∂∗E
g · νE dHn−1 for any g ∈ C1

c (Rn; Rn).

Theorem 2.5. (Federer’s Structure Theorem) Let E be a set of finite perimeter.
Then, ∂∗E ⊂ E(1/2) ⊂ ∂eE and one has

Hn−1 (∂eE\∂∗E) = 0 .

In what follows, Ω will always denote a domain of R
n, i.e., an open

connected set coinciding with its measure-theoretic interior, that is, we assume
that any point x ∈ R

n, such that there exists a radius r > 0 with the property
|Br(x)\Ω| = 0, is necessarily contained in Ω.

The next result combines [43, Theorem 9.6.4] and [2, Theorem 10 (a)].

Theorem 2.6. Let Ω ⊂ R
n be a bounded domain with P (Ω) = Hn−1(∂Ω)

< +∞. Then the following are equivalent:
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(i) there exists k = k(Ω) such that for all E ⊂ Ω

min{P (E; Ωc), P (Ω\E; Ωc)} ≤ kP (E; Ω);

(ii) there exists a continuous trace operator from BV (Ω) to L1(∂Ω) with the
following property: for any ϕ ∈ L1(∂Ω) there exists Ψ ∈ W 1,1(Rn) such
that ϕ is the trace of Ψ on ∂Ω.

Another useful result is the characterization of W 1,1
0 (Ω) as the space of

functions in W 1,1(Ω) having zero trace at ∂Ω.

Theorem 2.7. ([53, Theorem 5.2]) Let Ω ⊂ R
n be an open set and let u ∈

W 1,1(Ω). Then, u ∈ W 1,1
0 (Ω) if and only if

lim
r→0

1
rn

∫
Br(x)∩Ω

|u(y)| dy = 0

for Hn−1-almost all x ∈ ∂Ω.

The following approximation theorem is essentially due to Schmidt [51]
and will play a crucial role in the paper.

Theorem 2.8. (Interior smooth approximation) Suppose that Ω is a bounded
open set in R

n such that P (Ω) = Hn−1(∂Ω) < +∞. Then, for every δ > 0
there exist an open set Ωδ with smooth boundary in R

n such that

Ωδ ⊂⊂ Ω, Ω\Ωδ ⊂ (Nδ(∂Ω) ∩ Nδ(∂Ωδ)), |Ω\Ωδ| < δ,

P (Ωδ) ≤ P (Ω) + δ, (8)

where Nδ(A) denotes the δ-tubular neighborhood of A ⊂ R
n. Moreover, Ωδ can

be chosen connected as soon as Ω is connected.

Proof. The existence of Ωδ satisfying (8) is proved in [51]. In order to show the
last part of the statement, we fix a compact set K ⊂ Ω such that |Ω\K| < δ,
then setting d = min{dist(x, ∂Ω) : x ∈ K} we take a finite covering of K by
balls of radius d/2 and let x1, . . . , xN denote their centers. By connectedness,
for any h, k ∈ {1, . . . , N} there exists a path Γhk ⊂ Ω connecting xh to xk, so
that the set

K̃ =
N⋃

h=1

Bd/2(xh) ∪
N⋃

h,k=1

Γhk

is contained in Ω, connected, compact, and such that |Ω\K̃| < δ. Let now
δ̃ = min(min{dist(x, ∂Ω) : x ∈ K̃}, δ) > 0, then by (8) with δ̃ replacing δ we
get an open set Ωδ̃ which necessarily has a connected component A containing
K̃, so that (8) and the last part of the statement are satisfied by setting
Ωδ = A. �

3. Some technical tools

We collect in this section some key notions and results that will be later needed.
Our first aim is to prove the Gauss–Green Theorem 3.2, on which the main
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results of Sect. 5 are based. For this we shall introduce the weak normal trace
of a vector field ξ on ∂Ω, denoted as [ξ · ν], as a suitable extension of the usual
scalar product between the trace of ξ and the normal to ∂Ω, whenever the
former exists. It is indeed quite easy to prove that whenever the approximate
limit of the vector field ξ(x) exists as x → z ∈ ∂∗Ω, then [ξ · ν](z) equals
the scalar product between that limit and the outer normal to ∂∗Ω at z, see
Proposition 3.3.

Our second tool is represented by a weak Young’s law for perimeter quasi-
minimizers, Theorem 3.5, that will be needed in Sect. 5 for the proof of the
implication (U) ⇒ (E) in Theorem 5.1. A slightly less general form of this
lemma has been proved in [38], in the context of Cheeger sets. Roughly speak-
ing, it says that the inner boundary of any (Λ, r0)-minimizer of the perimeter
in a domain Ω must meet the reduced boundary of Ω in a tangential way.

3.1. The weak normal trace

Let Ω ⊂ R
n be open, bounded, and weakly regular, i.e., satisfying (5) and (6).

We denote by X(Ω) the collection of vector fields ξ ∈ L∞(Ω; Rn) ∩ C0(Ω; Rn)
such that div ξ ∈ L∞(Ω). Following Anzellotti [1], for every u ∈ BV (Ω) we
define the pairing

〈ξ, u〉∂Ω =
∫

Ω

u div ξ +
∫

Ω

ξ · Du . (9)

The map 〈·, ·〉∂Ω : X(Ω) × BV (Ω) → R is bilinear. If u, v ∈ W 1,1(Ω) have
the same trace on ∂Ω then by Theorem 2.7 there exists a sequence {gj} of
functions in C∞

c (Ω) such that gj → u − v weakly in BV (Ω), so that we have

〈ξ, u − v〉∂Ω =
∫

Ω

(u − v) div ξ +
∫

Ω

ξ · D(u − v)

= lim
j

∫
Ω

gj div ξ +
∫

Ω

ξ · ∇gj = 0 .

This shows that the pairing defined in (9) only depends on the trace of u on
∂Ω. Then by Anzellotti–Giaquinta’s approximation in BV (Ω) and by Theorem
2.6 we infer that 〈ξ, u〉∂Ω = 〈ξ, v〉∂Ω whenever u, v ∈ BV (Ω) have the same
trace on ∂Ω.

At this point we can show the continuity of the pairing (9) in the topology
of L∞(Ω; Rn) × L1(∂Ω). The following, key lemma extends [1, Lemma 5.5].

Lemma 3.1. Let Ω be weakly regular. Then for every u ∈ L1(∂Ω) and ε > 0
there exists wε ∈ BV (Ω) ∩ C∞(Ω) such that

(i) the trace of wε on ∂Ω equals u Hn−1-almost everywhere on ∂Ω,
(ii)

∫
Ω

|∇wε| ≤ ∫
∂Ω

|u| + ε,
(iii) wε(x) = 0 whenever dist(x, ∂Ω) > ε,
(iv)

∫
Ω

|wε| ≤ ε,
(v) ‖wε‖L∞(Ω) ≤ ‖u‖L∞(∂Ω).

Proof. Let us fix ε > 0. By Theorem 2.6 (ii) there exists Ψ ∈ W 1,1(Rn) such
that its trace on ∂Ω coincides with u. Up to an application of Meyer–Serrin’s
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approximation theorem, we can additionally assume that Ψ ∈ C∞(Ω). More-
over we fix a sequence {Ψj}j of smooth functions such that ‖Ψ−Ψj‖W 1,1(Rn) →
0 as j → ∞. Again by Theorem 2.6 (ii) we have that the trace operator from
BV (Ω) to L1(∂Ω) is continuous, hence∫

∂Ω

|Ψj | dHn−1 →
∫

∂Ω

|Ψ| dHn−1 =
∫

∂Ω

|u| dHn−1 as j → ∞.

Given δ, η > 0 we define χδ,η(x) = χΩδ
∗ ρη(x), where ρη is a standard sym-

metric mollifier with support in Bη(0), while Ωδ ⊂⊂ Ω is obtained in virtue of
Theorem 2.8, so that the Hausdorff distance between ∂Ωδ and ∂Ω is smaller
than δ and |P (Ωδ) − P (Ω)| ≤ δ. We note that up to choosing δ and η small
enough we get spt(χδ,η) ⊂⊂ Ω, χδ,η = 1 on the set {x ∈ Ω : dist(x, ∂Ω) > ε},

and
∣∣∣ ∫

Ω
|∇χδ,η| − P (Ωδ)

∣∣∣ ≤ δ. Then we define wδ,η(x) = Ψ(x)(1 − χδ,η(x))

and, for any fixed vector field g ∈ C1(Rn; Rn) with ‖g‖∞ ≤ 1 and compact
support in Ω, up to choosing δ and η small enough as well as j sufficiently
large we obtain∫

Ω

∇wδ,η · g dx

=
∫

Ω

(1 − χδ,η)∇Ψ · g dx −
∫

Ω

Ψ∇χδ,η · g dx

≤
∫

Ω

(1 − χδ,η) |∇Ψ| −
∫

Ω

Ψj ∇χδ,η · g dx −
∫

Ω

(Ψ − Ψj)∇χδ,η · g dx

≤ ε

4
+

∫
Ω

|Ψj | |∇χδ,η| dx +
∫

Ω

χδ,η

(
∇(Ψ − Ψj) · g + (Ψ − Ψj) div g

)
dx

≤ ε

4
+

∫
Ω

|Ψj | |∇χδ,η| dx + (1 + ‖div g‖∞)
∫

Ω

(
|D(Ψ − Ψj)| + |Ψ − Ψj |

)
dx

≤
∫

Ω

|Ψj | |∇χδ,η| dx +
ε

2
≤

∫
|Ψj | d|DχΩ| +

3
4
ε ≤

∫
∂Ω

|u| dHn−1 + ε .

We finally set wε = wδ,η and, by taking the supremum over g, we find∫
Ω

|∇wε| dx ≤
∫

∂Ω

|u| dHn−1 + ε ,

which proves (ii). Finally, (i), (iii) and (v) are immediate from the construction,
while (iv) is easily shown to hold up to possibly taking smaller δ and η. �

Now, given ε > 0 and ϕ ∈ BV (Ω) ∩ L∞(Ω), taking wε as in Lemma 3.1
(with u = ϕ on ∂Ω), and setting Ωε = {x ∈ Ω : dist(x, ∂Ω) ≥ ε} we obtain

|〈ξ, ϕ〉∂Ω| = |〈ξ, wε〉∂Ω|

≤ ‖ϕ‖L∞(Ω)

∫
Ω\Ωε

|div ξ| + ‖ξ‖L∞(Ω)

∫
Ω

|∇wε|

≤ ‖ϕ‖L∞(Ω)

∫
Ω\Ωε

|div ξ| + ‖ξ‖L∞(Ω)

(∫
∂Ω

|ϕ| + ε

)
,
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which by the arbitrary choice of ε leads to

|〈ξ, ϕ〉∂Ω| ≤ ‖ξ‖L∞(Ω)

∫
∂Ω

|ϕ| . (10)

One can check by a truncation argument that (10) holds for each ϕ ∈ BV (Ω).
An immediate consequence of (10) is the fact that the linear functional Nξ :
L1(∂Ω) → R defined as Nξ(u) = 〈ξ, u〉∂Ω is continuous on L1(∂Ω), thus it
can be represented by a function in L∞(∂Ω), hereafter denoted by [ξ · ν]. This
function is the so-called weak normal trace of the vector field ξ ∈ X(Ω) on ∂Ω.
Another immediate consequence of (10) is the following L∞-estimate of the
weak normal trace:

‖[ξ · ν]‖L∞(∂Ω) ≤ ‖ξ‖L∞(Ω) . (11)

Summing up, we have proved that (9) can be rewritten in the form of the
generalized Gauss–Green formula stated in the next theorem.

Theorem 3.2. Let Ω ⊂ R
n be open, bounded and weakly regular. Let ξ ∈ X(Ω)

and ϕ ∈ BV (Ω), then∫
Ω

ϕ div ξ +
∫

Ω

ξ · Dϕ =
∫

∂Ω

ϕ [ξ · ν] dHn−1 . (12)

The next proposition shows that the weak normal trace is a proper exten-
sion of the normal component of the usual trace of ξ on ∂Ω, whenever such a
trace exists in measure-theoretic sense.

Proposition 3.3. Let Ω ⊂ R
n be open, bounded and weakly regular. Let ξ ∈

X(Ω) and let z ∈ ∂∗Ω be a Lebesgue point for the weak normal trace [ξ · ν].
Assume

ap-lim
x→z

ξ(x) = w , (13)

then

[ξ · ν](z) = w · ν(z) . (14)

Proof. We can assume that z = 0 up to a translation. We fix a sequence ri ↓ 0
as i → ∞. Given any function (or vector field) f defined in Ω, we set

Ωi = r−1
i Ω, fi(y) = f(riy) .

We note that Dfi(y) = riDf(riy) in the sense of distributions. By (13) we
infer that for all α > 0 the set

Ni(α) = r−1
i N(α) = {y ∈ Ωi : |ξi(y) − w| ≥ α}

satisfies

lim
i→∞

|Ni(α) ∩ B1| = 0 . (15)

On the other hand, the fact that z = 0 is by assumption a Lebesgue point for
[ξ · ν] implies that

[ξ · ν](0) = lim
i→∞

μ−1
i

∫
∂Ωi∩B1

[ξ · ν]i(y) dHn−1(y) , (16)
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where μi = Hn−1(∂Ωi ∩ B1). Now we take δ ∈ (0, 1) and set α = δ2 and

ϕ(y) = max(0,min(1, (1 − |y|)/δ)) .

By Theorem 2.4(ii), setting H = Hν(0) for brevity, we obtain∣∣∣∣
∫

Ωi∩B1

Dϕ(x) dx −
∫

H∩B1

Dϕ(x) dx

∣∣∣∣ ≤ δ−1|(ΩiΔH) ∩ B1|
= mi(δ) → 0 as i → ∞ . (17)

Moreover by Theorem 3.2 we get for a suitable constant C > 0∣∣∣∣
∫

H∩B1

Dϕ(x) dx − ωn−1ν(0)
∣∣∣∣ =

∣∣∣∣
∫

∂H∩B1

ϕ(x) dHn−1(x) − ωn−1

∣∣∣∣
= ωn−1

∫ 1

0

[1 − (1 − δt)n−1] dt

≤ Cδ . (18)

Then by (16), (17), (18), and Theorem 2.4 (ii), we find

ωn−1

∣∣∣[ξ · ν](0) − w · ν(0)
∣∣∣

≤
∣∣∣∣ lim
i→∞

∫
∂Ωi∩B1

[ξ · ν]i dHn−1 − w ·
∫

H∩B1

Dϕ(x) dx

∣∣∣∣ + Cδ

≤ lim sup
i→∞

∣∣∣∣
∫

Ωi∩B1

ϕ div ξi

∣∣∣∣ +
∣∣∣∣
∫

Ωi∩B1

(ξi − w) · Dϕ

∣∣∣∣
+ mi(δ) + Cδ

= lim sup
i→∞

(
Ai + Bi + mi(δ)

)
+ Cδ . (19)

Then we notice that Ai + mi(δ) → 0 as i → ∞, while

Bi =

∣∣∣∣∣
∫

(Ωi∩B1)\Ni(α)

(ξi − w) · Dϕ +
∫

Ni(α)∩B1

(ξi − w) · Dϕ

∣∣∣∣∣
≤ ωnα

δ
+

2‖ξ‖∞
δ

|Ni(α) ∩ B1|

≤ ωnδ +
2‖ξ‖∞

δ
|Ni(α) ∩ B1| .

Therefore by passing to the limit as i → ∞ in (19) and using (15) we finally
get

ωn−1

∣∣∣[ξ · ν](0) − w · ν(0)
∣∣∣ ≤ (ωn + C)δ ,

which implies (14) at once by the arbitrary choice of δ ∈ (0, 1). �
In general, the weak normal trace [ξ · ν] of a vector field ξ ∈ X(Ω) at

x ∈ ∂Ω does not coincide to any pointwise, almost-everywhere, or measure-
theoretic limit of the scalar product ξ(y) ·ν(x), as y → x. However, one should
expect some weak-type convergence of the normal component of ξ to the value
of [ξ · ν] at any Lebesgue point x0 ∈ ∂∗Ω. More precisely, let Ωh be a sequence
of relatively compact, open subsets of Ω with smooth boundary, that converge



 9 Page 12 of 29 G. P. Leonardi and G. Saracco NoDEA

to Ω both in perimeter and volume (see Theorem 2.8). We can consider the
corresponding sequence of Radon measures μh = 〈ξ, νh〉Hn−1�∂Ωh. By Theo-
rem 3.2 one easily checks that μh weakly-∗ converges to μ = [ξ · ν]Hn−1�∂∗Ω
as h → ∞.

By a similar application of Theorem 3.2 (simply take ϕ = χBr(x0)) one
can more explicitly characterize the weak normal trace at Hn−1-almost every
point x0 ∈ ∂∗Ω as the following limit of spherical averages, as pointed out for
instance in [10]:

[ξ · ν](x0) = lim
r→0

1
ωn−1rn−1

∫
∂Br(x0)∩Ω

ξ(x) · x − x0

|x − x0| dHn−1(x) .

Nevertheless, such a characterization of the weak normal trace is not fully
satisfactory, as one would expect to obtain coincidence with the classical trace
in some special cases (see in particular the characterization of extremality
discussed in Section 5). A more specific study of weak normal traces will appear
in [39].

3.2. The weak Young’s law for (Λ, r0)-minimizers

Let us start recalling the definition of (Λ, r0)-minimizer of the perimeter.

Definition 3.4. Let Ω ⊂ R
n be an open set of locally finite perimeter, and let

E be a measurable subset of Ω. We say that E is a (Λ, r0)-perimeter minimizer
in Ω if there exist two constants Λ ∈ [0,+∞) and r0 > 0 such that for every
x ∈ R

n, every Borel set F such that FΔE is compactly contained in Br(x)∩Ω,
and every r < r0, one has

P (E;Br(x)) ≤ P (F ;Br(x)) + Λ|FΔE| .
Theorem 3.5. (Weak Young’s Law) Let Ω be an open set with locally finite
perimeter and let E be a (Λ, r0)-minimizer in Ω. Then ∂E ∩ Ω meets ∂∗Ω in
a tangential way, i.e., for any x ∈ ∂∗Ω ∩ (∂E ∩ Ω) one has that x ∈ ∂∗E and
νE(x) = νΩ(x).

Proof. Let us fix a point x ∈ ∂∗Ω∩∂E and let x+H be the half space obtained
by blowing up Ω around x. We divide the proof in three steps. In the first one
we prove that E and Ω have the same tangential space at x, while in the third
one we prove that x is in ∂∗E and that the outward normal is equal to the
one outward Ω. Step 2 provides a tool to prove Step 3.
Step 1. Let us prove that E has the same tangent space x + H at x. In order
to do so, we need to prove perimeter and volume density estimates for E ⊂ Ω
at x. Fix m(r) := |E ∩ Br(x)| so that one has P (E; ∂Br(x)) = 0, m′(r) =
P (E ∩Br(x), ∂Br(x)) and m(r) > 0 for almost every r > 0. Being E a (Λ, r0)-
minimizer, for any r < r0 and any competitor F , such that FΔE ⊂⊂ Br(x)∩Ω,
one obtains

P (E;Br(x)) ≤ P (F ;Br(x)) + Λ|FΔE|.
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Fix two radii, r2 < r1 < r0 and consider as competitor in Br1(x) ∩ Ω the set
F := E\Br2 . Therefore, exploiting the Λ-minimality one has

P (E;Br1(x)) ≤ P (F ;Br1(x)) + Λ|EΔF | ≤ P (E;Br1(x)\Br2(x))
+m′(r2) + Λm(r2).

Thus

P (E;Br2(x)) = P (E;Br1(x)) − P (E;Br1(x)\Br2(x)) ≤ Λm(r2) + m′(r2).
(20)

Due to the latter and to the isoperimetric inequality, it follows

c1m(r2)
n−1

n = c1|E ∩ Br2(x)|n−1
n ≤ P (E ∩ Br2(x))

= P (E;Br2(x)) + P (E ∩ Br2(x); ∂Br2(x)) ≤ Λm(r2) + 2m′(r2).
(21)

Hence for r2 small enough and for some uniform constant c2 we have

m′(r2)

m(r2)
n−1

n

≥ c2.

By integrating this inequality on (ρ/2, ρ) we obtain for ρ small enough the
volume density estimate

m(ρ) ≥ c3ρ
n ,

where c3 is a uniform constant.
Regarding the perimeter, directly from (20) one can infer that P (E;Br2) ≤

Λωnrn
2 + m′(r2), which, for r2 small enough implies

P (E;Br2) ≤ c4r
n−1
2 ,

which then yields the perimeter density estimate.
Now blowing up E at x we find a limit set E∞ contained in the half-space

x + H with x ∈ ∂E∞. It can be shown that E∞ is not empty and minimizes
the perimeter without volume constraint with respect to any compact variation
contained in x+H. By convexity of H and by a maximum principle argument
[52] one infers that E admits x + H as unique blow up at the point x.
Step 2. Let us prove that

lim
r→0

P (E;Br(x))
rn−1

= ωn−1 (22)

holds. Let Er be r−1(E − x). Since the blow up of E at x is the half space
x + H one has the L1

loc-convergence χEr
→ χH as r goes to 0. By the lower

semi-continuity of the perimeter we have

lim inf
r→0

P (E;Br(x))
rn−1

= lim inf
r→0

P (Er;B1(0)) ≥ P (H;B1(0)) ≥ ωn−1,

therefore to prove (22) it is enough to show that

lim sup
r→0

P (Er;B1(0)) ≤ ωn−1. (23)
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Argue by contradiction and suppose there exists a sequence of radii ri going
to 0 such that

P (Eri
;B1(0)) ≥ ωn−1 + ε. (24)

Recall that x ∈ ∂∗Ω, therefore for ri small enough one has

P (Ωri
;Bs(0)) ≤ sn−1ωn−1 + ε/3, for all 1 < s < 2, (25)

where Ωri
is defined in the same manner of Eri

. Due to the L1-convergence in
B2(0) of χEri

to χH and by coarea formula one can find a suitable

t ∈
(

1,

(
ωn−1 + ε/2
ωn−1 + ε/3

) 1
n−1

)

such that

P (Ωi; ∂Bt(0)) = P (Ei; ∂Bt(0)) = 0 (26)

Hn−1(EiΔΩi ∩ ∂Bt(0)) <
ε

4
(27)

hold. Consider now the sets Fi := (E ∪ Btri
(x)) ∩ Ω, for which, due to the

previous, one has

P (Fi, Br0(x)) = P (E; (Ω ∩ Br0(x))\Btri
(x)) + P (Ω;Btri

(x))

+ rn−1
i Hn−1(EiΔΩi ∩ ∂Bt(0)).

For ri small enough that tri < r0, the set Fi is a competitor to E in Br0 ,
therefore

rn−1(ωn−1 + ε) ≤ P (E; Bri(x)) ≤ P (E; Br0(x)) − P (E; (Ω ∩ Br0(x))\Btri(x))

≤ P (F ; Br0(x)) − P (E; (Ω ∩ Br0(x))\Btri(x)) + Λ|FΔE|
≤ P (F ; Br0(x)) − P (E; (Ω ∩ Br0(x))\Btri(x)) + Λ|E ∩ Btri(x)|
≤ P (Ω; Btri(x)) + rn−1

i

ε

4
+ Λωn(tri)

n

≤ (tri)
n−1(ωn−1 + ε/3) + rn−1

i

ε

4
+ Λωn(tri)

n

< rn−1
i (ωn−1 + ε/2) + rn−1

i

ε

2
≤ rn−1(ωn−1 + ε), (28)

which leads to a contradiction.
Step 3. Owing to (22), in order to show that x ∈ ∂∗E and that νE(x) = νΩ(x)
it is enough to prove that

lim
r→0

DχE(Br(x)) · v

ωn−1rn−1
= 1 , (29)

where we have set v = −νΩ(x). In virtue of Theorem 2.4 (iv), for almost every
r > 0 one has

DχE(Br(x)) · v =
∫

E∩∂Br(x)

v · N dHn−1 =
∫

H∩∂Br(0)

v · N dHn−1 + A(x, r)

= ωn−1r
n−1 + A(x, r) , (30)
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where N is the outward normal to ∂Br(x) and

|A(x, r)| =

∣∣∣∣∣v ·
∫

∂Br(x)

(χE(y) − χx+H(y))N(y) dHn−1(y)

∣∣∣∣∣
≤

∫
∂Br(x)

|χE(y) − χx+H(y)| dHn−1(y) .

Now for any fixed δ > 0, define the set Σ(x, δ) ⊆ (0,+∞) of radii r > 0 such
that A(x, r) > δrn−1. Hence, by the L1

loc-convergence of r−1(E − x) to the
half-space H we infer that

lim
ρ→0+

H1(Σ(x, δ) ∩ (0, ρ))
ρ

= 0 .

Therefore, for any decreasing infinitesimal sequence of radii {ri}i we can find
another sequence {ρi}i such that ρi /∈ Σ(x, δ) for all i and ρi = ri + o(ri) as
i → ∞. Suppose by contradiction that (29) does not hold. Then, there exist
α > 0 and a decreasing infinitesimal sequence {ri}i such that∣∣∣∣DχE(Bri

(x)) · v

ωn−1r
n−1
i

∣∣∣∣ ≥ α , (31)

for all i ∈ N. By suitably choosing δ as ωn−1α/2 and considering the sequence
ρi defined above, one gets in (30) with the substitution r = ρi∣∣DχE

(Bρi
(x)) · v − ωn−1ρ

n−1
i

∣∣ = |A(x, ρi)| ≤ α

2
ωn−1ρ

n−1
i .

On the other hand, by (22), we also have

|DχE
(Bρi

(x)) − DχE
(Bri

(x))| ≤ P (E;Bρi
(x)ΔBri

(x))

≤ ωn−1|ρn−1
i − rn−1

i | + o(rn−1
i ) = o(rn−1

i )

as i → ∞. Combining these two latter inequalities yields to∣∣DχE
(Bri

(x)) · v − ωn−1r
n−1
i

∣∣ ≤ α

2
ωn−1ρ

n−1
i + o(rn−1

i )

=
α

2
ωn−1r

n−1
i + o(rn−1

i ) ,

which contradicts (31) for i large enough. �

4. Existence theorems

This section is devoted to the proof of existence of solutions to the prescribed
mean curvature equation (PMC), that we recall here:

div Tu(x) = H(x), x ∈ Ω .

In what follows we show that the weak regularity assumption, i.e. the
validity of (5) and (6), coupled with the necessary condition (1) is enough to
ensure existence of solutions to (PMC).
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We will follow the argument of [32,34], which is based on the minimization
of the functional

J [u] =
∫

Ω

√
1 + |∇u|2 dx +

∫
Ω

Hu dx +
∫

∂Ω

|u − ϕ| dHn−1, (32)

defined on BV (Ω), for a given ϕ ∈ L1(∂Ω). Note that the Euler–Lagrange
equation of J , obtained by perturbations with compact support in Ω, is pre-
cisely equation (PMC). By Theorem 2.6, the last term in (32) is well-defined.

In the existence proof we will have first to discuss the easier non-extremal
case, in which the necessary condition (1) holds for the domain Ω as well, and
then the more involved extremal case, that is when (3) is satisfied.

First we need some preliminary results. The first one shows how to extend
the necessary condition (1) to all measurable A ⊂ Ω such that 0 < |A| < |Ω|.
Proposition 4.1. Let Ω ⊂ R

n be a domain satisfying condition (6). Assume
that the necessary condition (1) holds for every A ⊂⊂ Ω, then it also holds for
every A ⊂ Ω such that 0 < |A| < |Ω|.
Proof. Let us fix a measurable set A ⊂ Ω with 0 < |A| < |Ω| and finite
perimeter. By Theorem 2.8 there exists a sequence {Ωj}j∈N of relatively com-
pact, smooth open subsets of Ω, such that |Ω\Ωj | → 0 and P (Ωj) → P (Ω) as
j → ∞. Now take Aj = A ∩ Ωj and notice that Aj ⊂⊂ Ω, P (Aj) < +∞, and
Aj → A in L1 as j → ∞. Since

P (Aj) + P (A ∪ Ωj) ≤ P (A) + P (Ωj),

and owing to the fact that A ∪ Ωj → Ω in L1 as j → ∞, we deduce that

P (A) ≤ lim inf
j

P (Aj) ≤ lim sup
j

P (Aj) ≤ lim sup
j

(
P (A) + P (Ωj) − P (A ∪ Ωj)

)
= P (A) + P (Ω) − lim inf

j
P (A ∪ Ωj) ≤ P (A) + P (Ω) − P (Ω) = P (A),

which proves that

lim
j

P (Aj) = P (A). (33)

Now we observe that P (A; Ω) > 0, which follows from the connectedness of
Ω coupled with the fact that 0 < |A| < |Ω|. Therefore owing to (8) we can
assume that P (Aj ; Ωj0) ≥ c > 0 for a suitably large j0 and for all j ≥ j0,
which means that∣∣∣∣∣

∫
Aj

H dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

∂∗Aj

〈Tu, ν〉 dHn−1

∣∣∣∣∣ ≤ P (Aj ; Rn\Ωj0)

+
∫

∂∗Aj∩Ωj0

|〈Tu, ν〉| dHn−1

≤ P (Aj ; Rn\Ωj0) + αP (Aj ; Ωj0) = P (Aj) − (1 − α)c,

where α < 1 is the supremum of |〈Tu, ν〉| on Ωj0 . Since |Aj | → |A| as j → ∞,
by the necessary condition written for Aj , and passing to the limit as j → ∞,
we get by (33)
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∣∣∣∣
∫

A

H dx

∣∣∣∣ ≤ P (A) − (1 − α)c < P (A), (34)

whence the conclusion follows. �

The next lemma corresponds to [34, Lemma 1.1], thus we omit its proof.

Lemma 4.2. Let Ω be a domain such that
∣∣∫

A
H dx

∣∣ < P (A) holds for all A ⊂ Ω
with the property that |A| > 0. Then there exists ε0 > 0 such that the stronger
inequality ∣∣∣∣

∫
A

H dx

∣∣∣∣ ≤ (1 − ε0)P (A)

holds for all such A.

Theorem 4.3. (Existence, non-extremal case) Let Ω be a weakly regular domain.
If the necessary condition (1) holds also for Ω, that is, we have the non-
extremal condition (2), that is∣∣∣∣

∫
Ω

H dx

∣∣∣∣ < P (Ω),

then the functional J defined in (32) is minimized in BV (Ω).

Proof. Fix a ball B containing Ω and extend the function H to 0 in B\Ω. Fix
a function Φ ∈ W 1,1

0 (B) such that Φ = ϕ on ∂Ω (this can be done according
to Theorem 2.6). Then minimizing J on BV (Ω) is equivalent to minimizing
J̃ defined as

J̃ : u �→
∫

B

√
1 + |∇u|2 dx +

∫
B

Hu dx,

in K = {u ∈ BV (B)|u = Φ in B\Ω}, which is a closed subset of BV (B).
Owing to Proposition 4.1 and by the assumption on Ω we can apply Lemma
4.2 and get the lower bound∫

Ω

Hu dx ≥ −(1 − ε0)
∫

B

|Du| − c

∫
∂Ω

|ϕ| dHn−1

for some ε0 > 0, whence

J̃ [u] ≥ ε0

∫
B

|Du| dx − c

∫
∂Ω

|ϕ| dHn−1. (35)

Exploiting Poincaré’s inequality on the ball B one finally shows the coercivity
of J̃ in L1(Ω). Since it is also lower semi-continuous within respect to the
L1-norm we infer the existence of a minimizer of J̃ in K, hence of a minimizer
of J in BV (Ω). �

In order to prove the existence of minimizers in the extremal case (3),
following [45] we introduce the notion of generalized solution of (PMC). For
technical reasons, we consider the epigraph of u instead of its subgraph, there-
fore the definition is slighty offset from the one in [45] (but of course equivalent
up to changing the minus sign in (36)).
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Definition 4.4. A function u : Ω → [−∞,+∞] is said to be a generalized
solution to (PMC) if the epigraph of u

U = {(x, y) ∈ Ω × R : y > u(x)},

minimizes the functional

P (U) −
∫

U

H dx dy, (36)

locally in Ω × R.

It is clear that any classical solution to (PMC) is also a generalized solu-
tion. Moreover, any generalized solution of (PMC) can be shown to satisfy
some key properties, that we collect in the following proposition (see [34] and
[44,45] for the proof).

Proposition 4.5. Let u be a generalized solution of (PMC) and define N± =
{x ∈ Ω : u(x) = ±∞}. Then the following properties hold.

(i) If x ∈ N± then |N± ∩ Br(x)| > 0 for all r > 0.
(ii) The set N± minimizes the functional

E �→ P (E) ±
∫

E

H dx

locally in Ω.
(iii) The function u is smooth on Ω\(N+ ∪ N−).
(iv) Given a sequence {uk} of generalized solutions of (PMC), then up to sub-

sequences the epigraphs Uk of uk converge to an epigraph U of a function
u locally in L1(Ω × R), moreover u is a generalized solution of (PMC).

(v) If u is locally bounded, then u is a classical solution of (PMC).

The next lemma is a straightforward adaptation of [34, Lemma 1.2]. The
proof is the same up to choosing a sequence {Ωj}j as provided by Theorem
2.8 with ε = 1/j.

Lemma 4.6. Let Ω and H(x) be such that (1), (6) and (3) hold. Let E ⊂ Ω be
a set of finite perimeter minimizing the functional

P (E) −
∫

E

H dx

locally in Ω. Then either E = ∅ or E = Ω, up to null sets.

We now come to the existence of solutions of (PMC) in the extremal
case.

Theorem 4.7. (Existence, extremal case) Let Ω be a weakly regular domain.
Assume that (1) is satisfied and that the extremal condition (3) holds. Then
there exists a solution u of (PMC).

Proof. By Theorem 2.8 we find a sequence of smooth, connected sets Ωj ⊂⊂ Ω,
such that |Ω\Ωj | → 0 and P (Ωj) → P (Ω) as j → +∞. Since (1) holds for any
A ⊂ Ωj (and in particular for A = Ωj), in virtue of Theorem 4.3 (existence in
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the non-extremal case) we find a minimizer uj ∈ BV (Ωj) of J restricted to
BV (Ωj), as every Ωj satisfies (5). Setting

tj = inf
{

t : |{x ∈ Ωj : uj(x) ≥ t}| ≤ |Ωj |/2
}

we obtain

min(|{x ∈ Ωj : uj(x) ≥ tj}|, |{x ∈ Ωj : uj(x) ≤ tj}|) ≥ |Ωj |/2 ≥ |Ω|/4

for all j large enough. Therefore, we can consider the sequence of vertically
translated functions {uj(x) − tj}j defined for x ∈ Ωj , and relabel it as {uj}j ,
so that

min (|{x ∈ Ωj : uj(x) ≥ 0}|, |{x ∈ Ωj : uj(x) ≤ 0}|) ≥ |Ω|/4 (37)

for all j large enough. Then, by applying Proposition 4.5 (iv) on Ωj0 for any
fixed j0 ∈ N, and by a diagonal argument, we infer that uj locally converges
up to subsequences to a generalized solution u as j → ∞, in the sense that the
epigraph Uj locally converges to the epigraph of u in L1

loc(Ω×R) as j → ∞. Let
us set N± = {x ∈ Ω : u(x) = ±∞} as in Proposition 4.5. We claim that N±
are both empty, which in turn implies by Proposition 4.5 (v) that u is a classical
solution of (PMC). Indeed by Proposition 4.5 (ii) the set N− minimizes the
functional P (E) − ∫

E
H dx defined for E ⊂ Ω, thus by Lemma 4.6 we have

either N− = ∅ or N− = Ω. Similarly, the set Ω\N+ minimizes P (E)− ∫
E

H dx

(this follows from the fact that N+ minimizes P (E) +
∫

E
H dx), hence either

N+ = Ω or N+ = ∅. By (37) we conclude that N± = ∅, which proves our
claim. �

5. Characterization of extremality

We have seen in the previous section that, given a domain Ω and a prescribed
mean curvature function H, the condition (1) is necessary and sufficient for
the existence of solutions to (PMC), however the proof of this fact is different
depending on the validity or not of the extremality condition (3) (compare
Theorems 4.3 and 4.7). While in the non-extremal case the existence of solu-
tions is genuinely variational, in the extremal case one recovers a solution as a
limit of variational solutions defined on subdomains. Since extremality arises
in physical models of capillarity for perfectly wetting fluids, the uniqueness and
the stability of solutions with respect to suitable perturbations of the domain
are of special interest in this case.

In [33] Giusti showed that, assuming C2 regularity of ∂Ω and (1), the
extremality condition (3) is equivalent to a series of facts, and in particular to
the uniqueness of the solution of (PMC) up to vertical translations.

Here we obtain essentially the same result only assuming that Ω is weakly
regular. Before stating our main result, we present a list of properties using
the same labels as those appearing in [34].
(E) (Extremality) The pair (Ω,H) satisfies (3), i.e.,

∣∣∫
Ω

H dx
∣∣ = P (Ω).

(U) (Uniqueness) The solution of (PMC) is unique up to vertical translations.
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(M) (Maximality) Ω is maximal, i.e. no solution of (PMC) can exist in any
domain strictly containing Ω.

(V) (weak Verticality) There exists a solution u of (PMC) which is weakly
vertical at ∂Ω, i.e.

[Tu · ν] = 1 Hn−1-a.e. on ∂Ω ,

where [Tu · ν] is the weak normal trace of Tu on ∂Ω.
(V’) (integral Verticality) There exists a solution u of (PMC) and a sequence

{Ωi}i of smooth subdomains, such that Ωi ⊂⊂ Ω, |Ω\Ωi| → 0, P (Ωi) →
P (Ω), and

lim
i→∞

∫
∂Ωi

Tu(x) · ν dHn−1 = P (Ω),

as i → ∞.

Then we come to the main result of this section.

Theorem 5.1. Let Ω and H be given, such that Ω is weakly regular and (1)
holds. Then the properties (E), (U), (M), (V) and (V’) are equivalent.

Before proving Theorem 5.1 some further comments about properties (V)
and (V’) above are in order. In [34] the property (V) is stated in the stronger,
pointwise form Tu(x) = ν(x) for all x ∈ ∂Ω (moreover ∂Ω is assumed of
class C2, hence Tu can be continuously extended on ∂Ω owing to well-known
regularity results, see [21]) while (V’) is stated by using the one-parameter
family of inner parallel sets (which is again well-defined owing to the C2-
smoothness of ∂Ω).

The Maximum Principle Lemma that we state hereafter has been origi-
nally proved in [25] and then in [34]. We remark that it remains valid under the
weaker assumptions guaranteeing the interior smooth approximation property,
in the sense of Theorem 2.8.

Lemma 5.2. (Maximum Principle) Let Ω ⊂ R
n be open, bounded, connected

and weakly regular. Let u and v be two functions of class C2(Ω), such that
div(Tu) ≤ div(Tv) in Ω. Assume that ∂Ω = Γ1 ∪Γ2 with Γ1 relatively open in
∂Ω, and u, v ∈ C0(Ω ∪ Γ1) with u ≥ v on Γ1. Assume further that

lim
i→∞

∫
∂Ωi\A

(1 − Tu · ν) dHn−1 = 0

for every open set A ⊃ Γ1, where {Ωi}i∈N is a sequence of smooth and relatively
compact open subsets of Ω, such that |Ω\Ωi| → 0 and P (Ωi) → P (Ω) as i → ∞.
Then

(a) if Γ1 �= ∅ then u ≥ v in Ω;
(b) if Γ1 = ∅ then u = v + c.

Proof. In order to prove case (a) we first assume that u > v on Γ1. By the
Gauss–Green formula on Ωi, for any positive function ϕ ∈ W 1,∞(Ωi) one
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obtains∫
Ωi

(Tu − Tv) · ∇ϕ = −
∫

Ωi

ϕ(div Tu − div Tv) +
∫

∂Ωi

ϕ(Tu − Tv) · ν

≥
∫

∂Ωi

ϕ(Tu − Tv) · ν ≥
∫

∂Ωi

ϕ(Tu · ν − 1) .

Fix a positive constant M > 0 and define the function ϕM (x)=max
(
0,min(v−

u,M)
)
. Of course ϕM ∈ W 1,∞(Ωi) for all i and 0 ≤ ϕM ≤ M . Moreover, we

can find an open set A containing Γ1 and such that ϕM = 0 on A∩Ω. We also
notice that

(Tu − Tv) · ∇ϕM =

{
(Tu − Tv) · (∇v − ∇u) if 0 < v − u < M,

0 elsewhere ,

hence by a straightforward computation

(Tu − Tv) · ∇ϕM ≤ (|∇v| − |∇u|)
(

|∇u|√
1 + |∇u|2 − |∇v|√

1 + |∇v|2

)
≤ 0 .

Consequently, we obtain∫
∂Ωi\A

ϕM (Tu · ν − 1) ≤
∫

Ωi\A

(Tu − Tv) · ∇ϕM ≤ 0 ,

thus by taking the limit as i → ∞ we find∫
Ω

(Tu − Tv) · ∇ϕM = 0

for all M > 0. Therefore, setting ϕ = max(v − u, 0) we find ∇ϕ = 0 on Ω,
which means that ϕ is constant on Ω. However, since ϕ = 0 on A ∩ Ω we
deduce that ϕ = 0, hence that u ≥ v, on the whole Ω. The full proof of case
(a) is then completed by considering vε = v + ε in place of v and then letting
ε → 0+.

Finally, for the proof of case (b) we fix x0 ∈ Ω and assume v(x0) =
u(x0) + 1 up to a vertical translation. Arguing exactly as in the proof of case
(a), we end up with ϕ constant on Ω, where as before we set ϕ = max(v−u, 0).
Since ϕ = ϕ(x0) = 1 we conclude that v = u + 1 on Ω, as wanted. �

We finally come to the proof of Theorem 5.1.

Proof of Theorem 5.1. We shall split the proof in five steps.
Step one: (E) ⇒ (V’). Owing to (E) we have

P (Ω)
(E)
=

∫
Ω

H dx = lim
i→∞

∫
Ωi

H dx = lim
i→∞

∫
Ωi

div(Tu) dx

= lim
i→∞

∫
∂Ωi

Tu(x) · ν dHn−1,

which implies (V’).
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Step two: (E) ⇔ (M). Let us start by showing (E)⇒(M). We argue by con-
tradiction and suppose there exists a solution u of (PMC) defined on Ω̃ � Ω.
Then Proposition 4.1 gives ∣∣∣∣

∫
Ω

H dx

∣∣∣∣ < P (Ω),

which immediately contradicts (E). Let us now show the implication (M)⇒(E).
Again by contradiction we assume that∣∣∣∣

∫
A

H dx

∣∣∣∣ < P (A)

for all A ⊂ Ω. By Lemma 4.2 there exists ε0 > 0 such that∣∣∣∣
∫

A

H dx

∣∣∣∣ < (1 − ε0)P (A) (38)

for all A ⊂ Ω. Now we claim that (compare with Lemma 2.1 in [34]) given a
ball B such that Ω ⊂⊂ B, for all 0 < ε < ε0 one can find an open set Ωε ⊂ B
with smooth boundary, such that Ω ⊂⊂ Ωε and∣∣∣∣

∫
A

H dx

∣∣∣∣ < (1 − ε)P (A), ∀A ⊂ Ωε. (39)

Of course, the validity of (39) would allow us to apply Theorem 4.3 on Ωε,
which in turn would contradict our assumption (M). In order to show (39)
we argue again by contradiction, i.e., we assume that there exists ε ∈ (0, ε0)
such that, for every U with smooth boundary satisfying Ω ⊂⊂ U , one can
find A ⊂ U for which (39) fails. In particular, for every k ∈ N we may choose
a suitable Uk as specified below, such that Ω ⊂⊂ Uk, |Uk\Ω| < 1/k, ∂Uk is
smooth and there exists Ak ⊂ Uk for which∣∣∣∣

∫
Ak

H dx

∣∣∣∣ ≥ (1 − ε)P (Ak) (40)

holds. By (40) we have that

P (Ak) ≤ |B| supB |H|
1 − ε

∀ k ∈ N ,

hence we can extract a not relabeled subsequence Ak converging to some A ⊂ B
in L1. On the other hand, since |Ak\Ω| ≤ |Uk\Ω| → 0 as k → ∞, we infer that
A ⊂ Ω up to null sets. By (40), by the lower semi-continuity of the perimeter
and by the continuity of the term

∫
Ak

H dx with respect to L1-convergence,
we conclude that ∣∣∣∣

∫
A

H dx

∣∣∣∣ ≥ (1 − ε)P (A)

which is in contrast with (38). We are left to prove that such a sequence Uk

exists. To this aim we consider the open set V = B\Ω and notice that P (V ) =
P (B)+P (Ω) = Hn−1(∂B)+Hn−1(∂Ω) = Hn−1(∂V ) owing to the assumption
on Ω. We can now apply Theorem 2.8 to V with δk = min(dist(∂B, ∂Ω)/3, 1/k)
and set Uk = B\(Vδk

∪ N2δk
(∂B)). Thanks to (8) we find that ∂Uk is smooth,

Ω ⊂⊂ Uk and |Uk\Ω| < δk ≤ 1/k, as wanted.
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Step three: (V’) ⇒ (U). We consider two solutions u, v of (PMC), then if we
take Γ1 = ∅ and thanks to the property P (Ωi) → P (Ω) as i → ∞, we infer
that the assumptions of Lemma 5.2(b) are satisfied. Consequently there exists
a constant c ∈ R such that u = v + c.
Step four: (U) ⇒ (E). Let u be the unique solution of div(Tu) = H on Ω, up
to vertical translations. By contradiction we suppose that∫

Ω

H dx < P (Ω) .

Arguing as in Step two we find a bounded and smooth domain Ω̃ � Ω for which
(1) holds. By Theorems 4.3 and 4.7 there exists a solution ũ of div(T ũ) = H on
Ω̃. Then (U) implies the existence of t ∈ R such that u = ũ+t on Ω. By internal
regularity of ũ, we infer that u ∈ C1(Ω). Fix now a function ϕ ∈ C2(Rn) such
that

Hn−1({x ∈ ∂Ω : ϕ(x) − u(x) �= s}) > 0 ∀ s ∈ R. (41)

The choice of ϕ satisfying (41) can be easily made as follows: if u is constant
on ∂Ω, then one can choose any smooth function ϕ taking different values on
two distinct points of ∂Ω; conversely, if u is not constant on ∂Ω then one can
take ϕ = 0. Now we consider a minimizer w of the functional∫

Ω

√
1 + |Dw|2 +

∫
Ω

Hw +
∫

∂Ω

|w − ϕ| dHn−1,

then w necessarily satisfies (PMC). By the assumed uniqueness up to transla-
tions one has that w = u + s for some s ∈ R. Then it follows that

|Tu(x0)| = |Tw(x0)| < 1. (42)

Moreover by (41) we have that w �= ϕ on some set K ⊂ ∂∗Ω with Hn−1(K) >
0. Fix now a point x0 ∈ K and assume without loss of generality that ϕ(x0) >
w(x0). Set now C = Ω × R, p0 = (x0, w(x0)) ∈ ∂C, and notice that by the
continuity of w and ϕ on ∂Ω there exists R > 0 such that the subgraph of ϕ
contains the ball BR(p0) ⊂ R

n+1. Owing to the choice of BR(p0), the epigraph

W := {p = (x, y) ∈ C : y > w(x)}
necessarily minimizes the functional

P (W ;BR(p0)) −
∫

W∩BR(p0)

H

with obstacle R
n+1\C inside BR(p0). In other words, for any set U that coin-

cides with W outside the set A := BR(p0) ∩ C, one has

P (W ;BR(p0)) −
∫

W∩BR(p0)

H ≤ P (U ;BR(p0)) −
∫

U∩BR(p0)

H. (43)

It is then easy to show that W is a (Λ, R)-perimeter minimizer in C (see
Definition 3.4), where R is the radius of the ball defined above and Λ =
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supΩ |H|. Indeed for any ball Br ⊂ BR(p0) and any set U such that UΔW ⊂⊂
Br ∩ C, by (43) one has that

P (W ;Br) = P (W ;BR(p0)) − P (W ;BR(p0)\Br)

≤ P (U ;BR(p0)) − P (U ;BR(p0)\Br) −
∫

BR(p0)

H(χU − χW )

≤ P (U ;Br) + sup
Ω

|H| |UΔW |,

which proves the (Λ, R)-minimality of W in C. Then by Theorem 3.5 we infer
that νW (p0) = νC(p0), which contradicts (42).

Step five: (V) and (V’) are equivalent. We can consider the sequence Ωj

of Theorem 2.8 and apply Theorem 3.2 to get∫
Ω\Ωj

H(x) dx =
∫

Ω\Ωj

div Tu(x) dx

=
∫

∂Ω

[Tu · ν] dHn−1 −
∫

∂Ωj

Tu · νj dHn−1 . (44)

Now, observing that the left-hand side of (44) is infinitesimal as j → ∞ the
equivalence between (V) and (V’) is immediate.

The proof is finally completed by combining the previous five steps. �
We now show a well-known consequence of Lemma 5.2, which can be

obtained by arguing as in Step two of the proof of Theorem 5.1.

Proposition 5.3. Assume that u is a solution of (PMC) on Ω and that either
(V) or (V’) holds. Then u is bounded from below.

Proof. Let B denote a ball compactly contained in Ω and consider the open set
S = Ω\B. By Lemma 4.2 and arguing as in Step two of the proof of Theorem
5.1 we find a solution w of (PMC) which is of class C1(S). Since in particular
u ∈ C2(B) we can assume that w ≤ u on ∂B up to a vertical translation, hence
by Lemma 5.2(a) we deduce that w ≤ u on S, which gives the conclusion at
once. �

We conclude the section with some remarks about the stability of solu-
tions of (PMC) in the extremal case. One might ask whether or not there exists
some perturbation (Ωε,Hε) of an extremal pair (Ω,H), such that (Ωε,Hε) sat-
isfies the necessary condition (1) and the solution uε of (PMC) on Ωε is in
a suitable sense a small perturbation of u up to translations, as soon as ε is
small. The following proposition contains a result in this direction.

Proposition 5.4. (Stability) Let {Ωj}j be a sequence of bounded domains and
{Hj}j a sequence of Lipschitz functions, such that Ωj is weakly regular and the
pair (Ωj ,Hj) is extremal. Assume moreover that Ωj → Ω∞ in L1 and P (Ωj) →
P (Ω∞), as j → ∞, with Ω∞ weakly regular, and that Hj uniformly converges
to H∞ such that the pair (Ω∞,H∞) is extremal as well. Then the sequence of
unique (up to translations) solutions {uj}j to the (PMC) problem for the pair
(Ωj ,Hj) converges to a solution u∞ of (PMC) for the pair (Ω∞,H∞), in the
sense of the L1

loc-convergence of the epigraphs.



NoDEA The prescribed mean curvature equation Page 25 of 29  9 

Figure 1. The “Swiss cheese” set Oa,δ,ε constructed in
Example 5.5

Proof. Due to our hypotheses, the existence of a solution uj to (PMC) for the
pair (Ωj ,Hj) (also for j = ∞) is guaranteed by Theorem 4.7. Arguing as in
Theorem 4.7, for any j large enough we can find a suitable tj such that the
translated solution uj + tj which we just rename uj satisfies

min
(
|{x ∈ Ωj : uj(x) ≥ 0}|, |{x ∈ Ωj : uj(x) ≤ 0}|

)
≥ |Ω|/4 .

Then we find that the epigraphs Uj of uj converge in L1
loc(R

n+1) to a set U∗
∞

which is the epigraph of a classical solution u∗
∞ defined on Ω∞. By Theorem

5.1 we have that u∗
∞ = u∞ up to a translation, thus the thesis follows. �

In the recent paper [40], an explicit example of an extremal pair (Ω,H)
and of a sequence of extremal pairs (Ωj ,Hj) satisfying the hypotheses of Propo-
sition 5.4 is constructed, for the special case Hj = P (Ωj)/|Ωj |, by removing
a sequence of smaller and smaller disks from the unit disk in R

2, in such a
way that it looks like a sort of Swiss cheese with holes accumulating towards a
portion of its boundary (see Fig. 1 and Example 5.5 below; for a more complete
discussion we refer to [40]).

This shows the following, remarkable fact: while a generic small and
smooth perturbation of the unit disk may produce a dramatic change in the
capillary solution (and even end up with non-existence of a solution), there
exist some non-smooth perturbations that, instead, preserve both existence
and stability.

Example 5.5. Let 0 < δ < ε < 1 and a > 1 be fixed. For i ≥ 1 and j = 1, . . . , i
we set

ρij = 1 − ε

ai2+j
, rij =

δ

a2i2+2j
, θij =

π

2
j

i + 1
,

Then we define

Oa,δ,ε = B1\
⋃
i,j

Bij ,

where B1 ⊂ R
2 is the unit disk centered at the origin, and

Bij := Brij
((ρij cos(θij), ρij sin(θij))

(see Fig. 1). We prove in [40] that for a suitable choice of parameters a, δ, ε the
open set Oa,δ,ε fulfils the hypotheses of Theorem 5.1.
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One can then build a sequence of non-smooth perturbations of the unit
disk by simply filling one hole of the Swiss cheese at a time: indeed this opera-
tion creates a sequence of subdomains of the unit disk that satisfy the hypothe-
ses of Proposition 5.4 with the choice Hj = P (Ωj)/|Ωj | and with (B1, 2) as
the limit extremal pair.
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