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Abstract. Teaching analysis of algorithms to students in Computer Science degrees, using the approach
popularized by Knuth in his series of books “The Art of Computer Programming" and later by Sedgewick
and Flajolet in the book “An Introduction to the Analysis of Algorithms", is not a simple task since, in
general, these students are more interested in the implementation of an algorithm than in the corresponding
theoretical aspects. This approach concentrates on precisely characterizing the performance of algorithms by
determining their best, worst and average case performance using a methodology based on symbolic tools such
as recurrence relations and generating functions. The most difficult aspect is to understand the average case
since this corresponds to studying the algorithm as its possible inputs vary: this represents the most important
goal since generally students have no difficulty in understanding the best and worst cases, corresponding to
particular input configurations. A compromise that has been successful over the years consists in teaching
students the analytical aspects of the problem and then organize a simulation of the algorithm with a system
of symbolic computation in order to exhaustively check the theoretical results.
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1 Introduction
The author of this paper has a quite long research and teaching experience in the context of the
analysis of algorithms, as popularized by Knuth [5, 6, 7] and Sedgewick and Flajolet [14]; this
approach to the analysis of algorithms concentrates on precisely characterizing the performance of
algorithms by determining their best, worst and average case performance using a methodology
that can be refined to produce increasingly precise answers when desired.
The Analysis of Algorithms teaching experience concerns the Computer Science degree at the
University of Florence and, in general, involves students more interested in the implementation of
an algorithm than in the corresponding theoretical aspects. A compromise that was successful over
the years consists in teaching students the analytical aspects of the analysis of an algorithm and
then asking them to implement the algorithm in order to precisely check the theoretical results.
This is in general possible for small sizes of the problem under consideration while for larger sizes
it is necessary to set up a simulation by executing the algorithm on a sufficiently large sample of
inputs. In this latter case, obviously, the theoretical results cannot be checked precisely and some
statistical test must be used to conclude that the simulation agrees with the theory. In other words,
during the course, the analysis of an algorithm or a data structure is accompanied by its simulation
with a system of symbolic computation, like Maple.
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In the field of algorithms and data structures, simulation is often used to determine whether an
algorithm or a program is correct or not. When a program has to act on many data, and the
real ones on which it will work are not available, random generators of input data are used to
reproduce the characteristics of the real data. This is common practice and knowledge of the correct
methods of data generation gives immediate help for a good setting. In a course about analysis of
algorithms various mathematical techniques are typically illustrated to determine the complexity
of an algorithm and usually the problem is studied in the best, worst and average cases. The most
interesting mathematical problems arise in the study of the average case because this corresponds
to running the algorithm on all its possible inputs or to consider all possible data structures of a
certain size.
The greater intrinsic difficulty in studying the average case translates into a greater difficulty for
students in understanding what a study of this type really means. In our teaching experience we
have often see students present the results of an algorithm experimentation sold as an average
case study, when instead it was simply the arithmetic mean of the result of a few executions of the
algorithm involved. This also happens in second and third level university courses.
Teaching a course on algorithm analysis gave us the opportunity to highlight what could be the
best strategy to make students learn how to set up the simulation of an algorithm, using a system
for symbolic computation in order to fully understand the theoretical results.
In this paper we illustrate the problem by analyzing the well-known Quicksort algorithm. In
particular, we perform an average case analysis of the algorithm in terms of comparisons and
exchanges executed to sort an array and set up the corresponding simulation by using Maple 2020
[16]. This is an extended version of the presentation made during the Maple Conference 2022, in
the section Maple in Education. The approach illustrated in this paper can be easily adopted for
simulating other algorithms and analysing characteristics of data structures.

2 AnalyzingQuickSort
Quicksort [4] is one of the most studied sorting algorithms. This algorithm sorts an array 𝑉 of
𝑛 elements by rearranging 𝑉 around one of its elements, the pivot, so that the elements smaller
than the pivot are to its left and larger elements are to its right. During this phase, two pointers are
used to scan the array from left to right and from right to left, respectively. The choice of the pivot
is essential, because the more central it is in the array, the more efficient is the partitioning. The
simplest idea is the one adopted by standard Quicksort which takes an arbitrary element as the
pivot, for example the first or the last element of the array. However, as is well-known, there aremore
sophisticated choices of the pivot that are to be preferred in order to avoid inefficient situations that
arise when the input is already sorted, or nearly so. After the array has been partitioned, Quicksort
is recursively applied to the subarrays on either side of the pivot. Excellent sources for background
information, implementation, variants, and their analysis include [1, 7, 8, 9, 10, 12, 13, 17].
Listing 1 is a Quicksort implementation in Maple that sorts an array 𝑉 of length 𝑛 and performs
𝑛 + 1 comparisons during the partitioning stage by using the last element of the array as pivot: in
fact, the pivot is compared with all the remaining 𝑛 − 1 elements and two of them are compared
twice to allow pointers to cross each other, as will be discussed below. Moreover, we assume for
convenience that the array to be sorted is filled with the values 1, . . . , 𝑛 and that the possible
inputs of the algorithm are the 𝑛! permutations of these values. The reason why the variant of the
algorithm illustrated in Listing 1 is considered, is that for small arrays of length 𝑛 it is quite easy
to exhaustively obtain the cost of the algorithm over all 𝑛! permutations of length 𝑛, comparing
it with the mathematical analysis of the algorithm, as will be illustrated in Section 3. Different
choices of the pivot would give rise to both more complex mathematical relations and more complex
algorithm simulations in the exhaustive case. The input arguments ℓ and 𝑟 bound the sub-array to
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be sorted and the algorithm has to be called with ℓ = 1 and 𝑟 = 𝑛 to sort an array 𝑉 of length 𝑛. As
for the two inner while loops, observe that the increment of pointer 𝑖 stops thanks to the presence
of the pivot, while the decrement of 𝑗 needs the additional check ℓ ≤ 𝑗 to guarantee stopping.
As an example, let us consider the array𝑉 = [5, 6, 2, 1, 7, 3, 8, 4] of length 𝑛 = 8 and see what happens
during the first partitioning stage of the algorithm. The pivot is 𝑉 [8] = 4, and since 𝑉 [1] = 5 > 4
the pointer 𝑖 stops in position 𝑖 = 1; on the other end, since 𝑉 [7] = 8 > 4 and 𝑉 [6] = 3 < 4 the
pointer 𝑗 stops in position 𝑗 = 6 and the elements 5 and 3 are swapped. Then, since 𝑖 < 𝑗, the pivot
is compared with 𝑉 [2] = 6 > 4 and the pointer 𝑖 stops at 𝑖 = 2, while the comparisons 𝑉 [5] = 7 > 4
and 𝑉 [4] = 1 < 4 stop pointer 𝑗 at position 𝑗 = 4, hence, the elements 6 and 1 are swapped. We
still have 𝑖 < 𝑗 and the pivot is compared with 𝑉 [3] = 2 < 4 and with 𝑉 [4] = 6 > 4, so that the
pointer 𝑖 stops at 𝑖 = 4; moreover, since 𝑉 [3] = 2 < 4 pointer 𝑗 stops at 𝑗 = 3. Now we have 𝑖 > 𝑗,

that is, the pointers cross each other and the partitioning step ends with the final swap between
the pivot 𝑉 [8] = 4 and 𝑉 [4] = 6. The final configuration after this phase is 𝑉 = [3, 1, 2, 4, 7, 5, 8, 6] ,
obtained with 9 = 7 + 2 comparisons between elements of the array (note that elements 2 and 6
were compared twice with the pivot) and 4 swaps, 3 of which before the pointers cross each other
plus the final swap to put the pivot in the definitive position. An important observation is that for
an array of length 𝑛, this version of the algorithm always employs 𝑛 + 1 comparisons during the
partitioning phase while the number of exchanges depends on the initial configuration of the array,
as will be explained in detail in Section 2.2.

Listing 1. An implementation of Quicksort in Maple

Quicksort := proc(v::Array , ℓ ::nonnegint , r:: nonnegint)

local p, i, j;

if 0 <= r - ℓ then

p := v[r];

i := ℓ - 1;

j := r;

while i < j do

i := i + 1;

while v[i] < p do i := i + 1; end do;

j := j - 1;

while ℓ <= j and p < v[j] do j := j - 1; end do;

if i < j then

(v[i], v[j]) := (v[j], v[i]);

end if;

end do;

(v[i], v[r]) := (p, v[i]);

Quicksort(v, ℓ , i - 1);

Quicksort(v, i + 1, r);

end if;

return v;

end proc:

2.1 Best and worst cases
The best case is when at each step we have perfectly balanced partitions of dimensions ⌊(𝑛 − 1)/2⌋
and ⌈(𝑛 − 1)/2⌉ . If we denote by𝐶𝑛 the number of comparisons done to sort an array of size 𝑛, with
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𝐶0 = 0, we have:
𝐶min
𝑛 = 𝐶min

⌊(𝑛−1)/2⌋ +𝐶min
⌈(𝑛−1)/2⌉ + 𝑛 + 1; (1)

the presence of the floor and ceiling functions complicates the exact solution of the problem for
general 𝑛 but if we assume that 𝑛 = 2𝑚 − 1 the recurrence relation can be easily solved. In fact, with
this choice we have𝐶2𝑚−1 = 2𝐶2𝑚−1−1 + 2𝑚 = 𝑚2𝑚 which gives𝐶min

𝑛 = (𝑛 + 1) log2(𝑛 + 1). Obviously,
the𝑂(𝑛 log2 𝑛) bound still holds when 𝑛 is not of that form, in fact, each recursive call processes an
array of nearly half the size and we can make only log2 𝑛 nested calls before we reach an array of
size 1.
The worst case is when at each step the partitions degenerate, one is empty and the other contains
𝑛 − 1 elements. In this case we have:

𝐶max
𝑛 = 𝐶max

𝑛−1 + 𝑛 + 1; (2)

this is a simple recurrence relation with solution 𝐶max
𝑛 = 𝑛(𝑛 + 3)/2 = 𝑂(𝑛2)

Listing 2. Returns the number of comparisons in the best case corresponding to relation (1)

Cmin := proc(n:: nonnegint)

option remember;

if n = 0 then

0;

else

n + 1 + Cmin(floor (1/2*n - 1/2)) + Cmin(ceil (1/2*n - 1/2));

end if;

end proc:

Listing 3. Returns the number of comparisons in the worst case corresponding to relation (2)

Cmax := proc(n:: nonnegint)

option remember;

if n = 0 then

0;

else

n + 1 + Cmax(n - 1);

end if;

end proc:

Both recurrence relations can be implemented as Maple procedures, as shown in Listings 2 and 3.

2.2 Average case
For what concerns the average case, we assume that the probability distribution is uniform on all
the permutations of the values 1, · · · , 𝑛. We denote by 𝐶𝑛 the average number of comparisons done
to sort an array of size 𝑛, and 𝜋𝑛,𝑗 the probability that the 𝑗th element is the chosen pivot in an
array of size 𝑛. The recursive design of the algorithm is translated into the following recurrence
relation:

𝐶𝑛 = 𝑛 + 1 +
𝑛∑︁
𝑗=1

𝜋𝑛,𝑗
(
𝐶 𝑗−1 +𝐶𝑛− 𝑗

)
; (3)

in fact, if 𝑗 is the pivot, after the partition phase the two resulting sub-arrays have dimensions
𝑗 − 1 and 𝑛 − 𝑗 and give rise to𝐶 𝑗−1 and𝐶𝑛− 𝑗 comparisons, respectively. In this variant, the pivot is
chosen with a uniform probability, that is 𝜋𝑛,𝑗 = 1/𝑛.
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Listing 4. Returns the number of comparisons in the average case corresponding to relation (3)

Cproc := proc(n:: nonnegint)

local k;

option remember;

if n = 0 then

0;

else

n + 1 + 2*add( Cproc(k), k = 0 .. n - 1 )/n;

end if;

end proc:

As before, the recurrence relation can be implemented as the Maple procedure in Listing 4, however,
in a course on Analysis of Algorithm it is instructive to solve recurrence (3) in terms of generating
functions and the extraction of their coefficients. In fact, generating functions have emerged as one
of the most popular approaches to the analysis of algorithms (see, for example, [3, 5, 6, 7, 14, 15, 18]).
This elegant technique is described in Merlini, Sprugnoli and Verri [11] as the method of coefficients
and for the sake of clarity we summarize here the main concepts of the method; more details and
properties can be found in the original paper.
Let us consider a sequence of numbers 𝐹 = (𝑓0, 𝑓1, 𝑓2, . . .) = (𝑓𝑛)𝑛∈N ; the generating function for the
sequence 𝐹 is defined as the formal power series 𝑓 (𝑡 ) = 𝑓0 + 𝑓1𝑡 + 𝑓2𝑡

2 + · · ·, where the indeterminate
𝑡 is arbitrary. Given the sequence (𝑓𝑛)𝑛∈N, we introduce the generating function operator G, which
applied to (𝑓𝑛)𝑛∈N produces the generating function for the sequence, i.e., G(𝑓𝑛) = 𝑓 (𝑡 ). A more
accurate notation would be G𝑡 (𝑓𝑛)𝑛∈N = 𝑓 (𝑡 ), this notation is essential when (𝑓𝑛)𝑛∈N depends on
some parameter. The operator G is clearly linear. The function 𝑓 (𝑡 ) can be shifted or differentiated
and two functions 𝑓 (𝑡 ) and 𝑔(𝑡 ) can be multiplied. This leads to the following properties for the
operator G:

(linearity) G(𝛼 𝑓𝑛 + 𝛽𝑔𝑛) = 𝛼G(𝑓𝑛) + 𝛽G(𝑔𝑛)

(shifting) G(𝑓𝑛+1) =
G(𝑓𝑛) − 𝑓0

𝑡

(differentiation) G(𝑛𝑓𝑛) = 𝑡𝐷G(𝑓𝑛)

(convolution) G
(

𝑛∑︁
𝑘=0

𝑓𝑘𝑔𝑛−𝑘

)
= G(𝑓𝑛) · G(𝑔𝑛)

The inverse operator [𝑡𝑛] is called the coefficient operator and applied to a generating function 𝑓 (𝑡 )
gives the coefficient of 𝑡𝑛 from 𝑓 (𝑡 ), that is, [𝑡𝑛]𝑓 (𝑡 ) = 𝑓𝑛 . This operator has properties similar to
the previous ones:

(linearity) [𝑡𝑛](𝛼 𝑓 (𝑡 ) + 𝛽𝑔(𝑡 )) = 𝛼[𝑡𝑛]𝑓 (𝑡 ) + 𝛽[𝑡𝑛]𝑔(𝑡 )

(shifting) [𝑡𝑛]𝑡 𝑓 (𝑡 ) = [𝑡𝑛−1]𝑓 (𝑡 )

(differentiation) [𝑡𝑛]𝑓 ′(𝑡 ) = (𝑛 + 1)[𝑡𝑛+1]𝑓 (𝑡 )

(convolution) [𝑡𝑛]𝑓 (𝑡 )𝑔(𝑡 ) =
𝑛∑︁

𝑘=0
[𝑡𝑘 ]𝑓 (𝑡 )[𝑡𝑛−𝑘 ]𝑔(𝑡 )

The operator G can be used to transform a recurrence relation for a sequence (𝑓𝑛)𝑛∈N into an
equation defining the corresponding generating function 𝑓 (𝑡 ); a formula for 𝑓𝑛 can then be found
by extracting the coefficient [𝑡𝑛]𝑓 (𝑡 ). In particular, we can state the following principle of identity:
Given two sequences (𝑓𝑛)𝑛∈N and (𝑔𝑛)𝑛∈N, then G(𝑓𝑛) = G(𝑔𝑛) if and only if for every 𝑛 ∈ N 𝑓𝑛 = 𝑔𝑛 .
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The principle states the condition under which we can pass from an identity about elements to
the corresponding identity about generating functions. In fact, for two generating functions to be
unequal it is sufficient that their coefficient sequences differ by a single element.
In Maple, the well-known gfun package provides tools for determining andmanipulating generating
functions, together with many other native functions, as will be shown below.
Coming back to Quicksort, let us denote by 𝐶(𝑡 ) = ∑

𝑛≥0𝐶𝑛𝑡
𝑛 = G(𝐶𝑛) the generating function of

the sequence (𝐶𝑛)𝑛∈N. Maple can be used at this stage to verify the various steps, some of which
are shown below. From recurrence relation (3), we have

𝑛𝐶𝑛 = 𝑛(𝑛 + 1) + 2
𝑛−1∑︁
𝑘=0

𝐶𝑘

hence

G(𝑛𝐶𝑛) = G(𝑛(𝑛 + 1)) + 2G
(
𝑛−1∑︁
𝑘=0

𝐶𝑘

)
.

Using the rectodiffeq function of the gfun package to find the generating functions (13):
>with(gfun ):
> rectodiffeq({𝑓 (0) = 1, 𝑓 (𝑛) = 1}, 𝑓 (𝑛), 𝑓 (𝑡 ));

(4)(1 − 𝑡 ) 𝑓 (𝑡 ) − 1

> solve((4), 𝑓 (𝑡 ) );

(5)− 1
−1 + 𝑡

> series((5), 𝑡 );
(6)1 + 𝑡 + 𝑡2 + 𝑡3 + 𝑡4 + 𝑡5 + O

(
𝑡6)

> rectodiffeq({𝑓 (0) = 0, 𝑓 (𝑛) = 𝑛}, 𝑓 (𝑛), 𝑓 (𝑡 ));
(7)

(
𝑡2 − 2𝑡 + 1

)
𝑓 (𝑡 ) − 𝑡

> factor(solve((7), 𝑓 (𝑡 )));

(8)
𝑡

(−1 + 𝑡 )2

> series((8), 𝑡 );
(9)𝑡 + 2𝑡2 + 3𝑡3 + 4𝑡4 + 5𝑡5 + O

(
𝑡6)

> rectodiffeq({𝑓 (0) = 0, 𝑓 (𝑛) = 𝑛2}, 𝑓 (𝑛), 𝑓 (𝑡 ));
(10)

(
−𝑡3 + 3𝑡2 − 3𝑡 + 1

)
𝑓 (𝑡 ) − 𝑡2 − 𝑡

> factor(solve((10), 𝑓 (𝑡 )));

(11)− 𝑡 (𝑡 + 1)
(−1 + 𝑡 )3

> series((11), 𝑡 );
(12)𝑡 + 4𝑡2 + 9𝑡3 + 16𝑡4 + 25𝑡5 + O

(
𝑡6)

By applying the properties of the operator and the well known generating functions (as seen above,
where the Maple package gfun is used)

G(1) =
1

1 − 𝑡
, G(𝑛) =

𝑡

(1 − 𝑡 )2 , G
(
𝑛2) =

𝑡 + 𝑡2

(1 − 𝑡 )3 , (13)
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we have:

𝑡𝐶′(𝑡 ) =
𝑡 + 𝑡2

(1 − 𝑡 )3 +
𝑡

(1 − 𝑡 )2 +
2𝑡

1 − 𝑡
𝐶(𝑡 )

𝐶′(𝑡 ) =
2

(1 − 𝑡 )3 +
2

1 − 𝑡
𝐶(𝑡 ). (14)

In order to solve the differential equation (14) we proceed by finding a solution of the associated
homogeneous equation:

𝜌 ′(𝑡 ) =
2𝜌(𝑡 )
1 − 𝑡

,
𝜌 ′(𝑡 )
𝜌(𝑡 )

=
2

1 − 𝑡

and we have
ln 𝜌(𝑡 ) = −2 ln(1 − 𝑡 ), 𝜌(𝑡 ) =

1
(1 − 𝑡 )2 .

Then we differentiate the ratio between 𝐶(𝑡 ) and 𝜌(𝑡 ) :

((1 − 𝑡 )2𝐶(𝑡 ))′ = (1 − 𝑡 )2𝐶′(𝑡 ) − 2(1 − 𝑡 )𝐶(𝑡 ) =

= (1 − 𝑡 )2
(
𝐶′(𝑡 ) − 2

𝐶(𝑡 )
1 − 𝑡

)
=

2
1 − 𝑡

.

Finally we have:
(1 − 𝑡 )2𝐶(𝑡 ) = −2 ln(1 − 𝑡 ) + 𝑘, 𝐶(0) = 𝐶0 = 0,

therefore we have to choose 𝑘 = 0 and

𝐶(𝑡 ) =
2

(1 − 𝑡 )2 ln
1

1 − 𝑡
=

= 2 𝑡 + 5 𝑡2 +
26
3
𝑡3 +

77
6
𝑡4 +

87
5
𝑡5 +

223
10

𝑡6 +𝑂
(
𝑡7) .

In Maple, equation (14) can be solved by using the dsolve function, but care must be taken in
interpreting the result, since 𝐼𝜋 = ln(−1) appears in the result of the call to dsolve. One may clean
the result up by using evalc and the assumption that 0 < 𝑡 < 1. Furthermore, the solution can be
developed by using the Maple function series.

> dsolve({𝐶(0) = 0, diff (𝐶(𝑡 ), 𝑡 ) =
2

(1 − 𝑡 )3 +
2 ·𝐶(𝑡 )
1 − 𝑡

},𝐶(𝑡 )) assuming 𝑡 < 1;

(15)𝐶(𝑡 ) =
−2 ln(−1 + 𝑡 ) + 2 I𝜋

(−1 + 𝑡 )2

>map(evalc,%) assuming 𝑡 :: RealRange(Open(0),Open(1));

(16)𝐶(𝑡 ) = −2 ln(1 − 𝑡 )
(−1 + 𝑡 )2

The value of 𝐶𝑛 can be found by extracting the 𝑛-th coefficient from 𝐶(𝑡 ). We have:

𝐶𝑛 = [𝑡𝑛]
2

(1 − 𝑡 )2 ln
1

1 − 𝑡
=

= 2[𝑡𝑛]
1

(1 − 𝑡 )
G(𝐻𝑛) = 2

𝑛∑︁
𝑘=0

𝐻𝑘 , 𝐻0 = 0,

where

𝐻𝑛 =
𝑛∑︁

𝑘=1

1
𝑘
≈ ln𝑛 + 𝛾,
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with 𝛾 = 0.577215 · · · the Euler’s constant, denotes the 𝑛th harmonic number having generating
function

G(𝐻𝑛) =
1

(1 − 𝑡 )
ln

1
1 − 𝑡

;

in fact, G(𝐻𝑛) can be computed by the convolution property of the operator G applied to the
sequences 𝑓𝑛 = 1

𝑛
and 𝑔𝑛 = 1, with G(𝑓𝑛) = ln 1

1−𝑡 and G(𝑔𝑛) = 1
1−𝑡 . On the other side:

𝐷G(𝐻𝑛) =
1
𝑡
G(𝑛𝐻𝑛) =

1
(1 − 𝑡 )2 ln

1
1 − 𝑡

+
1

(1 − 𝑡 )2

and consequently

𝐶𝑛 = 2[𝑡𝑛]
1
𝑡
G(𝑛𝐻𝑛) − 2[𝑡𝑛]

1
(1 − 𝑡 )2 .

Therefore, the solution of the recurrence relation (3) with 𝐶0 = 0 is:
𝐶𝑛 = 2(𝑛 + 1)(𝐻𝑛+1 − 1), 𝑛 > 0 (17)

To solve recurrence (3) directly in Maple, it is convenient to compute the difference 𝑛𝐶𝑛− (𝑛−1)𝐶𝑛−1
which yields the alternative formula

𝑛𝐶𝑛 = (𝑛 + 1)𝐶𝑛−1 + 2𝑛, (18)
which can be solved by the rsolve procedure (see below; as before, care must be taken in interpret-
ing the result, which involves the Ψ function satisfying the relation Ψ(𝑛 + 1) = 𝐻𝑛+1 − 1/(𝑛 + 1) − 𝛾 ).
> rsolve({𝑛 ·𝐶(𝑛) = (𝑛 + 1) ·𝐶(𝑛 − 1) + 2 · 𝑛,𝐶(0) = 0},𝐶(𝑛));

(19)2 (𝑛 + 1) Ψ(𝑛 + 1) + 2𝛾𝑛 + 2𝛾 − 2𝑛
> simplify(subs(Psi(𝑛 + 1) = harmonic(𝑛 + 1) − 1/(𝑛 + 1) − gamma, (19)));

(20)2 (harmonic(𝑛 + 1) − 1) (𝑛 + 1)
The average number 𝑆𝑛 of exchanges before the pointers 𝑖 and 𝑗 intersect in Listing 1 satisfies a
similar recurrence relation:

𝑆𝑛 =
𝑛 − 2

6
+

1
𝑛

𝑛∑︁
𝑗=1

(𝑆 𝑗−1 + 𝑆𝑛− 𝑗 ), 𝑛 ≥ 2, 𝑆0 = 𝑆1 = 0. (21)

The reasoning is similar to the one for comparisons, but the computation of the average number of
exchanges during the partitioning stage is less trivial. In this case we have to prove that, if 𝑗 is the
pivot, then 𝑛− 𝑗

𝑛−1 ( 𝑗 − 1) exchanges are made on the average and consequently 1
𝑛

∑𝑛
𝑗=1

𝑛− 𝑗

𝑛−1 ( 𝑗 − 1) = 𝑛−2
6

in total. In order to prove this result, let 𝑝 𝑗

𝑘
be the probability to make 𝑘 exchanges during the

partitioning stage when the pivot is 𝑗 (in particular, before the pointers intersect). The value 𝑝 𝑗

𝑘
can

be found by observing that the number of permutations having the value 𝑗 in the last position, 𝑘
elements greater than 𝑗 in the first 𝑗 − 1 positions and 𝑘 elements smaller than 𝑗 in the other 𝑛 − 𝑗

positions, is given by: (
𝑛 − 𝑗

𝑘

) (
𝑗 − 1
𝑘

)
( 𝑗 − 1)! (𝑛 − 𝑗 )!

Finally, dividing by (𝑛 − 1)! we find the value of 𝑝 𝑗

𝑘
. Therefore the average number of exchanges

when the pivot is 𝑗 is given by ∑
𝑘≥0 𝑘𝑝

𝑗

𝑘
and∑︁

𝑘≥0
𝑘

(
𝑗 − 1
𝑘

) (
𝑛 − 𝑗

𝑘

) (
𝑛 − 1
𝑗 − 1

)−1
=

(
𝑛 − 1
𝑗 − 1

)−1 ∑︁
𝑘≥0

𝑘

(
𝑗 − 1
𝑘

) (
𝑛 − 𝑗

𝑘

)
=

=
(
𝑛 − 1
𝑗 − 1

)−1 ∑︁
𝑘≥0

(
𝑛 − 𝑗

𝑘

) (
𝑗 − 2
𝑘 − 1

)
( 𝑗 − 1) =
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= ( 𝑗 − 1)
(
𝑛 − 1
𝑗 − 1

)−1 ∑︁
𝑘≥0

(
𝑛 − 𝑗

𝑘

) (
𝑗 − 2

𝑗 − 1 − 𝑘

)
= ( 𝑗 − 1)

(
𝑛 − 1
𝑗 − 1

)−1 (
𝑛 − 2
𝑗 − 1

)
=

= ( 𝑗 − 1)
( 𝑗 − 1)! (𝑛 − 𝑗 )!

(𝑛 − 1)!
(𝑛 − 2)!

( 𝑗 − 1)! (𝑛 − 𝑗 − 1)!
=

(𝑛 − 𝑗 )( 𝑗 − 1)
𝑛 − 1

,

where we used the Vandermonde formula:∑︁
𝑘≥0

(
𝑟

𝑘

) (
𝑠

𝑛 − 𝑘

)
=

(
𝑟 + 𝑠

𝑛

)
(22)

The average number of exchanges, before the pointers intersect, during the partitioning stage can
finally be determined as follows:

1
𝑛

𝑛∑︁
𝑗=1

𝑛 − 𝑗

𝑛 − 1
( 𝑗 − 1) =

1
𝑛(𝑛 − 1)

𝑛∑︁
𝑗=1

(𝑛𝑗 − 𝑗2 − 𝑛 + 𝑗 ) =
𝑛 − 2

6
;

this result can be easily checked by using the Maple function sum.
Finally, observe that in order to have the average number of exchanges performed by the algorithm,
before and after the pointers intersect, the 𝑛 exchanges that are carried out to put the pivot in its
definitive position during the 𝑛 partitioning must be added to the value 𝑆𝑛 .

Listing 5. Returns the number of exchanges in the average case, before the pointers intersect, corresponding
to relation (21)

Sproc := proc(n:: nonnegint)

local k;

option remember;

if n <= 1 then

0;

else

1/6*n - 1/3 + 2*add(Sproc(k), k = 0 .. n - 1)/n;

end if;

end proc:

In order to solve recurrence relation (21) with generating functions, we need to take care of the
initial condition in 𝑛 = 1 with a Kronecker delta and consequently consider the relation

6𝑛𝑆𝑛 = 𝑛(𝑛 − 2) + 12
𝑛−1∑︁
𝑘=0

𝑆𝑘 + 𝛿𝑛,1;

in fact, in this way, the principle of identity stated before can be applied and the recurrence relation
can be transformed into the following differential equation

𝑆 ′(𝑡 ) =
𝑡2(3 − 𝑡 )
6(1 − 𝑡 )3 +

2
1 − 𝑡

𝑆(𝑡 ) (23)

which has the solution
𝑆(𝑡 ) =

1
3

1
(1 − 𝑡 )2 ln

1
1 − 𝑡

+
𝑡 (𝑡2 − 3𝑡 − 6)

18(1 − 𝑡 )2 .

This can be easily checked with Maple, by considering as before 𝐼𝜋 = ln(−1) (see below). Therefore
we have:

𝑆𝑛 =
1
3

(𝑛 + 1)(𝐻𝑛+1 − 1) +
1
18

(
[𝑡𝑛−2]

𝑡

(1 − 𝑡 )2 − 3[𝑡𝑛−1]
𝑡

(1 − 𝑡 )2 − 6[𝑡𝑛]
𝑡

(1 − 𝑡 )2

)
=

=
1
3

(𝑛 + 1)(𝐻𝑛+1 − 1) +
1
18

(𝑛 − 2 − 3(𝑛 − 1) − 6𝑛) =
1
3

(𝑛 + 1)𝐻𝑛+1 −
7
9
𝑛 − 5

18
,
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that is,
𝑆𝑛 =

1
3

(𝑛 + 1)(𝐻𝑛+1 −
7
3

) +
1
2
. (24)

Using Maple to solve equation (23):

> dsolve({𝑆(0) = 0, diff (𝑆(𝑡 ), 𝑡 ) =
𝑡2 · (3 − 𝑡 )
6 · (1 − 𝑡 )3 +

2 · 𝑆(𝑡 )
1 − 𝑡

}, 𝑆(𝑡 ) );

(25)𝑆(𝑡 ) =
𝑡3 + 6 I𝜋 − 3𝑡2 − 6 ln(−1 + 𝑡 ) − 6𝑡

18 (−1 + 𝑡 )2

>map(evalc, (25)) assuming 𝑡 < 1;

(26)𝑆(𝑡 ) =
𝑡3

18 − 𝑡2

6 − ln(1−𝑡 )
3 − 𝑡

3

(−1 + 𝑡 )2

The solutions (17) and (24) can be implemented as Maple functions (see Listing 6).

Listing 6. Maple functions for formulas (17) and (24)

C := n ->

if n = 0 then

0;

else

2*(n + 1)*( harmonic(n + 1) - 1);

end if;

S := n ->

if n = 0 then

0;

elif n = 1 then

0;

else

1/3*(n + 1)*( harmonic(n + 1) - 7/3) + 1/2;

end if;

Finally, we can observe that the ratio 𝐶𝑛

𝑆𝑛+𝑛 between the average number of comparison and the
average number of exchanges tends to 6 as 𝑛 goes to infinity; however, the convergence to this
value is very low, for example it is ≈ 5.9568 for 𝑛 = 10100 .

3 SimulatingQuicksort
If we want to check formulas (3) and (21) for small values of 𝑛, we can execute QuickSort over
all the 𝑛! permutations of the elements 1, · · · , 𝑛 and use a counter to record the number of key
comparisons and exchanges. The average values can then be found by summing the results of these
executions and then by dividing by 𝑛!. This exhaustive execution of the algorithm we believe is
important to clarify to students what it really means to study an algorithm in the average case.
Listing 7 illustrates a Maple implementation of the algorithms Quicksort that sort an array𝑉 from
index ℓ to index 𝑟 and, at the same time, computes the number of comparisons and exchanges
performed during execution. These values are stored in the two variables comp and exch. Although
Listing 7 contains small changes compared to Listing 1, it is important from an educational point of
view to show students where the counters must be inserted, so that the simulation in the exhaustive
case gives the same results as the mathematical formulas. For example, from the author’s experience,
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a mistake students often make, is forgetting to increment the counters before the two inner while
loops.

Listing 7. The modified version of Quicksort in Maple

MQuicksort := proc(v::Array , ℓ ::nonnegint , r:: nonnegint)

local comp , exch , i, j, p;

comp := 0;

exch := 0;

if 0 <= r - ℓ then

p := v[r];

i := ℓ - 1;

j := r;

while i < j do

i := i + 1;

comp := comp + 1;

while v[i] < p do

i := i + 1;

comp := comp + 1;

end do;

j := j - 1;

comp := comp + 1;

while ℓ <= j and p < v[j] do

j := j - 1;

comp := comp + 1;

end do;

if i < j then

(v[i],v[j]) := (v[j],v[i]);

exch := exch + 1;

end if;

end do;

(v[i],v[r]) := (p,v[i]);

exch := exch + 1;

(comp ,exch) := (comp ,exch) + MQuicksort(v, ℓ , i - 1);

(comp ,exch) := (comp ,exch) + MQuicksort(v, i + 1, r);

end if;

return (comp ,exch);

end proc:

For small dimensions, we can use an exhaustive strategy and use algorithm in Listing 7 over all
the 𝑛! permutations of the numbers 1, · · · , 𝑛 in order to check formulas (3) and (21). Procedure
exhaustive_test in Listing 8 does exactly this for arrays of length 𝑛, by using the permute
procedure of the Maple package combinat. Alternatively, instead of generating all the permutations
together, the nextperm procedure of the same package could be used to generate the lexicographic
successor of a given permutation.

Listing 8. Returns the average value of the comparisons and exchanges performed by QuickSort over all the
𝑛! permutations.

exhaustive_test := proc(n:: nonnegint)

local permutations , p, cs, c, s, i, mean;
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permutations := combinat[permute ](n);

for i to n! do

p := Array(permutations[i]);

cs := MQuicksort(p, 1, n);

c[i] := cs[1];

s[i] := cs[2];

end do;

mean [1] := add(c[i], i = 1 .. n!)/n!;

mean [2] := add(s[i], i = 1 .. n!)/n!;

return mean[1], C(n), Cproc(n), mean[2], S(n)+n, Sproc(n)+n;

end proc:

A final numerical check is illustrated below.
for i from 0 to 6 do

i, exhaustive_test(i);

end do;

0, 0, 0, 0, 0, 0, 0
1, 2, 2, 2, 1, 1, 1
2, 5, 5, 5, 2, 2, 2

3,
26
3
,

26
3
,

26
3
,

19
6
,

19
6
,

19
6

4,
77
6
,

77
6
,

77
6
,

53
12

,
53
12

,
53
12

5,
87
5
,

87
5
,

87
5
,

86
15

,
86
15

,
86
15

(27)6,
223
10

,
223
10

,
223
10

,
1279
180

,
1279
180

,
1279
180

The procedure can easily be modified so that it also returns the permutations that correspond to
the minimum and maximum number of comparisons, thus allowing students to understand which
configurations correspond to the results of relations (1) and (2). This is done in Listing 9 and the
corresponding execution with 𝑛 = 4 is shown below, in agreement with the values 𝐶min

4 = 12 and
𝐶max

4 = 14.

Listing 9. A modified version of the exhaustive_test procedure

exhaustive_test1 := proc(n:: nonnegint)

local permutations , i, cs, c, s, cm, sm, ma, mi, p, Pmax , Pmin;

permutations := combinat[permute ](n);

for i to n! do

p := Array(permutations[i]);

cs := MQuicksort(p, 1, n);

c[i] := cs[1];

s[i] := cs[2];

end do;

cm := add(c[i], i = 1 .. n!)/n!;

sm := add(s[i], i = 1 .. n!)/n!;

ma := max([seq(c[i], i = 1 .. n!)]);
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mi := min([seq(c[i], i = 1 .. n!)]);

Pmax := Array (0.. -1); Pmin := Array (0.. -1);

for i to n! do

if c[i]=ma then

Pmax ,= permutations[i];

elif c[i]=mi then

Pmin ,= permutations[i];

end if;

end do;

return ['Cmean ' = cm, 'Smean ' = sm], ['Max ' = ma, Pmax],

['Min ' = mi, Pmin];

end proc:

> exhaustive_test1(4 );

(28)

[
Cmean =

77
6
, Smean =

53
12

]
, [Max = 14,

[[1, 2, 3, 4] , [2, 1, 3, 4] , [2, 3, 1, 4] , [2, 3, 4, 1] , [2, 4, 3, 1] ,
[3, 2, 1, 4] , [4, 2, 3, 1] , [4, 3, 2, 1] , · · · 0 .. 7 Array]] , [Min = 12,
[[1, 2, 4, 3] , [1, 3, 4, 2] , [1, 4, 2, 3] , [1, 4, 3, 2] , [2, 1, 4, 3] ,
[2, 4, 1, 3] , [3, 1, 4, 2] , [3, 4, 1, 2] , [4, 1, 2, 3] , [4, 1, 3, 2] ,
[4, 2, 1, 3] , [4, 3, 1, 2] , · · · 0 .. 11 Array]]

When 𝑛 is large, we cannot generate all the 𝑛! permutations of the input array and therefore,
in order to check formulas (3) and (21), we have to execute the algorithm over a sample of 𝑁
permutations. Many important questions arise during the organization of the simulation. First of
all, we have to choose the size of the problem: we cannot consider a single value 𝑛 but different
values in a quite large range. A second important point concerns the number of tests: once the
dimension of the problem has been fixed, we have to repeat the simulation several times in order
to increase our confidence on the results. The third fundamental point concerns data: we have to
make precise assumptions on the input data, closely related to the theoretical formula we want to
check.

Listing 10. Returns the average value of comparisons and exchanges performed by QuickSort over 𝑁 random
permutations.

random_test := proc(n::nonnegint , N:: nonnegint)

local permutations , p, cs, c, s, i, mean;

for i to N do

p := Array(combinat[randperm ](n));

cs := MQuicksort(p, 1, n);

c[i] := cs[1];

s[i] := cs[2];

end do;

mean [1] := add(c[i], i = 1 .. N)/N;

mean [2] := add(s[i], i = 1 .. N)/N;

map(evalf [5], [mean[1], C(n), Cproc(n), mean[2], S(n)+n, Sproc(n)+n]);

end proc:
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Fig. 1. Average number of comparisons (blue stars) and exchanges (red stars) found with the simulation,
compared with the theoretical values (red and blue curves).

In particular, the procedure random_test in Listing 10 applies algorithm QuickSort to 𝑁 uniformly
generated random permutations of the elements 1, . . . , 𝑛. The uniform random generation of the per-
mutations is obtained by using the randperm procedure of the Maple package combinat, although
we could have used the classical shuffling algorithm, as described by Knuth [7]. The procedure
returns the average value of comparison and exchange operations performed by QuickSort over
𝑁 random permutations, compared to values of formulas (3), (17), (21) and (24). A final numerical
check is mandatory and is illustrated in Listing (11).

Listing 11. The random test for 𝑛 = 10, 20, 30, 40, 50
STEP := 10:

DIMENSION := 50:

for i from STEP by STEP to DIMENSION do

i, random_test(i, 10*i*STEP);

end do;

10, [44.416, 44.437, 44.437, 13.022, 13.017, 13.017]

20, [111.01, 111.11, 111.11, 29.681, 29.684, 29.684]

30, [187.48, 187.69, 187.69, 47.983, 48.004, 48.004]

40, [270.87, 270.84, 270.84, 67.388, 67.418, 67.418]

(29)50, [358.88, 358.92, 358.92, 87.651, 87.653, 87.653]

Finally, Figure 1 illustrates, with blue and red stars, the results of several simulations performed
with 𝑛 = 10, 20, · · · , 100 and 𝑁 = 10 ·𝑛, compared with the theoretical results given by formulas (17)
and (24), evidenced in red and blue, respectively. The figure is obtained with the Maple function
plot.
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We wish to conclude this paper by observing that the results of the simulation could also be
checked by using a statistical test, based for example on the central limit theorem (see, e.g., [2, 3]).
This theorem asserts that if we have a sum of random variables 𝑋𝑖 independent and identically
distributed, with mean ` and variance 𝜎2, then, regardless of the distribution, when the sample size
goes to infinity the sum tends to be distributed as a normal random variable. In formulas:

𝑋𝑁 − `

𝜎

√
𝑁 ∼ Normal(0, 1) (30)

where 𝑋𝑁 = ∑𝑁
𝑖=1 𝑋𝑖/𝑁 is the sample mean. In the simulation of Quickort, 𝑋𝑖 is the number of

interesting operations, i.e., comparisons and exchanges, during the 𝑖-th execution and consequently
𝑋𝑁 is one of the average values found by the random_test procedure. On the other hand, `
corresponds to the average theoretical value and 𝜎 to the corresponding standard deviation. If
the standard deviation is not known we can use the estimated sample by suitably modifying the
procedure random_test so that in addition to the mean it also returns the variance.

4 Conclusions
In this work it has been shown how Maple can be used to teach analysis of algorithm in a Computer
Science degree course, both to verify theoretical results and to show, on concrete examples, the
meaning of an average case analysis. In fact, according to the experience of the author of this
paper, the average case is not easily understood, while the approach presented in this work is
appreciated by Computer Science students who, in addition to learning theoretical concepts, learn
to implement the algorithms, or data structures, with the aim to perform both an exhaustive and
a random simulation of the average case under examination. The example shown in this work
was Quicksort, a well-known sorting algorithm that is very interesting because its average-case
analysis requires a non-trivial use of the mathematical tools typically used in this context, such
as generating functions. More sophisticated variants of the algorithm could also be shown, for
example, the variant that chooses the pivot as the median of three randomly chosen elements
of the array; or, the variant of the algorithm that uses a different sorting algorithm, for example
Insertion Sort, for sub-arrays of size 𝑛 ≤ 𝑚, thus avoiding recursive calls on small length arrays.
The recurrence relations for the average number of comparisons would become

𝐶𝑛 = 𝑛 + 1 +
𝑛∑︁
𝑗=1

(𝑛 − 𝑗 )( 𝑗 − 1)(
𝑛
3
) (

𝐶 𝑗−1 +𝐶𝑛− 𝑗

)
and

𝐶𝑛 =
{
𝑛 + 1 + 1

𝑛

∑𝑛
𝑗=1(𝐶 𝑗−1 +𝐶𝑛− 𝑗 ) 𝑛 > 𝑚

1
4𝑛(𝑛 − 1) 𝑛 ≤ 𝑚

,

in the first and second case, respectively (see [14]). In general, complex recurrence relations
correspond to simulations whose set up requires great attention.
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