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Abstract The Internet of Things (IoT) is becoming pervasive 

and with each new installation of IoT platforms new and legacy 

brokers have to be exploited. New internal brokers are those 

under the control of the platform, while legacy external 

brokers are those in place managed by third parties. The 

solution proposed addressed problems of (a) interoperability to 

reduce set up time to cope with unknown data structures 

(devices, entities) distributed via brokers; (b) performance by 

dimensioning both front-end and back-end processes to reach 

high rates in a broker-based platform, while preserving full 

capability features of the data warehouse. Interoperability 

aspects have been addressed by introducing our concepts and a 

reasoner into an IoT Directory tool to manage Internal and 

External brokers, automate device discovery and registration 

from both standard and customized data models. Despite the 

managed complexity, a broker-based solution turned out to 

provide high performance. To this end, a specific assessment 

and architecture tuning have been performed and reported in 

the paper to give evidence and validation. The proposed 

integrated IoT Directory has been developed in the context of 

the Herit-Data Project, and it is currently used in the whole 

Snap4City network of 18 tenants and billions of data. 

Snap4City is an open-source IoT platform for Smart Cities and 

Industry 4.0, which is an official FIWARE platform and 

solution, EOSC service and libs of Node-RED.  

Keywords— IoT (Internet of Things), Automated IoT Device 

Registration, Internal and External IoT Brokers, Smart Data 

model, Snap4City, FIWARE. 

I. INTRODUCTION  

The Internet of Things (IoT) defined a paradigm for the 

computation and communication among things, which is 

becoming every day more and more pervasive and adopted 

in many different domains [1], [2]. It is partially due to the 

worldwide intense deployment campaign about Low-Power 

Wide Area Network technologies [3], as well as to many 

approaches and protocols for communications among 

devices (e.g., Message Queue Telemetry Transport or 

MQTT, Next Generation Service Interfaces or NGSI, 

Advanced Message Queuing Protocol or AMQP, 

Constrained Application Protocol or COAP). The approach 

is also covering the cloud and fog infrastructures [4], [5]. 

Thus, IoT network infrastructures are becoming every day 

more complex to be managed due to the networks’ structure 

and existence of several protocols, formats, and concepts 

[6], [1]. Hence, the complexity is growing in terms of data 

management, not only for huge amount of data but also for 

interoperability and abstraction levels needed to data 

managing. Relevant aspects to be considered are security 

and privacy [7] on specific data models and entities. To 

increase the complexity, there is a range of different owners 

and managers who may control different parts of such IoT 

networks [8].    

In this context, the concept of Gateway is relevant for any 

segments of IoT networks connecting, as well as for the 

Web of Things, WoT [9]. Gateways may be integrated with 

one or more Brokers to send/receive data to/from 

Devices/entities. The Gateways and Brokers are typically 

compliant with a single protocol and may be managed by 

third parties with respect to data management platform. In 

some cases, they are provided as public services for several 

interested customers in the same area (for example: 

Proximus for LoraWAN services [10]). A Gateway may 

abstract from the IoT Broker level managing multiple 

brokers for multiple organizations/tenants (which can be 

regarded as customers of Gateway services to manage 

several Devices), via some API and/or Web user interface. 

Typical IoT Brokers can only manage one organization, and 

thus are single tenant, meaning they broker messages using 

topic/entity concepts (which can be regarded as the key for 

subscription on that specific device/entity) without any 

internal partition of services, but as a sort of family of 

devices and subscriptions. Some IoT Brokers can be multi-

tenant, such as the FIWARE Orion Broker [11], [12], 

which provides support for partitioning the served 

devices/entities/topics in groups, and each of them may have 

a dedicated service/path for a specific scope (or a specific 

customer). Furthermore, devices of different tenants could 

exist physically in different places (even having identical 

identifiers, IDs), and the subscription to the broker’s tenant 

may imply receiving all messages/services in the partition in 

push. That is feasible only if the subscriber knows the 

service/path identifier and, in the event of access control, the 

subscriber has the grant to access the broker's services. 

Different IoT Devices connected to the same broker adopt 

the same protocol, may use different data structures/models 

and have the same semantic information. 

According to the above description, some problems have to 

be managed as described in this paper. Therefore, before 

describing them in detail, a short overview of the main 

needs is provided.  

In this context, an IoT/WoT Platform should abstract and 

manage all the entities/devices in the IoT Network, allowing 

to exploit them regardless of their position (connection with 

gateway/brokers), owner, protocol, format, etc. Platforms 

need to manage multiple IoT Networks and Brokers: some 

Brokers can be managed by third parties, e.g., the External 

Brokers; while the ones directly managed by the platform 

are called Internal Brokers. In realistic scenarios, third-

party brokers are not setup and managed in terms of 
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Device/Entity registration, subscription, data storage, 

search, etc., by the platform. As to External Brokers, 

entities/devices are registered on the broker, without 

providing notification to the connected platforms. On the 

contrary, a Platform should be able to recognize and manage 

device messages exchanged with any kinds of broker, any 

kinds of Device structure (which can be called the Device 

Model, for example the FIWARE Smart Data Models, SDM 

[12]) in order to register, process and store messages. On the 

contrary, whenever a message arrives from an unknown 

device (which can partially provide pieces of information 

into its body, typically not the metadata, since most devices 

minimize data transmission), the Platform is not able to 

register the device, nor to correct the message link to former 

devices. On such grounds, a Platform cannot be totally 

agnostic about its data structure/model, neither can ignore 

the identifier (topic) of the Devices of its external/internal 

broker. In addition, most Platforms provide support for data 

storage, thus a data model should be known to perform in 

deep indexing and to manage data messages as time series. 

Any effective exploitation and connection of External 

Brokers is strongly relevant, when a Platform must be 

connected to another one for receiving new data in real time 

in push from brokers, and also when it comes to data 

migration. For example, when a legacy platform has to 

provide data to an upper-level data aggregation Platform. 

Both are interoperability aspects.  

A. Related Work 

Most IoT Platforms have some capabilities for 

interoperability and integration with legacy solutions. In 

most cases they do not provide support for integrating 

External Brokers and tend to push their customers to set up 

end-to-end solutions with the default internal brokers. For 

example, AWS IoT by Amazon (AWS) [13], and Siemens 

MindSphere [14] make the use of their internal brokers’ 

structure transparent. Solutions like MS Azure IoT (MS 

Azure) [15], and IBM Watson [16] are more flexible in 

accepting multiple protocols and providing more info on 

brokers. MS Azure does not provide support to cluster 

devices/objects, in other words, they support only one 

organization per broker. Nevertheless, almost every 

platform allows interoperability by connecting to other IoT 

Brokers and networks by means of REST Calls API, where 

the platform calls any external broker APIs working in pull. 

This implies to brake event driven (push) chain of the IoT 

message exchange paradigm (publish subscribe). 

Organizations such as OMA Spec Works (Open Mobile 

Alliance), OASC (Open and Agile Smart City) have 

proposed standardization of communication protocols in 

favour of interoperability among vendors [17], [18]. The 

Sensor Web Enablement (SWE), of the Open Geospatial 

Consortium (OGC) has provided specs for: Observation & 

Measurement (O&M), Sensor Model Language (SensorML) 

and Sensor Observation Service (SOS) [19]. The O&M and 

SensorML provide standard models for measures and 

sensors respectively. The Semantic Sensor Network (SSN) 

ontology/vocabulary of W3C provides a standard for 

modelling sensor devices in an ontology [20]. IERC 

(Internet of Things European Research Cluster) is working 

on both pre-standardisation activities of the EC and 

standardisation roadmap [21]. IoT interoperability is 

regarded as a very complex aspect to be fully addressed 

[22], [23]. In [22], Blackstock et al., proposed a solution 

based on the concept of IoT Hub HyperCAT addressing the 

problem of device model by creating a general catalogue 

and metadata for describing the IoT, thus recognizing data 

coming from the IoT Network. The hub was connected to 

CKAN to exploit the harvesting capabilities of the CKAN 

plugin. It was based on WoTKit [24] (Web of Things, 

WoT), assuming the possibility of accessing to the data 

models. In [23], the authors proposed a gateway solution as 

interoperability layer to map different protocols XMPP 

(Extensible Messaging and Presence Protocol), COAP and 

MQTT. Desai et al., in [23], implemented OGC schemas 

before annotating the sensor data with SSN, permitting 

descriptions/specifications for services by using a semantic 

SOS. The sensor data obtained from multiple channels are 

annotated with standard ontologies enabling service level 

interoperability, by classifying them in the ontology 

according to semantic similarity. 

Chun et al., in [25], proposed an IoT directory with semantic 

support for discovery and integration with IoT devices 

without addressing the problem of interoperability. They 

propose a semantic IoT model for metadata based on static 

and dynamic properties. Static properties are the metadata 

that do not change over time, while dynamics are the ones 

changing, with the device communicating their values over 

time by sending messages to the broker.  

Hao and Schulzrinne, in [26], proposed GOLDIE, a GlObaL 

Directory for the IoT meant for device indexing and not for 

interoperability. They have collected a list of requirements 

for an efficient updating working flow when there are 

constraints regarding visibility and geographic permissions.  

Zyrianoff, Heideker et al., in [9], have analysed the 

differences between WoT and FIWARE, both are 

interoperability oriented. The main approach for WoT is 

based on direct usage of data coming from a set of data 

channels including IoT protocols. The integration with the 

IoT world has been proposed by providing a connection 

with Orion Broker via an adapter. The authors have 

observed that the insertion of the Broker was a limitation for 

interoperability, while a certain advantage is provided by the 

fact that it is an off-the-shelf solution. Its downside lies on 

the direct usage of WoT requiring a lot of coding 

applications from the ground up. 

Jacoby & Usländer [27] pointed out how it is possible to 

integrate WoT concepts with IoT FIWARE to cope with 

Digital Twins. In this context, interoperability aspects can 

be better addressed by using NGSI-LD, which provides a 

linked data approach to the model metadata. To this end, a 

comparison of DTDL (Digital Twin Definition Language), 

NGSI-LD and WoT is presented. Also in this case, 

interoperability at External Brokers level is not addressed.  

Conde et al., in [28], have explained how NGSI (Next 

Generation Service Interfaces) standard by ETSI (European 

Telecommunications Standardization Institute) and 

FIWARE [29] are creating support for the Digital Twin 

(DT) beginning with Orion Broker concept. In this case, 

interoperability is performed by writing a number of 



 

 

adapters (for adapting LWM2M over CoaP, JSON, or 

UltraLight over HTTP/MQTT, OPC-UA, Sigfox, or 

LoRaWAN) via the so called IoT Agents which avoid 

coping with different standards into the core part of the 

platform.  

Recently, the Data Space concept has been introduced and it 

can be regarded as a generalization of the IoT Device 

concept [30], [31]. In the approach, a clear distinction from 

IDS (International Data Space) Metadata and messages is 

made, thus giving support for IDS Metadata Brokers. The 

main aim, in this case, is to provide a semantic query 

support among thousands of different models by performing 

some mapping on XML and JSON schemas. Data Space 

approaches are pushing a change from solutions designed as 

data-warehouse and data-lake into broker-based solutions 

[32].  

B. Paper Scope and organization 

In most cases, the usage of broker-based architecture 

preserves a data driven approach, while most data 

warehouse and data lake solutions are massively based on 

the presence of ETL/ELT (Extract Transform/Load 

Load/Transform) tools, which are mainly pull-based rather 

than push-based (event driven). The trend of increasing data 

models and their corresponding back-office interoperability 

is making the interoperability with External Brokers more 

relevant, and it may be supported by evidence that broker-

based architecture can sustain relevant data ingestion and 

access rates in highly interoperable solutions. A first step to 

solve the above-described problem is to rely on formal 

defined Data Model. This approach is followed by FIWARE 

with SDM, by Snap4City [33] with its IoT Device Model 

and by the strong push on Data Spaces mentioned above. On 

this fact, there is an architectural convergence to cope with 

WoT, IoT and DT approaches.  

     In this paper, Snap4City/Industry architecture is 

discussed to highlight how the above-mentioned problem 

has been solved, allowing the solution to group the aspects 

of WoT, IoT and DT, with a special case dealing with 

interoperability of brokers for data entity automated 

registration and ingestion. Such a solution has been 

developed and tested into Snap4City open source IoT 

platform [33] for Smart Cities and Industry 4.0, the official 

FIWARE platform, platform on EOSC, and a set of libraries 

on Node-RED [7], [34], and it is at present in operational 

use. 

     The proposed solution is based on: (a) leverage 

interoperability reducing set up time to efficiently detect and 

learn how to process unknown data structures (devices, 

entities) distributed via brokers; (b) provision of data driven 

high rates in a broker-based platform, thus preserving full 

capability features of the data warehouse. To this end, an 

extension of the Snap4City Directory concept and tool has 

been created. The Directory is the main drive for 

interoperability in an efficient manner, and a number of 

other platform components serving the Directory are 

involved in obtaining the required performance to satisfy 

point (b). The solution supports: (i) Internal and External 

brokers, (ii) automated registration of devices/entities 

managed into External Brokers’ single- or multi-tenant 

services, (iii) automated registration by harvesting and 

reasoning of data models/entities compliant with standard 

models such as FIWARE SDM, and any custom Data 

Model in Snap4City IoT Device Model providing a formal 

semantic definition of device attributes, (iv) fast data 

ingestion for ingesting / migrating historical data from 

legacy platforms and services to a new established uplevel 

platform, (v) sustained data usage from query demand and 

for data driven show changes in real time. As to validation, 

the platform has been assessed in terms of performance of 

the: IoT/Entity Directory device recognition and 

registration, brokering data ingestion, and data access 

processes. The research presented in this paper has been 

developed in the context of the Herit-Data Interreg Project 

of EC to use big data to better manage touristic flows in 

natural and cultural heritage sites; results have been 

validated in the wide condition of the whole Snap4City 

network of 18 tenants, and billions of data.  

 

The paper is organized as follows.  Section II presents 

major requirements for platform interoperability and 

comparison with a number of other well-known platforms. 

Section III shows the overview of Snap4City architecture 

focusing on the management of internal/external brokers 

with the aim of harvesting external unknown brokers, device 

discovery, automating device registration, by performing the 

recognition and management of formal data models and 

their attributes. In Section IV, the automated harvester of 

data model is presented with its formal processing language. 

Section V provides details regarding the validation 

performed on the solution, meant to assess the maximum 

performance which can be obtained in 

harvesting/registration, data ingestion and data access in the 

platform and how these aspects are connected one each 

another. In Section VI, conclusions are drawn. 

II. REQUIREMENTS ANALYSIS 

In this section, the focus is set on the main requirements a 

Broker based Platform for data and network management 

should satisfy. According to the above-presented related 

work, the broker-based approach for data gathering can be 

used for WoT, DT and Data Spaces. Requirements have 

been identified in the context of workshops, interviews, and 

analysis for the development and exploitation of the 

Snap4City/Industry platform covering smart city, Industry, 

Energy, and other domains. The following requirement 

analysis for a IoT Platform is presented in logical order. In 

Table I, the comparison of the main platforms is considered 

in terms of functional requirements. The comparison in 

terms of non-functional requirements as performance is 

almost impossible to carry out due to the impossibility of 

installing the solution on the same hardware. As far as we 

know, only Snap4City can be installed as a full platform in 

single VM (Virtual Machine) preserving scalability via a 

docker based approach and architecture. Large scale 

Snap4City installations are already in place, the largest one 

is [33], while a number of other installations are already set 

and some of them are listed on 

https://www.snap4city.org/661 . 

On other aspects, surveys about IoT Platforms are provided 

in [35], [36]. Among the compared platforms, there is also 

Snap4City, which is presented in more details in this paper. 

https://www.snap4city.org/661


 

 

Table 1. Comparison of Platforms: Y indicates a satisfied 

requirement, N the Req. is not satisfied, and (y) partial coverage.   

Req. Snap4 

City 

Azure 

IoT 

Aws 

IOT  

IBM 

Watson 

Mind 

sphere 

R1 Y N (y) (y) (y) 

R2 Y N (y) N (y) 

R3 Y N N (y) N 

R4 Y Y Y Y Y 

R5 Y Y Y Y N 

R6 Y N (y) N (y) 

R7 Y N N N N 

R8 Y Y (y) N N 

R9 Y N N N N 

R10 Y (y) (y) (y) (y) 

R11 Y (y) Y Y Y 

 

A Platform should provide support to: 

R1. Manage different kinds of Brokers, Devices and 

Edge Devices. They could be based on different 

protocols, formats, and modalities to establish 

connections with the Platform. Almost all platforms 

support MQTT and HTTP, while Azure IoT supports 

MQTT and AMQP brokers. Most platforms provide 

specific components for different protocols, for instance: 

Amazon MQ supports Broker with AMQP, MQTT, 

OpenWire, and STOMP, protocols.  

R2. Connect External and Internal Brokers. Internal 

Brokers should be deployed, registered and managed by 

the Platform, while External Brokers would be only 

registered to use them, since they are managed by third 

parties. Brokers could be multiservice, for example, the 

Orion Broker with NGSI V2/LD protocol. In the 

Platforms under comparison, brokers are product core of 

stakeholders’ offers; this is reason whyR2 is partially 

satisfied, offering the possibility of adding some other 

brokers.  

R3. Register, manage and use messages conformant 

to any Data Model with any data type. Providing, 

receiving, managing, storing, and retrieving messages 

for any Device (or Data Model) with its attributes and 

data types, and related access control. It is difficult to 

manage the huge variety of data kinds. For example, 

GPS coordinates can be defined by different approaches: 

a couple of variables, a GeoJSON, and a vector. Similar 

problems may occur with dates (since they can be 

formalized in several different formats) or with 

relationships among entities (e.g., URI, URL, URN, 

IDs). A Data Model should provide a formal model 

format for IoT Device messages with formalized 

variables/attributes with data types, units, etc. As to the 

Platforms under analysis, messages from IoT Devices 

are freely shaped, to assure data flexibility. For example, 

IBM Watson uses formats such as JSON or XML, 

without supporting FIWARE SDMs [37]. 

R4. Verify if Data Messages are correct with respect 

to the defined data model. The platform should be able 

to verify if the messages received from Devices are 

correct in terms of data model including verification of 

attribute conformance before accepting them. Please 

note: this requirement implies that every Device should 

be formally registered in the platform before accepting 

their data, and they have to pass a verification phase at 

run time.  

R5. Semantic Interoperability is fundamental to 

achieve coherence among different Device data models 

(e.g., provided by different builders, addressing same 

concepts, and information on attributes). In most cases, 

semantic interoperability means a more relaxed constrain 

of classifying data model/devices according to their 

structure. A Platform should be able to 

recognize/classify/retrieve information/attributes and 

behave accordingly to the semantic data model including 

data types and units of measure. For example, an 

application should prevent from any misunderstanding 

of the unit of measure assigned to attributes of different 

messages/devices which have the same name and 

different units. For example, two builders of air 

conditioners could accept setpoints like temperature with 

different units: one in Celsius and the other one in 

Fahrenheit.  

R6. Support automatic cloud deployment of Internal 

Brokers, on which the Platform performs the 

registration of IoT Devices. The result is a simplified 

experience for users to populate the network.  

R7. Register External Brokers. The platform must 

support the registration of IoT External Brokers. Brokers 

can be single- or multi-tenant. This means that the 

Platform should be somehow able to automatically 

register the IoT Devices/Entities of the External Broker 

into the Platform. Therefore, the possibility of 

recovering the device data model managed by the 

External Broker is the first step to perform their 

registration. In the case of External Brokers, the 

endpoint URL and the service and/or service path 

specifications would be needed to subscribe. Not one of 

the considered commercial platforms provides a solution 

to register External Brokers and thus allowing automated 

registration of their devices and retrieval of their models. 

In this sense, they do not provide interoperability to 

integrate other IoT networks in place.  

R8. Discover Devices on Brokers. The platform must 

be able to harvest Devices from their IoT Brokers’ 

protocols. This is needed for any device automated 

registration and thus for semantic indexing and 

retrieval, on the basis of their nature, position, attributes 

(value types and units), etc. In other words, it should be 

possible to discover/search (subscribe, get, send data) 

to/from Devices regardless from their 

position/connection in the IoT Network.  

R9. Semantic identification and match. The platform 

should automatically recognize the device model and 

semantic information of attributes. When the discovery 

is done, messages from devices should be automatically 

added, and the mismatch problems solved.  In the case of 

mismatch, the platform must adapt the ingestion process. 

The above-mentioned Platforms do not provide this 

feature being oriented to manage what they know as in 

literature.  

R10. Easy management to list and test Brokers, and 

Devices and query them for example via a graphic user 

interface. As to each IoT Device, it should be possible to 

perform testing activities.  



 

 

R11. Manage Device Model and Device Data Type 

ownership and access grants. This allows the 

assignment/change of the ownership and the creation of 

access grants to entities (IoT Brokers, Devices, and Data 

Models). In delegation management, it has to be possible 

to grant, list and revoke grants. According to GDPR 

(European Union General Data Protection Regulation 

2016/679) [38], any entity has to start as private of the 

owner. The delegation should be possible for 

organizations, groups of users, and single users and it 

can deal with different types. In particular, it can be 

about: 

a. Messages, data messages - delegated users can read 

and write or only read messages of a certain IoT 

Device;  

b. Device Models, data models – delegated users can 

modify or only read model structure; 

c. Devices, data entities – delegated users can modify 

or just view device structure. 

A. IoT Security Aspects 

The main issue of IoT security is to provide a full stack 

security (end-to-end secure connection based on TLS, 

Transport Layer Security) ranging from IoT devices, IoT 

edge on premises, IoT applications on the cloud and on 

premises, data analytics, and dashboarding. This implies to 

have solutions for authentication and authorisation, secure 

communications, in human-to-machine and machine-to-

machine communications, secure communications, detecting 

and monitoring intrusions, controlling vulnerability [39]. 

This also implies the adoption of penetration tests verifying 

the robustness of the solution with respect to a large number 

of potential vulnerability aspects [7]. On the other hand, 

traditional encryption mechanisms should be substituted 

with post-quantum cryptographic protocols which are 

efficient and resistant to attack by quantum computers [40], 

[41], [39]. The security has also to preserve privacy 

according to GDPR [38]. To this end the IoT platform have 

to pass vulnerability and penetration tests [7]. The main 

issues related to security on IoT are discussed in [7] for 

Snap4City platform in comparison with major solutions. For 

the functional topic discussed in the paper, the presence of 

authentication and authorisation mechanisms, and those 

related to the channel protection are not relevant since they 

are addressed at the moment in which the connection is 

established. 

III. ARCHITECTURE OVERVIEW FOR INTEROPERABILITY 

As reported in Figure 1, the Directory interacts with 

Internal Brokers to perform registration of devices/data 

flow (represented as D1, D2… Dn, sensors, actuators and 

data flow channels). It performs the semantic registration of 

device (data entities) into the Knowledge Base, KB (which 

is a semantic database RDF store) where all the entities and 

their relationships are modelled. The interoperable 

composition of data entities is guaranteed by the adoption of 

Km4City Ontology [7], [42] that creates a uniform layer 

abstracting from physical details and mechanisms needed to 

access them through different Brokers and usage of several 

data models and their validation, as well as semantic 

interoperability and matching. In the event of data lack, the 

KB provides knowledge to complete information on devices 

with the semantic part, as we can see in the next section. In 

most Platforms, storage (including time series) is called 

Data Shadow and it allows to create some historical data of 

the Devices/Entities. In Snap4City, data storage feeding is 

performed by Apache Ni-Fi Cluster; IoT Directory 

automatically performs the subscription of Ni-Fi to the 

topics of Internal and External Brokers. Ni-Fi is a scalable 

low latency tool to handle a huge volume of data coming 

from several devices/brokers to save them into the storage, 

which in this case is an Open Search (i.e., AWS Elastic 

Search fork). 

     Noteworthy is the fact that in the architecture also actions 

on the fields can be performed by sending Messages to IoT 

Devices via Brokers. In Snap4City, these data 

flow/messages can be produced by processes such as: IoT 

App (node-RED), Dashboards, and data analytics processes 

(in Python, Rstudio, etc.), etc.; they are not described in 

Figure 1, but will be introduced later in the paper. 

Moreover, as far as the stored data consumption is 

concerned, both KB and OpenSearch are made available to 

API (Smart City API), so as to provide collected data to 

other applications such as: Dashboards, IoT Apps, Mobile 

Apps, Dashboard Synoptics, Data Analytics, external 

services, etc. (see Figure 2). 

 

 
Figure 1 – Overview of the Architecture for data ingestion. 

 

     In order to enforce the above-described interoperability 

requirements into the Platform, we have designed and 

developed the IoT Directory concept and tool. It satisfies the 

above-described requirements with the (i) possibility of 

detecting and managing any Data Model, FIWARE SDMs, 

IoT Device Models, (ii) registering and accepting data from 

IoT External Brokers (Orion Broker), (iii) discovery IoT 

Devices from IoT External Brokers, (iv) managing multi-

tenancy brokers and multiple brokers, (v) managing multiple 

organizations and tenants, (vi) providing GDPR compliance, 

(vii) providing a small footprint, permitting to start from a 

single VM all in, and to scale up by adding components, etc. 

(due to lack of space, in this paper we have to focus on 

interoperability and impact on performance).  



 

 

      As to External Brokers, device registration is 

performed on broker by third parties and thus a different 

approach has to be taken to perform a device registration on 

IoT Directory and KB, as described hereafter. With no 

device registration on KB, new messages might arrive on 

storage without any semantic control and cause difficulties 

for their data warehousing. Therefore, a set of tools is 

involved in the process of new data model identification, 

device registration and data ingestion; their interconnections 

have to be optimized to provide high performance, as 

described hereafter. In subSection III.A, we have focussed 

on the KB Role and highlighted how the Snap4City model 

matches the FIWARE SDMs. In subSection III.B, some 

details about data model formal definition in Snap4City are 

provided. SubSections III.C, D, E provide details about the 

broker registration and related processes.  

A. The Role of Knowledge Base 

As above mentioned, the variety and variability of data 

increase with the arrival of several different data models and 

corresponding attributes coming from brokers in all 

architectures for DT, Data Spaces, WoT, and IoT (as 

described in the introduction). To guarantee interoperability 

of different applications and data streams coming from 

brokers (avoiding data pillars), it is fundamental to 

harmonize different data types. In other words, every time 

new data models are introduced into the environment, they 

have to be analysed and processed to become semantically 

interoperable with the rest of information and knowledge. 

This approach has to be adaptive and automated as to 

registering, accepting ensuring that the semantically 

searchable new data models can take into account 

relationships with other entities. The resulting benefit is an 

improved performance of data ingestion and insertion into 

the storage (thus avoiding a large number of manual 

operations carried out by many platforms as described in the 

introduction).  

For these reasons, many data streams and applications have 

been analysed in order to create a semantic model general 

and flexible enough to cope with a large range of solutions 

and domains. The result of this process has been the new 

version of the Km4City ontology, modelling city entities 

and their relationships. Km4City presents 7 main areas of 

macro-classes, i.e.: administration (segmentation of 

geographic areas), city-structure (buildings, roads, etc.), 

points of interest (POI, information data), sensor/entities 

(data flow, IoT, sensors, actuators, time series), temporal 

(single instant, intervals, etc.), structures (hierarchical 

description of entities, physical and virtual for modelling 

building and organizations, industries, etc.). The KB also 

include a Dictionary to model relationships among data 

types and units as described hereafter. Km4City is based on 

a set of vocabularies: DCTERMS: for metadata Dublin Core 

Metadata Initiative; FOAF: friends of friends; Good 

Relation: entities relationships; iot-lite: IoT Vocabulary; 

OTN: Ontology of Transportation Networks; OWL-Time: 

time reasoning; SAREF Smart Appliances REFerence 

extension for building devices available at 

https://saref.etsi.org/saref4bldg/; Schema.org for people and 

organizations; SSN: Semantic Sensor Network Ontology 

(see https://www.w3.org/TR/vocab-ssn/; WGS84 Datum of 

Geo-Objects; GTFS, General Transit Feed Specification, 

and Transmodel, for public transport infrastructures: 

lines/rides time schedules, real-time records, paths, etc.;  

The Km4City ontology keeps always updated its data model 

providing an API exposed for the IoT Directory, which is 

sending out any newly registered devices [34]. The KB 

storage is based on Virtuoso RDF store, and every 

information is coded in terms of triples. The resulting model 

can be queried in SPARQL and is accessible as Linked 

Open Data, for public information. To get a better 

understanding of the ontology structure, it is possible to 

explore the Linked Open Graph (LOG) associated with it. 

The Smart City API, SCAPI are implemented on top of the 

SPARQL semantic query interface, and they exploit the 

Open Search elastic storage as to time series. Additional 

storage can be provided as well for BIM (Building 

Information Modelling), 3D Models, and GIS (Geographic 

Information System) data such as maps, orthomaps, etc. (not 

described in Figure 1).  

In this context, the KB role is to provide (i) information to 

IoT Directory when a new entity/device is detected so as to 

register it in a correct and harmonized manner with the rest 

of information, (ii) information to Ni-Fi when a new 

message arrives from some brokers with minimal 

information and needs to be semantically enriched with the 

correct information to be indexed into the Open Search 

storage, and (iii) support to Smart City API rest call to solve 

them by spatial, temporal and relational reasoning engine 

[43]. This approach is a data warehouse broker-based 

solution. 

B. Snap4City models vs FIWARE models 

FIWARE is a foundation which promotes open-source 

ORION Broker in standard NGSI. FIWARE also includes a 

series of Generic Enablers software modules that perform 

functions in various IoT-based applications. FIWARE 

provides mechanisms for modelling and managing data and 

introduces RESTful NGSI API to interact with Orion 

Broker. Main elements of NGSI data are context entities: 

representations of physical or logical objects. Snap4City is 

an official platform and solution of FIWARE being 

compliant with NGSI, Orion Broker, etc., and providing 

several additional open-source tools for setting up full 

platforms and solutions [33].  

     According to NGSI V2 standard, each attribute has a 

name, a value and may provide its own metadata, and 

among the metadata, it may also define the unit of measure, 

the unitCode. In most SDMs, the unitCode is not defined 

leaving to data producers the choice to adopt some of its 

own. In the Snap4City model, each attribute has to be 

defined by the proprieties: Value Name, Value Type, Value 

Unit and Data Type. In this way, each device model 

attribute has a precise semantic formalization by name (e.g., 

V1), Value Type (e.g., Voltage), a specific unit of 

measurement by the Value Unit (e.g., V, mV, KV, vector of 

mV values) and the Data Type clarifies the type of the data 

(e.g., integer, float, string, json). Please note that, Type in 

NGSI and Data Type of Snap4City refer to a different 

meaning. In particular, the NGSI Type is more generic than 

the Snap4City Data Type. For example, if the value is a 

number the NGSI Type can be “numeric”, while a similar 

Snap4City Data Type can be “integer”, “float” or “double”. 

https://saref.etsi.org/saref4bldg/
https://www.w3.org/TR/vocab-ssn/


 

 

The FIWARE NGSI attribute definition is not specific 

enough to be processed by an inferential engine, due to its 

lack of semantic details; in fact, the NGSI unitCode is user 

defined and does not provide a unified semantic (does not 

belong to a common Dictionary), thus it may not be enough 

for the automated process. In the FIWARE usage of NGSI, 

the resolution is outsourced at application level. In 

Snap4City, the resolution is defined in a Dictionary (of KB) 

to conform any arrival message, to be faster and simpler in 

data ingestion and processing, while in FIWARE NGSI each 

message could change the unitCode. On such grounds, the 

Snap4City Platform needs to map the NGSI attributes to a 

more formal definition at least once, to automatize message 

ingestion and interoperability. In FIWARE, the same SDM, 

used in different brokers or applications could lead 

messages using different unitCode, and their definition is 

left out of the formal SDM formalization, leaving the issue 

to an application level.  

C. Brokers’ Registration 

The first step to exploit the architecture as reported in 

Figure 1 consists in the broker registration. As seen in the 

introduction, some platforms only provide support for a 

number of ready to use internal brokers. Snap4City allows 

the automated deployment of dedicated Orion brokers 

connecting them as Internal Brokers and it also supports the 

registration of External Brokers. In the event of External 

Orion Brokers, a given number of additional capabilities is 

possible. In the broker registration phase, several parameters 

are requested such as: endpoint, security, name, 

External/Internal, single/ multiple tenants, etc. Each broker 

is associated with a specific user or public, and each user 

belongs only to a single organization for security and 

privacy aspects [7]. External Brokers are managed by third 

parties including their accessibility and usage. Other 

differences between Internal and External Brokers consist in 

the management of IoT Devices as explained hereafter. 

Once a broker is registered, the IoT Directory automatically 

performs the data platform subscription (Ni-Fi) to the new 

broker for all its devices/topics, so that each new message 

generated by the broker would be directly brokered to data 

storage. On the other hand, this may not be true for the 

External Brokers since the IoT Directory/KB does not know 

all the entities/topics if they are not provided in the External 

Broker registration phase. 

The following subsections are focusing on these aspects. 

D. Internal Broker and their Devices/Entities 

As to Internal Brokers, the IoT Device/Data Entity 

registration/definition is performed on IoT Directory, or via 

its API. The registration may start with the exploitation of a 

Data Model (IoT Device Model), the provision of a device 

ID and the definition of GPS location, plus other details. In 

Snap4City, an IoT Device registration can be performed: 

• Manually: register an IoT Device by using a graphic 

interface. Register a device based on a specific IoT 

Device Model or create a totally customised device and 

refer to a specific broker.    

• In Bulk: upload a file (Excel Files/tables) with: (i) a list 

of Devices, defining the IoT Broker, Model and details, 

(ii) a list of data out of which the platform can derive 

IoT Device Model and Devices instances (so called 

Data Table Loader) [44]. 

• Via IoT App: Users can build an IoT App (which are 

Node-RED processes with Snap4City MicroServices 

[34]) to process incoming messages or files to 

transform them in several IoT Device registrations (by 

Model or Custom) and posting possible messages to 

those devices (see Figure 2). IoT Apps can perform 

massive registration of IoT Devices/Entities, data 

adaptation, transformation, load, production, 

redistribution, business logic of dashboards, etc. 

 

Each registered Device/Entity is also registered on KB, with 

its information and metadata (static information). KB 

indexes devices and establishes every explicit relationship 

(declared in the data with other entities), as well as implicit 

relationships (with other entities located in the same area, 

place, city, region, road, GPS position, etc.). These 

relationships would be exploited by queries when each 

message arrives from a broker via Ni-Fi in the storage (see 

Figure 2). The correct and complete indexing is 

fundamental to enable the spatial, relation, and temporal 

search of IoT data via Smart City API by IoT App Node-

RED microservices [34], Data Analytics and Dashboards 

[45].  

 

 
Figure 2: Architecture with details on automated device/model 

registration and data exploitation, it is a more detailed version of 

Figure 1, while authentication and authorisation modules are 

not represented here, see Figure 3 for them. 

 

To make the consultation of registered IoT Devices easier, 

they are shown in a table where users can manipulate only 

the ones they have created, regardless of any generation 

process. In a list of accessible data, users can also see public 

devices of the same organization, together with devices 

outsourced to him/her. On the other hand, any general 

administrator has full visibility of every device belonging to 

all the organizations.   

 



 

 

Figure 2 shows data flows during a platform usage, thus 

stressing both flows for event-driven and historical data 

usage (which will be validated in Section V about 

performance). There are several tool areas which generate 

and consume data messages and each of them may be 

present in multiple instances, connecting at the same time 

and requesting/producing real time data streams. Three tool 

areas may also consume historical time series data, or other 

information. Such main tool areas are: 

• External Services providing data in pull and receiving 

them in push. Data are acquired via IoT Apps and 

pushed into the platform via some brokers, data are 

provided via IoT App as well. 

• IoT Devices/Data Channels produce data in push and 

thus are connected to brokers, not only to NGSI brokers 

but also to MQTT and other kinds of broker. Data 

Messages are passed from broker(s) to Ni-Fi, thus 

reaching KB and storage, becoming part of historical 

data which can be accessed and queried (via SCAPI) 

from IoT App, Data Analytic and Dashboards. Data 

arriving in push to Ni-Fi can be also produced in push 

on Dashboards and IoT Apps via Kafka and WS secure 

server 1 (webSocket) to reach all the subscribed 

Dashboards/Apps via webSocket connection which 

manages multiple connections.  

• IoT Apps may send a message in push to (i) a Broker 

to reach a Device, or to (ii) several Dashboards and 

their widgets via the WSs server 2 (managing multiple 

connections). A IoT App message can reach an IoT 

Device to act on it, it can reach the storage to be saved, 

or it can reach another IoT App to establish 

communication with and act, it can reach Dashboards to 

provide data to be represented, etc. If a message is sent 

by a sensor-actuator (Internal or External), its Broker 

broadcasts it to Ni-Fi, which spreads it in turn, thus also 

saving the acted messages and rendering them in real 

time. 

• Dashboards may produce messages towards multiple 

IoT Apps via the WSs server 2, which manages 

multiple connections.  These messages can be regarded 

as Virtual IoT Devices to act on some sensors/actuators 

or simulate them [45]. The IoT Apps in turn can 

forward this piece of information to internal or external 

brokers and connected devices.  

• IoT Directory may generate a new message towards an 

IoT Broker (and may also read the last message sent 

from broker). The generation of messages from IoT 

Directory is typically used to check if Broker is alive 

and working correctly, and if IoT Device messages are 

accepted. 

E. External Brokers and their Devices/Entities 

To become easily interoperable with legacy brokers of third-

party networks, we have defined a solution and process for 

the registration of External Brokers and their entities. At the 

first registration of an External Broker, thousands of devices 

should be discovered. In fact, Devices registered on a never 

connected External Brokers, are not registered on the IoT 

Directory and KB and as a consequence, Ni-Fi is not 

prepared to manage new data messages. 

      To perform on IoT Directory a manual registration of 

devices inherited from a legacy External Broker could be 

very time consuming. Moreover, External Orion Brokers 

may be multi-tenancy with service paths for tenants. 

     As a first approach to cope with this issue, the 

Snap4City IoT Directory harvests the External Orion Broker 

to collect a list of devices/entities belonging to the known 

tenants by using service paths. A periodic Discovery/harvest 

is needed, because if a new Device is added, the IoT 

Directory has to identify it for registration, in order to accept 

messages from it. Thus, a refresh time for periodic harvest is 

needed. By means of such harvesting process, IoT Directory 

can recover the information needed for registering and 

partial indexing devices into KB, since NGSI provided 

metadata are not complete for a full indexing on KB.  

    According to a faster approach, we may suppose that the 

Snap4City Platform knows a set of Data Models (IoT device 

Models, FIWARE SDM, etc.). Subsequently, the harvesting 

process may recognize any device model (from a quick 

analysis of message format, device type and ID). Therefore, 

if IoT Directory recognizes Data Model, variable value 

names, data types and unitCode of each attribute, it can 

register them in KB properly and as a consequence, each 

message arriving on Ni-Fi can be validated and ingested. 

The risk of mixing variables with different units is very 

high, for example, adding Volt and KVolt, euro and Meuro, 

Celsius and Fahrenheit, Joule and BTU, etc. Conversion 

rates might not be always clear, since the unitCode is 

actually a string custom provided, and not imposed from a 

formal precise Dictionary. 

To this purpose, a precise mapping from each Data Model 

including its attributes is needed and a simple analysis by 

similarity does not work for precise indexing and execution 

on business intelligence tools. Please note that IoT Directory 

can query Orion Broker to get a device model, while the 

model itself does not provide details to solve any mismatch 

of Value Type, Value Unit and Data Type (e.g., 

Temperature, Celsius, Float). Therefore, IoT Directory 

needs to know the Data Model and the mapping of attributes 

to the Dictionary, in order to enable any registration and 

fast data ingestion, indexing, storing, etc. 

Therefore, the first release of the Directory harvester has 

provided a list of non-recognised devices, for which 

registration was not possible, leaving to the administrator 

the issue to solve the mismatch by means of a user interface. 

When thousands of new devices are discovered, the process 

become unmanageable, and this happens every time a new 

installation occurs and the registration of External Brokers 

as legacy FIWARE Orion brokers is mandatory.  

      In order to solve this problem, an automated harvesting 

approach of Devices/Entities on External Brokers has been 

designed as described in the next section. The registration of 

devices from External Brokers is one of the most innovative 

aspects addressed by IoT Directory which is capable of (i) 

harvesting brokers for device discovery, (ii) resolving 

semantic gaps on IoT device attributes/variables, (iii) 

registering devices, thus shortening the data ingestion and 

interoperability processes, see the following Subsection. 



 

 

IV. AUTOMATED HARVESTING OF DATA MODELS 

In order to automatize the discovery and registration of 

devices/entities into the Directory (and KB) which are 

already registered on legacy external brokers, we have 

created an automated process, which can be scheduled to get 

updates, since devices on External Brokers are registered by 

third-parties. The registered devices on External Brokers can 

be: Case (i) custom made, Case (ii) compliant with some 

SDM version, and Case (iii) derived from some SDM 

versions.  

     Therefore, as a preliminary step, IoT Directory harvests 

periodically the definition repository of the FIWARE SDM 

from github. The collection of SDMs is classified per 

domain. The SMD harvesting starts by making a local copy 

of the SMDs collection. Then, each SDM is formally 

validated against a corresponding schemaInterpreter, 

usually all of them pass the validation, since they have been 

already validated during the publication phase. The 

validation procedure is also useful to detect Cases (iii), 

where an SDM has been customized.  

     In Case (i) of full custom devices/models, data models 

are totally unknown and so is the definition of their 

attributes. This means that the platform, before accepting 

messages, should at least: (a) model a Device with its 

attributes and then (b) register it. Thus, each new message, 

according to that device, can be recognized as belonging to 

that registered device. 

      In Cases (ii) and (iii), some information about models 

can be recovered from SDM definitions and schemas, while 

some attributes can be also not so well defined according to 

some problems listed in Section III.E. In fact, due to a 

mismatch that may occur with different usages of SDM in 

FIWARE Orion Brokers, it may happen that the same SDM 

is used with different unitCode. To this end, Snap4City 

Platform allows to define mapping rules on device/entity 

attributes to assign {value type, value unit, data type}, 

according to contextual conditions composed by the: broker, 

SDM name, device type, value name (attribute name), etc.  

     Therefore, as a final consideration the main problems 

during such broker harvesting and acceptance of new 

messages from devices of External Broker deal with the 

attribute matching with contextual information regarding 

both unknown and also already known Entity/device models 

(SDM, Custom, IoT Device Models of Snap4City, etc.). For 

this reason, in the phase of External Broker harvesting for 

each attribute a semantic query is performed on KB and 

Dictionary, so as to verify the presence of a full match in 

terms of contextual conditions.  

The match may be as follows: (A) success: the data model 

with each attribute is recognized and a mapping is available, 

thus the new device/entity can be automatically registered, 

or (B) failure: some model attributes are not recognized; 

thus, a new mapping rule has to be produced and suggested 

to users. 

       The automated production of mapping Rules is based 

on similarities from unknown device models discovered, 

pieces of information in KB and Dictionary, while relaxing 

some conditional constraints such as the broker, the SDM, 

the organization, etc. To this purpose, the set of active 

mapping rules is queried. The resulting queries can be 

browsed and corrected via a visual interface for non-

technical experts. Formally, mapping rules R are defined as 

follows: 

 

R:= IF <condition> THEN <action list> 

<condition>: = <c> | <c> AND <condition>  

<c> := <variable> <op> <constant> 

<variable> := “device name” | “context broker” |  

“device type” | “modelname” | “Value Name” | 

“service” | “servicepath” | “organization” | “version” 

<op> := “==” |  “!=” | “in” 

<constant> := integer | float | string | list  | “null” 

<action list> := <a> | <a>, <action list> 

<a> := <action variable>: <action constant> 

<action variable> := “Data Type” | “Value Type” |  

“Value Unit” | “Editable” | <Healthiness value> |  

<Coded Healthiness criteria>  

<action constant>:= string 

 
Rules are structured as an if-<condition>-then-<action 

list>. The <condition> describes the context of rule 
application in terms of joined constraints on broker, service, 
model, device type, organization, etc. In fact, a rule can be 
functional for an organization or broker and not for others. In 
IoT Directory, it is possible to search, edit, activate and 
deactivate rules. Please note that in a given context multiple 
rules firing may be present. In this case, devices fired with 
multiple rules are proposed to the administrator for his/her 
decision about rule application. On the contrary, if a unique 
firing condition is obtained, the rule is applied, all the 
conformant devices are automatically registered, and their 
messages are accepted for ingestion purposes (thus 
shortening the exploitation of External Brokers). The <action 
list> is a list of assignments to complete and/or solve the 
mismatch about device/entity attribute definitions. Actions 
are used at each device registration to enrich the provided 
data to have full device/entity information, so as to perform a 
complete registration and semantic indexing.  An example of 
a Rule can be:  

IF “context broker” == “Brk45” AND  

                 “Value Name”==“aPower”  

THEN “Value Type”:“activepower”, “Value Unit”:“KW”,  

                “Data Type”:“float” 

V. PERFORMANCE ASSESSMENT AND VALIDATION 

In the above sections, we have demonstrated how Snap4City 

solution satisfies R1, R2, and R7 in connecting and 

exploiting data related to different models coming from 

different kinds of internal and external brokers, controlling 

message conformance with a given model, and verifying 

message correctness (R3 and R4). The semantic 

interoperability, R5, is provided by the services of both KB 

and Dictionary. The harvesting of devices on brokers and 

the automated registration of them cover R8 and R9.  As to 

R10 and R11, evidence is reported in [34], while R6 is 

certified by the fact that Snap4City is an official platform 

and solution of FIWARE, since the automated deployment 

of Orion Brokers is one of its mandatory features. 

     In order to assess any effective strong point of the 

proposed solution, a specific set of performance experiments 

has been performed. The non-functional requirement 

regarding the performance has to be verified, since the 

interoperability may have a relevant impact on those 



 

 

aspects, and in particular on performance for: (i) broker 

harvesting and device registration, (ii) data message 

ingestion and data consumption which is (iii) responding to 

Smart City API providing data to clients, (v) passing data 

driven data from broker directly into user interface 

consumption. 

A. Harvesting Performance  

As discussed above, harvesting External Brokers may take 

into account one or more rules to recognize attributes and 

data models, registering and indexing the devices/entities. 

This will help in strongly shortening the time to connect 

external brokers, recovering their data and performing 

manual 1:1 or in bulk registration (if models are known). 

Moreover, the proposed solution can dynamically add new 

Devices/entities as soon as they are registered on External 

Broker, which reduces a lot the gap between using Internal 

and External Brokers.  

     The validation of this approach has been performed in a 

condition of operative workload on Snap4City.org with 20 

Internal Brokers and 7 external brokers, for the arrival of 

about 22.000 new devices (the reference architecture is 

depicted in Figure 2). A regular user on IoT Directory GUI 

takes about (i) 2.5 minutes to create a custom device with 9 

attributes, and the platform takes 0.7s to register the 

device/entity (ii) 2 minutes to create a device model with 9 

attributes. Once the model is created, we have two cases to 

perform device registration from the model: (a) manually, 

the user takes about 0.95s which is an error prone high 

repetitive operation, (b) automatically, by using an IoT App 

which takes about 0.623s and then produced manually via 

visual programming in about 30 min. Technically, the 

platform core takes 0.3s for each new device registration 

(saving data on IoT Directory, registering on KB, 

performing all needed verification to avoid ID duplications, 

etc.). 

     As to the registration of devices coming from a multi-

tenant External Broker with 22000 devices with 15 models, 

the related harvesting time has been of an average of 32s, 

using automatically generated rules. When custom Rules for 

a specific SDM are applied, the system takes around 

1.99min to harvest all of them, controlling rules at each 

event. After that, 14406 devices matching those rules have 

been automatically passed, thus becoming ready for data 

ingestion. The time for device registration is the same as in 

case (a). Furthermore, when the system harvests on the same 

External Broker, it can show updates of already registered 

Devices. 

The effective advantage of the proposed harvester consisted 

in the automated production of Device Models and rules, 

which passes from 2 minutes to about 0.125s for each new 

model. The speed up obtained with manual model-based 

registration with respect to full manual registration has been 

of about 523,3 times; the speed up obtained by performing 

the automated registration via IoT App has been of about 

686,5 times; and the speed up obtained by performing a 

fully automated process has been of 800,2 times. 

B. Data Ingestion Performance via Broker 

According to Figure 2, once a device is registered the 

Internal or External Broker directly sends new messages to 

Ni-Fi which performs some enrichment. Actually, each 

broker needs to provide an authentication/authorisation 

(A&A) filter (see Figure 3).  

 

 
Figure 3: Architecture (a part) for performance assessment. 

 

The Broker & Filter verifies the right to post a data message 

on the platform for the specific Device/Entity (the 

authentication is performed once, while the authorisation is 

performed at each new post/message, while cache from 

filter to the authorisation permits to increase the ingestion 

rate). Once the data are passed by filter, the broker pushes 

them on Ni-Fi, which in turn enriches them on the basis of 

KB info (performing a query and caching it), to finally post 

data on OpenSearch and Kafka for real time event-driven 

expositions on some front-end real time dashboards, IoT 

App and users who have subscribed to the WebSocket 

server 1 (WSs srv1 in Figure 3). 

In order to assess the performances on data ingestion a 

separate installation based on Snap4City platform has been 

deployed according to the Micro X model. Snap4City 

platform can be installed on premises, according to a 

number of models ranging from MicroX based on single 

VM with a docker based deploy of all the internal processes, 

up to a DataCityLarge which provides a scalable multi VM 

solution for big data storage and high throughput of data 

ingestion.     The MicroX VM was resourced with 16 cores 

of 2.1 Ghz, 32 GByte Ram. The assessment has been 

performed producing, from a variable number of devices 

(threads/entities), parallel input streams pushing message 

data on a single broker/filter.  

     According to Figure 4, the platform sustained a 

maximum of about 138msg/s (each of which with 10 

variables, plus time stamp and GPS) using about 240 

threads sending their data at the same time (which are 82800 

new single data variables per minute). The result has been 

about 1.79msg/s per entity, which implies to be capable of 

ingesting about 12Million of complex msg/day. This kind of 

capability satisfies a medium size city, which may have 

about 124K devices sending updates every 15 minute (for 

traffic, pollutant, light status, etc.). Large cities may need to 

have multiple brokers, a cluster of Ni-Fi for the ingestion 

and a cluster of OpenSearch nodes for storage. Moreover, 

the sustained workload may also depend on the amount of 

data accesses performed from front end, as addressed in the 

next subsection.   

The result has been obtained with a fine tuning of different 

tasks in the Ni-Fi and with the installation of an additional 



 

 

cache from Ni-Fi and KB, so as to avoid requesting data to 

enrich data messages for ingestion at each new insertion 

(from both internal or external brokers as well). The 

platform reached its max in ingestion performance when 

loaded with 240 threads; the CPU workload was at 65% and 

RAM memory at 11Gbyte, while the transfer rate on writing 

on HD turned out to be of 22Mbyte/s, which is far from the 

maximum allowed rate of the platform. From the graph in 

Figure 4, it is evident that the insertion rate has reached a 

saturation and such saturation was mainly due to the needed 

activities on A&A; the insertion of a cache did not solve the 

problem. Without the specific A&A calls the ingestion rate 

reached the 170msg/s. Moreover, higher performances can 

be reached with vertical scalability by increasing the number 

of cores and the amount of memory. 

 

 
Figure 4: Performance assessment in data ingestion. Number of 

insertions/messages per second as a function of the number of threads 

(simultaneous devices sending data). 

C. IoT Data Access: Geo & Time Query Performance  

Once IoT data are on storage, KB plays the role of spatial 

and semantic index, while Open Search keeps time series 

data. For this reason, performances responding to different 

kinds of queries could be different. Moreover, these 

activities of data access may influence the data ingestion 

performance. For example, accessing KB influences costs 

related to data warehouse in the data enrichment from Ni-Fi, 

while accessing some series acts on Open Search, which is 

also fed by data insertion.  

    In order to perform a realistic performance assessment, 

for both cases, storage has been loaded with about 300.000 

entities/devices with 1 year of time series data, with samples 

of every 10 minutes and 10 variables per message (this case 

may represent a medium-large size city: light control, 

stoplights, traffic flow, pollutant, parking, etc.) (in one year 

it could accumulate 35Tbyte of data including indexes). The 

reference architecture for the front-end assessment is 

reported in Figure 3, where the simultaneous data access 

requests are represented by using a number of threads. This 

test has been performed without ingestion processes. 

    The spatial query on smart city API (engaging only KB) 

has been set to search for a category of entities in a ray of 

1Km and collect about 30 results over some hundreds (the 

execution time does not quite change when resulting entities 

are in a range of 1-100). In Figure 5 (a), a max of 5700 

successful requests per minute has been obtained for spatial 

queries. The workload has saturated the resources provided 

for the above described VM MicroX, reaching 90% of CPU 

clocks. 

    The space and time series query on smart city API has 

been set to search for a category of entities in the area and 

have been limited to 1 result for the whole day, which is 

about 144 samples. The collection of the whole sequence 

does not quite change the query cost. This kind of query 

initially engages KB and then, according to results, it 

engages Open Search ordered time index. In this case, the 

saturation of VM resources provided (reaching 92% of CPU 

clocks) has been reached with 1600 successful requests per 

minute by using 25 tasks (see curve (b) on Figure 5). 

 

 
Figure 5: Performance assessment in data access, geo query. Number of 

API calls successful requests per minute as a function of the number of 

contemporary threads/requests (cases): (a) spatial queries, (b) spatial and 

time series queries). 

D. Combining Ingestion and Access Workloads  

     Some performance tests have been carried out to 

combine different queries with data ingestion processes. 

Results have shown that when both workloads are reduced 

to ½ of the maximum, the single VM reached 90% of CPU 

saturating the resources, and the performance in data 

ingestion only decreased of 2.3% while the performance in 

data access effectively reduced to the 50%. This implies that 

a certain unbalance in scaling and decupling in a different 

way back-end ingestion processes (Broker and Ni-FI) has to 

be considered with respect to the from-end (KB and 

OpenSearch).  

E. Assessing performance for end-to-end event driven 

messages. 

When new events coming from devices need to be directly 

communicated to front-end (end to end secure), according to 

Figure 3, they need to pass through Ni-Fi (for enrichment, 

indexing and storage), and through Kafka/WebSocket to 

manage multiple clients. In order to reduce some workload 

of this real time channel, only real time messages (on the 

basis of their timestamps) are also forwarded to 

Kafka/WebSocket by Ni-Fi, thus avoiding any distribution 

of already loaded historical data, for example. In this first 

case, the maximum performances which could be obtained 

were slower than those for direct ingestion: the registered 

maximum was 16000 single data values changes (on value 

and GPS position) per minute.  

The messages begun out of Dashboards to act on platform 

(devices or other entities) can (i) move from a WebSocket 

server to be distributed to multiple IoT Apps, or (ii) be 

directly posted on Broker (this would imply to have 

messages sent in Push into Ni-Fi, storage, etc. full round). 

F. Considerations 

     In general, the increment of performance could be 

obtained by means of increasing the number of cores (i.e., 

vertical scalability), while the amount of memory provided 



 

 

was not a limitation. Moreover, the architecture could be 

also horizontally scaled by adding more brokers, clustering 

Ni-Fi and Open Search, and/or providing a balanced front 

end for queries. All these scaling activities impact in 

different manner on the performance improvements and 

should be performed on the basis of the actual usage of the 

platform. For instance, in medium sized city with 300.000 

entities the platform should be oriented to provide services 

to: (i) city users (for instance to 30.000 contemporary users, 

over a population of 200.000), or (ii) just to be used for 

decision makers and control room. In case (ii), a simple 

front-end can satisfy all the requests, while in Case (i) a 

cluster of Open Search and front-end in balance is needed. 

In the Snap4City.org platform, a 6 nodes OpenSearch 

cluster manages time series data and provides them to a 

front-end cluster providing cached results from API call 

requests.  

     When setting up a new IoT Smart City infrastructure, in 

most cases the historical data have to be ingested by 

collecting them from former storages, therefore the process 

cannot be performed in short time. This also means that the 

operative conditions of the platform should be able to 

process at the same time: (i) historical data ingestion 

processes, (ii) real time data ingestion, (iii) data access to 

provided services and hints (access from mobile, dashboard, 

data analytics, etc.).      

      As a limit case, returning to the data ingestion process, a 

medium-large size city with 300.000 entities/devices with 

samples every 10 minutes, having data to be recovered from 

other servers for the last 3 years, may lead to recollect and 

ingest more than 47 billion of data messages (which may 

actually become Tbyte on storage space according to the 

preferred redundances and number variables per message). 

The ingestion of these historical data via a single broker 

would take 416 days for manual device registration and 

when it comes to time series ingestion, about 4000 days at a 

rate of 12 million msg/day: this makes the process very 

unfeasible. The problem can be solved by means of an 

automated registration of devices and an architecture scaling 

(back-end and storage) with multiple brokers, Ni-Fi and 

OpenSearch, and in some cases, avoiding performing data 

ingestion of historical data by filtering them by A&A 

verifications.  

VI. CONCLUSIONS 

The proliferation of IoT devices, brokers, networks, data 

models, operators and tenants, makes the harmonization and 

management of IoT Platform a hard goal. This paper offers 

an analysis and a comparison among relevant existing 

platforms, and it points out the basic requirements to 

achieve such aims. These identified requirements are in 

most cases not addressed by main platforms which prefer to 

stay on their own end-to-end solutions with limited 

interoperability and capacity of exploiting legacy IoT 

networks in place, in terms of performance. The proposed 

solution addressed problems of (a) interoperability by 

reducing set up time to efficiently detect and learn how to 

process unknown data structures (devices, entities) 

distributed via brokers; (b) performance by dimensioning 

the front-end and back-end processes to reach high rates in a 

broker-based platform, while preserving full capabilities 

features of data warehouse. 

As to interoperability, the main identified and solved 

problems are those related to a large variety of Data Models 

coming from non-controllable External Brokers. The issue 

has been solved by designing and implementing a harvester 

and reasoner that is capable to automatically 

recognize/understand and map the new data models/types 

into those already known by Knowledge Base. This 

approach, together with the definition of a comprehensive 

meta model and dictionary, has allowed to speed up the 

process more than 800 times. The harvesting and 

comprehension process can be periodically performed to 

keep the platform updated with any newly defined data 

models by third party brokers. Furthermore, the process is 

helped by Km4City ontology and Data Dictionary to 

recognize the new data types and models according to the 

semantic domain. 

Moreover, any processes of data discovery, registration and 

ingestion also impact on performance. To this end, the 

proposed solution has been assessed in terms of 

performance in harvesting brokers, discovering and 

registering devices, collecting messages and data access; 

thus, providing evidence of the maximum performance 

which can be obtained by each single front-end / back-end 

component/area and how they are influenced each other in 

the whole architecture. This study has led us to a number of 

considerations regarding platform scaling and usage, 

especially when the former have to be used to harvest and 

ingest legacy data coming from External Brokers.  

Future work can be oriented on enforcing stronger 

encryption mechanisms which may impact on the protection 

of data and connections as mentioned in section II.A. An 

activity in this direction could be to investigate the 

enforcement of blockchain solutions on specific IoT 

devices. 

The reported study and IoT Directory have been developed 

in the framework of the Herit-Data Project and it is currently 

used in the Snap4City infrastructure, made of more than 18 

tenants, and billions of data. Snap4City is an open source 

IoT platform for Smart Cities and Industry 4.0, official 

FIWARE platform, compliant with the Smart Data Model of 

FIWARE, EOSC, and lib of Node-RED. 
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