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A B S T R A C T

In this review we collect some recent achievements in the accurate and efficient solution of the
Nonlinear Schrödinger Equation (NLSE), with the preservation of its Hamiltonian structure. This
is achieved by using the energy-conserving Runge–Kutta methods named Hamiltonian Boundary
Value Methods (HBVMs) after a proper space semi-discretization. The main facts about HBVMs,
along with their application for solving the given problem, are here recalled and explained in
detail. In particular, their use as spectral methods in time, which allows efficiently solving the
problems with spectral space–time accuracy.

1. Introduction

In this paper we review the main facts about a recent approach for efficiently solving the following general form of (non-
dimensional) Nonlinear Schrödinger Equation (NLSE),

i𝜓𝑡(𝑥, 𝑡) + 𝜓𝑥𝑥(𝑥, 𝑡) + 𝑓 ′(|𝜓(𝑥, 𝑡)|2)𝜓(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇 ], (1)

coupled with initial data and periodic boundary conditions, with i the imaginary unit, 𝑓 ∶ R → R a differentiable function, and 𝑓 ′

its derivative.
Generally speaking, there are basically two ways in which NLSE enters physical and applied sciences. The first one is the

appearance of the NLSE as the first-order approximation of a nonlinear dispersive system, such as the wave equation in a nonlinear
medium. To this category belong the NLSE used in Fiber Optics [1], Plasma Physics [2–4], Geophysics [5,6] and Biology [7]. The
other way NLSE appears in physics is as the single-particle, mean-field approximation of a many-particle linear system. This is
typically the case of quantum mechanics, where the NLSE arises in several contexts, the most important being the description of the
dynamics of a Bose–Einstein condensate. In this case the suitable NLSE is also known as Gross–Pitaevskii equation [8]. In most such
applications, the NLSE is used in its more common form, i.e., with cubic nonlinearity, corresponding to 𝑓 (𝑥) = 𝑥2. However, higher-
degree nonlinearities appear in important applications, among which it is worth mentioning the cubic–quintic NLSE, corresponding
to 𝑓 (𝑥) = 𝛼𝑥2 − 𝛽𝑥3, which is used to describe the propagation of ultrashort pulses in optical fibers [1,9–11] or high-density effects
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in Bose–Einstein condensates [12–14]. The NLSE is of course of great interest also from a purely mathematical viewpoint, especially
in view of its profound connections with the theory of integrable PDEs, solitons and inverse scattering [15–19].

For all these reasons, the numerical solution of the NLSE has been the subject of investigation since a long time (see, e.g., [20–24]
or early approaches). More recently, geometric numerical methods have been considered: as an example, we mention multi-symplectic
ethods (see, e.g., [25–36]), symplectic methods (see, e.g., [37–44]), and so forth (see, e.g., [45–51]). More recently, methods able

o conserve the energy or other invariants (see, e.g., [52–60] and, in particular [61–63], which are based on the so called SAV
approach) have been investigated: the methods we shall deal with, are exactly placed in this latter setting. The basic approach
follows what suggested in [64, page 187], namely by suitably using the method of lines: if the PDEs are of Hamiltonian type, [. . . ] the
space discretization should be carried out in such a way that the resulting system of ODEs is Hamiltonian (for a suitable Poisson bracket).
The latter system is then solved by using a geometric method for the time integration. Usually, symplectic methods [64–68] have been
sed for this purpose. Instead, in the present case, we shall consider energy-conserving methods, namely methods able to conserve
he energy. Energy-conserving methods have been studied by many authors (see, e.g., [69–72]): we shall here consider the class
f Hamiltonian Boundary Value Methods (HBVMs), which is a family of Runge–Kutta (RK) methods recently devised for the efficient
umerical solution of Hamiltonian ODEs. We refer to [71,73] (and, in particular, to the monograph [72]1) for the derivation and
nalysis of such methods, which have been devised within the framework of the so called line integral methods (see, e.g., the review
aper [74]). We mention that generalizations and extensions of such approach have been also considered in [75–87]. HBVMs have
een also considered for the efficient numerical solution of a number of Hamiltonian PDEs (see, e.g., [88–92]), among which are
he NLSE [93] and Manakov systems [94].

With this premise, the structure of the paper is as follows: in Section 2 we recall the basic facts about the NLSE along with
ts space semi-discretization; in Section 3 we review HBVMs and their properties; in Section 4 we give some details about the
fficient implementation of such methods for numerically solving the NLSE (1); Section 5 contains a few numerical tests; at last
ome concluding remarks are given in Section 6.

. Basic facts about the NLSE and its space semi-discretization

We shall hereafter consider the real form of (1) by setting

𝛹 (𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + i𝑣(𝑥, 𝑡). (2)

Omitting, for the sake of brevity, the arguments (𝑥, 𝑡) when unnecessary, one then obtains:

𝑢𝑡 = −𝑣𝑥𝑥 − 𝑓 ′(𝑢2 + 𝑣2)𝑣, 𝑣𝑡 = 𝑢𝑥𝑥 + 𝑓 ′(𝑢2 + 𝑣2)𝑢, (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇 ], (3)

with the initial conditions

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ [𝑎, 𝑏], (4)

and periodic boundary conditions (consequently, also 𝑢0(𝑥) and 𝑣0(𝑥) are assumed to be periodic). By defining the Hamiltonian
functional

[𝑢, 𝑣](𝑡) = 1
2 ∫

𝑏

𝑎

[

𝑢𝑥(𝑥, 𝑡)2 + 𝑣𝑥(𝑥, 𝑡)2 − 𝑓 (𝑢(𝑥, 𝑡)2 + 𝑣(𝑥, 𝑡)2)
]

d𝑥, (5)

and considering that for any variations 𝜂, 𝜈 ∈ 𝐿2[𝑎, 𝑏], its functional derivatives are given by:

lim
𝜀→0

[𝑢 + 𝜀𝜂, 𝑣](𝑡) −[𝑢, 𝑣](𝑡)
𝜀

=∶ ∫

𝑏

𝑎

𝛿
𝛿𝑢(𝑥)

[𝑢, 𝑣](𝑡)𝜂(𝑥)d𝑥

≡ −∫

𝑏

𝑎

[

𝑢𝑥𝑥(𝑥, 𝑡) + 𝑓 ′(𝑢(𝑥, 𝑡)2 + 𝑣(𝑥, 𝑡)2)𝑢(𝑥, 𝑡)
]

𝜂(𝑥)d𝑥,

lim
𝜀→0

[𝑢, 𝑣 + 𝜀𝜈](𝑡) −[𝑢, 𝑣](𝑡)
𝜀

=∶ ∫

𝑏

𝑎

𝛿
𝛿𝑣(𝑥)

[𝑢, 𝑣](𝑡)𝜈(𝑥)d𝑥

≡ −∫

𝑏

𝑎

[

𝑣𝑥𝑥(𝑥, 𝑡) + 𝑓 ′(𝑢(𝑥, 𝑡)2 + 𝑣(𝑥, 𝑡)2)𝑣(𝑥, 𝑡)
]

𝜈(𝑥)d𝑥,

one deduces that (3) has a Hamiltonian structure. In more detail, by defining

𝑦 =

(

𝑢

𝑣

)

, 𝐽 =
(

0 1
−1 0

)

= −𝐽⊤ = −𝐽−1, ∇[𝑦] =

( 𝛿
𝛿𝑢
𝛿
𝛿𝑣

)

, (6)

it is straightforward deriving that (3) can be rewritten as

𝑦𝑡 = 𝐽∇[𝑦], (7)

1 It is worth mentioning that the state-of-art Matlab© code hbvm.m is available at the web-site of the monograph [72], http://web.math.unifi.it/users/
2

rugnano/LIMbook/.

http://web.math.unifi.it/users/brugnano/LIMbook/
http://web.math.unifi.it/users/brugnano/LIMbook/
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which is formally similar to a usual system of Hamiltonian ODEs.
Because of the periodic boundary conditions, it can be proved that [𝑢, 𝑣](𝑡) is a conserved quantity for all 𝑡 ≥ 0, as well as the

mass

1[𝑢, 𝑣](𝑡) = ∫

𝑏

𝑎

[

𝑢(𝑥, 𝑡)2 + 𝑣(𝑥, 𝑡)2
]

d𝑥, (8)

and the momentum

2[𝑢, 𝑣](𝑡) = ∫

𝑏

𝑎

[

𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)
]

d𝑥. (9)

Let us sketch the conservation of (8): the conservation of (5) and (9) can be similarly obtained (see, e.g., [93]):

d
d𝑡
1[𝑢, 𝑣](𝑡) = 2∫

𝑏

𝑎

[

𝑢(𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑣𝑡(𝑥, 𝑡)
]

d𝑥

= 2∫

𝑏

𝑎

{

𝑢(𝑥, 𝑡)
[

−𝑣𝑥𝑥(𝑥, 𝑡) − 𝑓 ′(𝑢(𝑥, 𝑡)2 + 𝑣(𝑥, 𝑡)2)𝑣(𝑥, 𝑡)
]

+ 𝑣(𝑥, 𝑡)
[

𝑢𝑥𝑥(𝑥, 𝑡) + 𝑓 ′(𝑢(𝑥, 𝑡)2 + 𝑣(𝑥, 𝑡)2)𝑢(𝑥, 𝑡)
]}

d𝑥

= 2∫

𝑏

𝑎

d
d𝑥

[

𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡)
]

d𝑥 = 0,

because of the periodic boundary conditions.

2.1. Space semi-discretization

Since 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) in (2) are assumed to be periodic functions of 𝑥 ∈ [𝑎, 𝑏], we consider their expansion in space along the
following orthonormal basis on [𝑎, 𝑏]2:

𝜔2𝑗 (𝑥) =

√

2 − 𝛿𝑗0
𝑏 − 𝑎

cos
(

𝑗 𝑥 − 𝑎
𝑏 − 𝑎

2𝜋
)

,

𝜔2𝑗+1(𝑥) =
√

2
𝑏 − 𝑎

sin
(

(𝑗 + 1)𝑥 − 𝑎
𝑏 − 𝑎

2𝜋
)

, 𝑗 = 0, 1, 2,… ,

so that

∫

𝑏

𝑎
𝜔𝑖(𝑥)𝜔𝑗 (𝑥) = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 0, 1, 2,… ,

with 𝛿𝑖𝑗 denoting, as usual, the Kronecker delta. One then obtains that, for suitable time-dependent coefficients 𝑞𝑗 (𝑡), 𝑝𝑗 (𝑡), 𝑗 ≥ 0,

𝑢(𝑥, 𝑡) =
∑

𝑗≥0
𝑞𝑗 (𝑡)𝜔𝑗 (𝑥), 𝑣(𝑥, 𝑡) =

∑

𝑗≥0
𝑝𝑗 (𝑡)𝜔𝑗 (𝑥), (10)

which can be more compactly rewritten, by introducing the infinite vectors

𝝎(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜔0(𝑥)
𝜔1(𝑥)
𝜔2(𝑥)
⋮

⎞

⎟

⎟

⎟

⎟

⎠

, 𝒒(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑞0(𝑡)
𝑞1(𝑡)
𝑞2(𝑡)
⋮

⎞

⎟

⎟

⎟

⎟

⎠

, 𝒑(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑝0(𝑡)
𝑝1(𝑡)
𝑝2(𝑡)
⋮

⎞

⎟

⎟

⎟

⎟

⎠

, (11)

as

𝑢(𝑥, 𝑡) = 𝝎(𝑥)⊤𝒒(𝑡), 𝑣(𝑥, 𝑡) = 𝝎(𝑥)⊤𝒑(𝑡). (12)

Further, by considering that

𝝎′(𝑥) = 𝐷1𝝎(𝑥), 𝝎′′(𝑥) = 𝐷2
1𝝎(𝑥) ≡ −𝐷𝝎(𝑥), (13)

where, by setting hereafter 𝐼𝑟 the identity matrix of dimension 𝑟, and with reference to the matrix 𝐽 defined in (6),

𝐷1 = 2𝜋
𝑏 − 𝑎

⎛

⎜

⎜

⎜

⎜

⎝

0
1 ⋅ 𝐽

2 ⋅ 𝐽
⋱

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐷 = 4𝜋2

(𝑏 − 𝑎)2

⎛

⎜

⎜

⎜

⎜

⎝

0
12 ⋅ 𝐼2

22 ⋅ 𝐼2
⋱

⎞

⎟

⎟

⎟

⎟

⎠

,

𝐷1 = −𝐷⊤
1 , 𝐷 = 𝐷⊤, (14)

2 As is clear, this is nothing but the usual Fourier basis scaled and shifted in order to be orthonormal on the given interval [𝑎, 𝑏] w.r.t. the usual 𝐿2 inner
3

product.
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one deduces that it is possible to rewrite (3) as:

𝝎(𝑥)⊤𝒒̇(𝑡) = 𝝎(𝑥)⊤𝐷𝒑(𝑡) − 𝑓 ′ ((𝝎(𝑥)⊤𝒒(𝑡))2 + (𝝎(𝑥)⊤𝒑(𝑡))2
)

𝝎(𝑥)⊤𝒑(𝑡),

𝝎(𝑥)⊤𝒑̇(𝑡) = −𝝎(𝑥)⊤𝐷𝒒(𝑡) + 𝑓 ′ ((𝝎(𝑥)⊤𝒒(𝑡))2 + (𝝎(𝑥)⊤𝒑(𝑡))2
)

𝝎(𝑥)⊤𝒒(𝑡),

with

𝝎(𝑥)⊤𝒒(0) = 𝑢0(𝑥), 𝝎(𝑥)⊤𝒑(0) = 𝑣0(𝑥), 𝑥 ∈ [𝑎, 𝑏].

Considering that

∫

𝑏

𝑎
𝝎(𝑥)𝝎(𝑥)⊤d𝑥 = 𝐼, (15)

the infinite dimensional identity matrix, left multiplication of the above equations by 𝝎(𝑥) and subsequent space integration give
the following infinite system of ODEs (hereafter, we shall omit the argument 𝑡 for 𝒒 and 𝒑):

𝒒̇ = 𝐷𝒑 − ∫

𝑏

𝑎
𝝎(𝑥)𝑓 ′ ((𝝎(𝑥)⊤𝒒)2 + (𝝎(𝑥)⊤𝒑)2

)

𝝎(𝑥)⊤𝒑 d𝑥,

𝒑̇ = −𝐷𝒒 + ∫

𝑏

𝑎
𝝎(𝑥)𝑓 ′ ((𝝎(𝑥)⊤𝒒)2 + (𝝎(𝑥)⊤𝒑)2

)

𝝎(𝑥)⊤𝒒 d𝑥,

𝑡 ∈ [0, 𝑇 ]. (16)

with the initial conditions:

𝒒(0) = ∫

𝑏

𝑎
𝝎(𝑥)𝑢0(𝑥)d𝑥, 𝒑(0) = ∫

𝑏

𝑎
𝝎(𝑥)𝑣0(𝑥)d𝑥. (17)

The following result holds true.

Theorem 1. The ODE system (16) is Hamiltonian w.r.t. the Hamiltonian

𝐻(𝒒,𝒑) = 1
2

[

𝒒⊤𝐷𝒒 + 𝒑⊤𝐷𝒑 − ∫

𝑏

𝑎
𝑓
(

(𝝎(𝑥)⊤𝒒)2 + (𝝎(𝑥)⊤𝒑)2
)

d𝑥
]

. (18)

This latter, in turn, is equivalent to the Hamiltonian functional (5).

Proof. Since

𝒒̇ = 𝜕
𝜕𝒑
𝐻(𝒒,𝒑), 𝒑̇ = − 𝜕

𝜕𝒒
𝐻(𝒒,𝒑),

the first part of the statement clearly holds true. The second part follows from (12)–(15), considering that 𝐷 = 𝐷⊤
1𝐷1, so that

𝒒⊤𝐷𝒒 = 𝒒⊤𝐷⊤
1𝐷1𝒒 = ∫

𝑏

𝑎
𝒒⊤𝐷⊤

1 𝝎(𝑥)𝝎(𝑥)
⊤𝐷1𝒒d𝑥

= ∫

𝑏

𝑎

(

𝝎(𝑥)⊤𝐷1𝒒
)2 d𝑥 = ∫

𝑏

𝑎
𝑢𝑥(𝑥, 𝑡)2d𝑥,

and, similarly,

𝒑⊤𝐷𝒑 = ∫

𝑏

𝑎
𝑣𝑥(𝑥, 𝑡)2d𝑥. □

By using similar arguments, it is possible to prove the following result.

Theorem 2. The two functionals (8) and (9) can be rewritten, respectively, as:

𝑀1(𝒒,𝒑) = ∫

𝑏

𝑎
(𝝎(𝑥)⊤𝒒)2 + (𝝎(𝑥)⊤𝒑)2d𝑥, 𝑀2(𝒒,𝒑) = −2𝒒⊤𝐷1𝒑, (19)

with 𝐷1 the infinite matrix defined in (14).

2.2. Truncating the infinite expansion

Clearly, we cannot actually solve the infinite system of ODEs (16): in order to obtain a computational procedure, we need to
truncate the infinite expansions (10) to finite sums. I.e., for a conveniently large 𝑁 ,

𝑢(𝑥, 𝑡) =
2𝑁
∑

𝑞𝑗 (𝑡)𝜔𝑗 (𝑥), 𝑣(𝑥, 𝑡) =
2𝑁
∑

𝑝𝑗 (𝑡)𝜔𝑗 (𝑥), (20)
4

𝑗=0 𝑗=0
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A

where, for sake of brevity, hereafter we continue to use the same symbols 𝑢 and 𝑣 to denote the truncated approximations.
Consequently, the infinite vectors in (11) are replaced with the following truncated ones,

𝝎(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜔0(𝑥)
𝜔1(𝑥)
⋮

𝜔2𝑁 (𝑥)

⎞

⎟

⎟

⎟

⎟

⎠

, 𝒒(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑞0(𝑡)
𝑞1(𝑡)
⋮

𝑞2𝑁 (𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

, 𝒑(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑝0(𝑡)
𝑝1(𝑡)
⋮

𝑝2𝑁 (𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

. (21)

In so doing (12) and (13) continue formally to hold, upon replacing the infinite matrices (14) with the following truncated ones of
dimension (2𝑁 + 1) × (2𝑁 + 1) ∶

𝐷1 =
2𝜋
𝑏 − 𝑎

⎛

⎜

⎜

⎜

⎜

⎝

0
1 ⋅ 𝐽

⋱
𝑁 ⋅ 𝐽

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐷 = 4𝜋2

(𝑏 − 𝑎)2

⎛

⎜

⎜

⎜

⎜

⎝

0
12 ⋅ 𝐼2

⋱
𝑁2 ⋅ 𝐼2

⎞

⎟

⎟

⎟

⎟

⎠

. (22)

s is clear, the functions 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) in (20) belong, for each fixed 𝑡, to the finite-dimensional functional subspace 𝑁 =
span

{

𝜔0(𝑥), 𝜔1(𝑥),… , 𝜔2𝑁 (𝑥)
}

, and will no longer, in general, satisfy the original continuous Eqs. (3). However, by requiring the
corresponding residual be orthogonal to 𝑁 , one formally retrieves again the Eqs. (16)–(17) which, now, amount to a Hamiltonian
system of (4𝑁 + 2) ODEs with the Hamiltonian formally still given by (18) and mass and momentum given by (19), respectively.

We shall discuss the efficient numerical solution of the new finite-dimensional ODE-IVP (16)–(17) in the next sections.
Preliminarily, we mention that:

• the value of 𝑁 is generally very large, in view of obtaining a spectrally accurate space semi-discretization;
• having fixed 𝑁 , the composite trapezoidal rule over the equally spaced points

𝑥𝑖 = 𝑎 + 𝑖 𝑏 − 𝑎
𝑚

, 𝑖 = 0, 1,… , 𝑚, 𝑚 ∶= 2𝑁 + 1, (23)

is conveniently used to retrieve the Fourier coefficients in (20). In fact, as an example,

𝑞𝑗 (𝑡) = ∫

𝑏

𝑎
𝜔𝑗 (𝑥)𝑢(𝑥, 𝑡)d𝑥 =

2𝑁
∑

𝑘=0
𝑞𝑘(𝑡)∫

𝑏

𝑎
𝜔𝑗 (𝑥)𝜔𝑘(𝑥)d𝑥,

with the latter integrands being, by virtue of the prosthaphaeresis formulae, trigonometric polynomials of degree at most 2𝑁 .
Consequently, the composite trapezoidal rule over 2𝑁 + 2 ≡ 𝑚 + 1 equally spaced points is exact for computing them [95,
page 155].3 Consequently, with reference to (23), and taking into account the periodicity of the functions, one has:

∫

𝑏

𝑎
𝜔𝑗 (𝑥)𝜔𝑘(𝑥)d𝑥 = 1

𝑚

𝑚−1
∑

𝑖=0
𝜔𝑗 (𝑥𝑖)𝜔𝑘(𝑥𝑖) = 𝛿𝑗𝑘, ∀𝑗, 𝑘 = 0,… , 2𝑁 ≡ 𝑚 − 1.

Similar arguments apply, of course, for retrieving 𝑝𝑗 (𝑡).

For sake of completeness, let us give some more operative detail about the latter point. Because of the periodic boundary
conditions, according to what exposed above, with reference to (20) one obtains (see (23)):

𝑞𝑗 (𝑡) =
1
𝑚

𝑚−1
∑

𝑖=0
𝜔𝑗 (𝑥𝑖)𝑢(𝑥𝑖, 𝑡), 𝑝𝑗 (𝑡) =

1
𝑚

𝑚−1
∑

𝑖=0
𝜔𝑗 (𝑥𝑖)𝑣(𝑥𝑖, 𝑡), 𝑗 = 0,… , 2𝑁. (24)

These quantities can be efficiently computed via the inverse DFT (e.g., the Matlab© function ifft) of the vectors

𝒖 = (𝑢(𝑥0, 𝑡),… , 𝑢(𝑥𝑚−1, 𝑡)) and 𝒗 = (𝑣(𝑥0, 𝑡),… , 𝑣(𝑥𝑚−1, 𝑡)), (25)

respectively. Specifically, considering that 𝑚 − 1 = 2𝑁 , if

(𝜙0,… , 𝜙2𝑁 ) ∶= 𝚒𝚏𝚏𝚝(𝒖) and (𝜉0,… , 𝜉2𝑁 ) ∶= 𝚒𝚏𝚏𝚝(𝒗),

then, by using a Matlab©-like formalism, and avoiding for sake of brevity the argument 𝑡,

𝑞0 = 𝜙0, 𝑞2𝑗−1 =
√

2 ⋅ 𝚒𝚖𝚊𝚐(𝜙𝑗 ), 𝑞2𝑗 =
√

2 ⋅ 𝚛𝚎𝚊𝚕(𝜙𝑗 ), 𝑗 = 1,… , 𝑁,

and, similarly,

𝑝0 = 𝜉0, 𝑝2𝑗−1 =
√

2 ⋅ 𝚒𝚖𝚊𝚐(𝜉𝑗 ), 𝑝2𝑗 =
√

2 ⋅ 𝚛𝚎𝚊𝚕(𝜉𝑗 ), 𝑗 = 1,… , 𝑁.

Conversely, if (see (23))

𝝁 = (𝜇0,… , 𝜇𝑚−1) ∶= 𝚛𝚎𝚊𝚕(𝚏𝚏𝚝([0, 𝑞2 + i𝑞1,… , 𝑞2𝑁 + i𝑞2𝑁−1], 𝑚))

3 Actually, they reduce to 𝑚, with all unit weights, because of the periodic boundary conditions.
5
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O
b

and

𝝌 = (𝜒0,… , 𝜒𝑚−1) ∶= 𝚛𝚎𝚊𝚕(𝚏𝚏𝚝([0, 𝑝2 + i𝑝1,… , 𝑝2𝑁 + i𝑝2𝑁−1], 𝑚)),

then (see (25)),

𝒖 = 𝑞0 +
√

2 ⋅ 𝝁, and 𝒗 = 𝑝0 +
√

2 ⋅ 𝝌 .

ne then concludes that the evaluation of the Fourier coefficients, as well as the reconstruction of the approximated solution, can
e done with a complexity of 𝑂(𝑚 log𝑚) floating-point operations: this, in turn, allows using large values of 𝑁 .

3. Hamiltonian boundary value methods

In order to obtain a fully discrete method, we now consider the numerical solution of problem (16)–(17). In view of a more
compact representation, let us introduce the block vector (see (21) and (23))

𝒚 =
(

𝒒
𝒑

)

∈ R2𝑚, (26)

and denote by 𝐻(𝒚) ∶= 𝐻(𝒒,𝒑) the Hamiltonian (18). Consequently, we can rewrite (16)–(17) as

𝒚̇ = 𝐽𝑚∇𝐻(𝒚), 𝑡 ∈ [0, 𝑇 ], 𝒚(0) = 𝒚0 ∶=
(

𝒒(0)
𝒑(0)

)

, (27)

having set (see (6))

𝐽𝑚 ∶= 𝐽 ⊗ 𝐼𝑚 ≡
(

𝐼𝑚
−𝐼𝑚

)

= −𝐽⊤𝑚 .

Since
d
d𝑡
𝐻(𝒚) = ∇𝐻(𝒚)⊤𝒚̇ = ∇𝐻(𝒚)⊤𝐽𝑚∇𝐻(𝒚) = 0, (28)

due to the skew-symmetry of 𝐽𝑚, we again retrieve the conservation of 𝐻 and, hence, our aim is to derive energy-conserving methods,
i.e., able to conserve the energy along the numerical trajectory. Such methods are derived within the so called framework of line
integral methods (see, e.g., the monograph [72] or the review paper [74]). In more details, if ℎ is the considered timestep, we shall
look for a suitable path 𝜎 such that:

𝜎(0) = 𝒚0, 𝜎(ℎ) =∶ 𝒚1 ≈ 𝒚(ℎ), ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤𝜎̇(𝑐ℎ)d𝑐 = 0. (29)

These properties imply energy-conservation, since

𝐻(𝒚1) −𝐻(𝒚0) = 𝐻(𝜎(ℎ)) −𝐻(𝜎(0)) = ℎ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤𝜎̇(𝑐ℎ)d𝑐 = 0.

Remark 1. We observe that for the continuous solution (28) the last property in (29) derives from the fact that the integrand
identically vanishes. This is no more the case for the path 𝜎 characterizing the given method (29).

A straightforward way to derive paths satisfying (29) relies on the expansion of the vector field (27) along a suitable orthonormal
basis, which we choose as the Legendre polynomial basis {𝑃𝑗}𝑗≥0 [71,73]:

𝑃𝑖 ∈ 𝛱𝑖, ∫

1

0
𝑃𝑖(𝑥)𝑃𝑗 (𝑥)d𝑥 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 0, 1, 2,… , (30)

where, as usual, 𝛱𝑖 denotes the vector space of polynomials of degree 𝑖. In so doing, one obtains:

𝒚̇(𝑐ℎ) =
∑

𝑗≥0
𝑃𝑗 (𝑐)𝛾𝑗 (𝒚), 𝑐 ∈ [0, 1], 𝒚(0) = 𝒚0, (31)

with the Fourier coefficients given by:

𝛾𝑗 (𝒚) = 𝐽𝑚 ∫

1

0
𝑃𝑗 (𝜏)∇𝐻(𝒚(𝜏ℎ))d𝜏, 𝑗 = 0, 1, 2,… . (32)

Integrating (31) side by side, and imposing the initial condition, one then obtains:

𝒚(𝑐ℎ) = 𝒚0 + ℎ
∑

𝑗≥0
∫

𝑐

0
𝑃𝑗 (𝑥)d𝑥 𝛾𝑗 (𝒚), 𝑐 ∈ [0, 1]. (33)

In particular, by taking into account (30) and (27),

𝒚(ℎ) = 𝒚0 + ℎ𝛾0(𝒚) ≡ 𝒚0 + ℎ𝐽𝑚 ∫

1

0
∇𝐻(𝒚(𝜏ℎ))d𝜏 ≡ 𝒚0 + ∫

ℎ

0
𝒚̇(𝑡)d𝑡,

i.e., one retrieves the usual Fundamental Theorem of Calculus. Concerning the Fourier coefficients (32), the following general result
holds true.
6
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Lemma 1. Let 𝐺 ∶ [0, ℎ] → 𝑉 , with 𝑉 a vector space, admit a Taylor expansion at 0. Then,

∫

1

0
𝑃𝑗 (𝜏)𝐺(𝜏ℎ)d𝜏 = 𝑂(ℎ𝑗 ), 𝑗 = 0, 1, 2,… .

Proof. See [73, Lemma 1]. □

More in general, it can be proved the following result, whose proof is omitted.

Lemma 2. Let 𝐺 ∶ [0, ℎ] → 𝑉 , with 𝑉 a vector space, admit a Taylor expansion at 0 with remainder at the 𝑂(ℎ𝑘) term. Then,

∫

1

0
𝑃𝑗 (𝜏)𝐺(𝜏ℎ)d𝜏 = 𝑂(ℎmin{𝑗,𝑘}), 𝑗 = 0, 1, 2,… .

In order to obtain a polynomial approximation 𝜎 ∈ 𝛱𝑠 to 𝒚(𝑐ℎ), it is enough truncating the infinite series in (31) and (33) to
inite sums with 𝑠 terms:

𝜎̇(𝑐ℎ) =
𝑠−1
∑

𝑗=0
𝑃𝑗 (𝑐)𝛾𝑗 (𝜎), 𝑐 ∈ [0, 1], 𝜎(0) = 𝒚0, (34)

and

𝜎(𝑐ℎ) = 𝒚0 + ℎ
𝑠−1
∑

𝑗=0
∫

𝑐

0
𝑃𝑗 (𝑥)d𝑥 𝛾𝑗 (𝜎), 𝑐 ∈ [0, 1]. (35)

with 𝛾𝑗 (𝜎) defined, similarly as in (32), as

𝛾𝑗 (𝜎) = 𝐽𝑚 ∫

1

0
𝑃𝑗 (𝜏)∇𝐻(𝜎(𝜏ℎ))d𝜏, 𝑗 = 0,… , 𝑠 − 1. (36)

In such a case, according to (29), the new approximation is given by

𝒚1 ∶= 𝜎(ℎ) = 𝒚0 + ℎ𝛾0(𝜎). (37)

As stated in the next theorem, the approximation procedure is energy-conserving.

Theorem 3. With reference to (18), (26)–(27), and (29), one has: 𝐻(𝒚1) = 𝐻(𝒚0).

Proof. By virtue of (34), and taking into account (36), one obtains:

𝐻(𝒚1) −𝐻(𝒚0) = 𝐻(𝜎(ℎ)) −𝐻(𝜎(0)) = ℎ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤𝜎̇(𝑐ℎ)d𝑐

= ℎ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤

𝑠−1
∑

𝑗=0
𝑃𝑗 (𝑐)𝛾𝑗 (𝜎)d𝑐

= ℎ
𝑠−1
∑

𝑗=0

[

∫

1

0
𝑃𝑗 (𝑐)∇𝐻(𝜎(𝑐ℎ))d𝑐

]⊤

𝐽𝑚

[

∫

1

0
𝑃𝑗 (𝑐)∇𝐻(𝜎(𝑐ℎ))d𝑐

]

= 0,

due to the skew-symmetry of matrix 𝐽𝑚. □

Further, the following result can be proved, stating that we have derived an order 2𝑠 approximation procedure.

Theorem 4. With reference to (26) and (29), one has: 𝒚1 = 𝒚(ℎ) + 𝑂(ℎ2𝑠+1).

Proof. See [73, Theorem 1]. □

Interestingly enough, the problem of determining 𝜎 can be cast into the problem of finding the Fourier coefficients 𝛾𝑗 (𝜎). In fact,
from (35) and (36), one deduces the following system of (generally nonlinear) equations:

𝛾𝑗 (𝜎) = 𝐽𝑚 ∫

1

0
𝑃𝑗 (𝑐)∇𝐻

(

𝒚0 + ℎ
𝑠−1
∑

𝓁=0
∫

𝑐

0
𝑃𝓁(𝑥)d𝑥 𝛾𝓁(𝜎)

)

d𝑐, 𝑗 = 0,… , 𝑠 − 1. (38)

Once this system is solved, the new approximation is formally given by (37), as above explained.

3.1. Discretization of the Fourier coefficients

Quoting Dahlquist and Bijörk [96, page 521], as is well known, even many relatively simple integrals cannot be expressed in finite terms
of elementary functions, and thus must be evaluated by numerical methods. Within our framework, this quite obvious statement means
that we cannot in general directly compute the Fourier coefficients (36): instead, we can approximate them by using a suitable
7
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quadrature rule, which we choose as the Gauss–Legendre formula of order 2𝑘, for a convenient 𝑘 ≥ 𝑠, with abscissae {𝑐𝑖} given by
the zeros of 𝑃𝑘, i.e., such that 𝑃𝑘(𝑐𝑖) = 0, 𝑖 = 1,… , 𝑘, and weights

𝑏𝑖 = ∫

1

0

∏

𝑗≠𝑖

𝑐 − 𝑐𝑗
𝑐𝑖 − 𝑐𝑗

d𝑐, 𝑖 = 1,… , 𝑘.

In so doing, we obtain:

𝛾̂𝑗 ∶= 𝐽𝑚
𝑘
∑

𝑖=1
𝑏𝑖𝑃𝑗 (𝑐𝑖)∇𝐻(𝜎(𝑐𝑖ℎ)) ≡ 𝛾𝑗 (𝜎) + 𝛥𝑗 (ℎ), 𝑗 = 0,… , 𝑠 − 1, (39)

with 𝛥𝑗 (ℎ) the quadrature error. For sake of brevity, we shall continue to use the same symbol 𝜎 for the new polynomial
approximation obtained by formally substituting 𝛾̂𝑗 to 𝛾𝑗 (𝜎), 𝑗 = 0,… , 𝑠 − 1, in (34) and (35), with the new approximation now
given by

𝒚1 ∶= 𝜎(ℎ) = 𝒚0 + ℎ𝛾̂0, (40)

in place of (37), and the discrete problem

𝛾̂𝑗 = 𝐽𝑚
𝑘
∑

𝑖=1
𝑏𝑖𝑃𝑗 (𝑐𝑖)∇𝐻

(

𝒚0 + ℎ
𝑠−1
∑

𝓁=0
∫

𝑐𝑖

0
𝑃𝓁(𝑥)d𝑥 𝛾̂𝓁

)

, 𝑗 = 0,… , 𝑠 − 1, (41)

in place of (38).

Definition 1. The method defined by (39)–(41) is named Hamiltonian Boundary Value Method with parameters 𝑘 and 𝑠: in short,
HBVM(𝑘, 𝑠).

Concerning the quadrature error in (39), it is quite straightforward to prove that, assuming a suitably regular Hamiltonian
function 𝐻 , i.e., 𝑓 (𝑥) in (18), then:

• in the relevant case where 𝑓 ∈ 𝛱𝜈 , with 𝜈 ≥ 1,4 then the integrand in (36) is a polynomial of degree at most:

(𝜈 − 1)2𝑠 + 2𝑠 − 1 = 2𝜈𝑠 − 1.

Consequently, the quadrature is exact, provided that

𝜈 ≤ 𝑘∕𝑠; (42)

• conversely, since the quadrature error is proportional to the 2𝑘th derivative of the integrand, then

𝛥𝑗 (ℎ) = 𝑂(ℎ2𝑘−𝑗 ), 𝑗 = 0,… , 𝑠 − 1. (43)

The above arguments, allows us to state the following conservation result.

Theorem 5. With reference to (18) and (26), if 𝑓 ∈ 𝛱𝜈 with 𝜈 satisfying (42), then 𝐻(𝒚1) = 𝐻(𝒚0). Conversely, 𝐻(𝒚1) = 𝐻(𝒚0)+𝑂(ℎ2𝑘+1)

Proof. The first part of the statement follows from Theorem 3, due to the fact that the quadrature is exact. The second part follows
similarly, by considering that, by virtue of Lemma 1,

[

∫

1

0
𝑃𝑗 (𝑐)∇𝐻(𝜎(𝑐ℎ))d𝑐

]

= 𝑂(ℎ𝑗 ), 𝑗 = 0,… , 𝑠 − 1.

Consequently, from (39) and (43) one has:

𝐻(𝒚1) −𝐻(𝒚0) = 𝐻(𝜎(ℎ)) −𝐻(𝜎(0)) = ℎ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤𝜎̇(𝑐ℎ)d𝑐

= ℎ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤

𝑠−1
∑

𝑗=0
𝑃𝑗 (𝑐)𝛾̂𝑗d𝑐

= ℎ∫

1

0
∇𝐻(𝜎(𝑐ℎ))⊤

𝑠−1
∑

𝑗=0
𝑃𝑗 (𝑐)

[

𝛾𝑗 (𝜎) + 𝛥𝑗 (ℎ)
]

d𝑐

= ℎ
𝑠−1
∑

𝑗=0

[

∫

1

0
𝑃𝑗 (𝑐)∇𝐻(𝜎(𝑐ℎ))d𝑐

]⊤

𝐽𝑚

[

∫

1

0
𝑃𝑗 (𝑐)∇𝐻(𝜎(𝑐ℎ))d𝑐

]

4 Actually, the case 𝜈 = 2 is referred to as the ‘‘classical’’ NLSE.
8
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+ ℎ
𝑠−1
∑

𝑗=0

[

∫

1

0
𝑃𝑗 (𝑐)∇𝐻(𝜎(𝑐ℎ))d𝑐

]⊤

𝛥𝑗 (ℎ) = ℎ
𝑠−1
∑

𝑗=0
𝑂(ℎ𝑗 )𝑂(ℎ2𝑘−𝑗 ) = 𝑂(ℎ2𝑘+1),

due to the skew-symmetry of matrix 𝐽𝑚. □

Remark 2. From the result of Theorem 5 it follows that:

• either an exact
• or a practical

energy conservation can always be gained, by choosing 𝑘 large enough. In fact, in the latter case, it is enough that the energy error
be within the roundoff error level.

3.2. Runge–Kutta form

The HBVM(𝑘, 𝑠) method (39)–(41) can be seen to be a 𝑘-stage Runge–Kutta (RK) method. As matter of fact,

𝑌𝑖 ∶= 𝜎(𝑐𝑖ℎ) = 𝒚0 + ℎ
𝑠−1
∑

𝓁=0
∫

𝑐𝑖

0
𝑃𝓁(𝑥)d𝑥 𝛾̂𝓁 , 𝑖 = 1,… , 𝑘, (44)

can be regarded as its 𝑖th stage. In fact, by plugging it at the r.h.s. that of (41), and considering (44), one obtains (by slightly
adapting the indices) :

𝑌𝑖 = 𝒚0 + ℎ
𝑠−1
∑

𝓁=0
∫

𝑐𝑖

0
𝑃𝓁(𝑥)d𝑥

𝑘
∑

𝑗=1
𝑏𝑗𝑃𝓁(𝑐𝑗 )𝐽𝑚∇𝐻(𝑌𝑗 )

= 𝒚0 + ℎ
𝑘
∑

𝑗=1
𝑏𝑗

[𝑠−1
∑

𝓁=0
∫

𝑐𝑖

0
𝑃𝓁(𝑥)d𝑥𝑃𝓁(𝑐𝑗 )

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ 𝑎𝑖𝑗

𝐽𝑚∇𝐻(𝑌𝑗 ), 𝑖 = 1,… , 𝑘, (45)

with the new approximation given, considering that 𝑃0(𝑐) ≡ 1, by:

𝒚1 = 𝒚0 + ℎ
𝑘
∑

𝑖=1
𝑏𝑖𝐽𝑚∇𝐻(𝑌𝑖). (46)

Consequently, by setting 𝒃 = (𝑏1,… , 𝑏𝑘)⊤ and 𝒄 = (𝑐1,… , 𝑐𝑘)⊤ the vectors of the weights and the abscissae of the quadrature, and
𝐴 = (𝑎𝑖𝑗 ) ∈ R𝑘×𝑘 (see (45)) the Butcher matrix, we have derived the 𝑘-stage RK method

𝒄 𝐴
𝒃⊤

. (47)

Moreover, concerning the Butcher matrix, the following result holds true.

Theorem 6. Setting the matrices

𝑠 =
⎛

⎜

⎜

⎝

𝑃0(𝑐1) … 𝑃𝑠−1(𝑐1)
⋮ ⋮

𝑃0(𝑐𝑘) … 𝑃𝑠−1(𝑐𝑘)

⎞

⎟

⎟

⎠

, 𝛺 =
⎛

⎜

⎜

⎝

𝑏1
⋱

𝑏𝑘

⎞

⎟

⎟

⎠

,

𝑠 =
⎛

⎜

⎜

⎝

∫ 𝑐10 𝑃0(𝑥)d𝑥 … ∫ 𝑐10 𝑃𝑠−1(𝑥)d𝑥
⋮ ⋮

∫ 𝑐𝑘0 𝑃0(𝑥)d𝑥 … ∫ 𝑐𝑘0 𝑃𝑠−1(𝑥)d𝑥

⎞

⎟

⎟

⎠

, (48)

one has that the Butcher matrix in (47) is given by:

𝐴 = 𝑠⊤
𝑠 𝛺. (49)

Proof. The statement immediately follows by considering the (𝑖, 𝑗)th entry of the matrices at each member of (49). □

By defining the block vectors

𝑌 =
⎛

⎜

⎜

⎝

𝑌1
⋮
𝑌𝑘

⎞

⎟

⎟

⎠

, ∇𝐻(𝑌 ) =
⎛

⎜

⎜

⎝

∇𝐻(𝑌1)
⋮

∇𝐻(𝑌𝑘)

⎞

⎟

⎟

⎠

,

and 𝑒 = (1,… , 1)⊤ ∈ R𝑘, the stage Eqs. (45) can be cast in vector form, by virtue of (49), as
⊤

9

𝑌 = 𝑒 ⊗ 𝒚0 + ℎ𝑠𝑠 𝛺⊗ 𝐽𝑚∇𝐻(𝑌 ). (50)
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This latter equation can be, in turn, rewritten as

𝑌 = 𝑒 ⊗ 𝒚0 + ℎ𝑠 ⊗ 𝐼2𝑚𝜸̂,

having set (see (41) and (44))

𝜸̂ ≡
⎛

⎜

⎜

⎝

𝛾̂0
⋮
𝛾̂𝑠−1

⎞

⎟

⎟

⎠

= ⊤
𝑠 𝛺⊗ 𝐽𝑚∇𝐻(𝑌 ),

the block vector with the (approximate) Fourier coefficients (41). By combining the last two equations, one then obtains

𝜸̂ = ⊤
𝑠 𝛺⊗ 𝐽𝑚∇𝐻

(

𝑒 ⊗ 𝒚0 + ℎ𝑠 ⊗ 𝐼2𝑚𝜸̂
)

. (51)

Remark 3. In other words, even though a HBVM(𝑘, 𝑠) method is a 𝑘-stage RK method and, therefore, its stage Eq. (50) has (block)-
dimension 𝑘, the actual discrete problem to be solved at each time-step can be cast as (51), thus having (block)-dimension 𝑠,
independently of 𝑘.

What exposed above, in turn, allows using relatively large values of 𝑘, in view of getting an (either exact of practical) conservation
of the Hamiltonian, according to Theorem 5. The efficient solution of the discrete problem (51) will be discussed in Section 4.

We conclude this section by reporting the following additional result, concerning a HBVM(𝑘, 𝑠) method. For the corresponding
proofs we refer, .e.g., to the monograph [72].

Theorem 7. For all 𝑘 ≥ 𝑠, a HBVM(𝑘, 𝑠) method is symmetric and has order 2𝑠. When 𝑘 = 𝑠 it reduces to the 𝑠-stage Gauss-collocation
method.

3.3. HBVMs as spectral methods in time

An interesting interpretation of HBVMs is that they can be regarded as spectral methods in time. In more detail, let us recall the
expansion (31)–(32). Assuming that 𝒚̇ ∈ 𝐿2[0, ℎ], it then follows that

‖𝒚̇‖2
𝐿2 =

∑

𝑗≥0
‖𝛾𝑗 (𝒚)‖2 <∞ ⇒ ‖𝛾𝑗 (𝒚)‖ → 0, 𝑗 → ∞.

Consequently, if we are using a finite precision arithmetic with machine epsilon 𝜀, and we choose the degree 𝑠 of the polynomial
approximation 𝜎 in (34)–(36) such that

∀𝑗 ≥ 𝑠 ∶ ‖𝛾𝑗 (𝒚)‖ < 𝜀 ⋅ max
𝑖=0,…,𝑠−1

‖𝛾𝑖(𝒚)‖, (52)

it then follows that

𝜎(𝑐ℎ) ≐ 𝒚(𝑐ℎ), 𝑐 ∈ [0, 1], (53)

where ≐ means equal within roundoff errors.

Definition 2. We shall refer to a HBVM(𝑘, 𝑠) method such that 𝑘 and 𝑠, with 𝑘 > 𝑠, are large enough such that (see (36) and (39))
both

𝛾̂𝑗 ≐ 𝛾𝑗 (𝜎), 𝑗 = 0,… , 𝑠 − 1,

and (52) hold true, so that (53) follows, as a Spectral HBVM or, in short, SHBVM.5

The use of HBVMs as spectral methods in time has been studied in [97]. In particular, the choice of 𝑠 has been investigated
in [98], whereas, hereafter we shall consider the following choice for 𝑘 [92]:

𝑘 = max{20, 𝑠 + 2}. (54)

4. Efficient application of HBVMs to the NLSE

Solving the discrete problem (51) could be, in general, a severe computational issue, because of many reasons:

• the high dimensionality, 2𝑚 = 4𝑁 + 2 (see (23), (24), and (26)), of the state space, if a spectrally accurate space
semi-discretization is targeted;

• the possible large (block)-size 𝑠 of 𝜸̂, in view of the use of HBVMs as spectral methods in time;

5 As is clear, both conditions are required, for (53) to hold true.
10
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• the unpractical use of (51) to derive a straightforward fixed-point iteration, which would require the use of a very small
stepsize ℎ.

Consequently, we need an efficient Newton-type iteration for this purpose. To begin with, let us start considering the simplified
Newton iteration for solving

𝐺(𝜸̂) ∶= 𝜸̂ − ⊤
𝑠 𝛺⊗ 𝐽𝑚∇𝐻

(

𝑒 ⊗ 𝒚0 + ℎ𝑠 ⊗ 𝐼2𝑚𝜸̂
)

= 𝟎, (55)

which, in view of the fact that (see (48))

⊤
𝑠 𝛺𝑠 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜉0 −𝜉1
𝜉1 0 ⋱

⋱ ⋱ −𝜉𝑠−1
𝜉𝑠−1 0

⎞

⎟

⎟

⎟

⎟

⎠

=∶ 𝑋𝑠, 𝜉𝑖 =
1

2
√

|4𝑖2 − 1|
, 𝑖 = 0,… , 𝑠 − 1, (56)

reads
[

𝐼2𝑠𝑚 − ℎ𝑋𝑠 ⊗
(

𝐽𝑚∇2𝐻(𝒚0)
)]

𝛥𝜸̂𝑟 = −𝐺(𝜸̂𝑟), 𝑟 = 0, 1, 2,… , (57)

with 𝜸̂0 = 𝟎 a convenient initial guess. In this form, however, the iteration (57) would require the factorization of a 2𝑠𝑚×2𝑠𝑚 matrix
at each time-step, which would be too expensive.

In this respect, a first improvement can be obtained by observing that the problem (16) has a leading linear part, according to
(22), when 𝑁 is large (as in the case when dealing with a spectrally accurate space semi-discretization). Consequently, we could
consider the approximation

𝐽𝑚∇2𝐻(𝒚0) ≈ 𝐽 ⊗𝐷,

with matrix 𝐽 defined in (6). In so doing (57) simplifies to
[

𝐼2𝑠𝑚 − ℎ𝑋𝑠 ⊗ 𝐽 ⊗𝐷
]

𝛥𝜸̂𝑟 = −𝐺(𝜸̂𝑟), 𝑟 = 0, 1,… , (58)

which has the advantage of having the same coefficient matrix for all time-steps. As is clear, however, this matrix has still dimension
2𝑠𝑚 × 2𝑠𝑚, which can be again unpractical, when using HBVMs as SHBVMs, and considering that its factors are in general full.

The second, and more decisive, improvement can be obtained via a blended iteration for solving (58). The basic idea, which has
been initially developed in a series of papers (see [99–103]) focused on block implicit methods for ODEs,6 and adapted in [104]
(see also [105]) for HBVMs,7 relies on the combination of Eq. (58) with an equivalent formulation, i.e.,

𝜌𝑠
[

𝑋−1
𝑠 ⊗ 𝐼2𝑚 − ℎ𝐼𝑠 ⊗ 𝐽 ⊗𝐷

]

𝛥𝜸̂𝑟 = −
(

𝜌𝑠𝑋
−1
𝑠 ⊗ 𝐼2𝑚

)

𝐺(𝜸̂𝑟), 𝑟 = 0, 1,… , (59)

with the scalar parameter 𝜌𝑠 defined as8

𝜌𝑠 = min
𝜆∈𝜎(𝑋𝑠)

|𝜆|, (60)

combined (i.e., blended) with weights

𝐼𝑠 ⊗ 𝛤 and 𝐼𝑠 ⊗ (𝐼2𝑚 − 𝛤 ),

respectively, where

𝛤 =
(

𝐼2𝑚 − ℎ𝜌𝑠𝐽 ⊗𝐷
)−1 .

The good news is now twofold:

• in so doing, the inverse of the coefficient matrix, required by the iterative procedure, can be seen to be given by

𝐼𝑠 ⊗ 𝛤,

i.e., the same matrix defined above. The block diagonal structure of such a matrix implies that the leading cost is essentially
independent of 𝑠;

• moreover, 𝛤 is a very sparse matrix. As matter of fact, one directly verifies that:

𝛤 = 𝐼2 ⊗ (𝐼𝑚 + 𝐵2)−1 + 𝐽 ⊗
[

𝐵(𝐼𝑚 + 𝐵2)−1
]

, 𝐵 = ℎ𝜌𝑠𝐷, (61)

which can be stored in two vectors, containing the main diagonals of (𝐼𝑚 + 𝐵2)−1 and 𝐵(𝐼𝑚 + 𝐵2)−1, respectively. As is clear,
the block diagonal structure of 𝛤 reflects the decoupling of the problem along the Fourier modes.

For sake of completeness, the resulting final algorithm is listed in Table 1, where we assume that 𝛤 has been computed (once for
all time-steps) through (60)–(61).

6 The blended iteration has been implemented in the computational codes BIM [100] and BIMD [101].
7 See the code hbvm available at the webpage of the monograph [72].
8 As is usual, 𝜎(𝑋 ) denotes the spectrum of matrix 𝑋 .
11
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t

Table 1
Blended iteration for solving (55).

𝜸̂0 = 𝟎
for 𝑟 = 0, 1, 2,…

𝜼𝑟 = −𝐺(𝜸̂𝑟)
𝜼𝑟1 = (𝜌𝑠𝑋−1

𝑠 ⊗ 𝐼2𝑚) 𝜼𝑟

𝛥𝜸̂𝑟 = 𝐼𝑠 ⊗ 𝛤
[

𝜼𝑟1 + 𝐼𝑠 ⊗ 𝛤
(

𝜼𝑟 − 𝜼𝑟1
)]

𝜸̂𝑟+1 = 𝜸̂𝑟 + 𝛥𝜸̂𝑟

end

Remark 4. It must be stressed that, in order to obtain energy-conservation and spectral accuracy in time, the blended iteration in
Table 1 has to be carried out until full machine accuracy is gained. This is, indeed, the implementation considered in the numerical
tests.

5. Numerical examples

We now report a few numerical results, aimed at assessing the theoretical findings, and proving the effectiveness of HBVMs,
especially when used as SHBVMs. All numerical tests have been carried out in Matlab© (Rel. 2023b) using a Silicon M2-based
computer, with 16 GB of shared memory.

5.1. Example 1

The first test problem is given by the so called focusing case of the classical NLSE, for which 𝑓 (𝑥) = 𝑥2 in (1). In such a case, the
initial condition at 𝑡 = 0 is taken from the (known) solution,

𝜓(𝑥, 𝑡) = sech(𝑥 − 𝑥0 − 2𝜅𝑡) exp(i((1 − 𝜅2)𝑡 + 𝜅𝑥)), (𝑥, 𝑡) ∈ [−160, 160] × [0, 20], (62)

where we have used the parameters 𝑥0 = −100 and 𝜅 = 5. Such solution, named bright soliton [18,106], is depicted in Fig. 1. We
observe that, since 𝑓 (𝑥) is a polynomial of degree 2, then any HBVM(2𝑠, 𝑠) is exactly energy-conserving and of order 2𝑠, according
to Theorems 5 and 7. In particular, in such a case the HBVM(2,1) method coincides with the so called AVF method [69], used for
solving the semi-discrete Hamiltonian problem (16)–(17). We shall solve the problem over the given time interval [0, 20] by using
the following methods (all implemented in the same code):

• HBVM(2,1) (i.e., the AVF method), with stepsizes ℎ = 2−𝑛10−1, 𝑛 = 3, 4,… , 12;
• HBVM(4,2), with stepsizes ℎ = 2−𝑛10−1, 𝑛 = 1, 2,… , 8;
• HBVM(6,3), with stepsizes ℎ = 2−𝑛10−1, 𝑛 = 0, 1,… , 6;
• HBVM(20,18), which is spectrally accurate in time, when using the stepsize ℎ = 0.1 (i.e., it provides a SHBVM).

For all such methods we use a value of 𝑁 = 1200 in (20)–(23). Consequently, we obtain a system of 4802 Hamiltonian ODEs (16).
By using this value of 𝑁 , the space semi-discretization error falls within the double precision IEEE roundoff error level. Further, the
constant values of Hamiltonian, mass, and momentum in (18) and (19) are respectively given by:

𝐻 = 74
3
, 𝑀1 = 2, 𝑀2 = − 1

32
. (63)

We also compare the previous methods with the two explicit symplectic composition methods described in [37], coupling the
standard second-order difference of the second space-derivative, with parameter 𝛥𝑥, with a composition method of order 1 (S1)
or 2 (S2) in time, so that, when using a stepsize 𝛥𝑡, the error is either 𝑂(𝛥𝑥2 + 𝛥𝑡) or 𝑂(𝛥𝑥2 + 𝛥𝑡2), respectively. However, because
f stability constraints, 𝛥𝑡 is not independent of 𝛥𝑥. In particular, we use 𝛥𝑡 = 1

2𝛥𝑥
2. Consequently, both methods are actually only

first order accurate, since the error is 𝑂(𝛥𝑥2) = 𝑂(𝛥𝑡) for both of them. In light of this, we consider the methods S1 and S2 with
discretization parameters:

𝛥𝑥 = 0.32
𝑛
, 𝛥𝑡 = 1

2

(0.32
𝑛

)2
, 𝑛 = 5, 10, 20, 40, 80,

o that we have a space semi-discretization with 103𝑛 + 1 points, for a total of [20∕𝛥𝑡] timesteps, where [⋅] denotes the rounding of
he argument. For all methods, we compare the errors in the last timestep.

The two plots in Fig. 2 show the obtained results:

• in the left-plot, we have the error versus the used stepsize, showing the predicted order:

– 1 for S1 and S2,
– 2 for HBVM(2,1) (i.e., the AVF method),
– 4 for HBVM(4,2),
– 6 for HBVM(6,3).
12
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Journal of Computational and Applied Mathematics 445 (2024) 115826L. Barletti et al.
Fig. 1. Example 1 - plot of the modulus of 𝜓(𝑥, 𝑡) in (62).

Fig. 2. Example 1 - error versus stepsize (left-plot) and error versus execution time (right-plot).

• in the right-plot, we have the so called work-precision diagram, where the errors are plotted against the execution times (in
sec). As one may see, the higher the order of the method, the better its performance, with the SHBVM reaching full accuracy
in a moderate time.

From the obtained results, it clearly follows that the SHBVM is the method with the best performance. This conclusion is further
confirmed by the plots in Fig. 3, where there are:

• the relative errors in the Hamiltonian, mass, and momentum for the AVF and HBVM(4,2) methods used with stepsize ℎ = 10−2
(upper plots);

• the relative errors in the invariants for the SHBVM used with stepsize ℎ = 0.1 (lower left-plot), and the modulus of the absolute
error (lower right-plot).

From the pictures, one can see that all methods are energy-conserving, as expected. However, the AVF and HBVM(4,2) methods
only approximately conserve the other invariants (though with no drift), unlike the SHBVM, for which they are conserved up to
roundoff. For this latter method, also the solution error can be seen to be within the roundoff error level.

5.2. Example 2

We now consider the same equation used in the first example, but with a different initial condition. Namely (compare with (62)),

𝜓(𝑥, 0) = sech(𝑥 − 𝑥 ) exp(i𝜅𝑥) + sech(𝑥 + 𝑥 ) exp(−i𝜅𝑥), 𝑥 ∈ [−160, 160], (64)
13
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Fig. 3. Example 1 - errors in the invariants for the AVF and HBVM(4,2) methods used with stepsize ℎ = 10−2 (upper plots); errors in the invariants (lower
left-plot) and in the solution (lower right-plot) for SHBVM used with stepsize ℎ = 0.1.

with the same parameters 𝑥0 = −100 and 𝜅 = 5 considered for (62). In this case, we have two bright solitons that collide at 𝑡 = 10
and emerge after the crossing. In such a case, the values of the invariants are (compare with (63)):

𝐻 = 148
3
, 𝑀1 = 4, 𝑀2 = 0. (65)

As in the previous example, we solve the problem by using a trigonometric polynomial of degree 𝑁 = 1200 for the space
semi-discretization, and covering the time interval [0, 20] by using a stepsize:

• ℎ = 10−2, for the AVF (i.e., HBVM(2,1)) and HBVM(4,2) methods;
• ℎ = 0.1, for the HBVM(20,18) method, thus obtaining a spectrally accurate space–time method (SHBVM).

The obtained results are depicted in Fig. 4, where one may find9:

• the errors in the invariants for the AVF and HBVM(4,2) methods (upper plots), which exactly conserve the energy 𝐻 and the
momentum 𝑀2, whereas there is a numerical ‘‘peak’’ in the mass 𝑀1, when the two solitons collide;

• the errors in the invariants for the SHBVM method, along with the modulus of the computed solution, where one may see that
the two solitons emerge after the collision at 𝑡 = 10 (lower plots).

9 According to (65) we consider the relative error for 𝐻 and 𝑀 , and the absolute error for 𝑀 .
14
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Fig. 4. Example 2 - errors in the invariants for the AVF and HBVM(4,2) methods used with stepsize ℎ = 10−2 (upper plots, with the Hamiltonian and momentum
errors, both within roundoff, overlapping); errors in the invariants and modulus of the computed solution for the SHBVM method used with stepsize ℎ = 0.1
(lower plots).

As one may see, the first two methods exhibit an artificial peak in the numerical mass, where the two solitons collide, whereas the
SHBVM method has all the errors in the invariants within the roundoff error level and, remarkably enough, there are no peaks at
𝑡 = 10, where the two solitons cross.

5.3. Example 3

The next test problem is given by the so called defocusing case of the classical NLSE, for which 𝑓 (𝑥) = −𝑥2 in (1). It is known
that this problem is much more challenging than the focusing case. The initial condition is taken as:

𝜓(𝑥, 0) = (1 − sech(𝑥))(1 − exp(𝜆𝑥2 + i𝜃𝑥)), 𝑥 ∈ [−120, 120]. (66)

We choose the parameters 𝜆 = −2 and 𝜃 = 1
2 . The values of the invariants are given by10:

𝐻 ≈ 118, 𝑀1 ≈ 236, 𝑀2 ≈ 0. (67)

We solve this problem by using 𝑁 = 1200 for the space semi-discretization and, for the time integration, a HBVM(22,20) with stepsize
ℎ = 0.1 for 200 timesteps (thus, covering the interval [0, 20]). The method turns out to be a SHBVM, for the considered stepsize. In
Fig. 5 we plot the obtained result: in the upper-left, the modulus of 𝜓(𝑥, 𝑡); in the upper-right the errors in the invariants (relative,

10 Rounded to the integer.
15
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Fig. 5. Example 3 - modulus of the computed solution (upper left-plot), errors in the invariants (upper right-plot), and real and imaginary part of the solution
(middle plots) for SHBVM used with stepsize ℎ = 0.1; errors in the invariants for AVF and HBVM(4,2) used with stepsize ℎ = 10−2 (lower plots).

for the Hamiltonian and the mass, absolute for the momentum, according to (67)); in the middle plots are the real and imaginary
parts of the solution, 𝑢 and 𝑣, respectively; for comparison, we also plot the errors in the invariants for the AVF (i.e., HBVM(2,1))
16
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Fig. 6. Example 4 - errors in the invariants for the AVF and HBVM(6,2) methods used with stepsize ℎ = 5 ⋅ 10−3 (upper plots); errors in the invariants (lower
left-plot) and modulus of the computed solution (lower right-plot) for SHBVM used with stepsize ℎ = 5 ⋅ 10−2.

and the HBVM(4,2) methods (lower plots), when using a stepsize ℎ = 10−2. As is clear, all methods conserve the energy, but the
SHBVM exhibits a much better conservation of mass and momentum (always within the roundoff error level).

5.4. Example 4

As a last example, we consider the cubic–quintic nonlinear Schrödinger equation, already mentioned in the introduction (see
also [107]), with 𝑓 (𝑥) = 𝑥2− 1

3𝑥
3. We use the initial condition 𝜓(𝑥, 0) from (62), and the same space–time domain [−160, 160]×[0, 20].

In such a case, any HBVM(3𝑠, 𝑠) method turns out to be energy conserving, according to Theorem 5. The values of the invariants
are now given by11:

𝐻 ≈ 25, 𝑀1 = 2, 𝑀2 ≈ 0. (68)

In Fig. 6 we plot the errors in the invariants for12:

• the AVF (i.e., HBVM(3,1)) and the HBVM(6,2) methods used with a stepsize ℎ = 5 ⋅ 10−3 (upper plots);
• the HBVM(20,18) method, which is spectrally accurate in time (i.e., it is a SHBVM), when using a stepsize ℎ = 5 ⋅ 10−2. We

also plot the modulus of the computed solution (lower plots).

11 𝐻 and 𝑀2 are rounded to the integer.
12 According to (68), we consider the relative error for 𝐻 and 𝑀 , and the absolute error for 𝑀 .
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In all cases, we have used a trigonometric polynomial approximation of degree 𝑁 = 1200 which, as in the case of the previous
examples, turns out to provide a spectrally accurate space semi-discretization. From the obtained results, one infers that all methods
are energy-conserving. However, only the SHBVM has all the errors in the invariants within the roundoff error level, whereas this
is not the case for the other methods, though no numerical drift is observed.

6. Conclusions

In this paper, we have reviewed in major detail an effective approach for the numerical solution of the NLSE, when equipped with
initial and periodic boundary conditions. After a space semi-discretization, obtained by using a classical Fourier expansion (because
of the periodic boundary conditions), the time integration is carried out by using energy-conserving methods in the HBVMs class.
The actual implementation of the methods, for the problem at hand, has been explained in full details. Also their use as spectral
methods in time (SHBVM) has been recalled. In particular, the numerical tests here reported clearly show the advantage of SHBVMs
over other existing methods. As a possible development of this approach, we mention the possibility of a parallel-in-time solution
of the problem, following the approach in [108,109], as well as the extension to more space dimensions.
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