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Abstract6

In this work we propose a strategy to select the frequency parameter of hyperpolic-polynomial P-splines, HP-
splines for shortness. HP-splines are hyperpolic-polynomial penalized splines where polynomials are replaced
by the richer class of exponential-polynomials and a tailored discrete penalty term is used. HP-splines reduce
to P-splines when setting the frequency parameter to zero but are more suitable to data with an exponential
trend, which are frequently encountered in applications. Yet, they require an effective strategy to select
the frequency parameter in addition to the one needed for selecting the smoothing parameter. Here, we
propose a strategy that involves a linear algebra approach for Tikhonov regularization problems adapted to
HP-splines. As shown in the numerical experiments, our strategy provides an efficient criterion yielding to
HP-splines that better capture the trend suggested by the fitted data.
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1. Introduction9

The use of splines and B-splines for smoothing and data fitting has a very long history, see [1–4], only10

to mention some examples. Penalized splines are well established tools for data regression. Given the data11

points (xi, yi), i = 1, . . . ,m and the spline space spanned by a suitable basis {b0 · · · , bn+1}, a penalized12

spline s(x) =
∑n+1
j=0 ajbj(x) is obtained by solving a penalized weighted least square problem13

arg min
a∈Rn+2

m∑
i=1

wi (yi − s(xi))2 + λ2R(a), a = (a0, · · · an+1), (1)

where w1, . . . , wm are weights, λ is a smoothing or regularization parameter and R(a) is a penalty term.14

As well known, an open issue in penalized models is the selection of the regularization parameter since15

the result is highly dependent on its proper choice that guarantees a fair balance between the perturbation16

error and the regularization error. Classical strategies for the smoothing parameter selection are based on17

the minimization of the mean squared error or, alternatively, on a linear mixed model where the smoothing18

parameter is interpreted as the a priori variance of spline coefficients so that the maximum likelihood theory19

can be used to determine it as a variance component [5]. Other ways to tune the smoothing parameter are20

based on generalized cross-validation or on the Akaike information criterion [6], as well as the L-curve21

approach, originally developed for ridge regression [7]. See [8] and [9] for a comparison between different22

techniques.23
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A special instance of penalized splines are P-splines proposed twenty five years ago by P.H.C. Eilers and24

B.D. Marx (see [10] and also [6]). P-splines are based on two main ingredients: polynomial B-splines and25

discrete difference penalties. In the cubic case, the penalty is written in terms of the splines coefficients as26

R(a) =

n+1∑
j=2

(
(∆2a)j

)2
, where (∆2a)j = aj − 2aj−1 + aj−2, j = 2, . . . , n+ 1. (2)

Going beyond P-splines, in [11] the authors have proposed HP-splines, the class of penalized splines where27

the richer space of hyperbolic-polynomial splines replaces the polynomial spline space. They consist of28

piecewise-defined functions with segments in the four-dimensional parametric space29

E4,α := span{eαx, x eαx, e−αx, x e−αx}, α ∈ R, (3)

and reduce to cubic splines for α = 0.30

The hyperbolic-polynomial splines here defined are just a very special instance of the so called Tchebyceffian31

splines, introduced and analyzed decades ago by L.L. Schumaker and some coauthors (see [12]) but the32

specific space in (3) derives from [13], a previous work by the authors, where a smoothing exponential-33

polynomial spline was defined for multiexponential decay data.34

Similarly to the polynomial case, the two main ingredients of HP-splines are: HB-splines, a basis for the35

space of piecewise hyperbolic-polynomial functions with similar properties than polynomial B-splines, and36

an α-dependent penalty term.37

More in details, if {Bα0 (x), · · · , Bαn+1(x)} are HB-splines depending on the space (or frequency) parameter38

α, the penalized HP-spline s(x) =
∑n+1
j=0 ajB

α
j (x), is defined by solving the penalized least square problem39

(1) where the penalty is written in terms of the splines coefficients as40

R(a) =

n+1∑
j=2

(
(∆h,α

2 a)j

)2
, where (∆h,α

2 a)j = aj − 2e−αhaj−1 + e−2αhaj−2, j = 2, . . . , n+ 1. (4)

Note that, the operator (∆2a)j is an annihilation operator for sequences sampled from linear polynomial41

while (∆h,α
2 a)j is an annihilation operator for sequences sampled from functions in the exponential polyno-42

mial space {e−αx, xe−αx}. This fact is important and it is the reason why the HP-spline model reproduces43

{e−αx, xe−αx} as shown in [14].44

Due to their nature, HP-splines are more suitable in application where the data show a multi-exponential45

decaying data, or in case of probability distributions need to be approximated, e.g. in case the data belong46

to Binomial, Exponential, Poisson, Hypergeometric or Gaussian distributions. As a convincing example47

the reader can see the results in [14, Figures 1 and 2] showing the exponential-reproduction capabilities of48

HP-splines. Particularly, [14, Figures 1] refers to data taken from the exponential function e−αx while [14,49

Figures 2] to data from the function xe−αx. They are both examples of situation where HP-splines are more50

suitable than P-splines and give us an important information: in case we are dealing with data coming from51

specific exponential functions that are not corrupted by high noise, HP-splines are very good models. And52

this can also be the case of experimental data sets as Figure 8 shows. Nevertheless, even if the HP-spline53

derivation is not more complicated than the one of P-splines (see [11] and [14]), an additional and effective54

strategy to select the frequency parameter α, is required. Hence, the goal of this paper is to discuss a way55

to identify the HP-splines frequency parameter α from the data.56

Our idea is to look at (1) with the penalty in (4), as a Tikhonov regularization problem in general57

form and use a result concerning the sensitivity of the model with respect to perturbation on the data.58

Obviously, the quantity expressing this sensitivity depends on both λ and α. Denoting this quantity with59

κα,λ, our idea is to select the optimal frequency parameter α by minimizing κα,λ. To this purpose, we60

define an explicit piecewise expression for the HB-basis functions in terms of α and then estimate the norms61

of the matrices involved in the determination of the minimum. This is particularly important in case the62
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smoothing parameter λ is not set via a L-curve approach. Based on κα,λ or on its estimation κ̃α,λ, we63

provide an efficient algorithm for the parameter selection and show its effectiveness with several examples.64

At this point it is important to mention that the analysis of our HP-spline model is not jet completed:65

the selection of the B-spline knots, the interrelation knots-data and the lack of symmetry of the proposed66

penalty are relevant and critical aspects worth to be considered.67

The organization of the paper is as follows: in Section 2 we look at (1) with the penalty in (4) as a68

Tikhonov regularization problem in general form and recall a theorem investigating its sensitivity for the69

computation of the spline coefficients. In Section 3 we propose an estimate of the quantity that measures the70

sensitivity with respect to perturbation on the data. Then, in Section 4 we propose two possible algorithms71

for the frequency parameter selection. Numerical experiments are presented in Section 5 while Section 672

summarizes the proposed results. Concludes the paper an Appendix where the piecewise expression for the73

HB-splines in terms of α is provided.74

2. HP-splines as a Tikhonov regularization problem75

The hyperbolic-polynomial spline model we consider in this paper is made of segments in the four-76

dimensional space E4,α in (3). Given the data points (xi, yi), i = 1, . . . ,m, with xi ≤ xi+1, and the uniform77

knot partition Ξ := {x1 ≡ ξ1 < ξ2 · · · < ξn ≡ xm} with knots distance h, we denote by {Bα0 , · · · , Bαn+1} a78

HB-spline basis of the spline space that can be constructed as in [13] or as in [15] (for further details see79

Appendix). It consists of bell-shaped C2-regular piecewise functions with segments in the space E4,α, that80

have a compact support identified by 5 consecutive knots (see Fig. 1 left). Expressing the spline in terms of81

HB-splines, the HP-spline approximating the given data is obtained by solving the minimization problem82

arg min
a∈Rn+2

m∑
i=1

wi

yi − n+1∑
j=0

ajB
α
j (xi)

2

+ λ2
n+1∑
j=2

(
(∆h,α

2 a)j

)2
, (5)

where the minimum is with respect to the HB-splines coefficients a = (aj)
n+1
j=0 , w1, . . . , wm, are non-zero

weights, ∆h,α
2 is the difference operator in (4). It is not difficult to see that the coefficient vector of the

HP-spline

sα,λ(x) :=

n+1∑
j=0

ajB
α
j (x),

approximating the data points (xi, yi), i = 1, . . . ,m, is the solution of the system of normal equations,83 (
BT
hαWBhα + λ2(Dhα)TDhα

)
a = BT

hαWy, (6)

where y = (y1, . . . , ym)T ∈ Rm, W ∈ Rm×m is a diagonal matrix with diagonal entries w1, . . . , wm, Dhα ∈84

Rn×(n+2), is the three-banded difference matrix85

Dhα =


1 −2e−αh e−2αh 0 · · · 0
0 1 −2e−αh e−2αh · · · 0
...

. . .
. . .

. . . · · ·
...

...
...

... 1 −2e−αh e−2αh

 , (7)
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and Bhα ∈ Rm×(n+2), is the collocation matrix with elements86

Bhα :=



Bα0 (x1) Bα1 (x1) · · · Bαn+1(x1)
Bα0 (x2) Bα1 (x2) · · · Bαn+1(x2)

...
... · · ·

...
...

... · · ·
...

...
... · · ·

...
Bα0 (xm−1) Bα1 (xm−1) · · · Bαn+1(xm−1)
Bα0 (xm) Bα1 (xm) · · · Bαn+1(xm)


. (8)

The matrix Bhα is a banded matrix whose bandwidth is inherited by the HB-spline locality and depends on
the relation among HB-spline knots and data abscissae. In spite of the bandwidth of Bhα, the symmetric
matrix (Bhα)TWBhα ∈ R(n+2)×(n+2) is with band-width at most 7 as in case of cubic polynomial B-splines.
To see it, we recall that the support of any Bαk , k = 0, . . . n + 1 is identified by 5 consecutive knots, say
ξk−2, ξk−1, ξk, ξk+1, ξk+2. Since

(
(Bhα)TWBhα

)
`,j

=

m∑
i=1

Bα` (xi)wiB
α
j (xi), `, j = 0, . . . n+ 1,

it follows that
(
(Bhα)TWBhα

)
`,j
6= 0 for `, j such that supp(Bα` ) ∩ supp(Bαj ) 6= ∅ which means for at most87

the 7 consecutive indices ` ∈ {j − 3, j − 2, . . . , j + 2, j + 3}. For simplicity and without loss of generality, we

Figure 1: HB spline (left) and the BThα structure (right).

88

assume that the matrix W is the identity matrix.89

Looking at (6) as a Tikhonov regularization problem in general form,90

min
a∈Rn+2

‖Bhαa− y‖22 + λ2‖Dhαa‖22 (9)

we can use the argument in [24, page 16] and in [6, Appendix B] to conclude that the solution exists and it91

is unique and it is given by:92

aα,λ = B]
α,λy, (10)

where93

B]
α,λ =

(
BT
hαBhα + λ2(Dhα)TDhα

)−1
BT
hα, (11)

is the regularized inverse matrix.94

Remark 2.1. It is worth noting that, unless the smoothing parameter λ is a priori fixed, in spite of the95

specific method of selection, it always strongly depends on the data and on the spline space frequency α.96

Therefore, it should be denoted as λ(α,x,y). But, for shortness, we will refer to it just as λ.97

As for the model definition when α approaches to extreme values, our algorithm does not allow the search98

of a very large α but presents an issue when α → 0. In the latter case, the use of a P-spline instead of an99

HP-spline would be the simple recommendation. However, in Section 5 we propose to use a threshold acting100

as a lower bound for |α| around 0. For interested readers, we mention that to deal with α→ 0 other stable101

techniques can be found in the recent works [16, 17] and references therein.102
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2.1. Sensitivity with respect to data perturbation103

It is well known (for details see [18]) that the numerical solution of the Tikhonov regularization problem104

in (6) with W = I, can be expressed in terms of the GSVD of the two matrices (Bhα,Dhα). The GSVD105

of a couple of matrices is a generalization of the SVD consisting is the simultaneous decomposition of both106

matrices in orthonormal and diagonal factors as107

Bhα = Uhα

(
Σhα 0

0 Ihα

)
X−1hα , Dhα = Vhα

(
Nhα 0

)
X−1hα , (12)

where Uhα ∈ Rm×(n+2), Ihα ∈ R2×2 and Vhα ∈ Rn×n are orthonormal, Xhα ∈ R(n+2)×(n+2) is nonsingular,108

and Σhα and Nhα are n × n diagonal matrices Σhα = diag(σ1, . . . , σn), Nhα = diag(ν1, . . . , νn), with109

diagonal elements non-negative and ordered110

0 ≤ σ1 ≤ . . . ≤ σn ≤ 1, 0 < νn ≤ . . . ≤ ν1 ≤ 1. (13)

Based on a classical perturbation bound for Tikhonov regularization (see [18, Theorem 5.1.1]) the condition111

number of the least square problem (9) can be expressed as a function of both the smoothing and the112

frequency parameters λ and α, according to the following result, whose proof follows directly from [18,113

Theorem 5.1.1].114

Theorem 2.1. Let (9) be a Tikhonov problem in general form. Let Xhα be the factor of the GSVD of115

(Bhα,Dhα) as in (12) and cond(Xhα) its 2-norm condition number. Let aα,λ and ãα,λ be the solutions of116

the Tikhonov problem in general form, and of its perturbed version, respectively given by117

min
a∈Rn+2

‖Bhαa− y‖22 + λ2‖Dhαa‖22 and min
a∈Rn+2

‖B̃hαa− ỹ‖22 + λ2‖Dhαa‖22. (14)

Defining e = y − ỹ, ε = ‖Bhα − B̃hα‖2/‖Bhα‖2, yα,λ = Bhαaα,λ, rα,λ = y − yα,λ, and118

κα,λ = ‖Bhα‖2‖Xhα‖2/λ, (15)

under the assumption εkα,λ < 1 it results that119

‖aα,λ − ãα,λ‖2
‖aα,λ‖2

≤ κα,λ
1− εκα,λ

(
(1 + cond(Xhα))ε+

‖e‖2
‖yα,λ‖2

+ εκα,λ
‖rα,λ‖2
‖yα,λ‖2

)
, 0 < λ ≤ 1 (16)

Remark 2.2. We remark that (16) is a general error bound on aα,λ. In this paper we assume ε = 0, i.e. that120

the perturbation on Bhα is negligible, and therefore (16) becomes the tighter bound:121

‖aα,λ − ãα,λ‖2
‖aα,λ‖2

≤ κα,λ
‖e‖2
‖yα,λ‖2

. (17)

3. Estimate of κα,λ122

This section is to discuss an estimate of κα,λ = ‖Bhα‖2‖Xhα‖2/λ, the quantity expressing the sensitivity123

of the solution of the Tikhonov regularization problem in general form depending on both λ and α. While,124

in general, a correct HP-spline identification requires the reciprocal updating of α and λ, our idea is to first125

identify α and then λ by the help of some criteria for setting the smoothing parameter. Unless the smoothing126

parameter is set via a L-curve approach (see [7] for a complete discussion about the L-curve method), to127

reduce the computational cost associated with κα,λ we propose a way to estimate κα,λ, say κ̃α,λ, based on128

an approximation of ‖Bhα‖2 and ‖Xhα‖2.129

The following Lemma gives a bound for the 2-norm of Bhα, depending on both α and h.130

Lemma 3.1. The 2-norm of the collocation matrix Bhα in (8), is bounded by:

‖Bhα‖2 ≤
√
m‖Bhα‖∞ ≤ 4

√
m

(
(eα 2h − e−α 2h)− 4αh

)
4(αh)3

.
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Proof. Using Proposition Appendix A.3, we easily see that the rows of the matrix Bhα, depend on the131

HB-splines values at data points. Now, since each HB-spline Bαj = Bα0 (· − jh) is supported in the interval132

[ξj−2, ξj+2], at most 4 HB-splines are non zero in a data point. In consideration that all Bαj are shifted133

version of the same bell-shaped function whose maximum value Mhα is reached at the central knot, from134

(A.5) we easily deduce that135

Mhα = Bhhα(2h)

=

(
−4 cosh(0) +

4 sinh(0)

hα
+

1

hα
2 sinh(α2h)

)
/4(αh)2

=

(
−4 +

1

hα
(eα 2h − e−α 2h)

)
/4(αh)2. (18)

136

Hence, taking into account that ‖Bhα‖∞ = max1≤i≤m
∑n+2
j=1 |bij |, with137

bij = Bαj (xi) = Bα0 (xi − jh), i = 1, . . . ,m, j = 1, · · · , n+ 2.

we easily conclude that138

‖Bhα‖∞ ≤ 4Mhα.

By the equivalence of the matrix norms (see [19, eq. (2.3.12)], for example) the claim follows.139

Now we search for an estimate for ‖Xhα‖2, taking into account that it is140

‖D†hα‖2 = ‖DT
hα

(
DhαDT

hα

)−1 ‖2 ≤ ‖DT
hα‖2 ‖

(
DhαDT

hα

)−1 ‖2.
Following [18], we assume:141

‖Xhα‖2 ≤ ‖D†hα‖2 (19)

so we can conclude that142

‖Xhα‖2 ≤ ‖DT
hα‖2 ‖

(
DhαDT

hα

)−1 ‖2.
Setting a := e−αh > 0 we have that143

Dhα(Dhα)T =



1 + 4a2 + a4 −2a− 2a3 a2 0 · · · 0
−2a− 2a3 1 + 4a2 + a4 −2a− 2a3 a2 · · · 0

a2 −2a− 2a3 1 + 4a2 + a4 −2a− 2a3 a2 0
0 a2 −2a− 2a3 1 + 4a2 + a4 −2a− 2a3 a2

...
...

. . .
. . .

. . .
...

0 0 a2 −2a− 2a3 1 + 4a2 + a4 −2a− 2a3

0 0 0 a2 −2a− 2a3 1 + 4a2 + a4


,

(20)

is a Toeplitz, symmetric, pentadiagonal matrix such that ‖
(
Dhα(Dhα)T

)−1 ‖2 = 1
λmin

with λmin the minimal

eigenvalue of Dhα(Dhα)T . If we associate to Dhα(Dhα)T its trigonometric symbol

g(θ) = (1 + 4a2 + a4)− 4(a+ a3) cos(θ) + 2a2 cos(2θ) = 4a2 cos2(θ)− 4a(1 + a2) cos(θ) + (1 + 2a2)2,

we see that

g(θ) ≥ 0 and g(θ) = 0 ⇔ cos(θ) =
1 + a2

2a
.

Next, we use the ‘interlacing’ result in [20, Section 4], to deduce that λmin is bounded from below by

q(a) = min

{
g

(
2π

n+ 3

)
, g

(
π

n+ 3

)}
.
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It is easy to see that q(a) 6= 0: Indeed for a 6= 1

g

(
2π

n+ 3

)
6= 0 ⇔ cos

(
2π

n+ 3

)
6= 1 + a2

2a
= 1 +

(1− a)2

2a
> 1,

as well as

g

(
π

n+ 3

)
6= 0 ⇔ cos

(
π

n+ 3

)
6= 1 + a2

2a
= 1 +

(1− a)2

2a
> 1.

For a = 1, since 2π
n+3 and π

n+3 are not multiple of π2 , it easily follows that both cos( 2π
n+3 ) 6= 1 and cos( π

n+3 ) 6= 1

implying g( 2π
n+3 ) 6= 0 and g( π

n+3 ) 6= 0. In conclusion, we have that

1

λmin
≤ 1

q(a)
.

Now, taking into consideration that

‖Dhα‖2 ≤
√
‖Dhα‖1 ‖Dhα‖∞ = (a+ 1)2,

from (19), we arrive at144

‖D†hα‖2 ≤ ‖D
T
hα‖2 ‖

(
DhαDT

hα

)−1 ‖2 ≤ (a+ 1)2

q(a)
.

All considered, our estimate for κ̃α,λ is given by145

κ̃α,λ =
1

λ

(
√
m

(
(e2αh − e−2αh)− 4αh

)
(αh)3

)
.
(e−αh + 1)2

q(e−αh)
, (21)

which is numerically proven to be a very good estimate (see the next Section).146

4. Two algorithms for the selection of the frequency α of HP-splines147

This section is to discuss two algorithms for the frequency parameter selection derived by minimizing κα,λ148

and κ̃α,λ respectively. Referring to the first algorithm, given a data set and a suitable frequency interval,149

say [αmin, αmax], for α ∈ [αmin, αmax], we first, compute the matrices Bhα and Dhα, compute Xhα via their150

GSVD, and then the regularization parameter λ (depending on α) by the L-curve method. With the couple151

(α, λ) we compute κα,λ as in (15). The value arg minακα,λ is the optimal frequency parameter.152

The simplest possible procedure for minimizing κα,λ, consists in the construction of a look-up table based153

on a possible set of (α, λ)-values, and then searching for the minimum in that table. This naive approach154

requires the choice of the α searching interval and of its discretization step. Since we have verified that155

the searching interval for α affects the result more than the step, given a data set (xi, yi)
m
i=1 we propose to156

consider searching intervals depending on the data behaviour as follows:157

[αmin, αmax] =

{
[αmin,−τ) if ym < y1
(τ, αmax] if ym > y1,

(22)

where αmin and αmax are such that αfit ∈ (αmin, αmax), with αfit resulting from nonlinear least-squares158

regression of the data in the space E4,α and τ is a suitable threshold for an admissible α. To be more159

precise, the parameter αfit is set as αfit = |c3|sign(ym − y1) with c3 obtained via nonlinear least-squares160

approximation of the data by the 5-parameters function g(c, x) = c1 ·xc4 ·ec3x+c2 ·xc5 ·e−c3x. The mentioned161

αfit can be computed by the MATLAB function lsqnonneg. As for the threshold τ , our proposal is to set162

it as τ = 1.0e − 5 in consideration of the several numerical tests we have conducted. A simple test is also163

reported in Subsection 5.4 showing that only for |α| > τ = 1.0e− 5 a reliable approximation is granted.164

This idea is summarized in the following algorithm.165
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Algorithm 1 Algorithm for data driven selection of α by κα,λ

1: set αfit ← Fixed initial guess
2: set J = [αmin : step : αmax] by (22) ← Search interval with step-size step
3: for i = 1 to length(J) do
4: α = J(i)
5: compute Bhα and Dhα

6: compute Xhα by GSVD of (Bhα,Dhα)
7: compute λ by L-curve
8: compute the entry κα,λ
9: set T (i) = κα,λ

10: end for
11: find α = arg min{T}

Algorithm 2 Algorithm for data driven selection of α by κ̃α,λ

1: set αfit ← Fixed initial guess
2: set J = [αmin : step : αmax] by (22) ← Search interval with step-size step
3: for i = 1 to length(J) do
4: α = J(i)
5: compute λ
6: compute the entry κ̃α,λ
7: set T (i) = κ̃α,λ
8: end for
9: find α = arg min{T}

As an alternative, in the step 8 of Algorithm 1, we propose the computation of κ̃α,λ as in (21) instead166

of κα,λ. From the discussion in the previous Section, we know that κ̃α,λ is a very reasonable estimate167

for the sensitivity factor of the model with respect to perturbation on the data and, more importantly,168

its computation doesn’t require Bhα,Dhα and their GSVD. This is particularly important in case the169

regularization parameter is computed via different criteria than the L-curve like GCV, for example. A170

possible algorithm for selecting the α minimizing κ̃α,λ follows. We continue this section by presenting a171

motivating example, where κ̃α,λ behaves just like an upper bound for κα,λ and where the minimum of both172

κα,λ and κ̃α,λ, is reached at quite the same α−value. Even if this behaviour is experimentally verified mostly173

for data with an exponential trend, the next section shows that the minimization of κ̃α,λ can be effective174

also for data that belong to functions with a different trend. The example consider the approximation of175

a data set extracted from a pure exponential function. Obviously, for this type of data, the best possible176

frequency parameter of the spline space α, is just the frequency parameter of the generating function. To177

recover it, we first set the optimal frequency parameter by minimizing κα,λ, then, we set α by minimizing178

κ̃α,λ. As evident in Figure 2, minimization of both κα,λ and of κ̃α,λ results in a good strategy to identify179

the frequency parameter α. Since the approach based on the minimization of κ̃α,λ is certainly cheaper,180

Algorithm 2 is the one to be preferred.181

A motivating example 4.1. Let (xi, yi)
m=40
i=1 , be a data set with xi randomly distributed abscissae in [0, 5],182

yi = f(xi), f(x) = e−x. The spline space we use is based on n = 11 knots uniformly distributed in [0, 5]183

(that is h = 0.5). To select α we let it vary in the interval (−1.5,−0.1) and compute both κα,λ and κ̃α,λ.184

Figure 2 displays their values and shows that the minimum of both κα,λ and κ̃α,λ is reached exactly at185

α = −1 which is, indeed, the best possibile value of α describing the exponential data trend. For this data186

set we also present a table showing, for different values of α, the relative errors of the spline sα,λ both with187

respect to the data and the original function. In the first case, for x = (xi)
40
i=1 and y = (yi)

40
i=1 we compute188
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Figure 2: The estimate κ̃α,λ (blue ’�’) and κα,λ (red ’*’) for different α values; σ = 0 (left), and σ = 1.0e− 2 (right).

the quantity189

δα,λ =
‖sα,λ(x)− y‖2

‖y‖2
, (23)

while in the second one we compute the quantity190

εα,λ =
‖sα,λ(v)− f(v)‖2

‖f(v)‖2
, (24)

for uniformly distributed points v = (vi)
100
i=1 with v1 = x1, v100 = x40. We initially consider exact data191

and report the results in Table 1 (top), then we repeat the experiment assuming the data are affected by192

Gaussian noise with standard deviation equal to σ = 1.0e − 2; the results in Table 1 (bottom) show that193

the criteria to select the frequency parameter work; in fact, the quite similar frequency value, α = −0.9 and194

α = −1.2 for which κα,λ and κ̃α,λ are respectively the smallest, define a HP-spline that furnishes a good195

accuracy in the approximation of f .196

Before we conclude this section some numerical remarks, synthesis of the many conducted experiments,197

are worthwhile to be made.198

Remark 4.1.199

i) From Theorem 2.1 we know that the quantity κα,λ plays the role of a condition number for the Tikhonov200

regularized solution and its smallest value is reached by the biggest λ. This could suggest that minimizing201

with respect to both α and λ may improve the accuracy on the solution. But, increasing λ also increases202

the regularization error (as mentioned already in [18]). This is why a double tabulation with respect both203

α and λ is not recommended, providing a too small (and not best) choice for κα,λ (and κ̃α,λ).204

ii) Another remark concerns the computed λ-values. It’s worth noting that, in all the tests, the algorithm205

works well also when λ become greater than one and therefore even in case the assumptions of Theorem 2.1206

are not satisfied.207

iii) As a possible searching criterion for α, capable of capturing the trend of assigned noisy data, one could208

consider the minimization of the computational error estimate: Γα,λ = κ̃α,λ · ‖e‖2‖yα,λ‖2 .209

5. Numerical results210

This section presents some of the many numerical experiments we have conducted to test our frequency211

parameter selection strategies. All experiments were carried out on a Intel(R) Core(TM) i5, 1.8 GHz212
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σ = 0
α λ κα,λ κ̃α,λ δα,λ εα,λ

-1.5000e+00 1.7470e-02 3.6377e+02 5.7250e+03 2.5433e-04 3.1873e-04
-1.4000e+00 1.8912e-02 3.1826e+02 7.0113e+03 1.7647e-04 2.1320e-04
-1.3000e+00 2.0473e-02 2.7876e+02 8.7285e+03 1.0746e-04 1.2564e-04
-1.2000e+00 2.2161e-02 2.4453e+02 1.1064e+04 5.1607e-05 5.8603e-05
-1.1000e+00 2.3988e-02 2.1487e+02 1.4303e+04 1.3910e-05 1.5389e-05

-1.0000e+00 2.1574e+00 2.2767e+00 2.2741e+02 2.6100e-15 2.9078e-15

-9.0000e-01 2.8098e-02 1.6690e+02 2.5560e+04 1.6047e-05 1.6979e-05
-8.0000e-01 3.0406e-02 1.4757e+02 3.5455e+04 6.8651e-05 7.1253e-05
-7.0000e-01 3.2899e-02 1.3076e+02 5.0482e+04 1.6469e-04 1.6794e-04
-6.0000e-01 3.5592e-02 1.1612e+02 7.3727e+04 3.1116e-04 3.1216e-04
-5.0000e-01 3.8500e-02 1.0335e+02 1.0998e+05 5.1495e-04 5.0880e-04

σ = 10−2

α λ κα,λ κ̃α,λ δα,λ εα,λ
-1.5000e+00 1.7528e-02 3.6256e+02 5.7060e+03 1.9976e-03 6.7091e-03
-1.4000e+00 3.8837e-02 1.5498e+02 3.4142e+03 2.0731e-03 6.4206e-03
-1.3000e+00 1.5067e-01 3.7878e+01 1.1860e+03 2.5072e-03 6.0807e-03

-1.2000e+00 2.8362e-01 1.9107e+01 8.6448e+02 2.5243e-03 6.0240e-03

-1.1000e+00 2.4040e-02 2.1440e+02 1.4272e+04 2.0407e-03 6.5207e-03
-1.0000e+00 2.6021e-02 1.8876e+02 1.8855e+04 2.0497e-03 6.5001e-03

-9.0000e-01 7.1554e-01 6.5541e+00 1.0037e+03 2.4924e-03 6.0353e-03

-8.0000e-01 3.6074e-01 1.2438e+01 2.9884e+03 2.5376e-03 6.0538e-03
-7.0000e-01 2.0757e-01 2.0726e+01 8.0013e+03 2.5226e-03 6.1063e-03
-6.0000e-01 5.8644e-02 7.0478e+01 4.4746e+04 2.0933e-03 6.3905e-03
-5.0000e-01 3.8555e-02 1.0320e+02 1.0982e+05 2.0235e-03 6.6100e-03

Table 1: Test function f(x) = e−x: numerical results for different α values; from top to bottom we set σ = 0 and σ = 1.0e− 2.
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processor, with a MATLAB R© R2022b code available from the authors. The Tikhonov solution has been213

computed by means of the GSVD factorization which is also used to compute the smoothing parameter λ214

by L-curve, via Hansen package Regularization Tools [21] available at MATLAB Central File Exchange1.215

The use of GCV to compute the regularization parameter is also possible using the same toolbox.216

Tests 1-5 consider a synthetic data set of type

(xi, ỹi)i=1,...,m, xi ∈ [a, b] ỹi = f(xi) + σi, i = 1, . . . ,m,

with xi randomly distributed abscissae, f chosen from a database of functions, and ordinates f(xi) affected217

by Gaussian noise distributed with zero mean and standard deviation σ. The reliability of the described218

procedure is confirmed by the computation of the relative error on the solution as in (23) and in (24), at219

uniformly distributed points.220

The function database we consider consists of a multi-exponential function f1 (for which we expect the221

HP-spline to perform at the best) and of the non-exponential functions f2, f3, f4 to prove the efficacy of222

the selection rule for the parameter α also when the data follow non-exponential trend and f5 is to discuss223

about the approximation when α→ 0:224

1. f1(x) = e
x
2 + x

2 e
−2x in [0, 5];225

2. f2(x) = 1/
√

1 + x2 in [0, 5];226

3. f3(x) = log(x2) + x3ex in [3, 7];227

4. f4(x) = sin(x)cos(2x) in [−3, 3];228

5. f5(x) = 1/(x− 11) in [0, 10].229

The numerical results are reported in the Tables 2, 3, 4, 5. Every table displays the computed values230

of α, λ, κα,λ, and κ̃α,λ. The relative errors on the solution δα,λ and εα,λ are computed as in (23) and (24)231

and reported in the rightmost columns. From the boldface value in every table, we see that the accuracy of232

the solution obtained by the corresponding HP-splines, in both cases, is comparable and satisfactory, as the233

relative errors in the last column confirm.234

The last Test 6 is to compare the performances of HP-spline with respect to P-spline, on a real dataset235

proposed in [23].236

For all tests, from 1 to 6, we use Algorithm 1 to select the frequency value α corresponding to the minimum237

value for κα,λ, and Algorithm 2 to select the α corresponding to the minimum value for κ̃α,λ. We observe238

that, in all tests, the algorithm works well even in case λ > 1, that is when the hypothesis of Theorem 2.1239

is violated240

5.1. Test f1241

First we consider f1 and the following problem setting: n = 11 splines knots uniformly distributed in242

[0, 5], spacing h = 0.5 and m = 40 data points.The numerical results are reported in Table 2 for different243

values of σ. Fig. 3 compares κα,λ and κ̃α,λ for different values of σ and shows that the minimum value is244

reached for the same α, both in case of σ = 0 and σ 6= 0.245

5.2. Test f2 and f3246

These two tests are to prove the reliability of the α-selection strategy in case of non exponential data.247

First, we consider f2, n = 11 knots uniformly distributed in [a, b] = [0, 5] with spacing h = 0.5, m = 40248

data points and σ = 1.0e − 2. Fig. 4 shows κ̃α,λ and κα,λ for different values of α ∈ [−0.9, 0.9] (top). In249

the same figure, we report the HP-spline fitting (xi, ỹi)i=1,...,m, ỹi = f2(xi) + σi, m = 40, with α minimizing250

κα,λ (bottom,left) and κ̃α,λ (bottom,right).251

Then, we consider f3, set n = 9 knots uniformly distributed in [a, b] = [3, 7] with spacing h = 0.5, m = 33252

data points and σ = 1.0e− 2. Fig. 5 shows κ̃α,λ and κα,λ for different values of α ∈ [0.1, 1.5] (top). In the253

same figure, we report the HP-spline fitting (xi, ỹi)i=1,...,m, ỹi = f3(xi) + σi, m = 33, with α minimizing254

κα,λ (bottom,left) and κ̃α,λ (bottom,right).255

1 https://www.mathworks.com/matlabcentral/fileexchange/52-regtools
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Figure 3: Test function f1(x) = e
x
2 + x

2
e−2x. The estimate κ̃α,λ (blue ’�’) and κα,λ (red ’*’) for different α values; σ = 0

(top,left), σ = 1.0e− 4 (top,right), and σ = 1.0e− 2 (bottom).
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Figure 4: Test function f2, with σ = 1.0e− 2. From left to right: the estimate κ̃α,λ (blue ’�’) and κα,λ (red ’*’) for different
values of α. (top). The HP-spline fitting the data (xi, ỹi)i=1,...,m, ỹi = f2(xi) + σi, m = 40, with α minimizing κα,λ
(bottom,left) and κ̃α,λ (bottom,right).

The numerical results concerning f2 are reported in Table 3; the ones for f3 are in Table 4. All tables and256

graphs confirm the effectiveness of Algorithm 1 and Algorithm 2 to select the optimal frequency parameter257

α.258
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Figure 5: Test function f3, with σ = 1.0e− 2. From left to right: the estimate κ̃α,λ (blue ’�’) and κα,λ (red ’*’) for different
values of α. (top). The HP-spline fitting the data (xi, ỹi)i=1,...,m, ỹi = f3(xi) + σi, m = 33, with α minimizing κα,λ
(bottom,left) and κ̃α,λ (bottom,right).
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f1(x) = ex/2 + 0.5x e−2x, α ∈ [0.1, 1.5]
α λ κα,λ κ̃α,λ δα,λ εα,λ

σ = 0
1.0000e-01 1.1733e-01 2.9412e+01 2.1835e+05 6.4104e-04 5.7663e-04
2.0000e-01 1.4614e-01 2.5611e+01 1.4163e+05 5.8838e-04 5.3080e-04
3.0000e-01 3.2889e-01 1.2332e+01 4.5566e+04 8.5160e-04 8.6482e-04
4.0000e-01 2.5373e+00 1.7304e+00 4.0569e+03 2.0365e-03 2.1499e-03

5.0000e-01 4.1912e+00 1.1327e+00 1.6655e+03 2.1897e-03 2.4445e-03

6.0000e-01 2.4472e+00 2.0947e+00 1.9539e+03 1.9731e-03 2.0808e-03
7.0000e-01 3.5473e-01 1.5582e+01 9.4283e+03 8.6364e-04 8.6258e-04
8.0000e-01 1.9347e-01 3.0756e+01 1.2401e+04 6.7100e-04 6.1147e-04
9.0000e-01 1.8276e-01 3.4992e+01 9.6651e+03 7.5519e-04 6.8688e-04
1.0000e+00 1.9864e-01 3.4542e+01 6.7137e+03 9.8927e-04 8.9734e-04
1.1000e+00 2.1835e-01 3.3652e+01 4.7205e+03 1.3390e-03 1.2137e-03
1.2000e+00 2.3760e-01 3.3057e+01 3.4261e+03 1.7869e-03 1.6238e-03
1.3000e+00 6.7243e-02 1.2461e+02 9.7511e+03 4.8025e-04 5.1426e-04
1.4000e+00 6.8767e-02 1.2975e+02 7.8193e+03 5.4119e-04 5.8577e-04
1.5000e+00 7.0319e-02 1.3485e+02 6.3742e+03 6.0501e-04 6.6568e-04

σ = 10−4

1.0000e-01 1.1777e-01 2.9301e+01 2.1753e+05 6.4948e-04 5.6477e-04
2.0000e-01 1.4667e-01 2.5518e+01 1.4112e+05 5.9476e-04 5.2398e-04
3.0000e-01 3.2609e-01 1.2438e+01 4.5957e+04 8.5012e-04 8.5752e-04
4.0000e-01 2.5371e+00 1.7306e+00 4.0573e+03 2.0387e-03 2.1517e-03

5.0000e-01 4.1876e+00 1.1337e+00 1.6670e+03 2.1899e-03 2.4466e-03

6.0000e-01 2.4476e+00 2.0944e+00 1.9535e+03 1.9753e-03 2.0818e-03
7.0000e-01 3.5252e-01 1.5680e+01 9.4874e+03 8.6310e-04 8.5608e-04
8.0000e-01 1.9539e-01 3.0454e+01 1.2279e+04 6.7884e-04 6.0687e-04
9.0000e-01 1.8418e-01 3.4723e+01 9.5907e+03 7.6419e-04 6.7650e-04
1.0000e+00 1.9962e-01 3.4372e+01 6.6808e+03 9.9885e-04 8.8256e-04
1.1000e+00 2.1901e-01 3.3551e+01 4.7065e+03 1.3486e-03 1.1957e-03
1.2000e+00 2.3806e-01 3.2993e+01 3.4195e+03 1.7964e-03 1.6038e-03
1.3000e+00 6.7243e-02 1.2461e+02 9.7511e+03 4.8236e-04 4.9632e-04
1.4000e+00 6.8767e-02 1.2975e+02 7.8193e+03 5.4321e-04 5.6697e-04
1.5000e+00 7.0319e-02 1.3485e+02 6.3742e+03 6.0694e-04 6.4649e-04

σ = 10−2

1.0000e-01 1.9423e-01 1.7767e+01 1.3190e+05 2.9078e-03 5.0101e-03
2.0000e-01 3.3073e-01 1.1317e+01 6.2584e+04 2.9001e-03 5.0782e-03
3.0000e-01 8.3745e-01 4.8432e+00 1.7895e+04 3.0665e-03 5.1964e-03
4.0000e-01 2.6902e+00 1.6321e+00 3.8264e+03 3.4166e-03 5.3326e-03

5.0000e-01 4.2111e+00 1.1273e+00 1.6577e+03 3.4923e-03 5.4628e-03

6.0000e-01 2.6525e+00 1.9326e+00 1.8026e+03 3.3758e-03 5.2677e-03
7.0000e-01 1.0340e+00 5.3455e+00 3.2345e+03 3.1177e-03 5.1477e-03
8.0000e-01 4.5241e-01 1.3153e+01 5.3032e+03 2.9556e-03 5.0193e-03
9.0000e-01 2.9798e-01 2.1463e+01 5.9281e+03 2.9643e-03 4.9353e-03
1.0000e+00 2.1486e-01 3.1935e+01 6.2070e+03 2.9701e-03 4.8820e-03
1.1000e+00 7.8076e-02 9.4113e+01 1.3202e+04 2.6655e-03 5.0772e-03
1.2000e+00 6.5799e-02 1.1937e+02 1.2372e+04 2.6464e-03 5.1029e-03
1.3000e+00 6.7296e-02 1.2451e+02 9.7434e+03 2.6624e-03 5.0799e-03
1.4000e+00 6.8820e-02 1.2965e+02 7.8133e+03 2.6816e-03 5.0571e-03
1.5000e+00 7.0373e-02 1.3475e+02 6.3693e+03 2.7042e-03 5.0355e-03

Table 2: Test function f1(x) = ex/2 + 0.5x e−2x: numerical results for different α values; from top to bottom we set σ = 0,
σ = 1.0e− 4 and σ = 1.0e− 2. 15



f2(x) = 1/
√

1 + x2, α ∈ [−0.9, 0.9]
α λ κα,λ κ̃α,λ δα,λ εα,λ

-9.9000e-01 2.6228e-02 1.8639e+02 1.9411e+04 3.0208e-03 4.5103e-03
-8.5000e-01 2.9263e-02 1.5672e+02 2.9972e+04 3.0761e-03 4.4949e-03
-7.1000e-01 3.2684e-02 1.3217e+02 4.8609e+04 3.1731e-03 4.4957e-03
-5.7000e-01 3.6493e-02 1.1195e+02 8.2849e+04 3.3053e-03 4.5120e-03
-4.3000e-01 4.0728e-02 9.5238e+01 1.4633e+05 3.4607e-03 4.5408e-03
-2.9000e-01 4.5384e-02 8.1457e+01 2.5601e+05 3.6220e-03 4.5766e-03

-1.5000e-01 2.5174e+00 1.4048e+00 8.0131e+03 2.4701e-02 2.5885e-02

-1.0000e-02 1.3892e+00 2.4439e+00 1.9197e+04 1.8565e-02 1.9495e-02
1.3000e-01 6.3270e-01 5.5892e+00 3.8564e+04 1.2163e-02 1.2558e-02
2.7000e-01 5.2990e-02 7.4726e+01 3.1404e+05 3.6165e-03 4.5960e-03
4.1000e-01 5.4805e-02 8.0746e+01 1.8068e+05 3.5410e-03 4.5774e-03
5.5000e-01 5.6657e-02 8.7085e+01 1.0175e+05 3.4503e-03 4.5538e-03
6.9000e-01 5.8547e-02 9.3706e+01 5.9139e+04 3.3527e-03 4.5282e-03
8.3000e-01 6.0478e-02 1.0056e+02 3.6091e+04 3.2571e-03 4.5037e-03
9.7000e-01 6.2453e-02 1.0759e+02 2.3174e+04 3.1725e-03 4.4833e-03

Table 3: Test function f2(x) = 1/
√

1 + x2, with σ = 1.0e− 2: numerical results for different α values.

f3(x) = log(x2) + x3ex, α ∈ [0.1, 1.5]
α λ κα,λ κ̃α,λ δα,λ εα,λ

1.0000e-01 4.3249e-02 8.5260e+01 2.9875e+05 4.1794e-03 5.1683e-03
2.0000e-01 4.4171e-02 8.3616e+01 2.5211e+05 3.8616e-03 5.0866e-03
3.0000e-01 4.5108e-02 8.8724e+01 1.9384e+05 3.6276e-03 5.0692e-03
4.0000e-01 4.6058e-02 9.4084e+01 1.4110e+05 3.4628e-03 5.0927e-03
5.0000e-01 4.7024e-02 9.9688e+01 1.0031e+05 3.3518e-03 5.1385e-03
6.0000e-01 4.7971e-02 1.0560e+02 7.1171e+04 3.2801e-03 5.1932e-03
7.0000e-01 4.8969e-02 1.1166e+02 5.0941e+04 3.2360e-03 5.2473e-03
8.0000e-01 1.4902e-01 3.9553e+01 1.2426e+04 3.5008e-03 5.0095e-03
9.0000e-01 2.2203e-01 2.8577e+01 6.3082e+03 3.4675e-03 5.0119e-03
1.0000e+00 3.8660e-01 1.7640e+01 2.7941e+03 3.4563e-03 5.0597e-03
1.1000e+00 8.7130e-01 8.3996e+00 9.7468e+02 3.4451e-03 5.1836e-03

1.2000e+00 2.4298e+00 3.2270e+00 2.7986e+02 3.2390e-03 5.2544e-03

1.3000e+00 6.8671e-01 1.2212e+01 8.0661e+02 3.1857e-03 5.4052e-03
1.4000e+00 5.6491e-01 1.5849e+01 8.1158e+02 3.1864e-03 5.4648e-03
1.5000e+00 5.6564e-01 1.6869e+01 6.8088e+02 3.1853e-03 5.4625e-03

Table 4: Test function f3(x) = log(x2) + x3ex, with σ = 1.0e− 2: numerical results for different α values.
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5.3. Test f4259

The last test concerns the function f4(x) = sin(x)cos(2x) in [−3, 3] and it is given to compare the260

proposed criteria for selecting α based on the minimization of κα,λ and κ̃α,λ, with another possible strategy261

used by the authors in [11, 14]. There, the optimal α, say αopt, was chosen by a nonlinear least-squares262

regression of the data using the 3-parameter function r(c, x) = c1e
c3x + c2e

−c3x belonging to the space E4,α263

with sign coherently set as αopt = |c3|sign(ym − y1). This fitting is computed by the MATLAB function264

nlinfit. Table 5 refers the α-values obtained by the three approaches with n = 13 knots uniformly265

distributed in [a, b] = [−3, 3] with spacing h = 0.5, m = 47 data points and σ = 0. Fig. 6 shows the estimate266

κ̃α,λ and κα,λ for different values of α ∈ [0.1, 1.5] (top,left). In the same figure, the approximation given267

by the HP-spline defined using αopt (top, right) is comparable with the one defined using the α minimizing268

κα,λ (bottom, left); the α minimizing κ̃α,λ gives a better approximation (bottom,right). The results are269

confirmed by the relative errors in the last column of Table 5.

Figure 6: Test function f4, with σ = 0. From left to right, top to bottom: the estimate κ̃α,λ (blue ’�’) and κα,λ (red ’*’) for
different values of α (top,left). The approximation of f4 by the HP-spline defined using αopt (top,right), the HP-spline using
α minimizing κα,λ (bottom,left) and the HP-spline using α minimizing κ̃α,λ (bottom,right).

270

The numerical results concerning f4 are in Table 5.271

5.4. Test f5272

In this test we want to prove that the approximation by HP-spline has numerical issues when α approaches273

0; this motivates the introduction of a threshold τ = 1.0e − 5, that bounds the minimum absolute value274

for the frequency parameter around the zero. We consider f5(x) = 1/(x − 11) and the following problem275
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f4(x) = sin(x)cos(2x), α ∈ [0.1, 1.5]
α λ κα,λ κ̃α,λ δα,λ εα,λ

1.0000e-01 2.3867e+00 1.5090e+00 1.9249e+04 5.0719e-01 6.1739e-01

2.0000e-01 2.5588e+00 1.5283e+00 1.3523e+04 5.1202e-01 6.2436e-01
3.0000e-01 2.7567e+00 1.5384e+00 8.3748e+03 5.1895e-01 6.3302e-01
4.0000e-01 6.3141e-02 7.2729e+01 2.3335e+05 9.0578e-03 9.8609e-03
5.0000e-01 6.4642e-02 7.6796e+01 1.4571e+05 9.0841e-03 9.8385e-03
6.0000e-01 6.6207e-02 8.0905e+01 9.3135e+04 9.1675e-03 9.8774e-03
7.0000e-01 6.7718e-02 8.5184e+01 6.1549e+04 9.2849e-03 9.9568e-03
8.0000e-01 6.9236e-02 8.9536e+01 4.2078e+04 9.4385e-03 1.0083e-02
9.0000e-01 7.0765e-02 9.3941e+01 2.9715e+04 9.6235e-03 1.0254e-02
1.0000e+00 7.2306e-02 9.8378e+01 2.1620e+04 9.8356e-03 1.0467e-02
1.1000e+00 7.3861e-02 1.0283e+02 1.6161e+04 1.0072e-02 1.0724e-02
1.2000e+00 7.5432e-02 1.0727e+02 1.2377e+04 1.0332e-02 1.1023e-02
1.3000e+00 7.7021e-02 1.1169e+02 9.6878e+03 1.0613e-02 1.1365e-02
1.4000e+00 7.8630e-02 1.1608e+02 7.7326e+03 1.0917e-02 1.1753e-02

1.5000e+00 8.0261e-02 1.2043e+02 6.2816e+03 1.1244e-02 1.2189e-02

αopt λ καopt,λ κ̃αopt,λ δαopt,λ εαopt,λ
2.0764e-03 2.2353e+00 1.5088e+00 2.2174e+04 5.0425e-01 6.1188e-01

Table 5: Test function f4(x) = sin(x)cos(2x), with σ = 0: numerical results for different α values (top) and for αopt (bottom).

setting: n = 21 splines knots uniformly distributed in [0, 10], spacing h = 0.5 and m = 77 data points. The276

numerical results, reported in Fig. 7, numerically show that indeed, there is a limit value for α, under which277

the algorithm doesn’t work. Nevertheless, since from Figure 7 (bottom, right) we see that the P-spline has278

a reasonable behaviour, is it evident that this issue is not in the method but in the evaluation strategies.279

Indeed, the analytical expressions of the HB-splines in Appendix A are numerically unstable, and not reliable280

for practical implementations, for small (or large) values of |α|. This is certainly another point to be further281

investigated.282
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Figure 7: Test function f5(x) = 1/(x − 11). The HP-spline (black ’−’) for α = 10−p, p = 2, . . . , 6 and the P-spline for α = 0
(reading by rows, from top left to bottom right).
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Figure 8: Test 6. The HP-spline (black ’−’) vs P-spline (cyan ’−’) on the increasing dataset in [23], set n = 11 and α = 0.4.

5.5. Test 6283

The last test is to investigate the action of HP-splines when dealing with experimental data corresponding284

to coal production in Nigeria, from 1916 to 2001. This data set is taken from [23] where a comparison of285

linear and exponential regression is presented. For one of the datasets in [23], we show that HP-spline286

captures the data behavior better than the standard P-spline fitting. Table 6 reports the relative root mean287

square errors obtained by our HP-spline and the P-spline, for the m = 15 historical values and for different288

number of knots n and α = 0.4. Figure 8 shows the graphs of both the HP-spline and the P-spline for the289

case n = 11.290

n HP-spline P-spline
7 3.6248e-02 3.5421e-02
8 3.4430e-02 3.5122e-02
11 2.7693e-02 3.0535e-02
12 1.7359e-02 2.8186e-02
18 1.4915e-02 2.2460e-02
20 4.4294e-03 1.2874e-02

Table 6: Relative root mean square errors
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6. Conclusions291

This paper discusses a linear algebra-based methodology for the frequency parameter selection of hy-292

perbolic - polynomial P-splines (HP-splines) that are penalized splines with segments in an exponential -293

polynomial space. Indeed, the HP-spline model requires an effective strategy to select the frequency param-294

eter in addition to the one needed for the smoothing parameter. Here, we propose a computational method295

that involves a linear algebra procedure for the Tikhonov regularization problem adapted to the HP-splines296

context. As shown in the numerical experiments, this technique provides an efficient data-driven parameter297

selection strategy corresponding to HP-splines that better capture the trend suggested by the fitted data.298

Automatic frequency detection, in our opinion, is crucial to infer information hidden in the input data. We299

conclude by mentioning that the analysis of the HP-spline model is not jet completed: the selection of the300

B-spline knots, the interrelation knots-data and the lack of symmetry of the proposed penalty are critical301

aspects that we plan to study in the near future.302
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Appendix A. Computation of HB-splines346

In [13] HB-splines have been defined with pieces expressed in terms of proper Bernstein(-like) local bases347

and for any type of knots distribution. Here, we follow the approach described in [15] for the cardinal setting348

where HB-splines are defined through convolution. With ‘cardinal’ setting we mean that the spline knots349

are integers and equidistant, with constant separation h = 1.350

Given the set of frequencies α1, · · · , α`, starting from the first order cardinal HB-spline b1α1
(where the351

superscript 1 is to recall the knots distance) defined as352

b1α1
(x) = eα1 xχ[0,1](x), (A.1)

the HB-spline of order ` is obtained by successive convolution of ` HB-splines of order one

b1α1,α2··· ,α`(x) =
(
b1α1
∗ b1α2

· · · ∗ b1α`
)

(x).

Figure A.9 shows the graph of the cardinal HB-splines of order from 1 to 4 corresponding to the choice353

α1 = 1, α2 = −1, α3 = 0, α4 = 0.354

Figure A.9: The cardinal HB-splines b11, b11,−1, b11,−1,0 and b11,−1,0,0 obtained via convolution.

Below, we provide the explicit piecewise-defined expression of the cardinal HB-spline of order 4, b1α,355

supported on [0, 4] where we use the short hand notation α = (α, α,−α,−α).356

Proposition Appendix A.1. The CHB-spline b1α with support [0, 4] is:357

358

b1α(t) =


(
t2 cosh(αt)− 1

α2 sinh(αt)
)
/4α2 t ∈ (0, 1](

−2(t− 1)2 cosh(α(t− 2))− (t− 2)2 cosh(αt) + 2
α2 sinh(α(t− 2)) + 1

α2 sinh(αt)
)
/4α2 t ∈ (1, 2](

(t− 2)2 cosh(α(t− 4)) + 2(t− 3)2 cosh(α(t− 2))− 1
α2 sinh(α(t− 4))− 2

α2 sinh(α(t− 2))
)
/4α2 t ∈ (2, 3](

(4− t)2 cosh(α(t− 4)) + 1
α2 sinh(α(t− 4))

)
/4α2 t ∈ (3, 4]

(A.2)

359

Proof. From (A.1), recalling that (g ∗ g)(t) =
∫∞
−∞ g(s)g(t − s)ds it is simple to get the expression of the360

HB-spline b1α,−α and use it to make another round of convolution. Indeed, fo361

g(t) = bα,−α(t) =


g1(t) = eα t−e−α t

2α t ∈ (0, 1]

g2(t) = eα (2−t)−e−α (2−t)

2α t ∈ (1, 2]
0 otherwise

(A.3)

we compute362

(g ∗ g)(t) =

∫ 1

0

g1(s)g(t− s)ds+

∫ 2

1

g2(s)g(t− s)ds (A.4)
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by expressing, via the variable change t = s− τ , the two integrals as∫ t

t−1
g1(t− τ)g(τ)dτ and

∫ t−1

t−2
g2(t− τ)g(τ)dτ.

To get that the value of
∫ t
t−1 g1(t− τ)g(τ)dτ we need to specialize the variation of t providing:

0 if t ≤ 0∫ t
0
g1(t− τ)g1(τ)dτ if t ∈ (0, 1]∫ 1

t−1
g1(t− τ)g1(τ)dτ +

∫ t
1
g1(t− τ)g2(τ)dτ if t ∈ (1, 2]∫ 2

t−1
g1(t− τ)g2(τ)dτ if t ∈ (2, 3]

0 if t > 3

and similarly, for the computation of
∫ t−1
t−2 g2(t− τ)g(τ)dτ that is

0 if t ≤ 1∫ t−1

0
g2(t− τ)g1(τ)dτ if t ∈ (1, 2]∫ 1

t−2
g2(t− τ)g1(τ)dτ +

∫ t−1

1
g2(t− τ)g2(τ)dτ if t ∈ (2, 3]∫ 2

t−2
g2(t− τ)g2(τ)dτ if t ∈ (3, 4]

0 if t > 4

Integrating on the corresponding intervals, the functions:363

g1(t− τ)g1(τ) =
(
(eα t + e−α t)− (eα (t−2τ) + e−α (t−2τ))

)
/4α2,

g1(t− τ)g2(τ) =
(
−(eα (t−2) + e−α (t−2)) + (eα (t−2τ+2) + e−α (t−2τ+2))

)
/4α2,

g2(t− τ)g1(τ) =
(
−(eα (2−t) + e−α (2−t)) + (eα (−t+2τ+2) + e−α (−t+2τ+2))

)
/4α2,

g2(t− τ)g2(τ) =
(
(eα (4−t) + e−α (4−t))− (eα (−t+2τ) + e−α (−t+2τ))

)
/4α2,

we see that, the CHB-spline b1α is piecewise defined as in (A.2).364

Using Proposition Appendix A.1, the CHB-splines supported in [k, k + 4] is obtained by suitable shift,365

for any k ∈ N. In case the knots are uniform but with a distance h 6= 1, with the change of variable x→ x/h366

we can work with the dilated version Bhαh := b1αh( ·h ).367

With all these preliminaries, we are now ready to define the HB-basis associated to a set of data points368

and based on a prescribed number of knots n.369

Definition Appendix A.1. Let the data points (xi, yi), i = 1, . . . ,m, x1 < · · · < xm, be given together370

with the uniform knots partition Ξ := {x1 := a = ξ1 < ξ2 · · · < ξn = b =: xm} (n < m) extended with371

the uniform left and right extra knots ξ` = ξ1 + (` − 1)h, ` = −2,−1, 0, ξn+` = ξn + `h, ` = 1, 2, 3372

where h = (b− a)/(n− 1). The spline basis {Bα0 , . . . , Bαn+1} with segments in E4,α consists of the uniform373

HB-splines Bα0 := Bhαh(· − ξ−2) and its translates Bαj = Bα0 (· − jh), j = 1, · · · , n+ 1.374

Remark Appendix A.2. The (cardinal) B-splines are constructed by using knot ξ−2, ξ−1, ξ0, ξn+1, ξxn+2, ξ−n+3375

outside the data interval [x1, xm]. Though the use of open-knot sequence could be more appropriate (see376

[22]) and recommended, we consider knots outside the data interval. The use of extreme knots is something377

to be investigated since it is connected with the so called ‘boundary effects’ of the model already mentioned378

by Eilers and Marx in their pioneering paper on P-splines [10].379

Below we provide the explicit piecewise-defined expression of the HB-spline of order 4 on the uniformly380

distributed knots with distance h:381
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Proposition Appendix A.3. The of order 4 HB-spline, with uniformly distributed knots, tk = kh, k =382

0, . . . , 4, and with frequencies α = (α, α,−α,−α), Bhhα, is piecewise defined as383 

(
t
h
2 cosh(αt)− 1

hα
2 sinh(αt)

)
/4(αh)2 t ∈ (0, h](

−4( t−h
h

) cosh(α(t− 2h))−
(
t−2h
h

)
2 cosh(αt) + 4

hα
sinh(α(t− 2h)) + 1

hα
2 sinh(αt)

)
/4(αh)2 t ∈ (h, 2h]((

t−2h
h

)
2 cosh(α(t− 4h)) + 4

(
t−3h
h

)
cosh(α(t− 2h))− 1

hα
2 sinh(α(t− 4h))− 4

hα
sinh(α(t− 2h))

)
/4(αh)2 t ∈ (2h, 3h](

−( t−4h
h

)2 cosh(α(t− 4h)) + 1
hα

2 sinh(α(t− 4h))
)
/4(αh)2 t ∈ (3h, 4h]

(A.5)

384
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