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Abstract
We propose a stochastic first-order trust-region method with inexact function and 
gradient evaluations for solving finite-sum minimization problems. Using a suitable 
reformulation of the given problem, our method combines the inexact restoration 
approach for constrained optimization with the trust-region procedure and random 
models. Differently from other recent stochastic trust-region schemes, our proposed 
algorithm improves feasibility and optimality in a modular way. We provide the 
expected number of iterations for reaching a near-stationary point by imposing some 
probability accuracy requirements on random functions and gradients which are, in 
general, less stringent than the corresponding ones in literature. We validate the pro-
posed algorithm on some nonconvex optimization problems arising in binary classi-
fication and regression, showing that it performs well in terms of cost and accuracy, 
and allows to reduce the burdensome tuning of the hyper-parameters involved.
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1 Introduction

In this paper we consider the finite-sum minimization problem

where N is very large and finite and �i ∶ ℝ
n
→ ℝ , 1 ≤ i ≤ N , are continuously differ-

entiable. A number of important problems can be stated in this form, e.g., classification 
problems in machine learning, data fitting problems, sample average approximations of 
an objective function given in the form of mathematical expectation. In recent years the 
need for efficient methods for solving (1) resulted in a large body of literature and a num-
ber of methods have been proposed and analyzed, see e.g., the reviews [1–3].

It is common to employ subsampled approximations of the objective function and its 
derivatives with the aim of reducing the computational cost. Focusing on first-order meth-
ods, the stochastic gradient [4] and more contemporary variants like SVRG [5, 6], SAG 
[7], ADAM [8] and SARAH [9] are widely used for their simplicity and low cost per-
iteration. They do not call for function evaluations but require tuning the learning rate and 
further possible hyper-parameters such as the mini-batch size. Since the tuning effort may 
be very computationally demanding [10], more sophisticated approaches use stochastic 
linesearch or trust-region strategies to adaptively choose the learning rate, see [1, 10–15]. 
In this context, function and gradient approximations have to satisfy sufficient accuracy 
requirements with some probability. This, in turn, in case of approximations via sampling, 
requires adaptive choices of the sample sizes used.

In a further stream of works, problem (1) is reformulated as a constrained opti-
mization problem and the sample size is computed deterministically using the Inex-
act Restoration (IR) approach. The IR approach has been successfully combined 
with either the linesearch strategy [16] or the trust-region strategy [17–19]; in these 
papers, function and gradient estimates are built with gradually increasing accuracy 
and averaging on the same sample.

We propose a novel trust-region method with random models based on the IR method-
ology. In our proposed method, feasibility and optimality are improved in a modular way, 
and the resulting procedure differs from the existing stochastic trust-region schemes [13, 
14, 20–22] in the acceptance rule for the step. We provide a theoretical analysis and give a 
bound on the expected iteration complexity to satisfy an approximate first-order optimality 
condition; this calls for accuracy conditions on random gradients that are assumed to hold 
with some sufficiently large but fixed probability and are, in general, less stringent than the 
corresponding ones in [13, 14, 20–22]. Our theoretical analysis improves over the one for 
the stochastic trust-region method with inexact restoration given in [19], since we no longer 
rely on standard theory for deterministic unconstrained optimization invoked eventually 
when functions and gradients are computed exactly.

The paper is organized as follows. In Sect.  2 we give an overview of random 
models employed in the trust-region framework and introduce the main features of 
our contribution. The new algorithm is proposed in Sect. 3 and studied theoretically 
with respect to the iteration complexity analysis. Extensive numerical results are 
presented in Sect. 4.

(1)min
x∈ℝn

fN(x) =
1

N

N∑
i=1

�i(x),
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2  Trust‑region method with random models

Variants of the standard trust-region method based on the use of random models 
have been presented, to our knowledge, in [13, 14, 19–23]. They consist in the 
adaptation of the trust-region framework to the case where random estimates of the 
derivatives are introduced and function values are either computed exactly [20] or 
replaced by stochastic estimates [13, 14, 19, 21–23].

The computation and acceptance of the iterates parallel the standard trust-region 
mechanism, and the success of the procedure relies on function values and models 
being sufficiently accurate with fixed and large enough probability. The accuracy 
requests in the mentioned works show many similarities; here we illustrate some 
issues related to the works [13, 14, 22], which are closer to our approach.

Let ‖ ⋅ ‖ denote the 2-norm throughout the paper. At iteration k of a first-order sto-
chastic trust-region model, given xk , the positive trust-region radius �k and a random 
approximation gk of ∇fN(xk) , let consider the model

for fN on B(xk, �k) = {x ∈ ℝ
n ∶ ‖x − xk‖ ≤ �k} and the trust-region problem 

min‖p‖≤�k �k(xk + p) . Thus, the trust region step takes the form pk = −�kgk∕‖gk‖.
Two estimates f k,0 and f k,p of fN at xk and xk + pk , respectively, are employed to 

either accept or reject the trial point xk + pk . The classical ratio between the actual 
and predicted reduction is replaced by

and a successful iteration is declared when �k ≥ �1 and ‖gk‖ ≥ �2�k for some constants 
�1 ∈ (0, 1) and positive and possibly large �2 . Note that the computation of both the 
step pk and the denominator in (2) are independent of fN(xk) . Furthermore, note that 
a successful iteration might not yield an actual reduction in fN because the quantities 
involved in �k are random approximations to the true value of the objective function.

The condition ‖gk‖ ≥ �2�k is not typical of deterministic trust-region methods for 
smooth optimization and depends on the fact that �k controls the accuracy of func-
tion and gradients. Specifically, the models used are required to be sufficiently accu-
rate with some probability. The model �k is supposed to be, �M-probabilistically, a �∗
-fully linear model of fN on the ball B(xk, �k) , i.e., the requirement

with 𝜅∗ > 0 , has to be fulfilled at least with probability �M ∈ (0, 1) . Moreover, the 
estimates f k,0 and f k,p are supposed to be �f -probabilistically �F-accurate estimates 
of fN(xk) and fN(xk + pk) , i.e., the requirement

�k(xk + p) = fN(xk) + gT
k
p

(2)�k =
f k,0 − f k,p

�k(xk) − �k(xk + pk)
,

(3)�fN(y) − �k(y)� ≤ �∗�
2
k
, ‖∇fN(y) − gk‖ ≤ �∗�k, y ∈ B(xk, �k)
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has to be fulfilled at least with probability �f ∈ (0, 1) . Clearly, if fN is computed 
exactly then condition (4) is trivially satisfied.

Convergence analysis in [13, 14, 22] shows that for �M and �f sufficiently large it holds 
limk→∞ �k = 0 almost surely. Moreover, if fN is bounded from below and ∇fN is Lipschitz 
continuous, then limk→∞ ‖∇fN(xk)‖ = 0 almost surely. Interestingly, the accuracy in (3) and 
(4) increases as the trust region radius gets smaller but the probabilities �M and �f are fixed.

For problem (1) it is straightforward to build approximations of fN and ∇fN by 
sample average approximations

where IM and IS are subsets of {1,… ,N} of cardinality |IM| = M and |IS| = S , respec-
tively. The choice of sample size such that (3) and (4) hold in probability is discussed 
in [14, §5] as follows. Let ��[|��(x) − fN(x)|2] ≤ Vf  , ��[|∇��(x) − ∇fN(x)|2] ≤ Vg , 
∀x ∈ ℝ

n , with �� being the expected value with respect to the random index � 
employed for sampling, and assume

Then f k,0 and f k,s built as in (5) with sample size M satisfy (4) with probability pf  , 
while gk built as in (5) with sample size S satisfies ‖∇fN(xk) − gk‖ ≤ �∗�k with prob-
ability pg . Furthermore, using Taylor expansion and Lipschitz continuity of ∇fN , it 
can be proved that (3) is met with probability �M = �f�pg ; consequently, a �∗-fully 
linear model of fN in B(xk, �k) is obtained.

In principle, conditions (3), (4) and limk→∞ �k = 0 imply that f k,0 , f k,s and gk will be 
computed at full precision for k sufficiently large. On the other hand, in applications such 
as machine learning, reaching full precision is unlikely since N is very large and termina-
tion is based on the maximum allowed computational effort or on the validation error.

2.1  Our contribution

We propose a trust-region procedure with random models based on (5) and com-
bine it with the inexact restoration (IR) method for constrained optimization [24]. To 
this end, we make a simple transformation of (1) into a constrained problem. Spe-
cifically, letting IM be an arbitrary nonempty subset of {1,… ,N} of cardinality |IM| 
equal to M, we reformulate problem (1) as

(4)|f k,0 − fN(xk)| ≤ �F�
2
k
, |f k,p − fN(xk + pk)| ≤ �F�

2
k
,

(5)fM(x) =
1

M

∑
i∈IM

�i(x), ∇fS(x) =
1

S

∑
i∈IS

∇�i(x),

(6)M ≥
Vf

�2F(1 − �f )�4k
, S ≥

Vg

�2
∗(1 − �g)�2k

and max{M, S} ≤ N.
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Using the IR strategy allows to improve feasibility and optimality in a modular way 
and gives rise to a procedure that differs from the existing trust-region schemes in 
the following respects. First, at each iteration a reference sample size is fixed and 
used as a guess for the approximation of function values. Second, the acceptance 
rule for the step is based on the condition ‖gk‖ ≥ �2�k , for some 𝜂2 > 0 , and a suffi-
cient decrease condition on a merit function that measures both the reduction of the 
objective function and the improvement in feasibility. Finally, the expected iteration 
complexity to satisfy an approximate first-order optimality condition is given, pro-
vided that, at each iteration k, the gradient estimates satisfy accuracy requirements 
of order O

(
�k
)
 ; such accuracy requirements implicitly govern function approxi-

mations and are, in general, less stringent than the corresponding ones in [13, 14, 
20–22], as carefully detailed in Sect. 3.

Our theoretical analysis improves over the analysis carried out in [19] for a simi-
lar stochastic trust-region coupled with inexact restoration, since here we do not rely 
on the occurrence of full precision, M = N in (7), reached eventually and do not 
apply standard theory for unconstrained optimization. In fact, the expected number 
of iterations until a prescribed accuracy is reached is provided without invoking full 
precision.

3  The algorithm

In this section we introduce our new algorithm referred to as SIRTR (Stochastic 
Inexact Restoration Trust Region).

First, we introduce some issues of IR methods. The level of infeasibility with 
respect to the constraint M = N in (7) is measured by the following function h.

Assumption 1 Let h ∶ {1, 2,… ,N} → ℝ be a monotonically decreasing function 
such that h(1) > 0 , h(N) = 0.

This assumption implies that there exist some positive h and h such that

One possible choice is h(M) = (N −M)∕N, 1 ≤ M ≤ N.
The IR methods improve feasibility and optimality in modular way using a merit 

function to balance the progress. Since the reductions in the objective function and 
infeasibility might be achieved to a different degree, the IR method employs the 
merit function

with � ∈ (0, 1).

(7)min
x∈ℝn

fM(x) =
1
M

∑

i∈IM

�i(x), s.t. M = N.

(8)h ≤ h(M) if 1 ≤ M < N, and h(M) ≤ h if 1 ≤ M ≤ N.

(9)Ψ(x,M, �) = �fM(x) + (1 − �)h(M),
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Our SIRTR algorithm is a trust-region method that employs first-order random 
models. At a generic iteration k, we fix a trial sample size Nt

k+1
 and build a linear 

model mk(p) around xk of the form

 where gk is a random estimator to ∇fN(xk) . Then, we consider the trust-region 
problem

whose solution is

As in standard trust-region methods, we distinguish between successful and unsuc-
cessful iterations. However, we do not employ here the classical acceptance condi-
tion, but a more elaborate one that involves the merit function (9).

The proposed method is sketched in Algorithm 3.1 and its steps are now dis-
cussed. At a generic iteration k, we have at hand the outcome of the previous iter-
ation: the iterate xk , the sample sizes Nk and Ñk , the penalty parameter �k , the flag 
iflag. If iflag=succ the previous iteration was successful, i.e., xk = xk−1 + pk−1 , 
if iflag=unsucc the previous iteration was unsuccessful, i.e., xk = xk−1.

The scheduling procedure for generating the trial sample size Nt
k+1

 con-
sists of Steps 1 and 2 of SIRTR. At Step 1, we determine a reference sample 
size Ñk+1 ≤ N . If iflag=succ, then the infeasibility measure h is sufficiently 
decreased as stated in (20). If iflag=unsucc, Ñk+1 is left unchanged from the 
previous iteration, i.e., Ñk+1 = Ñk . We remark that (20) trivially implies Ñk+1 = N 
if Nk = N and that it holds at each iteration, even when it is not explicitly enforced 
at Step 1 (see forthcoming Lemma 1). In principle Ñk+1 could be the trial sam-
ple size but we aim at giving more freedom to the sample size selection process. 
Thus, at Step 2, we choose a trial sample size Nt

k+1
 complying with condition 

(21). On the one hand, such a condition allows the choice Nt
k+1

< �Nk+1 in order 
to reduce the computational effort; on the other hand, the choice Nt

k+1
≥ Ñk+1 

is also possible in order to satisfy specific accuracy requirements that will be 
specified later. When Nt

k+1
< �Nk+1 , condition (21) rules the largest possible dis-

tance between Nt
k+1

 and Ñk+1 in terms of �k ; in case Nt
k+1

≥ Ñk+1 , (21) is trivially 
satisfied.

At Step 3 we form the linear random model (10) and compute its minimizer 
within the trust-region. Specifically, we fix the cardinality Nk+1,g and choose the 
set of indices INk+1,g

⊆ {1,… ,N} of cardinality Nk+1,g . Then, we compute the esti-
mator gk of ∇fN(xk) as

(10)mk(p) = fNt
k+1
(xk) + gT

k
p,

(11)min‖p‖≤�k
mk(p),

(12)pk = −�k
gk

‖gk‖ .
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and the solution pk in (12) of the trust-region subproblem (11). Further, we compute 
mk(pk) where mk is defined in (10) and

with INt
k+1

⊆ {1,… ,N} being a set of cardinality Nt
k+1

.
At Step 4 we compute the new penalty term �k+1. The computation relies on 

the predicted reduction defined as

where � ∈ (0, 1) . This predicted reduction is a convex combination of the usual pre-
dicted reduction fNk

(xk) − mk(pk) in trust-region methods, and the predicted reduc-

tion h(Nk) − h(Ñk+1) in infeasibility obtained in Step 1. The new parameter �k+1 is 
computed so that

If (16) is satisfied at � = �k then �k+1 = �k , otherwise �k+1 is computed as the largest 
value for which the above inequality holds (see forthcoming Lemma 2).

Step 5 establishes if the iteration is successful or not. To this end, given a point 
x̂ and � ∈ (0, 1) , the actual reduction of Ψ at the point x̂ has the form

and the iteration is successful whenever the following two conditions are both 
satisfied

Otherwise the iteration is declared unsuccessful. If the iteration is successful, we 
accept the step and the trial sample size, set iflag=succ and possibly increase the 
trust-region radius through (23); the upper bound �max on the trust region size is 
imposed in (23). In case of unsuccessful iterations, we reject both the step and the 
trial sample size, set iflag=unsucc and decrease the trust region size.

(13)gk =
1

Nk+1,g

∑
i∈INk+1,g

∇�i(xk)

(14)fNt
k+1
(xk) =

1

Nt
k+1

∑
i∈INt

k+1

�i(xk),

(15)Predk(�) = �(fNk
(xk) − mk(pk)) + (1 − �)(h(Nk) − h(Ñk+1)),

(16)Predk(�) ≥ �1(h(Nk) − h(Ñk+1)).

(17)
Aredk(x̂, 𝜃) =Ψ(xk,Nk, 𝜃) − Ψ(x̂,Nt

k+1
, 𝜃)

=𝜃(fNk
(xk) − fNt

k+1
(x̂)) + (1 − 𝜃)(h(Nk) − h(Nt

k+1
)),

(18)Aredk(xk + pk, �k+1) ≥ �1Predk(�k+1)

(19)‖gk‖ ≥ �2�k.
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Concerning conditions (18) and (19), we observe that the former mimics the 
classical acceptance criterion of standard trust-region methods while the latter 
drives �k to zero as ‖gk‖ tends to zero.

We conclude the description of Algorithm 3.1 showing that condition (20) holds 
for all iterations, even when it is not explicitly enforced at Step 1.
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Lemma 1 Let Assumption 3.1 holds and r ∈ (0, 1) be the scalar in Algorithm 3.1. 
The sample sizes Ñk+1 ≤ N and Nk ≤ N generated by Algorithm 3.1 satisfy

Proof We observe that, by Assumption 3.1, (25) trivially holds whenever 
Nk = Ñk+1 = N.

Otherwise, we proceed by induction. Indeed, the thesis trivially holds for k = 0 , 
as we set iflag=succ at the first iteration and enforce (25) at Step 1. Now consider 
a generic iteration k̄ ≥ 1 and suppose that (25) holds for k̄ − 1 . If iteration k̄ − 1 is 
successful, then condition (25) is enforced for iteration k̄ at Step 1.

If iteration k̄ − 1 is unsuccessful, then at Step 5 we set Nk̄ = Nk̄−1 . Successively, 
at Step 1 of iteration k̄ we set �Nk̄+1 =

�Nk̄ . Since (25) holds by induction at iteration 
k̄ − 1 , we have h(�Nk̄) ≤ rh(Nk̄−1) , which can be rewritten as h(�Nk̄+1) ≤ rh(Nk̄) due 
to the previous assignments at Step 5 and Step 1. Then condition (25) holds also at 
iteration k̄ .   ◻

3.1  On the sequences {�
k
} and {ı

k
}

In this section, we analyze the properties of Algorithm 3.1. In particular, we prove 
that the sequence {�k} is non increasing and uniformly bounded from below, and that 
the trust region radius �k tends to 0 as k → ∞ . We make the following assumption.

Assumption 2 Functions �i are continuously differentiable for i = 1,… , n . There 
exists flow ∈ ℝ such that

Furthermore, there exist Ω ⊂ ℝ
n and fup ∈ ℝ such that

and all iterates generated by Algorithm 3.1 belong to Ω.

In the following, we let

Remark 1 In the context of machine learning, the above assumption is verified in 
several cases, e.g., the mean-squares loss function coupled with either the sigmoid, 
the softmax or the hyperbolic tangent activation function; the mean-squares loss 
function coupled with ReLU or ELU activation functions and bound constraints 
(above and below) on all variables; the logistic loss function coupled again with 
bound constraints (above and below) on the unknowns [25].

(25)h(Ñk+1) ≤ rh(Nk), ∀k ≥ 0.

fM(x) ≥ flow, 1 ≤ M ≤ N, x ∈ ℝ
n.

fM(x) ≤ fup, 1 ≤ M ≤ N, x ∈ Ω,

(26)�� = max{|flow|, |fup|}.
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In the analysis that follows we will consider two options for x̂ in (17), x̂ = xk + pk 
for successful iterations and x̂ = xk for unsuccessful iterations.

Our first result characterizes the sequence {�k} of the penalty parameters; the 
proof follows closely [19, Lemma 2.2].

Lemma 2 Let Assumptions 1 and 2 hold. Then the sequence {�k} is positive, non 
increasing and bounded from below, 𝜃k+1 ≥ 𝜃 > 0 with � independent of k and (16) 
holds with � = �k+1.

Proof We note that 𝜃0 > 0 and proceed by induction assuming that �k is positive. Due 
to Lemma 1, for all iterations k we have that Nk ≤ Ñk+1 and that Nk = Ñk+1 if and only 
if Nk = N . First consider the case where Nk = Ñk+1 (or equivalently Nk = Ñk+1 = N ); 
then it holds h(Nk) − h(Ñk+1) = 0 , and Nt

k+1
= N by Step 2. Therefore, we have 

Predk(𝜃) = 𝜃𝛿k‖gk‖ > 0 for any positive � , and (22) implies �k+1 = �k . Let us now 
consider the case Nk < �Nk+1 . If inequality Predk(�k) ≥ �1(h(Nk) − h(Ñk+1)) holds 
then (22) gives �k+1 = �k . Otherwise, we have

and since the right hand-side is negative by assumption, it follows

Consequently, Predk(�) ≥ �1(h(Nk) − h(Ñk+1)) is satisfied if

i.e., if

Hence �k+1 is the largest value satisfying (16) and 𝜃k+1 < 𝜃k.

Let us now prove that �k+1 ≥ �. Note that by (25) and (8)

Using (26)

𝜃k

(
fNk

(xk) − mk(pk) − (h(Nk) − h(�Nk+1))
)
< (𝜂1 − 1)

(
h(Nk) − h(�Nk+1)

)
,

fNk
(xk) − mk(pk) − (h(Nk) − h(�Nk+1)) < 0.

�(fNk
(xk) − mk(pk) − (h(Nk) − h(Ñk+1))) ≥ (�1 − 1)(h(Nk) − h(Ñk+1)),

� ≤ �k+1
def
=

(1 − �1)(h(Nk) − h(Ñk+1))

mk(pk) − fNk
(xk) + h(Nk) − h(Ñk+1)

.

(27)h(Nk) − h(Ñk+1) ≥ (1 − r)h(Nk) ≥ (1 − r)h.

mk(pk) − fNk
(xk) + h(Nk) − h(Ñk+1) ≤mk(pk) − fNk

(xk) + h(Nk)

≤fNt
k+1
(xk) − �k‖gk‖ − fNk

(xk) + h

≤�fNt
k+1
(xk) − fNk

(xk)� + h ≤ 2k� + h,



63

1 3

A stochastic first‑order trust‑region method with inexact…

and �k+1 in (22) satisfies

which completes the proof.   ◻

In the following, we derive bounds for the actual reduction Aredk(xk+1, �k+1) in 
case of successful iterations and distinguish the iteration indexes k as below:

Note that I1, I2 are disjoint and any iteration index k belongs to exactly one of these 
subsets. Moreover, (25) yields Ñk+1 = Nk = Nt

k+1
= N for any k ∈ I2.

Lemma 3 Let Assumptions 1-2 hold and suppose that iteration k is successful. If 
k ∈ I1 then

Otherwise,

Proof Since iteration k is successful, xk+1 = xk + pk and (18) hold. Suppose k ∈ I1 . 
By (18) and (16)

In virtue of Lemma 1 we have h(Nk) − h(Ñk+1) ≥ (1 − r)h(Nk) , hence we obtain

Dividing and multiplying the right-hand side above by �2
k
 , applying the inequalities 

h ≤ h(Nk) , �k ≤ �max , we get (31).
Suppose k ∈ I2 . Then Nk = Ñk+1 and by the definition of Predk(�k+1) and Lemma 

2, we have

and therefore (18), (19) and Lemma 2 yield (32).   ◻

Let us now define a Lyapunov type function Φ inspired by the paper [14]. 
Assumption 1 implies that h(Nk) is bounded from above while Assumption 2 implies 
that fNk

(x) is bounded from below if x ∈ Ω . Thus, there exists a constant Σ such that

(28)�k+1 ≥ � =
(1 − �1)(1 − r)h

2k� + h
,

(29)I1 ={k ≥ 0 s.t. Nk < �Nk+1},

(30)I2 ={k ≥ 0 s.t. Nk = Ñk+1}.

(31)Aredk(xk+1, �k+1) ≥ �2
1
(1 − r)h

�2
max

�2
k
.

(32)Aredk(xk+1, �k+1) ≥ �1�2��
2
k
.

Aredk(xk + pk, �k+1) ≥ �1Predk(�k+1) ≥ �2
1
(h(Nk) − h(Ñk+1)).

Aredk(xk + pk, �k+1) ≥ �2
1
(1 − r)h(Nk).

Predk(�k+1) = �k+1(fN(xk) − mk(pk)) = �k+1�k‖gk‖ ≥ ��k‖gk‖,
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Definition 1 Let v ∈ (0, 1) be a fixed constant. For all k ≥ 0 , we define

where Ψ is the merit function given in (9) and Σ is given in (33).

The choice of v ∈ (0, 1) in the above definition will be specified below. First, note 
that �k is bounded below for all k ≥ 0,

Second, adding and subtracting suitable terms, by the definition (34) and for all 
k ≥ 0 , we have

If the iteration k is successful, then using (33), the monotonicity of {�k}k∈ℕ proved in 
Lemma 2, and the fact that Nk+1 = Nt

k+1
 , the equality (36) yields

Otherwise, if the iteration k is unsuccessful, then xk+1 = xk , Nk+1 = Nk and thus the 
first quantity at the right-hand side of equality (36) is zero. Hence using again (33) 
and the monotonicity of {�k}k∈ℕ , we obtain

Now we provide bounds for the change of Φ along subsequent iterations and again 
distinguish the two cases k ∈ I1, I2 stated in (29)-(30).

(33)fNk
(x) − h(Nk) + Σ ≥ 0, x ∈ Ω, k ≥ 0.

(34)�k

def
=Φ(xk,Nk, �k, �k) = v

(
Ψ(xk,Nk, �k) + �kΣ

)
+ (1 − v)�2

k
,

(35)

�k ≥v(Ψ(xk,Nk, �k) + �kΣ
)

≥v(�kfNk
(xk) + (1 − �k)h(Nk) + �k(−fNk

(xk) + h(Nk))
)

≥vh(Nk) ≥ 0.

(36)

�k+1 − �k =v
(
�k+1fNk+1

(xk+1) + (1 − �k+1)h(Nk+1)
)

− v
(
�kfNk

(xk) + (1 − �k)h(Nk)
)
+ v(�k+1 − �k)Σ

+ (1 − v)(�2
k+1

− �2
k
)

=v
(
�k+1fNk+1

(xk+1) + (1 − �k+1)h(Nk+1)
)
± v�k+1fNk

(xk)

± v(1 − �k+1)h(Nk)

− v
(
�kfNk

(xk) + (1 − �k)h(Nk)
)
+ v(�k+1 − �k)Σ

+ (1 − v)(�2
k+1

− �2
k
)

=v
(
�k+1(fNk+1

(xk+1) − fNk
(xk)) + (1 − �k+1)(h(Nk+1) − h(Nk))

)

+ v(�k+1 − �k)(fNk
(xk) − h(Nk) + Σ) + (1 − v)(�2

k+1
− �2

k
).

(37)�k+1 − �k ≤ −vAredk(xk+1, �k+1) + (1 − v)(�2
k+1

− �2
k
).

(38)�k+1 − �k ≤ (1 − v)(�2
k+1

− �2
k
).
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Lemma 4 Let Assumptions 1 and 2 hold. 

 (i) If the iteration k is unsuccessful, then 

 (ii) If the iteration k is successful and k ∈ I1 , then

 If the iteration k is successful and k ∈ I2 , then 

Proof (i) If iteration k is unsuccessful, the updating rule (24) for �k+1 implies 
�k+1 = �k∕� . Thus, equation (38) directly yields (39).

(ii) If iteration k is successful, the updating rule (23) for �k+1 implies �k+1 ≤ ��k . 
Thus combining (37) with Lemma 3 we obtain (40) and (41).   ◻

We are now ready to prove that a sufficient decrease condition holds for Φ 
along subsequent iterations and that �k tends to zero.

Theorem  1 Let Assumptions 1 and 2 hold. There exists 𝜎 > 0 , depending on 
v ∈ (0, 1) in (34), such that

Proof In case of unsuccessful iterations, (39) provides a sufficient decrease 
�k+1 − �k for any value of v ∈ (0, 1) . In case of successful iterations, �2 and �3 in 
(40) and (41) are both negative if

Therefore, if v is chosen as above and

then (39)–(41) imply (42) and the proof is completed.   ◻

Theorem 2 Let Assumptions 1 and 2 hold. Then the sequence {�k} in Algorithm 3.1 
satisfies

(39)�k+1 − �k ≤ �1�
2
k
, �1 = (1 − v)

1 − �2

�2
.

(40)�k+1 − �k ≤ �2�
2
k
, �2 =

(
−v

(
�2
1
(1 − r)h

�2
max

)
+ (1 − v)(�2 − 1)

)
.

(41)�k+1 − �k ≤ �3�
2
k
, �3 =

(
−v�1�2� + (1 − v)(�2 − 1)

)
.

(42)�k+1 − �k ≤ −��2
k
, for all k ≥ 0.

(43)max

{
(𝛾2 − 1)𝛿2

max

𝜂2
1
(1 − r)h + (𝛾2 − 1)𝛿2

max

,
𝛾2 − 1

𝜂1𝜂2𝜃 + 𝛾2 − 1

}
< v < 1.

(44)� = min{�1, �2, �3},
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Proof Under the stated conditions Theorem  1 holds and summing up (42) for 
j = 0, 1,… , k − 1 , we obtain

Given that, by (35), �k is bounded from below for all k,   we conclude that ∑∞

j=0
𝛿2
j
< ∞ , and hence limj→∞ �j = 0.   ◻

3.2  Complexity analysis

Algorithm  3.1 generates a random process since the function estimates in (14) 
and gradient estimates in (13) are random. All random quantities are denoted by 
capital letters, while the use of small letters is reserved for their realizations. In 
particular, the iterates Xk , the trust region radius Δk , the steps Pk , the function 
estimates FNt

k+1
(Xk),FNt

k+1
(Xk + Pk) , the gradient estimates Gk,∇FNt

k+1
(Xk) , and the 

value Φk of the function Φ in (34) at iteration k are random variables, while xk , �k , 
pk , fNt

k+1
(xk), fNt

k+1
(xk + pk) , gk,∇fNt

k+1
(xk) , �k are their realizations.

In this section, our aim is to derive a bound on the expected number of itera-
tions that occur in Algorithm 3.1 to reach a desired accuracy. We show that our 
algorithm is included into the stochastic framework given in [13, Section 2] and 
consequently we derive an upper bound on the expected value of the hitting time 
K� defined below.

Definition 2 Given 𝜖 > 0 , the hitting time K� is the random variable

i.e., K� is the first iteration such that ‖∇fN(Xk)‖ ≤ �.

Our analysis relies on the assumption that gk and ∇fNt
k+1
(xk) are probabilistically 

accurate estimators of the true gradient at xk , in the sense that the events

lim
k→∞

�k = 0.

�k − �0 =

k−1∑
j=0

(�j+1 − �j) ≤ −�

k−1∑
j=0

�2
j
.

K� = min{k ≥ 0 ∶ ‖∇fN(Xk)‖ ≤ �},

(45)Gk,1 ={‖∇fN(Xk) − Gk‖ ≤ �Δk},

(46)Gk,2 ={‖∇fN(Xk) − ∇fNt
k+1
(Xk)‖ ≤ �Δk},
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are true at least with conditioned probability �1 ∈ (0, 1) and �2 ∈ (0, 1) , respectively. 
Using the same terminology of [26, 27], we say that iteration k is true if both Gk,1 
and Gk,2 are true. Furthermore, we introduce the two random variables

where 1A denotes the indicator function of an event A.
Finally, we need the following additional assumptions.

Assumption 3 The gradients ∇�i are Lipschitz continuous with constant Li . Let 
L =

1

2
max1≤i≤N Li.

Under Assumptions 2 and 3, the norm of the gradient estimates ‖gk‖ is 
bounded, as shown below.

Lemma 5 Let Assumptions 2 and 3 hold. Then there exists gmax such that

where gmax =
√
8L�� and �� is given in (26).

Proof By Assumption 3, it easily follows that ∇fNk+1,g
 is Lipschitz continuous on ℝn 

with constant 2L. Then Assumption 2 and the descent lemma for continuously dif-
ferentiable functions with Lipschitz continuous gradient [28, Proposition A.24] 
ensure that

Taking the minimum of the right-hand side with respect to y, we can also write

The minimum of �(y) is attained at the point ȳ = x −
1

2L
∇fNk+1,g

(x) and letting y = ȳ 
in the previous inequality, we get:

and equivalently ‖∇fNk+1,g
(x)‖2 ≤ 4L(fNk+1,g

(x) − flow) for all x ∈ ℝ
n . Using again 

Assumption 2, we have fNk+1,g
(x) − flow ≤ |fNk+1,g

(x)| + |flow| ≤ 2�� , and consequently

Setting x = xk and gmax =
√
8L��

 in the previous inequality, we get the result.   ◻

(47)Ik = 1Gk,1
, Jk = 1Gk,2

,

(48)‖gk‖ ≤ gmax, k ≥ 0,

flow ≤ fNk+1,g
(y) ≤ fNk+1,g

(x) + ∇fNk+1,g
(x)T (y − x) + L‖y − x‖2, ∀ x, y ∈ ℝ

n.

flow ≤ min
y∈ℝn

�(y) ≡ fNk+1,g
(x) + ∇fNk+1,g

(x)T (y − x) + L‖y − x‖2, ∀ x ∈ ℝ
n.

flow ≤ fNk+1,g
(x) −

1

2L
‖∇fNk+1,g

(x)‖2 + 1

4L
‖∇fNk+1,g

(x)‖2, ∀ x ∈ ℝ
n,

‖∇fNk+1,g
(x)‖2 ≤ 8L��, ∀ x ∈ ℝ

n.
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First, we analyze the occurrence of successful iterations and show that the 
availability of accurate gradients has an impact on the acceptance of the trial 
steps. The following lemma establishes that if the iteration k is true and �k is 
smaller than a certain threshold, then the iteration is successful. The analysis is 
presented for a single realization of Algorithm 3.1 and specializes for k in the sets 
I1 , I2.

Lemma 6 Let Assumptions 1–3 hold and suppose that iteration k is true. 

 (i) If k ∈ I1 , then the iteration is successful whenever 

 where �3 =
�maxgmax(�0(2�+L)+(1−�)�)

�1(1−�1)(1−r)h
.

 (ii) If k ∈ I2 , then the iteration is successful whenever 

Proof From Assumption 3, it follows that ∇fNt
k+1

 is Lipschitz continuous with con-
stant 2L. Then,

and, since Gk,1 and Gk,1 are both true, (45) and (46) yield

Now, let us analyze condition (18) for successful iterations.
(i) If k ∈ I1 , by (15), (17) and (16) we obtain

(49)�k ≤ min

�‖gk‖
�3

,
‖gk‖
�2

�
,

(50)�k ≤ min

�
(1 − �1)‖gk‖

2� + L
,
‖gk‖
�2

�
.

(51)

�mk(pk) − fNt
k+1
(xk + pk)� =

������
1

0

�
gk ± ∇fNt

k+1
(xk) − ∇fNt

k+1
(xk + �pk)

�T

pkd�
�����

≤ �
1

0

‖gk − ∇fNt
k+1
(xk)‖‖pk‖d� + �

1

0

2L�‖pk‖2d�

≤ �
1

0

(‖gk − ∇fN(xk)‖ + ‖∇fN(xk) − ∇fNt
k+1
(xk)‖)‖pk‖d�

+ �
1

0

2L�‖pk‖2d�

(52)|mk(pk) − fNt
k+1
(xk + pk)| ≤ (2� + L)�2

k
.
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Using (52), (21) and � ≤ �k+1 ≤ �0 , we also have

Note that the combination of (25), (8), (23) and Lemma 5, guarantees that

Then, from (53), (54), and (55), we have

Combining this result with (19), the proof is complete.
(ii) Using (15), (17), k ∈ I2 , we have

Using (52) we get

Combining the above inequality with (19), we have proved that the iteration is suc-
cessful whenever (50) holds.   ◻

We can now guarantee that a successful iteration k occurs whenever k is true, 
the prefixed accuracy � in Definition 2 has not been achieved at k, and �k is below 

(53)

Aredk(xk + pk, �k+1) − �
1
Predk(�k+1) = (1 − �

1
)Predk(�k+1)

+ Aredk(�k+1) − Predk(�k+1)

= (1 − �
1
)Predk(�k+1)

+ �k+1(mk(pk) − fNt
k+1
(xk + pk))

+ (1 − �k+1)(h(Ñk+1) − h(Nt
k+1

))

≥ �
1
(1 − �

1
)(h(Nk) − h(Ñk+1))

+ �k+1(mk(pk) − fNt
k+1
(xk + pk))

+ (1 − �k+1)(h(Ñk+1) − h(Nt
k+1

)).

(54)
�k+1(fNt

k+1
(xk + pk) − mk(pk))+(1 − �k+1)(h(N

t
k+1

) − h(Ñk+1))

≤ (�
0
(2� + L) + (1 − �)�)�2

k
.

(55)h(Nk) − h(Ñk+1) ≥ (1 − r)h(Nk) ≥ (1 − r)h�k‖gk‖
�maxgmax

.

Aredk(xk + pk, �k+1) − �1Predk(�k+1) ≥ �1(1 − �1)(1 − r)h�k‖gk‖
�maxgmax

− (�0(2� + L) + (1 − �)�)�2
k
.

Aredk(xk + pk, �k+1) − �
1
Predk(�k+1) = (1 − �

1
)Predk(�k+1)

+ Aredk(�k+1) − Predk(�k+1)

= (1 − �
1
)�k+1�k‖gk‖

+ �k+1(mk(pk) − fN(xk + pk))

(56)
Aredk(xk + pk, �k+1) − �1Predk(�k+1) ≥ (1 − �1)�k+1�k‖gk‖

− �k+1(2� + L)�2
k
.
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a certain threshold depending on � . Again, the result is stated for a single realiza-
tion of the algorithm.

Lemma 7 Let Assumptions 1–3 hold. Suppose that ‖∇fN(xk)‖ > 𝜖 , for some 𝜖 > 0 , 
the iteration k is true, and

Then, iteration k is successful.

Proof By ‖∇fN(xk)‖ > 𝜖 , the occurrence of Gk,1 and (57), we have

and this yields ‖gk‖ ≥ �

2
 . Then, Lemma 6 implies that iteration k is successful.   ◻

We now proceed similarly to [13, Section 2] and analyse the random process 
{(Φk,Δk,Wk)}k∈ℕ generated by Algorithm  3.1, where Φk is the random variable 
whose realization is given in (34) and Wk is the random variable defined as

Clearly, Wk takes values ±1 . We denote with ℙk−1(⋅) and �k−1(⋅) the probability and 
expected value conditioned to the �−algebra generated by FNt

1
(X0),… ,FNt

k
(Xk−1) , 

∇FNt
1
(X0),… ,∇FNt

k
(Xk−1) , G0,… ,Gk−1 . Then, we can prove the following result.

Lemma 8 Let Assumptions 1–3 hold, v as in (43), �† as in (57) and K� as in Defini-
tion 2. Suppose there exists some jmax ≥ 0 such that �max = � jmax�0 , and 𝛿0 > 𝛿† . 
Assume that the estimators Gk and ∇fNt

k+1
(Xk) are conditionally independent random 

variables, and the events Gk,1,Gk,2 occur with sufficiently high probability, i.e.,

Then, 

 (i) there exists 𝜆 > 0 such that Δk ≤ �0e
�⋅jmax for all k ≥ 0;

 (ii) there exists a constant �� = �0e
�⋅j� for some j� ≤ 0 such that, for all k ≥ 0,

   

(57)𝛿k < 𝛿† ∶= min

{
𝜖

2𝜈
,
𝜖

2𝜂2
,
𝜖

2𝜂3
,
𝜖(1 − 𝜂1)

2(2𝜈 + L)

}
.

‖gk − ∇fN(xk)‖ ≤ 𝜈𝛿k <
𝜖

2
,

(58)

{
W0 = 1

Wk+1 = 2
(
IkJk −

1

2

)
, k = 0, 1,…

(59)ℙk−1(Gk,1) = 𝜋1, ℙk−1(Gk,2) = 𝜋2, and 𝜋3 = 𝜋1𝜋2 >
1

2
.

(60)1{K𝜖>k}
Δk+1 ≥ 1{K𝜖>k}

min{Δke
𝜆Wk+1 , 𝛿𝜖},
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 where Wk+1 satisfies 

 (iii) there exists a nondecreasing function � ∶ [0,∞) → (0,∞) and a constant 
Θ > 0 such that, for all k ≥ 0 , 

Proof The proof parallels that of [13, Lemma 7].
(i) Since �max = � jmax�0 , we can set 𝜆 = log(𝛾) > 0 , and the thesis follows from 

Step 5 of Algorithm 3.1.
(ii) Let us set

and assume that �� = � j� �0 , for some integer j� ≤ 0 ; notice that we can always 
choose � sufficiently large so that this is true. As a consequence, Δk = � ik�� for some 
integer ik.

When 1{K𝜖>k}
= 0 , inequality (60) trivially holds. Otherwise, conditioning on 

1{K𝜖>k}
= 1 , we can prove that

Indeed, for any realization such that 𝛿k > 𝛿𝜖 , we have �k ≥ ��� and because of Step 
5, it follows that �k+1 ≥ �� . Now let us consider a realization such that �k ≤ �� . Since 
K𝜖 > k and �� ≤ �† , if IkJk = 1 (i.e., k is true), then we can apply Lemma 7 and 
conclude that k is successful. Hence, by Step 5, we have �k+1 = min{�max, ��k} . If 
IkJk = 0 , then we cannot guarantee that k is successful; however, again using Step 5, 
we can write �k+1 ≥ �−1�k . Combining these two cases, we get (64). If we observe 
that �max = � jmax�0 ≥ � j� �0 = �� , and recall the definition of Wk in (58), then equation 
(64) easily yields (60). The probabilistic conditions (61) are a consequence of (59).

(iii) The thesis trivially follows from (42) with �(Δ) = Δ2 and Θ = � .   ◻

The previous lemma shows that the random process {(Φk,Δk,Wk)}k∈ℕ complies 
with Assumption 2.1 of [13].

Theorem 3 Under the assumptions of Lemma 8, we have

where � is chosen as in (63) and � is given in (44).

(61)ℙk−1(Wk+1 = 1) = �3, ℙk−1(Wk+1 = −1) = 1 − �3;

(62)1{K𝜖>k}
�k−1[Φk+1] ≤ 1{K𝜖>k}

Φk − 1{K𝜖>k}
Θ�(Δk).

(63)�� =
�

�
, where � ≥ max

{
2�, 2�2, 2�3,

2(2� + L)

1 − �1

}
,

(64)Δk+1 ≥ min{�� , min{�max, �Δk}IkJk + �−1Δk(1 − IkJk)}.

(65)�[K�] ≤ �3

2�3 − 1
⋅
�0�

2

��2
+ 1.
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Proof The claim follows directly by [13, Theorem 2].   ◻

Remark 2 The requirement of (45) and (46) to hold in probability is less stringent 
than the overall conditions (3) and (4). Analogously to the discussion in Sect. 2, if 
��[|∇��(x) − ∇fN(x)|2] ≤ Vg , then Chebyshev inequality guarantees that events 
(45) and (46) hold in probability when

Clearly, min{Nk+1,g,N
t
k+1

} = O(�−2
k
) and in general these sample sizes are expected 

to growth slower than in (6).
Finally, the complexity theory presented improves on [19] where the iteration 

complexity before reaching full precision M = N in (7) is estimated, and thereaf-
ter existing iteration complexity results for trust-region methods applied to (1) are 
invoked.

4  Numerical experience

In this section, we evaluate the numerical performance of SIRTR on some non-
convex optimization problems arising in binary classification and regression.

All the numerical results have been obtained by running MATLAB R2019a 
on an Intel Core i7-4510U CPU 2.00-2.60 GHz with an 8 GB RAM. For all our 
tests, we equip SIRTR with �0 = 1 as the initial trust-region radius, �max = 100 , 
� = 2 , � = 10−1 , �2 = 10−6 . Concerning the inexact restoration phase, we borrow 
the implementation details from [19]. Specifically, the infeasibility measure h and 
the initial penalty parameter �0 are set as follows:

The updating rule for choosing Ñk+1 has the form

where 1 < �c < 2 is a prefixed constant factor; note that this choice of Ñk+1 satisfies 
(21) with r = (N − (̃c − 1))∕N . At Step 2 the function sample size Nt

k+1
 is computed 

using the rule

Once the set INt
k+1

 is fixed, the search direction gk ∈ ℝ
n is computed via sampling as 

in (13) and the sample size Nk+1,g is fixed as

Vg

�2(1 − �1)�
2
k

≤ Nk+1,g ≤ N,
Vg

�2(1 − �2)�
2
k

≤ Nt
k+1

≤ N.

h(M) =
N −M

N
, �0 = 0.9.

(66)Ñk+1 = min{N, ⌈c̃Nk⌉},

(67)Nt
k+1

=

⎧⎪⎨⎪⎩

⌈�Nk+1 − 𝜇N𝛿2
k
⌉, if ⌈�Nk+1 − 𝜇NΔ2

k
⌉ ∈ [N0, 0.95N]

�Nk+1, if ⌈�Nk+1 − 𝜇NΔ2
k
⌉ < N0

N, if ⌈�Nk+1 − 𝜇NΔ2
k
⌉ > 0.95N.
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with c ∈ (0, 1] and INk+1,g
⊆ INt

k+1
.

4.1  SIRTR performance

In the following, we show the numerical behaviour of SIRTR on nonconvex binary 
classification problems. Let {(ai, bi)}Ni=1 denote the pairs forming a training set with 
ai ∈ ℝ

n containing the entries of the i-th example, and bi ∈ {0, 1} representing the 
corresponding label. Then, we address the following minimization problem

where the nonconvex objective function fN is obtained by composing a least-squares 
loss with the sigmoid function.

In Table 1, we report the information related to the datasets employed, including 
the number N of training examples, the dimension n of each example and the dimen-
sion NT of the testing set INT

.
We focus on three aspects: the classification error provided by the final iterate, 

the computational cost, the occurrence of termination before full accuracy in func-
tion evaluations is reached. The last issue is crucial because it indicates the ability of 
the inexact restoration approach to solve (69) with random models and to rule sam-
pling and steplength selection.

The average classification error provided by the final iterate, say xf in , is defined as

(68)Nk+1,g = ⌈cNt
k+1

⌉,

(69)min
x∈ℝn

fN(x) =
1

N

N∑
i=1

(
bi −

1

1 + e−a
T
i
x

)2

,

Table 1  Data sets used Training set Testing set

Data set N n NT

a8a [29] 15887 123 6809
a9a [29] 22793 123 9768
cina0 10000 132 6033
cod-rna [30] 41675 8 17860
covertype [29] 464810 54 116202
htru2 [29] 10000 8 7898
ijcnn1 [30] 49990 22 91701
mnist [31] 60000 784 10000
phishing [30] 7739 68 3316
real-sim [30] 50616 20958 21693
w7a [30] 17284 300 7408
w8a [30] 34824 300 14925
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where bi is the exact label of the i− th instance of the testing set, and bpred
i

 is the cor-
responding predicted label, given by bpred

i
= max{sign(aT

i
xf in), 0}.

The computational cost is measured in terms of full function and gradient evalua-
tions. In our test problems, the main cost in the computation of �i , 1 ≤ i ≤ N , is the 
scalar product aT

i
x : once this product is evaluated, it can be reused for computing 

∇�i . Nonetheless, following [32, Section 3.3], we count both function and gradient 
evaluations as if we were addressing a classification problem based on a neural net. 
Thus, computing a single function �i requires 1

N
 forward propagations, whereas the 

gradient evaluation corresponds to 2
N

 propagations (an additional backward propaga-
tion is needed). Note that, once �i is computed, the corresponding gradient ∇�i 
requires only 1

N
 backward propagations. Hence, as in our implementation 

INk+1,g
⊆ INt

k+1
 , the computational cost of SIRTR at each iteration k is determined by 

Nt
k+1

+Nk+1,g

N
 propagations.

For all experiments in this section, we run SIRTR with x0 = (0, 0,… , 0)T as ini-
tial guess, and stop it when either a maximum of 1000 iterations is reached or a 
maximum of 500 full function evaluations is performed or the condition

with � = 10−3 , holds for a number of consecutive successful iterations such that the 
computational effort is equal to the effort needed in three iterations with full func-
tion and gradient evaluations.

(70)��� =
1

NT

∑
i∈INT

|bi − b
pred

i
|,

(71)|fNk
(xk) − fNk−1

(xk−1)| ≤ �|fNk−1
(xk−1)| + �,

Table 2  Results with three different rules for computing the sample size Nk+1,g

Nk+1,g ⌈0.1Nt
k+1

⌉ ⌈0.2Nt
k+1

⌉ Nt
k+1

Cost Err Sub Cost Err Sub Cost Err Sub

a8a 20 0.170 15 19 0.171 19 22 0.173 29
a9a 20 0.167 12 17 0.169 18 19 0.172 13
cina0 72 0.146 0 84 0.140 0 116 0.158 1
cod-rna 44 0.109 0 42 0.106 1 45 0.119 0
covtype 22 0.425 4 19 0.424 8 20 0.435 5
htru2 30 0.024 7 25 0.024 13 32 0.024 16
ijcnn1 22 0.087 0 20 0.088 0 20 0.086 0
mnist2 22 0.154 10 25 0.151 12 29 0.152 18
phishing 48 0.105 0 43 0.108 0 48 0.119 0
real-sim 56 0.268 0 56 0.270 0 57 0.294 0
w7a 15 0.079 22 15 0.079 21 16 0.079 34
w8a 13 0.080 25 13 0.080 23 17 0.080 28
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Since the selection of sets INt
k+1

 and INk+1,g
 for computing fNt

k+1
(xk) and gk is random, 

we perform 50 runs of SIRTR for each test problem. Results are reported in tables 
where the headings of the columns have the following meaning: cost is the overall 
number of full function and gradient evaluations averaged over the 50 runs,
err is the classification error given in (70) averaged over the 50 runs, sub the 

number of runs where the method is stopped before reaching full accuracy in func-
tion evaluations.

In a first set of experiments, we investigate the choice of Nk+1,g by varying 
the factor c ∈ (0, 1] in (68). In particular, letting c̃ = 1.2 in (66), � = 100∕N  in 
(67) and N0 = ⌈0.1N⌉ as in [19], we test the values c ∈ {0.1, 0.2, 1} . The results 
obtained are reported in Table  2. We note that the classification error slightly 
varies with respect to the choice of Nk+1,g , and that selecting Nk+1,g as a small 
fraction of Nt

k+1
 is quite convenient from a computationally point of view. By con-

trast, the choice Nk+1,g = Nt
k+1

 leads to the largest computational costs without 
providing a significant gain in accuracy. Besides the cost per iteration, equal to 
2Nt

k+1

N
 in this latter case, we observe that full accuracy in function evaluations is 

reached very often especially for certain datasets, see e.g., cina0, cod-rna, cover-
type, ijcnn1, phishing, real-sim. Remarkably, the results in Table 2 highlight that 
random models compare favourably with respect to cost and classification errors.

Next, we show that SIRTR computational cost can be reduced by slowing 
down the growth rate of Nt

k+1
 . This task can be achieved controlling the growth 

of Ñk+1 which affects Nt
k+1

 by means of (67). Letting c = 0.1 , � = 100∕N  and 
N0 = ⌈0.1N⌉ , we consider the choices c̃ ∈ {1.05, 1.1, 1.2} in (66). Average results 
are reported in Table 3. We can observe that the fastest growth rate for Ñk+1 is 
generally more expensive than the other two choices, while the classification 

Table 3  Results with three different rules for computing the sample size Ñk+1

Ñk+1
min{N, ⌈1.05Nk⌉} min{N, ⌈1.1Nk⌉} min{N, ⌈1.2Nk⌉}
cost err sub cost err sub cost err sub

a8a 27 0.170 49 18 0.170 44 18 0.171 16
a9a 27 0.164 49 18 0.164 38 20 0.168 12
cina0 35 0.167 44 44 0.163 13 68 0.151 0
cod-rna 28 0.117 49 38 0.108 17 45 0.102 0
covtype 12 0.396 50 13 0.392 48 20 0.423 7
htru2 30 0.022 46 24 0.022 26 25 0.024 11
ijcnn1 21 0.089 50 16 0.086 49 22 0.088 0
mnist2 19 0.144 50 18 0.144 42 23 0.152 12
phishing 28 0.117 50 30 0.110 23 46 0.103 0
real-sim 36 0.254 50 65 0.272 0 57 0.267 0
w7a 26 0.078 50 18 0.078 46 14 0.079 22
w8a 20 0.079 50 14 0.080 46 13 0.080 26
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error is similar for all the three choices. Moreover, significantly for c̃ = 1.05 most 
runs stopped before reaching full function accuracy.

We now analyze three different values, N0 ∈ {⌈0.001N⌉, ⌈0.01N⌉, ⌈0.1N⌉} , 
for the initial sample size N0 . We apply SIRTR with c̃ = 1.05 in (66), � = 100∕N 
in (67), and c = 0.1 in (68). Results are reported in Table  4. We can see that, 
reducing N0 , the number of full function/gradient evaluations can further reduce 
in some datasets, and that for N0 = ⌈0.01N⌉ the average classification error com-
pares well with the error when N0 = ⌈0.1N⌉ ; for instance, the best results for most 
datasets are obtained by shrinking N0 to 1% of the maximum sample size. We 

Table 4  Results with three different initial sample sizes N0

N0 ⌈0.001N⌉ ⌈0.01N⌉ ⌈0.1N⌉
Cost Err Sub Cost Err Sub Cost Err Sub

a8a 30 0.182 50 30 0.169 47 28 0.170 50
a9a 27 0.177 50 28 0.165 50 25 0.165 50
cina0 43 0.111 37 33 0.133 43 34 0.162 44
cod-rna 4 0.412 50 25 0.194 50 29 0.114 48
covtype 6 0.406 50 8 0.403 50 12 0.406 50
htru2 38 0.036 40 35 0.021 43 31 0.021 47
ijcnn1 24 0.095 50 25 0.095 50 19 0.091 50
mnist2 18 0.185 50 20 0.160 50 21 0.143 50
phishing 4 0.410 50 28 0.163 48 29 0.118 50
real-sim 4 0.188 50 5 0.166 50 35 0.254 50
w7a 28 0.077 50 27 0.077 50 25 0.078 50
w8a 23 0.078 50 23 0.079 50 20 0.079 50

Table 5  Average sample 
size Nf in obtained at the final 
iteration, relative standard 
deviation s, minimum and 
maximum sample sizes 
Nmin

f in
,Nmax

f in
 observed at the 

final iteration. Parameters 
setting: N0 = ⌈0.01N⌉ , 
Nk+1,g = ⌈0.1Nt

k+1
⌉ , 

Ñk+1 = min{N, ⌈1.05Nk⌉} , 
� = 100∕N

N N0 N̄fin
s Nmin

fin
Nmax

fin

a8a 15888 159 10353 0.17 7407 13309
a9a 22793 228 13637 0.22 6718 18730
cina0 10000 100 7603 0.23 4771 10000
cod-rna 7739 78 3210 0.74 578 7054
covtype 464810 4649 54762 0.32 33057 100341
htru2 10000 100 7902 0.22 3923 10000
ijcnn1 49990 500 26966 0.23 15408 43508
mnist2 60000 600 22928 0.34 4383 45684
phishing 7739 78 3926 0.63 578 7739
real-sim 50617 507 3721 0.034 3604 4174
w7a 17285 173 10334 0.23 5802 14674
w8a 34825 349 17244 0.19 9005 26360
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conclude pointing out that most of the runs are performed without reaching full 
precision in function evaluation.

As a further confirmation of the efficiency of SIRTR, in Table 5 we report the 
sample sizes obtained on average at the stopping iteration of SIRTR with parameters 
setting N0 = ⌈0.01N⌉ , Nk+1,g = ⌈0.1Nt

k+1
⌉ , Ñk+1 = min{N, ⌈1.05Nk⌉} , � = 100∕N . 

More specifically, for each dataset, we show the mean value Nf in obtained by averag-
ing the sample sizes Nf in,i , 1 ≤ i ≤ 50 , used at the final iteration of SIRTR, the rela-

tive standard deviation s = 1

Nf in

�∑50

i=1
(Nf in,i−Nf in)

2

50
 as a measure of dispersion of the 

final sample sizes with respect to the mean value, and the minimum and maximum 
sample sizes Nmin

f in
,Nmax

f in
 observed at the final iteration out of the 50 runs. From the 

reported values, we deduce that SIRTR terminates with a final sample size which is 
much smaller, on average, than the maximum sample size N.

Fig. 1  Dataset a9a. Samples sizes N
k+1 and Ñ

k+1 versus iterations with � = 100∕N (left) and � = 1 
(right), respectively, obtained with a single run of SIRTR. Classification errors: err = 0.187 with 
� = 100∕N , err = 0.174 with � = 1

Fig. 2  Dataset mnist. Samples sizes N
k+1 and Ñ

k+1 versus iterations with � = 100∕N (left) and � = 1 
(right), respectively, obtained with a single run of SIRTR. Classification errors: err = 0.154 with 
� = 100∕N , err = 0.167 with � = 1
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Finally, in Figs. 1, 2, we report the plots of the sample sizes Nt
k+1

 and Ñk+1 with 
respect to the number of iterations, obtained by running SIRTR on the a9a and mnist 
datasets, respectively. In particular, we let either � = 100∕N or � = 1 in the update 
rule (67), c̃ = 1.05 in (66), c = 0.1 in (68) and N0 = ⌈0.1N⌉ . Note that a larger � 
allows for the decreasing of both Nt

k+1
 and Ñk+1 in the first iterations, whereas a 

linear growth rate is imposed only in later iterations. This behaviour is due to the 
update condition (67), which naturally forces Nt

k+1
 to coincide with Ñk+1 when �k is 

sufficiently small. For both choices of � , we see that Nt
k+1

 can grow slower than Ñk+1 
at some iterations, thus reducing the computational cost per iteration of SIRTR.

4.2  Comparison with TRish

In this section we compare the performance of SIRTR with the so-called Trust-
Region-ish algorithm (TRish) recently proposed in [33]. TRish is a stochastic gra-
dient method based on a trust-region methodology. Normalized steps are used in a 
dynamic manner whenever the norm of the stochastic gradient is within a prefixed 
interval. In particular, the k− th iteration of TRish is given by

where 𝛼k > 0 is the steplength parameter, 0 < 𝛾2,k < 𝛾1,k are positive constants, and 
gk ∈ ℝ

n is a stochastic gradient estimate. This algorithm has proven to be particu-
larly effective on binary classification and neural network training, especially if 
compared with the standard stochastic gradient algorithm [33, Section 4].

For our numerical tests, we implement TRish with subsampled gradients 
gk = ∇fS(xk) defined in (5). The steplength is constant, �k = � , ∀k ≥ 0 , and � is 
chosen in the set {10−3, 10−1,

√
10−1, 1,

√
10} . Following the procedure in [33, 

Section 4], we use constant parameters �1,k ≡ �1 , �2,k ≡ �2 and select �1, �2 as fol-
lows. First, Stochastic Gradient algorithm [4] is run with constant steplength 
equal to 1; second, the average norm G of stochastic gradient estimates through-
out the runs is computed; third �1, �2 are set as �1 =

4

G
 , �2 =

1

2G
.

First, we compare TRish with SIRTR on the nonconvex optimization problem 
(69), using a9a, htru2, mnist, and phishing as datasets (see Table  1). Based on 
the previous section, we equip SIRTR with N0 = ⌈0.01N⌉ , Nk+1,g = ⌈0.1Nt

k+1
⌉ , 

Ñk+1 = min{N, ⌈1.05Nk⌉} , � = 100∕N  . In TRish, the sample size S of the 

xk+1 = xk −

⎧
⎪⎪⎨⎪⎪⎩

�1,k�kgk, if ‖gk‖ ∈
�
0,

1

�1,k

�

�k
gk

‖gk‖ , if ‖gk‖ ∈
�

1

�1,k
,

1

�2,k

�

�2,k�kgk, if ‖gk‖ ∈
�

1

�2,k
,∞

�



79

1 3

A stochastic first‑order trust‑region method with inexact…

stochastic gradient estimates is ⌈0.01N⌉ , which corresponds to the first sample 
size used in SIRTR. We run each algorithm for ten epochs on the datasets a9a 
and htru2 using the null initial guess. We perform 10 runs to report results on 
average.

After tuning, the parameter setting for TRish was �1 ≈ 34.5805 , �2 ≈ 4.3226 for 
a9a, �1 ≈ 57.9622 , �2 ≈ 7.2453 for htru2, �1 ≈ 23.4376 , �2 ≈ 2.9297 for mnist, 
and �1 ≈ 50.6409 , �2 ≈ 6.3301 for phishing. In Fig. 3, we report the decrease of the 
(average) classification error, training loss fN and testing loss, 
fNT

(x) =
1

NT

∑
i∈INT

�i(x) , over the (average) number of full function and gradient 

evaluations required by the algorithms. From these plots, we can see that SIRTR 

Fig. 3  From top to bottom row: datasets a9a, htru2, mnist, phishing. From left to right: Average classifi-
cation error, testing loss, and training loss versus epochs
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performs comparably to the best implementations of TRish on a9a, htru2, mnist, 
while showing a good, though not optimal, performance on phishing.

In accordance to the experience in [33], all parameters �1 and �2 and � are 
problem-dependent. For instance, the best performance of TRish is obtained with 
� = 10−1 for a9a and with � = 10−3 for htru2, respectively; by contrast, SIRTR 
performs well with an unique setting of the parameters which is the key feature of 
adaptive stochastic optimization methods.

As a second test, we compare the performance of SIRTR and TRish on a dif-
ferent nonconvex optimization problem arising from nonlinear regression. Letting 
{(ai, bi)}

N
i=1

 denote the training set, where ai ∈ ℝ
n and bi ∈ ℝ represent the feature 

vector and the target variable of the i-th example, respectively, we aim at solving 
the following problem

where h(⋅;x) ∶ ℝ
n
→ ℝ is a nonlinear prediction function.

For this second test, we use the air dataset [29], which contains 9358 instances 
of (hourly averaged) concentrations of polluting gases, as well as temperatures and 
relative/absolute air humidity levels, recorded at each hour in the period March 2004 
- February 2005 from a device located in a polluted area within an Italian city.

As in [34], our goal is to predict the benzene (C6H6) concentration from the 
knowledge of n = 7 features, including carbon monoxide (CO), nitrogen oxides 
(NOx ), ozone (O3 ), non-metanic hydrocarbons (NMHC), nitrogen dioxide (NO2 ), 
air temperature, and relative air humidity. First, we preprocess the dataset by 
removing examples for which the benzene concentration is missing, reducing the 
dataset dimension from 9357 to 8991. Then, we employ 70% of the dataset for 
training ( N = 6294 ), and the remaining 30% for testing ( NT = 2697 ). Since the 
concentration values have been recorded hourly, this means that we use the data 
measured in the first 9 months for the training phase, and the data related to the 

(72)min
x∈ℝn

fN(x) =
1

N

N∑
i=1

(
bi − h(ai;x)

)2
,

Fig. 4  Dataset air. Average testing loss (left) and training loss (right) versus epochs
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last 3 months for the testing phase. Finally, denoting with D = (dij) ∈ ℝ
(N+NT )×n 

the matrix containing all the dataset examples along its rows, and setting

we scale all data values into the interval [0, 1] as follows

We apply SIRTR and TRish on problem (72), where the prediction function h(⋅;x) is 
chosen as a feed-forward neural network based on a 7 × 5 × 1 architecture (see [34] 
and references therein), with the two hidden layers both equipped with the linear 
activation function, and the output layer with the sigmoid activation function. We 
equip the two algorithms with the same parameter values employed in the previous 
tests, and run them 10 times for 10 epochs, using a random initial guess in the inter-
val [− 1

2
,
1

2
].

In Fig.  4, we report the decrease of the (average) training and testing losses 
provided by SIRTR and by TRish with different choices of the steplength � , 
whereas in Fig.  5 we show the benzene concentration estimations provided by 
the algorithms against the true concentration. These results confirm that the per-
formances of SIRTR are comparable with those of TRish equipped with the best 
choice of the steplength and show the ability of SIRTR to automatically tune 
the steplength so as to obtain satisfactory results in terms of testing and training 
accuracy.

⎧⎪⎨⎪⎩

mj = min
i=1,…,N+NT

dij,

Mj = max
i=1,…,N+NT

dij
, j = 1,… , n,

dij =
dij − mj

Mj − mj

, i = 1,… ,N + NT , j = 1,… , n.

Fig. 5  Dataset air. Estimated 
concentrations during 10 days 
(240 hours) compared to the 
true concentration (black solid 
line)
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5  Conclusions

We proposed a stochastic gradient method coupled with a trust-region strategy 
and an inexact restoration approach for solving finite-sum minimization prob-
lems. Functions and gradients are subsampled and the batch size is governed by 
the inexact restoration approach and the trust-region acceptance rule. We showed 
the theoretical properties of the method and gave a worst-case complexity result 
on the expected number of iterations required to reach an approximate first-order 
optimality point. Numerical experience showed that the proposed method pro-
vides good results keeping the overall computational cost relatively low.
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