

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2022 IEEE

Managing Complexity of Data Models and Performance in

Broker-Based Internet/Web of Things Architectures

Pierfrancesco Bellini, Luciano Alessandro Ipsaro Palesi, Alberto Giovannoni, Paolo Nesi

University of Florence, Distributed Systems and Internet Technology, DISIT Lab

https://www.disit.org , Https://www.snap4city.org, corresponding: paolo.nesi@unifi.it

Abstract The Internet of Things (IoT) is becoming pervasive

and with each new installation of IoT platforms new and legacy

brokers have to be exploited. New internal brokers are those

under the control of the platform, while legacy external

brokers are those in place managed by third parties. The

solution proposed addressed problems of (a) interoperability to

reduce set up time to cope with unknown data structures

(devices, entities) distributed via brokers; (b) performance by

dimensioning both front-end and back-end processes to reach

high rates in a broker-based platform, while preserving full

capability features of the data warehouse. Interoperability

aspects have been addressed by introducing our concepts and a

reasoner into an IoT Directory tool to manage Internal and

External brokers, automate device discovery and registration

from both standard and customized data models. Despite the

managed complexity, a broker-based solution turned out to

provide high performance. To this end, a specific assessment

and architecture tuning have been performed and reported in

the paper to give evidence and validation. The proposed

integrated IoT Directory has been developed in the context of

the Herit-Data Project, and it is currently used in the whole

Snap4City network of 18 tenants and billions of data.

Snap4City is an open-source IoT platform for Smart Cities and

Industry 4.0, which is an official FIWARE platform and

solution, EOSC service and libs of Node-RED.

Keywords— IoT (Internet of Things), Automated IoT Device

Registration, Internal and External IoT Brokers, Smart Data

model, Snap4City, FIWARE.

I. INTRODUCTION

The Internet of Things (IoT) defined a paradigm for the

computation and communication among things, which is

becoming every day more and more pervasive and adopted

in many different domains [1], [2]. It is partially due to the

worldwide intense deployment campaign about Low-Power

Wide Area Network technologies [3], as well as to many

approaches and protocols for communications among

devices (e.g., Message Queue Telemetry Transport or

MQTT, Next Generation Service Interfaces or NGSI,

Advanced Message Queuing Protocol or AMQP,

Constrained Application Protocol or COAP). The approach

is also covering the cloud and fog infrastructures [4], [5].

Thus, IoT network infrastructures are becoming every day

more complex to be managed due to the networks’ structure

and existence of several protocols, formats, and concepts

[6], [1]. Hence, the complexity is growing in terms of data

management, not only for huge amount of data but also for

interoperability and abstraction levels needed to data

managing. Relevant aspects to be considered are security

and privacy [7] on specific data models and entities. To

increase the complexity, there is a range of different owners

and managers who may control different parts of such IoT

networks [8].

In this context, the concept of Gateway is relevant for any

segments of IoT networks connecting, as well as for the

Web of Things, WoT [9]. Gateways may be integrated with

one or more Brokers to send/receive data to/from

Devices/entities. The Gateways and Brokers are typically

compliant with a single protocol and may be managed by

third parties with respect to data management platform. In

some cases, they are provided as public services for several

interested customers in the same area (for example:

Proximus for LoraWAN services [10]). A Gateway may

abstract from the IoT Broker level managing multiple

brokers for multiple organizations/tenants (which can be

regarded as customers of Gateway services to manage

several Devices), via some API and/or Web user interface.

Typical IoT Brokers can only manage one organization, and

thus are single tenant, meaning they broker messages using

topic/entity concepts (which can be regarded as the key for

subscription on that specific device/entity) without any

internal partition of services, but as a sort of family of

devices and subscriptions. Some IoT Brokers can be multi-

tenant, such as the FIWARE Orion Broker [11], [12],

which provides support for partitioning the served

devices/entities/topics in groups, and each of them may have

a dedicated service/path for a specific scope (or a specific

customer). Furthermore, devices of different tenants could

exist physically in different places (even having identical

identifiers, IDs), and the subscription to the broker’s tenant

may imply receiving all messages/services in the partition in

push. That is feasible only if the subscriber knows the

service/path identifier and, in the event of access control, the

subscriber has the grant to access the broker's services.

Different IoT Devices connected to the same broker adopt

the same protocol, may use different data structures/models

and have the same semantic information.

According to the above description, some problems have to

be managed as described in this paper. Therefore, before

describing them in detail, a short overview of the main

needs is provided.

In this context, an IoT/WoT Platform should abstract and

manage all the entities/devices in the IoT Network, allowing

to exploit them regardless of their position (connection with

gateway/brokers), owner, protocol, format, etc. Platforms

need to manage multiple IoT Networks and Brokers: some

Brokers can be managed by third parties, e.g., the External

Brokers; while the ones directly managed by the platform

are called Internal Brokers. In realistic scenarios, third-

party brokers are not setup and managed in terms of

https://www.disit.org/
https://www.snap4city.org/

Device/Entity registration, subscription, data storage,

search, etc., by the platform. As to External Brokers,

entities/devices are registered on the broker, without

providing notification to the connected platforms. On the

contrary, a Platform should be able to recognize and manage

device messages exchanged with any kinds of broker, any

kinds of Device structure (which can be called the Device

Model, for example the FIWARE Smart Data Models, SDM

[12]) in order to register, process and store messages. On the

contrary, whenever a message arrives from an unknown

device (which can partially provide pieces of information

into its body, typically not the metadata, since most devices

minimize data transmission), the Platform is not able to

register the device, nor to correct the message link to former

devices. On such grounds, a Platform cannot be totally

agnostic about its data structure/model, neither can ignore

the identifier (topic) of the Devices of its external/internal

broker. In addition, most Platforms provide support for data

storage, thus a data model should be known to perform in

deep indexing and to manage data messages as time series.

Any effective exploitation and connection of External

Brokers is strongly relevant, when a Platform must be

connected to another one for receiving new data in real time

in push from brokers, and also when it comes to data

migration. For example, when a legacy platform has to

provide data to an upper-level data aggregation Platform.

Both are interoperability aspects.

A. Related Work

Most IoT Platforms have some capabilities for

interoperability and integration with legacy solutions. In

most cases they do not provide support for integrating

External Brokers and tend to push their customers to set up

end-to-end solutions with the default internal brokers. For

example, AWS IoT by Amazon (AWS) [13], and Siemens

MindSphere [14] make the use of their internal brokers’

structure transparent. Solutions like MS Azure IoT (MS

Azure) [15], and IBM Watson [16] are more flexible in

accepting multiple protocols and providing more info on

brokers. MS Azure does not provide support to cluster

devices/objects, in other words, they support only one

organization per broker. Nevertheless, almost every

platform allows interoperability by connecting to other IoT

Brokers and networks by means of REST Calls API, where

the platform calls any external broker APIs working in pull.

This implies to brake event driven (push) chain of the IoT

message exchange paradigm (publish subscribe).

Organizations such as OMA Spec Works (Open Mobile

Alliance), OASC (Open and Agile Smart City) have

proposed standardization of communication protocols in

favour of interoperability among vendors [17], [18]. The

Sensor Web Enablement (SWE), of the Open Geospatial

Consortium (OGC) has provided specs for: Observation &

Measurement (O&M), Sensor Model Language (SensorML)

and Sensor Observation Service (SOS) [19]. The O&M and

SensorML provide standard models for measures and

sensors respectively. The Semantic Sensor Network (SSN)

ontology/vocabulary of W3C provides a standard for

modelling sensor devices in an ontology [20]. IERC

(Internet of Things European Research Cluster) is working

on both pre-standardisation activities of the EC and

standardisation roadmap [21]. IoT interoperability is

regarded as a very complex aspect to be fully addressed

[22], [23]. In [22], Blackstock et al., proposed a solution

based on the concept of IoT Hub HyperCAT addressing the

problem of device model by creating a general catalogue

and metadata for describing the IoT, thus recognizing data

coming from the IoT Network. The hub was connected to

CKAN to exploit the harvesting capabilities of the CKAN

plugin. It was based on WoTKit [24] (Web of Things,

WoT), assuming the possibility of accessing to the data

models. In [23], the authors proposed a gateway solution as

interoperability layer to map different protocols XMPP

(Extensible Messaging and Presence Protocol), COAP and

MQTT. Desai et al., in [23], implemented OGC schemas

before annotating the sensor data with SSN, permitting

descriptions/specifications for services by using a semantic

SOS. The sensor data obtained from multiple channels are

annotated with standard ontologies enabling service level

interoperability, by classifying them in the ontology

according to semantic similarity.

Chun et al., in [25], proposed an IoT directory with semantic

support for discovery and integration with IoT devices

without addressing the problem of interoperability. They

propose a semantic IoT model for metadata based on static

and dynamic properties. Static properties are the metadata

that do not change over time, while dynamics are the ones

changing, with the device communicating their values over

time by sending messages to the broker.

Hao and Schulzrinne, in [26], proposed GOLDIE, a GlObaL

Directory for the IoT meant for device indexing and not for

interoperability. They have collected a list of requirements

for an efficient updating working flow when there are

constraints regarding visibility and geographic permissions.

Zyrianoff, Heideker et al., in [9], have analysed the

differences between WoT and FIWARE, both are

interoperability oriented. The main approach for WoT is

based on direct usage of data coming from a set of data

channels including IoT protocols. The integration with the

IoT world has been proposed by providing a connection

with Orion Broker via an adapter. The authors have

observed that the insertion of the Broker was a limitation for

interoperability, while a certain advantage is provided by the

fact that it is an off-the-shelf solution. Its downside lies on

the direct usage of WoT requiring a lot of coding

applications from the ground up.

Jacoby & Usländer [27] pointed out how it is possible to

integrate WoT concepts with IoT FIWARE to cope with

Digital Twins. In this context, interoperability aspects can

be better addressed by using NGSI-LD, which provides a

linked data approach to the model metadata. To this end, a

comparison of DTDL (Digital Twin Definition Language),

NGSI-LD and WoT is presented. Also in this case,

interoperability at External Brokers level is not addressed.

Conde et al., in [28], have explained how NGSI (Next

Generation Service Interfaces) standard by ETSI (European

Telecommunications Standardization Institute) and

FIWARE [29] are creating support for the Digital Twin

(DT) beginning with Orion Broker concept. In this case,

interoperability is performed by writing a number of

adapters (for adapting LWM2M over CoaP, JSON, or

UltraLight over HTTP/MQTT, OPC-UA, Sigfox, or

LoRaWAN) via the so called IoT Agents which avoid

coping with different standards into the core part of the

platform.

Recently, the Data Space concept has been introduced and it

can be regarded as a generalization of the IoT Device

concept [30], [31]. In the approach, a clear distinction from

IDS (International Data Space) Metadata and messages is

made, thus giving support for IDS Metadata Brokers. The

main aim, in this case, is to provide a semantic query

support among thousands of different models by performing

some mapping on XML and JSON schemas. Data Space

approaches are pushing a change from solutions designed as

data-warehouse and data-lake into broker-based solutions

[32].

B. Paper Scope and organization

In most cases, the usage of broker-based architecture

preserves a data driven approach, while most data

warehouse and data lake solutions are massively based on

the presence of ETL/ELT (Extract Transform/Load

Load/Transform) tools, which are mainly pull-based rather

than push-based (event driven). The trend of increasing data

models and their corresponding back-office interoperability

is making the interoperability with External Brokers more

relevant, and it may be supported by evidence that broker-

based architecture can sustain relevant data ingestion and

access rates in highly interoperable solutions. A first step to

solve the above-described problem is to rely on formal

defined Data Model. This approach is followed by FIWARE

with SDM, by Snap4City [33] with its IoT Device Model

and by the strong push on Data Spaces mentioned above. On

this fact, there is an architectural convergence to cope with

WoT, IoT and DT approaches.

 In this paper, Snap4City/Industry architecture is

discussed to highlight how the above-mentioned problem

has been solved, allowing the solution to group the aspects

of WoT, IoT and DT, with a special case dealing with

interoperability of brokers for data entity automated

registration and ingestion. Such a solution has been

developed and tested into Snap4City open source IoT

platform [33] for Smart Cities and Industry 4.0, the official

FIWARE platform, platform on EOSC, and a set of libraries

on Node-RED [7], [34], and it is at present in operational

use.

 The proposed solution is based on: (a) leverage

interoperability reducing set up time to efficiently detect and

learn how to process unknown data structures (devices,

entities) distributed via brokers; (b) provision of data driven

high rates in a broker-based platform, thus preserving full

capability features of the data warehouse. To this end, an

extension of the Snap4City Directory concept and tool has

been created. The Directory is the main drive for

interoperability in an efficient manner, and a number of

other platform components serving the Directory are

involved in obtaining the required performance to satisfy

point (b). The solution supports: (i) Internal and External

brokers, (ii) automated registration of devices/entities

managed into External Brokers’ single- or multi-tenant

services, (iii) automated registration by harvesting and

reasoning of data models/entities compliant with standard

models such as FIWARE SDM, and any custom Data

Model in Snap4City IoT Device Model providing a formal

semantic definition of device attributes, (iv) fast data

ingestion for ingesting / migrating historical data from

legacy platforms and services to a new established uplevel

platform, (v) sustained data usage from query demand and

for data driven show changes in real time. As to validation,

the platform has been assessed in terms of performance of

the: IoT/Entity Directory device recognition and

registration, brokering data ingestion, and data access

processes. The research presented in this paper has been

developed in the context of the Herit-Data Interreg Project

of EC to use big data to better manage touristic flows in

natural and cultural heritage sites; results have been

validated in the wide condition of the whole Snap4City

network of 18 tenants, and billions of data.

The paper is organized as follows. Section II presents

major requirements for platform interoperability and

comparison with a number of other well-known platforms.

Section III shows the overview of Snap4City architecture

focusing on the management of internal/external brokers

with the aim of harvesting external unknown brokers, device

discovery, automating device registration, by performing the

recognition and management of formal data models and

their attributes. In Section IV, the automated harvester of

data model is presented with its formal processing language.

Section V provides details regarding the validation

performed on the solution, meant to assess the maximum

performance which can be obtained in

harvesting/registration, data ingestion and data access in the

platform and how these aspects are connected one each

another. In Section VI, conclusions are drawn.

II. REQUIREMENTS ANALYSIS

In this section, the focus is set on the main requirements a

Broker based Platform for data and network management

should satisfy. According to the above-presented related

work, the broker-based approach for data gathering can be

used for WoT, DT and Data Spaces. Requirements have

been identified in the context of workshops, interviews, and

analysis for the development and exploitation of the

Snap4City/Industry platform covering smart city, Industry,

Energy, and other domains. The following requirement

analysis for a IoT Platform is presented in logical order. In

Table I, the comparison of the main platforms is considered

in terms of functional requirements. The comparison in

terms of non-functional requirements as performance is

almost impossible to carry out due to the impossibility of

installing the solution on the same hardware. As far as we

know, only Snap4City can be installed as a full platform in

single VM (Virtual Machine) preserving scalability via a

docker based approach and architecture. Large scale

Snap4City installations are already in place, the largest one

is [33], while a number of other installations are already set

and some of them are listed on

https://www.snap4city.org/661 .

On other aspects, surveys about IoT Platforms are provided

in [35], [36]. Among the compared platforms, there is also

Snap4City, which is presented in more details in this paper.

https://www.snap4city.org/661

Table 1. Comparison of Platforms: Y indicates a satisfied

requirement, N the Req. is not satisfied, and (y) partial coverage.

Req. Snap4

City

Azure

IoT

Aws

IOT

IBM

Watson

Mind

sphere

R1 Y N (y) (y) (y)

R2 Y N (y) N (y)

R3 Y N N (y) N

R4 Y Y Y Y Y

R5 Y Y Y Y N

R6 Y N (y) N (y)

R7 Y N N N N

R8 Y Y (y) N N

R9 Y N N N N

R10 Y (y) (y) (y) (y)

R11 Y (y) Y Y Y

A Platform should provide support to:

R1. Manage different kinds of Brokers, Devices and

Edge Devices. They could be based on different

protocols, formats, and modalities to establish

connections with the Platform. Almost all platforms

support MQTT and HTTP, while Azure IoT supports

MQTT and AMQP brokers. Most platforms provide

specific components for different protocols, for instance:

Amazon MQ supports Broker with AMQP, MQTT,

OpenWire, and STOMP, protocols.

R2. Connect External and Internal Brokers. Internal

Brokers should be deployed, registered and managed by

the Platform, while External Brokers would be only

registered to use them, since they are managed by third

parties. Brokers could be multiservice, for example, the

Orion Broker with NGSI V2/LD protocol. In the

Platforms under comparison, brokers are product core of

stakeholders’ offers; this is reason whyR2 is partially

satisfied, offering the possibility of adding some other

brokers.

R3. Register, manage and use messages conformant

to any Data Model with any data type. Providing,

receiving, managing, storing, and retrieving messages

for any Device (or Data Model) with its attributes and

data types, and related access control. It is difficult to

manage the huge variety of data kinds. For example,

GPS coordinates can be defined by different approaches:

a couple of variables, a GeoJSON, and a vector. Similar

problems may occur with dates (since they can be

formalized in several different formats) or with

relationships among entities (e.g., URI, URL, URN,

IDs). A Data Model should provide a formal model

format for IoT Device messages with formalized

variables/attributes with data types, units, etc. As to the

Platforms under analysis, messages from IoT Devices

are freely shaped, to assure data flexibility. For example,

IBM Watson uses formats such as JSON or XML,

without supporting FIWARE SDMs [37].

R4. Verify if Data Messages are correct with respect

to the defined data model. The platform should be able

to verify if the messages received from Devices are

correct in terms of data model including verification of

attribute conformance before accepting them. Please

note: this requirement implies that every Device should

be formally registered in the platform before accepting

their data, and they have to pass a verification phase at

run time.

R5. Semantic Interoperability is fundamental to

achieve coherence among different Device data models

(e.g., provided by different builders, addressing same

concepts, and information on attributes). In most cases,

semantic interoperability means a more relaxed constrain

of classifying data model/devices according to their

structure. A Platform should be able to

recognize/classify/retrieve information/attributes and

behave accordingly to the semantic data model including

data types and units of measure. For example, an

application should prevent from any misunderstanding

of the unit of measure assigned to attributes of different

messages/devices which have the same name and

different units. For example, two builders of air

conditioners could accept setpoints like temperature with

different units: one in Celsius and the other one in

Fahrenheit.

R6. Support automatic cloud deployment of Internal

Brokers, on which the Platform performs the

registration of IoT Devices. The result is a simplified

experience for users to populate the network.

R7. Register External Brokers. The platform must

support the registration of IoT External Brokers. Brokers

can be single- or multi-tenant. This means that the

Platform should be somehow able to automatically

register the IoT Devices/Entities of the External Broker

into the Platform. Therefore, the possibility of

recovering the device data model managed by the

External Broker is the first step to perform their

registration. In the case of External Brokers, the

endpoint URL and the service and/or service path

specifications would be needed to subscribe. Not one of

the considered commercial platforms provides a solution

to register External Brokers and thus allowing automated

registration of their devices and retrieval of their models.

In this sense, they do not provide interoperability to

integrate other IoT networks in place.

R8. Discover Devices on Brokers. The platform must

be able to harvest Devices from their IoT Brokers’

protocols. This is needed for any device automated

registration and thus for semantic indexing and

retrieval, on the basis of their nature, position, attributes

(value types and units), etc. In other words, it should be

possible to discover/search (subscribe, get, send data)

to/from Devices regardless from their

position/connection in the IoT Network.

R9. Semantic identification and match. The platform

should automatically recognize the device model and

semantic information of attributes. When the discovery

is done, messages from devices should be automatically

added, and the mismatch problems solved. In the case of

mismatch, the platform must adapt the ingestion process.

The above-mentioned Platforms do not provide this

feature being oriented to manage what they know as in

literature.

R10. Easy management to list and test Brokers, and

Devices and query them for example via a graphic user

interface. As to each IoT Device, it should be possible to

perform testing activities.

R11. Manage Device Model and Device Data Type

ownership and access grants. This allows the

assignment/change of the ownership and the creation of

access grants to entities (IoT Brokers, Devices, and Data

Models). In delegation management, it has to be possible

to grant, list and revoke grants. According to GDPR

(European Union General Data Protection Regulation

2016/679) [38], any entity has to start as private of the

owner. The delegation should be possible for

organizations, groups of users, and single users and it

can deal with different types. In particular, it can be

about:

a. Messages, data messages - delegated users can read

and write or only read messages of a certain IoT

Device;

b. Device Models, data models – delegated users can

modify or only read model structure;

c. Devices, data entities – delegated users can modify

or just view device structure.

A. IoT Security Aspects

The main issue of IoT security is to provide a full stack

security (end-to-end secure connection based on TLS,

Transport Layer Security) ranging from IoT devices, IoT

edge on premises, IoT applications on the cloud and on

premises, data analytics, and dashboarding. This implies to

have solutions for authentication and authorisation, secure

communications, in human-to-machine and machine-to-

machine communications, secure communications, detecting

and monitoring intrusions, controlling vulnerability [39].

This also implies the adoption of penetration tests verifying

the robustness of the solution with respect to a large number

of potential vulnerability aspects [7]. On the other hand,

traditional encryption mechanisms should be substituted

with post-quantum cryptographic protocols which are

efficient and resistant to attack by quantum computers [40],

[41], [39]. The security has also to preserve privacy

according to GDPR [38]. To this end the IoT platform have

to pass vulnerability and penetration tests [7]. The main

issues related to security on IoT are discussed in [7] for

Snap4City platform in comparison with major solutions. For

the functional topic discussed in the paper, the presence of

authentication and authorisation mechanisms, and those

related to the channel protection are not relevant since they

are addressed at the moment in which the connection is

established.

III. ARCHITECTURE OVERVIEW FOR INTEROPERABILITY

As reported in Figure 1, the Directory interacts with

Internal Brokers to perform registration of devices/data

flow (represented as D1, D2… Dn, sensors, actuators and

data flow channels). It performs the semantic registration of

device (data entities) into the Knowledge Base, KB (which

is a semantic database RDF store) where all the entities and

their relationships are modelled. The interoperable

composition of data entities is guaranteed by the adoption of

Km4City Ontology [7], [42] that creates a uniform layer

abstracting from physical details and mechanisms needed to

access them through different Brokers and usage of several

data models and their validation, as well as semantic

interoperability and matching. In the event of data lack, the

KB provides knowledge to complete information on devices

with the semantic part, as we can see in the next section. In

most Platforms, storage (including time series) is called

Data Shadow and it allows to create some historical data of

the Devices/Entities. In Snap4City, data storage feeding is

performed by Apache Ni-Fi Cluster; IoT Directory

automatically performs the subscription of Ni-Fi to the

topics of Internal and External Brokers. Ni-Fi is a scalable

low latency tool to handle a huge volume of data coming

from several devices/brokers to save them into the storage,

which in this case is an Open Search (i.e., AWS Elastic

Search fork).

 Noteworthy is the fact that in the architecture also actions

on the fields can be performed by sending Messages to IoT

Devices via Brokers. In Snap4City, these data

flow/messages can be produced by processes such as: IoT

App (node-RED), Dashboards, and data analytics processes

(in Python, Rstudio, etc.), etc.; they are not described in

Figure 1, but will be introduced later in the paper.

Moreover, as far as the stored data consumption is

concerned, both KB and OpenSearch are made available to

API (Smart City API), so as to provide collected data to

other applications such as: Dashboards, IoT Apps, Mobile

Apps, Dashboard Synoptics, Data Analytics, external

services, etc. (see Figure 2).

Figure 1 – Overview of the Architecture for data ingestion.

 In order to enforce the above-described interoperability

requirements into the Platform, we have designed and

developed the IoT Directory concept and tool. It satisfies the

above-described requirements with the (i) possibility of

detecting and managing any Data Model, FIWARE SDMs,

IoT Device Models, (ii) registering and accepting data from

IoT External Brokers (Orion Broker), (iii) discovery IoT

Devices from IoT External Brokers, (iv) managing multi-

tenancy brokers and multiple brokers, (v) managing multiple

organizations and tenants, (vi) providing GDPR compliance,

(vii) providing a small footprint, permitting to start from a

single VM all in, and to scale up by adding components, etc.

(due to lack of space, in this paper we have to focus on

interoperability and impact on performance).

 As to External Brokers, device registration is

performed on broker by third parties and thus a different

approach has to be taken to perform a device registration on

IoT Directory and KB, as described hereafter. With no

device registration on KB, new messages might arrive on

storage without any semantic control and cause difficulties

for their data warehousing. Therefore, a set of tools is

involved in the process of new data model identification,

device registration and data ingestion; their interconnections

have to be optimized to provide high performance, as

described hereafter. In subSection III.A, we have focussed

on the KB Role and highlighted how the Snap4City model

matches the FIWARE SDMs. In subSection III.B, some

details about data model formal definition in Snap4City are

provided. SubSections III.C, D, E provide details about the

broker registration and related processes.

A. The Role of Knowledge Base

As above mentioned, the variety and variability of data

increase with the arrival of several different data models and

corresponding attributes coming from brokers in all

architectures for DT, Data Spaces, WoT, and IoT (as

described in the introduction). To guarantee interoperability

of different applications and data streams coming from

brokers (avoiding data pillars), it is fundamental to

harmonize different data types. In other words, every time

new data models are introduced into the environment, they

have to be analysed and processed to become semantically

interoperable with the rest of information and knowledge.

This approach has to be adaptive and automated as to

registering, accepting ensuring that the semantically

searchable new data models can take into account

relationships with other entities. The resulting benefit is an

improved performance of data ingestion and insertion into

the storage (thus avoiding a large number of manual

operations carried out by many platforms as described in the

introduction).

For these reasons, many data streams and applications have

been analysed in order to create a semantic model general

and flexible enough to cope with a large range of solutions

and domains. The result of this process has been the new

version of the Km4City ontology, modelling city entities

and their relationships. Km4City presents 7 main areas of

macro-classes, i.e.: administration (segmentation of

geographic areas), city-structure (buildings, roads, etc.),

points of interest (POI, information data), sensor/entities

(data flow, IoT, sensors, actuators, time series), temporal

(single instant, intervals, etc.), structures (hierarchical

description of entities, physical and virtual for modelling

building and organizations, industries, etc.). The KB also

include a Dictionary to model relationships among data

types and units as described hereafter. Km4City is based on

a set of vocabularies: DCTERMS: for metadata Dublin Core

Metadata Initiative; FOAF: friends of friends; Good

Relation: entities relationships; iot-lite: IoT Vocabulary;

OTN: Ontology of Transportation Networks; OWL-Time:

time reasoning; SAREF Smart Appliances REFerence

extension for building devices available at

https://saref.etsi.org/saref4bldg/; Schema.org for people and

organizations; SSN: Semantic Sensor Network Ontology

(see https://www.w3.org/TR/vocab-ssn/; WGS84 Datum of

Geo-Objects; GTFS, General Transit Feed Specification,

and Transmodel, for public transport infrastructures:

lines/rides time schedules, real-time records, paths, etc.;

The Km4City ontology keeps always updated its data model

providing an API exposed for the IoT Directory, which is

sending out any newly registered devices [34]. The KB

storage is based on Virtuoso RDF store, and every

information is coded in terms of triples. The resulting model

can be queried in SPARQL and is accessible as Linked

Open Data, for public information. To get a better

understanding of the ontology structure, it is possible to

explore the Linked Open Graph (LOG) associated with it.

The Smart City API, SCAPI are implemented on top of the

SPARQL semantic query interface, and they exploit the

Open Search elastic storage as to time series. Additional

storage can be provided as well for BIM (Building

Information Modelling), 3D Models, and GIS (Geographic

Information System) data such as maps, orthomaps, etc. (not

described in Figure 1).

In this context, the KB role is to provide (i) information to

IoT Directory when a new entity/device is detected so as to

register it in a correct and harmonized manner with the rest

of information, (ii) information to Ni-Fi when a new

message arrives from some brokers with minimal

information and needs to be semantically enriched with the

correct information to be indexed into the Open Search

storage, and (iii) support to Smart City API rest call to solve

them by spatial, temporal and relational reasoning engine

[43]. This approach is a data warehouse broker-based

solution.

B. Snap4City models vs FIWARE models

FIWARE is a foundation which promotes open-source

ORION Broker in standard NGSI. FIWARE also includes a

series of Generic Enablers software modules that perform

functions in various IoT-based applications. FIWARE

provides mechanisms for modelling and managing data and

introduces RESTful NGSI API to interact with Orion

Broker. Main elements of NGSI data are context entities:

representations of physical or logical objects. Snap4City is

an official platform and solution of FIWARE being

compliant with NGSI, Orion Broker, etc., and providing

several additional open-source tools for setting up full

platforms and solutions [33].

 According to NGSI V2 standard, each attribute has a

name, a value and may provide its own metadata, and

among the metadata, it may also define the unit of measure,

the unitCode. In most SDMs, the unitCode is not defined

leaving to data producers the choice to adopt some of its

own. In the Snap4City model, each attribute has to be

defined by the proprieties: Value Name, Value Type, Value

Unit and Data Type. In this way, each device model

attribute has a precise semantic formalization by name (e.g.,

V1), Value Type (e.g., Voltage), a specific unit of

measurement by the Value Unit (e.g., V, mV, KV, vector of

mV values) and the Data Type clarifies the type of the data

(e.g., integer, float, string, json). Please note that, Type in

NGSI and Data Type of Snap4City refer to a different

meaning. In particular, the NGSI Type is more generic than

the Snap4City Data Type. For example, if the value is a

number the NGSI Type can be “numeric”, while a similar

Snap4City Data Type can be “integer”, “float” or “double”.

https://saref.etsi.org/saref4bldg/
https://www.w3.org/TR/vocab-ssn/

The FIWARE NGSI attribute definition is not specific

enough to be processed by an inferential engine, due to its

lack of semantic details; in fact, the NGSI unitCode is user

defined and does not provide a unified semantic (does not

belong to a common Dictionary), thus it may not be enough

for the automated process. In the FIWARE usage of NGSI,

the resolution is outsourced at application level. In

Snap4City, the resolution is defined in a Dictionary (of KB)

to conform any arrival message, to be faster and simpler in

data ingestion and processing, while in FIWARE NGSI each

message could change the unitCode. On such grounds, the

Snap4City Platform needs to map the NGSI attributes to a

more formal definition at least once, to automatize message

ingestion and interoperability. In FIWARE, the same SDM,

used in different brokers or applications could lead

messages using different unitCode, and their definition is

left out of the formal SDM formalization, leaving the issue

to an application level.

C. Brokers’ Registration

The first step to exploit the architecture as reported in

Figure 1 consists in the broker registration. As seen in the

introduction, some platforms only provide support for a

number of ready to use internal brokers. Snap4City allows

the automated deployment of dedicated Orion brokers

connecting them as Internal Brokers and it also supports the

registration of External Brokers. In the event of External

Orion Brokers, a given number of additional capabilities is

possible. In the broker registration phase, several parameters

are requested such as: endpoint, security, name,

External/Internal, single/ multiple tenants, etc. Each broker

is associated with a specific user or public, and each user

belongs only to a single organization for security and

privacy aspects [7]. External Brokers are managed by third

parties including their accessibility and usage. Other

differences between Internal and External Brokers consist in

the management of IoT Devices as explained hereafter.

Once a broker is registered, the IoT Directory automatically

performs the data platform subscription (Ni-Fi) to the new

broker for all its devices/topics, so that each new message

generated by the broker would be directly brokered to data

storage. On the other hand, this may not be true for the

External Brokers since the IoT Directory/KB does not know

all the entities/topics if they are not provided in the External

Broker registration phase.

The following subsections are focusing on these aspects.

D. Internal Broker and their Devices/Entities

As to Internal Brokers, the IoT Device/Data Entity

registration/definition is performed on IoT Directory, or via

its API. The registration may start with the exploitation of a

Data Model (IoT Device Model), the provision of a device

ID and the definition of GPS location, plus other details. In

Snap4City, an IoT Device registration can be performed:

• Manually: register an IoT Device by using a graphic

interface. Register a device based on a specific IoT

Device Model or create a totally customised device and

refer to a specific broker.

• In Bulk: upload a file (Excel Files/tables) with: (i) a list

of Devices, defining the IoT Broker, Model and details,

(ii) a list of data out of which the platform can derive

IoT Device Model and Devices instances (so called

Data Table Loader) [44].

• Via IoT App: Users can build an IoT App (which are

Node-RED processes with Snap4City MicroServices

[34]) to process incoming messages or files to

transform them in several IoT Device registrations (by

Model or Custom) and posting possible messages to

those devices (see Figure 2). IoT Apps can perform

massive registration of IoT Devices/Entities, data

adaptation, transformation, load, production,

redistribution, business logic of dashboards, etc.

Each registered Device/Entity is also registered on KB, with

its information and metadata (static information). KB

indexes devices and establishes every explicit relationship

(declared in the data with other entities), as well as implicit

relationships (with other entities located in the same area,

place, city, region, road, GPS position, etc.). These

relationships would be exploited by queries when each

message arrives from a broker via Ni-Fi in the storage (see

Figure 2). The correct and complete indexing is

fundamental to enable the spatial, relation, and temporal

search of IoT data via Smart City API by IoT App Node-

RED microservices [34], Data Analytics and Dashboards

[45].

Figure 2: Architecture with details on automated device/model

registration and data exploitation, it is a more detailed version of

Figure 1, while authentication and authorisation modules are

not represented here, see Figure 3 for them.

To make the consultation of registered IoT Devices easier,

they are shown in a table where users can manipulate only

the ones they have created, regardless of any generation

process. In a list of accessible data, users can also see public

devices of the same organization, together with devices

outsourced to him/her. On the other hand, any general

administrator has full visibility of every device belonging to

all the organizations.

Figure 2 shows data flows during a platform usage, thus

stressing both flows for event-driven and historical data

usage (which will be validated in Section V about

performance). There are several tool areas which generate

and consume data messages and each of them may be

present in multiple instances, connecting at the same time

and requesting/producing real time data streams. Three tool

areas may also consume historical time series data, or other

information. Such main tool areas are:

• External Services providing data in pull and receiving

them in push. Data are acquired via IoT Apps and

pushed into the platform via some brokers, data are

provided via IoT App as well.

• IoT Devices/Data Channels produce data in push and

thus are connected to brokers, not only to NGSI brokers

but also to MQTT and other kinds of broker. Data

Messages are passed from broker(s) to Ni-Fi, thus

reaching KB and storage, becoming part of historical

data which can be accessed and queried (via SCAPI)

from IoT App, Data Analytic and Dashboards. Data

arriving in push to Ni-Fi can be also produced in push

on Dashboards and IoT Apps via Kafka and WS secure

server 1 (webSocket) to reach all the subscribed

Dashboards/Apps via webSocket connection which

manages multiple connections.

• IoT Apps may send a message in push to (i) a Broker

to reach a Device, or to (ii) several Dashboards and

their widgets via the WSs server 2 (managing multiple

connections). A IoT App message can reach an IoT

Device to act on it, it can reach the storage to be saved,

or it can reach another IoT App to establish

communication with and act, it can reach Dashboards to

provide data to be represented, etc. If a message is sent

by a sensor-actuator (Internal or External), its Broker

broadcasts it to Ni-Fi, which spreads it in turn, thus also

saving the acted messages and rendering them in real

time.

• Dashboards may produce messages towards multiple

IoT Apps via the WSs server 2, which manages

multiple connections. These messages can be regarded

as Virtual IoT Devices to act on some sensors/actuators

or simulate them [45]. The IoT Apps in turn can

forward this piece of information to internal or external

brokers and connected devices.

• IoT Directory may generate a new message towards an

IoT Broker (and may also read the last message sent

from broker). The generation of messages from IoT

Directory is typically used to check if Broker is alive

and working correctly, and if IoT Device messages are

accepted.

E. External Brokers and their Devices/Entities

To become easily interoperable with legacy brokers of third-

party networks, we have defined a solution and process for

the registration of External Brokers and their entities. At the

first registration of an External Broker, thousands of devices

should be discovered. In fact, Devices registered on a never

connected External Brokers, are not registered on the IoT

Directory and KB and as a consequence, Ni-Fi is not

prepared to manage new data messages.

 To perform on IoT Directory a manual registration of

devices inherited from a legacy External Broker could be

very time consuming. Moreover, External Orion Brokers

may be multi-tenancy with service paths for tenants.

 As a first approach to cope with this issue, the

Snap4City IoT Directory harvests the External Orion Broker

to collect a list of devices/entities belonging to the known

tenants by using service paths. A periodic Discovery/harvest

is needed, because if a new Device is added, the IoT

Directory has to identify it for registration, in order to accept

messages from it. Thus, a refresh time for periodic harvest is

needed. By means of such harvesting process, IoT Directory

can recover the information needed for registering and

partial indexing devices into KB, since NGSI provided

metadata are not complete for a full indexing on KB.

 According to a faster approach, we may suppose that the

Snap4City Platform knows a set of Data Models (IoT device

Models, FIWARE SDM, etc.). Subsequently, the harvesting

process may recognize any device model (from a quick

analysis of message format, device type and ID). Therefore,

if IoT Directory recognizes Data Model, variable value

names, data types and unitCode of each attribute, it can

register them in KB properly and as a consequence, each

message arriving on Ni-Fi can be validated and ingested.

The risk of mixing variables with different units is very

high, for example, adding Volt and KVolt, euro and Meuro,

Celsius and Fahrenheit, Joule and BTU, etc. Conversion

rates might not be always clear, since the unitCode is

actually a string custom provided, and not imposed from a

formal precise Dictionary.

To this purpose, a precise mapping from each Data Model

including its attributes is needed and a simple analysis by

similarity does not work for precise indexing and execution

on business intelligence tools. Please note that IoT Directory

can query Orion Broker to get a device model, while the

model itself does not provide details to solve any mismatch

of Value Type, Value Unit and Data Type (e.g.,

Temperature, Celsius, Float). Therefore, IoT Directory

needs to know the Data Model and the mapping of attributes

to the Dictionary, in order to enable any registration and

fast data ingestion, indexing, storing, etc.

Therefore, the first release of the Directory harvester has

provided a list of non-recognised devices, for which

registration was not possible, leaving to the administrator

the issue to solve the mismatch by means of a user interface.

When thousands of new devices are discovered, the process

become unmanageable, and this happens every time a new

installation occurs and the registration of External Brokers

as legacy FIWARE Orion brokers is mandatory.

 In order to solve this problem, an automated harvesting

approach of Devices/Entities on External Brokers has been

designed as described in the next section. The registration of

devices from External Brokers is one of the most innovative

aspects addressed by IoT Directory which is capable of (i)

harvesting brokers for device discovery, (ii) resolving

semantic gaps on IoT device attributes/variables, (iii)

registering devices, thus shortening the data ingestion and

interoperability processes, see the following Subsection.

IV. AUTOMATED HARVESTING OF DATA MODELS

In order to automatize the discovery and registration of

devices/entities into the Directory (and KB) which are

already registered on legacy external brokers, we have

created an automated process, which can be scheduled to get

updates, since devices on External Brokers are registered by

third-parties. The registered devices on External Brokers can

be: Case (i) custom made, Case (ii) compliant with some

SDM version, and Case (iii) derived from some SDM

versions.

 Therefore, as a preliminary step, IoT Directory harvests

periodically the definition repository of the FIWARE SDM

from github. The collection of SDMs is classified per

domain. The SMD harvesting starts by making a local copy

of the SMDs collection. Then, each SDM is formally

validated against a corresponding schemaInterpreter,

usually all of them pass the validation, since they have been

already validated during the publication phase. The

validation procedure is also useful to detect Cases (iii),

where an SDM has been customized.

 In Case (i) of full custom devices/models, data models

are totally unknown and so is the definition of their

attributes. This means that the platform, before accepting

messages, should at least: (a) model a Device with its

attributes and then (b) register it. Thus, each new message,

according to that device, can be recognized as belonging to

that registered device.

 In Cases (ii) and (iii), some information about models

can be recovered from SDM definitions and schemas, while

some attributes can be also not so well defined according to

some problems listed in Section III.E. In fact, due to a

mismatch that may occur with different usages of SDM in

FIWARE Orion Brokers, it may happen that the same SDM

is used with different unitCode. To this end, Snap4City

Platform allows to define mapping rules on device/entity

attributes to assign {value type, value unit, data type},

according to contextual conditions composed by the: broker,

SDM name, device type, value name (attribute name), etc.

 Therefore, as a final consideration the main problems

during such broker harvesting and acceptance of new

messages from devices of External Broker deal with the

attribute matching with contextual information regarding

both unknown and also already known Entity/device models

(SDM, Custom, IoT Device Models of Snap4City, etc.). For

this reason, in the phase of External Broker harvesting for

each attribute a semantic query is performed on KB and

Dictionary, so as to verify the presence of a full match in

terms of contextual conditions.

The match may be as follows: (A) success: the data model

with each attribute is recognized and a mapping is available,

thus the new device/entity can be automatically registered,

or (B) failure: some model attributes are not recognized;

thus, a new mapping rule has to be produced and suggested

to users.

 The automated production of mapping Rules is based

on similarities from unknown device models discovered,

pieces of information in KB and Dictionary, while relaxing

some conditional constraints such as the broker, the SDM,

the organization, etc. To this purpose, the set of active

mapping rules is queried. The resulting queries can be

browsed and corrected via a visual interface for non-

technical experts. Formally, mapping rules R are defined as

follows:

R:= IF <condition> THEN <action list>

<condition>: = <c> | <c> AND <condition>

<c> := <variable> <op> <constant>

<variable> := “device name” | “context broker” |

“device type” | “modelname” | “Value Name” |

“service” | “servicepath” | “organization” | “version”

<op> := “==” | “!=” | “in”

<constant> := integer | float | string | list | “null”

<action list> := <a> | <a>, <action list>

<a> := <action variable>: <action constant>

<action variable> := “Data Type” | “Value Type” |

“Value Unit” | “Editable” | <Healthiness value> |

<Coded Healthiness criteria>

<action constant>:= string

Rules are structured as an if-<condition>-then-<action

list>. The <condition> describes the context of rule
application in terms of joined constraints on broker, service,
model, device type, organization, etc. In fact, a rule can be
functional for an organization or broker and not for others. In
IoT Directory, it is possible to search, edit, activate and
deactivate rules. Please note that in a given context multiple
rules firing may be present. In this case, devices fired with
multiple rules are proposed to the administrator for his/her
decision about rule application. On the contrary, if a unique
firing condition is obtained, the rule is applied, all the
conformant devices are automatically registered, and their
messages are accepted for ingestion purposes (thus
shortening the exploitation of External Brokers). The <action
list> is a list of assignments to complete and/or solve the
mismatch about device/entity attribute definitions. Actions
are used at each device registration to enrich the provided
data to have full device/entity information, so as to perform a
complete registration and semantic indexing. An example of
a Rule can be:

IF “context broker” == “Brk45” AND

 “Value Name”==“aPower”

THEN “Value Type”:“activepower”, “Value Unit”:“KW”,

 “Data Type”:“float”

V. PERFORMANCE ASSESSMENT AND VALIDATION

In the above sections, we have demonstrated how Snap4City

solution satisfies R1, R2, and R7 in connecting and

exploiting data related to different models coming from

different kinds of internal and external brokers, controlling

message conformance with a given model, and verifying

message correctness (R3 and R4). The semantic

interoperability, R5, is provided by the services of both KB

and Dictionary. The harvesting of devices on brokers and

the automated registration of them cover R8 and R9. As to

R10 and R11, evidence is reported in [34], while R6 is

certified by the fact that Snap4City is an official platform

and solution of FIWARE, since the automated deployment

of Orion Brokers is one of its mandatory features.

 In order to assess any effective strong point of the

proposed solution, a specific set of performance experiments

has been performed. The non-functional requirement

regarding the performance has to be verified, since the

interoperability may have a relevant impact on those

aspects, and in particular on performance for: (i) broker

harvesting and device registration, (ii) data message

ingestion and data consumption which is (iii) responding to

Smart City API providing data to clients, (v) passing data

driven data from broker directly into user interface

consumption.

A. Harvesting Performance

As discussed above, harvesting External Brokers may take

into account one or more rules to recognize attributes and

data models, registering and indexing the devices/entities.

This will help in strongly shortening the time to connect

external brokers, recovering their data and performing

manual 1:1 or in bulk registration (if models are known).

Moreover, the proposed solution can dynamically add new

Devices/entities as soon as they are registered on External

Broker, which reduces a lot the gap between using Internal

and External Brokers.

 The validation of this approach has been performed in a

condition of operative workload on Snap4City.org with 20

Internal Brokers and 7 external brokers, for the arrival of

about 22.000 new devices (the reference architecture is

depicted in Figure 2). A regular user on IoT Directory GUI

takes about (i) 2.5 minutes to create a custom device with 9

attributes, and the platform takes 0.7s to register the

device/entity (ii) 2 minutes to create a device model with 9

attributes. Once the model is created, we have two cases to

perform device registration from the model: (a) manually,

the user takes about 0.95s which is an error prone high

repetitive operation, (b) automatically, by using an IoT App

which takes about 0.623s and then produced manually via

visual programming in about 30 min. Technically, the

platform core takes 0.3s for each new device registration

(saving data on IoT Directory, registering on KB,

performing all needed verification to avoid ID duplications,

etc.).

 As to the registration of devices coming from a multi-

tenant External Broker with 22000 devices with 15 models,

the related harvesting time has been of an average of 32s,

using automatically generated rules. When custom Rules for

a specific SDM are applied, the system takes around

1.99min to harvest all of them, controlling rules at each

event. After that, 14406 devices matching those rules have

been automatically passed, thus becoming ready for data

ingestion. The time for device registration is the same as in

case (a). Furthermore, when the system harvests on the same

External Broker, it can show updates of already registered

Devices.

The effective advantage of the proposed harvester consisted

in the automated production of Device Models and rules,

which passes from 2 minutes to about 0.125s for each new

model. The speed up obtained with manual model-based

registration with respect to full manual registration has been

of about 523,3 times; the speed up obtained by performing

the automated registration via IoT App has been of about

686,5 times; and the speed up obtained by performing a

fully automated process has been of 800,2 times.

B. Data Ingestion Performance via Broker

According to Figure 2, once a device is registered the

Internal or External Broker directly sends new messages to

Ni-Fi which performs some enrichment. Actually, each

broker needs to provide an authentication/authorisation

(A&A) filter (see Figure 3).

Figure 3: Architecture (a part) for performance assessment.

The Broker & Filter verifies the right to post a data message

on the platform for the specific Device/Entity (the

authentication is performed once, while the authorisation is

performed at each new post/message, while cache from

filter to the authorisation permits to increase the ingestion

rate). Once the data are passed by filter, the broker pushes

them on Ni-Fi, which in turn enriches them on the basis of

KB info (performing a query and caching it), to finally post

data on OpenSearch and Kafka for real time event-driven

expositions on some front-end real time dashboards, IoT

App and users who have subscribed to the WebSocket

server 1 (WSs srv1 in Figure 3).

In order to assess the performances on data ingestion a

separate installation based on Snap4City platform has been

deployed according to the Micro X model. Snap4City

platform can be installed on premises, according to a

number of models ranging from MicroX based on single

VM with a docker based deploy of all the internal processes,

up to a DataCityLarge which provides a scalable multi VM

solution for big data storage and high throughput of data

ingestion. The MicroX VM was resourced with 16 cores

of 2.1 Ghz, 32 GByte Ram. The assessment has been

performed producing, from a variable number of devices

(threads/entities), parallel input streams pushing message

data on a single broker/filter.

 According to Figure 4, the platform sustained a

maximum of about 138msg/s (each of which with 10

variables, plus time stamp and GPS) using about 240

threads sending their data at the same time (which are 82800

new single data variables per minute). The result has been

about 1.79msg/s per entity, which implies to be capable of

ingesting about 12Million of complex msg/day. This kind of

capability satisfies a medium size city, which may have

about 124K devices sending updates every 15 minute (for

traffic, pollutant, light status, etc.). Large cities may need to

have multiple brokers, a cluster of Ni-Fi for the ingestion

and a cluster of OpenSearch nodes for storage. Moreover,

the sustained workload may also depend on the amount of

data accesses performed from front end, as addressed in the

next subsection.

The result has been obtained with a fine tuning of different

tasks in the Ni-Fi and with the installation of an additional

cache from Ni-Fi and KB, so as to avoid requesting data to

enrich data messages for ingestion at each new insertion

(from both internal or external brokers as well). The

platform reached its max in ingestion performance when

loaded with 240 threads; the CPU workload was at 65% and

RAM memory at 11Gbyte, while the transfer rate on writing

on HD turned out to be of 22Mbyte/s, which is far from the

maximum allowed rate of the platform. From the graph in

Figure 4, it is evident that the insertion rate has reached a

saturation and such saturation was mainly due to the needed

activities on A&A; the insertion of a cache did not solve the

problem. Without the specific A&A calls the ingestion rate

reached the 170msg/s. Moreover, higher performances can

be reached with vertical scalability by increasing the number

of cores and the amount of memory.

Figure 4: Performance assessment in data ingestion. Number of

insertions/messages per second as a function of the number of threads

(simultaneous devices sending data).

C. IoT Data Access: Geo & Time Query Performance

Once IoT data are on storage, KB plays the role of spatial

and semantic index, while Open Search keeps time series

data. For this reason, performances responding to different

kinds of queries could be different. Moreover, these

activities of data access may influence the data ingestion

performance. For example, accessing KB influences costs

related to data warehouse in the data enrichment from Ni-Fi,

while accessing some series acts on Open Search, which is

also fed by data insertion.

 In order to perform a realistic performance assessment,

for both cases, storage has been loaded with about 300.000

entities/devices with 1 year of time series data, with samples

of every 10 minutes and 10 variables per message (this case

may represent a medium-large size city: light control,

stoplights, traffic flow, pollutant, parking, etc.) (in one year

it could accumulate 35Tbyte of data including indexes). The

reference architecture for the front-end assessment is

reported in Figure 3, where the simultaneous data access

requests are represented by using a number of threads. This

test has been performed without ingestion processes.

 The spatial query on smart city API (engaging only KB)

has been set to search for a category of entities in a ray of

1Km and collect about 30 results over some hundreds (the

execution time does not quite change when resulting entities

are in a range of 1-100). In Figure 5 (a), a max of 5700

successful requests per minute has been obtained for spatial

queries. The workload has saturated the resources provided

for the above described VM MicroX, reaching 90% of CPU

clocks.

 The space and time series query on smart city API has

been set to search for a category of entities in the area and

have been limited to 1 result for the whole day, which is

about 144 samples. The collection of the whole sequence

does not quite change the query cost. This kind of query

initially engages KB and then, according to results, it

engages Open Search ordered time index. In this case, the

saturation of VM resources provided (reaching 92% of CPU

clocks) has been reached with 1600 successful requests per

minute by using 25 tasks (see curve (b) on Figure 5).

Figure 5: Performance assessment in data access, geo query. Number of

API calls successful requests per minute as a function of the number of

contemporary threads/requests (cases): (a) spatial queries, (b) spatial and

time series queries).

D. Combining Ingestion and Access Workloads

 Some performance tests have been carried out to

combine different queries with data ingestion processes.

Results have shown that when both workloads are reduced

to ½ of the maximum, the single VM reached 90% of CPU

saturating the resources, and the performance in data

ingestion only decreased of 2.3% while the performance in

data access effectively reduced to the 50%. This implies that

a certain unbalance in scaling and decupling in a different

way back-end ingestion processes (Broker and Ni-FI) has to

be considered with respect to the from-end (KB and

OpenSearch).

E. Assessing performance for end-to-end event driven

messages.

When new events coming from devices need to be directly

communicated to front-end (end to end secure), according to

Figure 3, they need to pass through Ni-Fi (for enrichment,

indexing and storage), and through Kafka/WebSocket to

manage multiple clients. In order to reduce some workload

of this real time channel, only real time messages (on the

basis of their timestamps) are also forwarded to

Kafka/WebSocket by Ni-Fi, thus avoiding any distribution

of already loaded historical data, for example. In this first

case, the maximum performances which could be obtained

were slower than those for direct ingestion: the registered

maximum was 16000 single data values changes (on value

and GPS position) per minute.

The messages begun out of Dashboards to act on platform

(devices or other entities) can (i) move from a WebSocket

server to be distributed to multiple IoT Apps, or (ii) be

directly posted on Broker (this would imply to have

messages sent in Push into Ni-Fi, storage, etc. full round).

F. Considerations

 In general, the increment of performance could be

obtained by means of increasing the number of cores (i.e.,

vertical scalability), while the amount of memory provided

was not a limitation. Moreover, the architecture could be

also horizontally scaled by adding more brokers, clustering

Ni-Fi and Open Search, and/or providing a balanced front

end for queries. All these scaling activities impact in

different manner on the performance improvements and

should be performed on the basis of the actual usage of the

platform. For instance, in medium sized city with 300.000

entities the platform should be oriented to provide services

to: (i) city users (for instance to 30.000 contemporary users,

over a population of 200.000), or (ii) just to be used for

decision makers and control room. In case (ii), a simple

front-end can satisfy all the requests, while in Case (i) a

cluster of Open Search and front-end in balance is needed.

In the Snap4City.org platform, a 6 nodes OpenSearch

cluster manages time series data and provides them to a

front-end cluster providing cached results from API call

requests.

 When setting up a new IoT Smart City infrastructure, in

most cases the historical data have to be ingested by

collecting them from former storages, therefore the process

cannot be performed in short time. This also means that the

operative conditions of the platform should be able to

process at the same time: (i) historical data ingestion

processes, (ii) real time data ingestion, (iii) data access to

provided services and hints (access from mobile, dashboard,

data analytics, etc.).

 As a limit case, returning to the data ingestion process, a

medium-large size city with 300.000 entities/devices with

samples every 10 minutes, having data to be recovered from

other servers for the last 3 years, may lead to recollect and

ingest more than 47 billion of data messages (which may

actually become Tbyte on storage space according to the

preferred redundances and number variables per message).

The ingestion of these historical data via a single broker

would take 416 days for manual device registration and

when it comes to time series ingestion, about 4000 days at a

rate of 12 million msg/day: this makes the process very

unfeasible. The problem can be solved by means of an

automated registration of devices and an architecture scaling

(back-end and storage) with multiple brokers, Ni-Fi and

OpenSearch, and in some cases, avoiding performing data

ingestion of historical data by filtering them by A&A

verifications.

VI. CONCLUSIONS

The proliferation of IoT devices, brokers, networks, data

models, operators and tenants, makes the harmonization and

management of IoT Platform a hard goal. This paper offers

an analysis and a comparison among relevant existing

platforms, and it points out the basic requirements to

achieve such aims. These identified requirements are in

most cases not addressed by main platforms which prefer to

stay on their own end-to-end solutions with limited

interoperability and capacity of exploiting legacy IoT

networks in place, in terms of performance. The proposed

solution addressed problems of (a) interoperability by

reducing set up time to efficiently detect and learn how to

process unknown data structures (devices, entities)

distributed via brokers; (b) performance by dimensioning

the front-end and back-end processes to reach high rates in a

broker-based platform, while preserving full capabilities

features of data warehouse.

As to interoperability, the main identified and solved

problems are those related to a large variety of Data Models

coming from non-controllable External Brokers. The issue

has been solved by designing and implementing a harvester

and reasoner that is capable to automatically

recognize/understand and map the new data models/types

into those already known by Knowledge Base. This

approach, together with the definition of a comprehensive

meta model and dictionary, has allowed to speed up the

process more than 800 times. The harvesting and

comprehension process can be periodically performed to

keep the platform updated with any newly defined data

models by third party brokers. Furthermore, the process is

helped by Km4City ontology and Data Dictionary to

recognize the new data types and models according to the

semantic domain.

Moreover, any processes of data discovery, registration and

ingestion also impact on performance. To this end, the

proposed solution has been assessed in terms of

performance in harvesting brokers, discovering and

registering devices, collecting messages and data access;

thus, providing evidence of the maximum performance

which can be obtained by each single front-end / back-end

component/area and how they are influenced each other in

the whole architecture. This study has led us to a number of

considerations regarding platform scaling and usage,

especially when the former have to be used to harvest and

ingest legacy data coming from External Brokers.

Future work can be oriented on enforcing stronger

encryption mechanisms which may impact on the protection

of data and connections as mentioned in section II.A. An

activity in this direction could be to investigate the

enforcement of blockchain solutions on specific IoT

devices.

The reported study and IoT Directory have been developed

in the framework of the Herit-Data Project and it is currently

used in the Snap4City infrastructure, made of more than 18

tenants, and billions of data. Snap4City is an open source

IoT platform for Smart Cities and Industry 4.0, official

FIWARE platform, compliant with the Smart Data Model of

FIWARE, EOSC, and lib of Node-RED.

ACKNOWLEDGMENT

 The authors would like to thank the MIUR, the University

of Florence and all the companies involved for co-funding

the Herit-Data project. We express our thanks also to Chiara

Camerota and Giuseppe Parrotta for some development and

early experiments on the harvesting aspects of the platform.

Km4City and Snap4City (https://www.snap4city.org)

which are open technologies and research of DISIT Lab. Sii-

Mobility is based on and has contributed to the Km4City

open solutions.

REFERENCES

[1] P. Bellini, P. Nesi, G. Pantaleo, IoT-enabled smart cities: A review of
concepts, frameworks and key technologies, Applied Sciences. 12 (3)
(2022) 1607.

https://www.snap4city.org/

[2] S.Chen, H. Xu, D. Liu, B. Hu, H. Wang, A vision of IoT:
Applications, challenges, and opportunities with china perspective,
IEEE Internet of Things Journal. 1 (4) (2014) 349–359.

[3] K. Mekki, E. Bajic, F. Chaxel, F. Meyer, Overview of cellular
LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and
NB-IoT, in: 2018 Ieee International Conference on Pervasive
Computing and Communications Workshops (Percom Workshops),
IEEE, 2018: pp. 197–202.

[4] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A.
Niakanlahiji, J. Kong, J.P. Jue, All one needs to know about fog
computing and related edge computing paradigms: A complete
survey, Journal of Systems Architecture. 98 (2019) 289–330.

[5] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, A.
Kitazawa, FogFlow: Easy programming of IoT services over cloud
and edges for smart cities, IEEE Internet of Things Journal. 5 (2)
(2017) 696–707.

[6] M. Aboubakar, M. Kellil, P. Roux, A review of IoT network
management: Current status and perspectives, Journal of King Saud
University-Computer and Information Sciences. 34 (7) (2022) 4163–
4176.

[7] C. Badii, P. Bellini, A. Difino, P. Nesi, Smart city IoT platform
respecting GDPR privacy and security aspects, IEEE Access. 8
(2020) 23601–23623.

[8] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, W. Zhao, How can
heterogeneous internet of things build our future: A survey, IEEE
Communications Surveys & Tutorials. 20 (3), (2018) 2011–2027.

[9] I. Zyrianoff, A. Heideker, L. Sciullo, C. Kamienski, M. Di Felice,
Interoperability in open IoT platforms: WoT-FIWARE comparison
and integration, in: 2021 IEEE International Conference on Smart
Computing (SMARTCOMP), IEEE, 2021: pp. 169–174.

[10] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, T. Watteyne, Understanding the limits of LoRaWAN, IEEE
Communications Magazine. 55 (9), (2017) 34–40.

[11] S. Valtolina, F. Hachem, B.R. Barricelli, E.G. Belay, S. Bonfitto, M.
Mesiti, Facilitating the development of iot applications in smart city
platforms, in: End-User Development: 7th International Symposium,
IS-EUD 2019, Hatfield, UK, July 10–12, 2019, Proceedings 7,
Springer, 2019: pp. 83–99.

[12] F. Cirillo, G. Solmaz, E.L. Berz, M. Bauer, B. Cheng, E. Kovacs, A
standard-based open source IoT platform: FIWARE, IEEE Internet of
Things Magazine. 2 (3), (2019) 12–18.

[13] AWS, AWS IoT, <https://aws.amazon.com/iot>, (accessed 17.05.23).

[14] Siemens, MindSphere Siemens, <https://siemens.mindsphere.io/en>,
(accessed 14.12.22).

[15] MS Azure, MS Azure IoT, <https://azure.microsoft.com/en-
us/overview/iot>, (accessed 17.05.23).

[16] IBM, IBM Watson IoT, <https://ww.ibm.com/watson>, (accessed
17.05.23).

[17] OMA SpecWorks, OMA SpecWorks <https://omaspecworks.org/>,
(accessed 17.05.23).

[18] Open and Agile Smart City, Open and Agile Smart City,
<https://oascities.org/>, (accessed 17.05.23).

[19] M. Botts, G. Percivall, C. Reed, J. Davidson, OGC® sensor web
enablement: Overview and high level architecture, in: GeoSensor
Networks: Second International Conference, GSN 2006, Boston, MA,
USA, October 1-3, 2006, Revised Selected and Invited Papers,
Springer, 2008: pp. 175–190.

[20] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O.
Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog,
others, The SSN ontology of the W3C semantic sensor network
incubator group, Journal of Web Semantics. 17 (2012) 25–32.

[21] P. Guillemin, F. Berens, M. Carugi, H. Barthel, A. Dechamps, R.
Rees, C. Cosgrove-Sacks, J. Clark, M. Arndt, L. Ladid, others,
Internet of Things Global Standardisation-State of Play, in: Internet of
Things Applications-From Research and Innovation to Market
Deployment, River Publishers, 2022: pp. 143–197.

[22] M. Blackstock, R. Lea, IoT interoperability: A hub-based approach,
in: 2014 International Conference on the Internet of Things (IOT),
IEEE, 2014: pp. 79–84.

[23] P. Desai, A. Sheth, P. Anantharam, Semantic gateway as a service
architecture for iot interoperability, in: 2015 IEEE International
Conference on Mobile Services, IEEE, 2015: pp. 313–319.

[24] M. Blackstock, R. Lea, Toward interoperability in a web of things, in:
Proceedings of the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication, 2013: pp. 1565–1574.

[25] S. Chun, S. Seo, B. Oh, K.-H. Lee, Semantic description, discovery
and integration for the Internet of Things, in: Proceedings of the 2015
IEEE 9th International Conference on Semantic Computing (IEEE
ICSC 2015), IEEE, 2015: pp. 272–275.

[26] L. Hao, H. Schulzrinne, Goldie: Harmonization and orchestration
towards a global directory for IoT, in: IEEE INFOCOM 2021-IEEE
Conference on Computer Communications, IEEE, 2021: pp. 1–10.

[27] M. Jacoby, T. Usländer, Digital twin and internet of things—Current
standards landscape, Applied Sciences. 10 (18), (2020) 6519.

[28] J. Conde, A. Munoz-Arcentales, A. Alonso, S. López-Pernas, J.
Salvachua, Modeling digital twin data and architecture: A building
guide with FIWARE as enabling technology, IEEE Internet
Computing. 26 (3), (2021) 7–14.

[29] https://www.fiware.org/ Last Accessed 21-05-2023

[30] U. Ahle, J.J. Hierro, FIWARE for data spaces, Designing Data
Spaces. (2022) 395. In: Otto, B., ten Hompel, M., Wrobel, S. (eds)
Designing Data Spaces. Springer, Cham. https://doi.org/10.1007/978-
3-030-93975-5_11.

[31] M. Jarke, C. Quix, Federated Data Integration in Data Spaces,
Designing Data Spaces. (2022) 181. In: Otto, B., ten Hompel, M.,
Wrobel, S. (eds) Designing Data Spaces. Springer, Cham.
https://doi.org/10.1007/978-3-030-93975-5_11.

[32] H. Fang, Managing data lakes in big data era: What’s a data lake and
why has it became popular in data management ecosystem, in: 2015
IEEE International Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER), IEEE, 2015: pp. 820–824.

[33] Snap4City, Snap4City Portal and service,
<https://www.snap4city.org> (accessed 17.05.23).

[34] C. Badii, P. Bellini, A. Difino, P. Nesi, G. Pantaleo, M. Paolucci,
Microservices suite for smart city applications, Sensors. 19 (21),
(2019) 4798.

[35] M. Ammar, G. Russello, B. Crispo, Internet of Things: A survey on
the security of IoT frameworks, Journal of Information Security and
Applications. 38 (2018) 8–27.

[36] P.P. Ray, A survey of IoT cloud platforms, Future Computing and
Informatics Journal. 1 (1-2), (2016) 35–46.

[37] D. Namiot, M. Sneps-Sneppe, On software standards for smart cities:
API or DPI, in: Proceedings of the 2014 ITU Kaleidoscope Academic
Conference: Living in a Converged World-Impossible without
Standards?, IEEE, 2014: pp. 169–174.

[38] GDPR. Accessed: May. 21, 2023. [Online]. Available:
https://en.wikipedia. org/wiki/General_Data_Protection_Regulation

[39] Mozaffari-Kermani, M., & Reyhani-Masoleh, A. (2009). Fault
Detection Structures of the S-boxes and the Inverse S-boxes for the
Advanced Encryption Standard. Journal of Electronic Testing, 25,
225-245.

[40] Anastasova, M., Azarderakhsh, R., & Kermani, M. M. (2021). Fast
strategies for the implementation of SIKE round 3 on ARM Cortex-
M4. IEEE Transactions on Circuits and Systems I: Regular
Papers, 68(10), 4129-4141.

[41] Bisheh-Niasar, M., Azarderakhsh, R., & Mozaffari-Kermani, M.
(2021). Cryptographic accelerators for digital signature based on
Ed25519. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 29(7), 1297-1305.

[42] P. Bellini, D. Nesi, P. Nesi, M. Soderi, Federation of smart city
services via APIs, in: 2020 IEEE International Conference on Smart
Computing (SMARTCOMP), IEEE, 2020: pp. 356–361.

[43] C. Badii, P. Bellini, D. Cenni, A. Difino, P. Nesi, M. Paolucci,
Analysis and assessment of a knowledge based smart city architecture
providing service APIs, Future Generation Computer Systems. 75
(2017) 14–29.

[44] A. Arman, P. Bellini, D. Bologna, P. Nesi, G. Pantaleo, M. Paolucci,
Automating IoT data ingestion enabling visual representation,
Sensors. 21(24), (2021) 8429.

[45] P. Bellini, D. Cenni, M. Marazzini, N. Mitolo, P. Nesi, M. Paolucci,
Smart city control room dashboards: big data infrastructure, from data
to decision support, J. Vis. Lang. Comput. 4 (2018) 75–82.

https://aws.amazon.com/iot
https://siemens.mindsphere.io/en
https://azure.microsoft.com/en-us/overview/iot
https://azure.microsoft.com/en-us/overview/iot
https://ww.ibm.com/watson
https://omaspecworks.org/
https://oascities.org/
https://www.fiware.org/
https://doi.org/10.1007/978-3-030-93975-5_11
https://www.snap4city.org/

