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Nonlinear redshift-space distortions (“fingers of God”) are challenging to model analytically, a fact that
limits the applicability of perturbation theory (PT) in redshift space as compared to real space. We show
how this problem can be mitigated using a new observable, Q0, which can be easily estimated from the
redshift-space clustering data and is approximately equal to the real-space power spectrum. The new
statistic does not suffer from fingers of God and can be accurately described with PT down to
kmax ≃ 0.4 hMpc−1. It can be straightforwardly included in the likelihood at negligible additional
computational cost and yields noticeable improvements on cosmological parameters compared to standard
power spectrum multipole analyses. Using both simulations and observational data from the Baryon
Oscillation Spectroscopic Survey, we show that improvements vary from 10% to 100% depending on the
cosmological parameter considered, the galaxy sample, and the survey volume.
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I. INTRODUCTION

Reliable theoretical models for the intermediate- and
short-scale galaxy power spectrum provide the key to
obtaining tight constraints on cosmological parameters
from current and future spectroscopic galaxy surveys [1–
8]. In the analysis of the most recent Baryon Oscillation
Spectroscopic Survey (BOSS) based on the Luminous Red
Galaxy (LRG) sample [9], the main limiting factor in
pushing to small scales is the nonlinear redshift-space
distortions, also known as the “fingers of God” (FoG) [10].
These nonlinear effects contaminate the observed galaxy
distribution along the line of sight ẑ, even on relatively
large scales. Further complications come from using the
usual multipole expansion of the anisotropic redshift-space
power spectrum, since it mixes modes that are parallel and
perpendicular to ẑ. As a result, FoG, which affect only the

modes along the line of sight, leak into all power spectrum
multipoles, significantly limiting the range of scales over
which accurate modeling is possible.
In order to estimate the impact of FoG, it is instructive to

compare the range of validity of a given power spectrum
model in real and redshift space. Recent analyses of the
realistic mock catalogs simulating the BOSS galaxy sample
show that the one-loop redshift-space perturbation theory
(PT) model breaks down at kmax ≃ 0.25 hMpc−1 [3,11,12].
On the other hand, the real-space data for the same volume
can be well described by the one-loop model up to
significantly smaller scales, kmax ≃ 0.4 hMpc−1 [13,14].
A similar picture was observed in the context of Lagrangian
perturbation theory in Refs. [15–18]. While these results
depend on the survey volume, the effective redshift, and the
type of tracers observed, they suggest that there is a
potential to improve measurements of cosmological param-
eters by isolating FoG and extracting the information from
the transverse Fourier modes (perpendicular to ẑ) that are
not affected by the nonlinear redshift-space distortions.
Throughout the years, many methods had been proposed

in order to achieve this goal. The most intuitive approach is
to use the redshift-space power spectrum wedges [19,20].
In Fourier space, such techniques effectively operate at the
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level of the anisotropic power spectrum Pðk; μÞ, where
μ≡ k̂ · ẑ, and allow one to use a μ-dependent kmax in the
analysis [20]. While conceptually simple, the main short-
coming of wedges is that they cannot be efficiently estimated
using fast Fourier transform (FFT) techniques, and in
practice, one has to estimate “pseudowedges,” obtained from
the standard power spectrum multipoles [20]. Alternatively,
several prescriptions have been used to “remove” FoG
directly at the map level [21–23], but it remains unclear if
the additional systematic errors produced by such methods
produce are too large for current andupcoming spectroscopic
surveys [23].
In this paper, we build upon ideas from older works

[21,22,24,25] and use a simple alternative statistic, dubbed
Q0. This is closely related to the real-space power spectrum
and achieves the goal of isolating the FoG. In essence, this
is obtained by measuring a particular linear combination of
the first few power spectrum multipoles. The main advan-
tages of Q0 are the following:

(a) It can be easily measured using conventional power
spectrum multipole estimators.

(b) Modulo small effects induced by the broadening of
the baryon acoustic oscillation (BAO) peak that affect
only the BAO wiggles, Q0 is equal to the real-space
power spectrum and can be modeled to higher kmax.

(c) Its covariance matrix can be straightforwardly com-
puted either analytically or from mock catalogs. Q0

can thus be easily included in the galaxy power
spectrum likelihood at negligible extra cost, opening
up the possibility to partially include additional small-
scale information and improve cosmological con-
straints compared to conventional power spectrum
multipole analyses.

Before we dive into the details, it is worth pointing out the
main difference in our approach compared to all previous
work, which is related to reliably estimating the covariance
for Q0. The problem arises from the fact that the nonlinear
clustering generates all possible multipoles, whose covari-
ance rapidly increaseswith themultipole order,l. Therefore,
if one attempts to produce a better estimate of the real-space
power spectrum using information from higher and higher l,
the estimator quickly becomes very noisy and essentially
contains no information. This is clearly a paradox. In this
work, we show how to resolve this issue and estimateQ0 in a
systematic fashion, while keeping the covariance under
control. Our method is based on the theoretical error
covariance approach [26,27]. The key idea is to impose
natural priors on the smoothness of the higher-order multi-
poles, which, as we will show, effectively suppresses their
contribution to the covariance ofQ0, while still contributing
to the statistic itself. This approach allows multipoles up to
arbitrary lmax to be included in the analysis if needed,
guaranteeing the optimal error bars on Q0.
Our paper is organized as follows. We begin with a

preliminary discussion in Sec. II, showing how Q0 can be
built from the usual Legendre multipoles with lmax ¼ 4, and

discuss its relation to the real-space power spectrum. Our
approach is generalized to the case of generallmax in Sec. III.
Validation on large-volume N-body simulation data is given
in Sec. IV, and applications to the real BOSS data and the
DESI-like mocks are shown in Sec. V. Finally, we draw
conclusions in Sec.VI. Some additionalmaterial is presented
in Appendix.
Throughout most of this paper, we will use the PT

challenge simulation data [11], comprising BOSS-like mock
catalogs with cumulative volume ∼566 ðGpc=hÞ3. We use a
combination of ten independent simulation boxes with side
length L ¼ 3840 Mpc=h and 30723 particles each. For our
purposes,we use only a single redshift binwith z ¼ 0.61.We
will describe the data from the mocks using one-loop per-
turbation theory templates, as implemented in the CLASS-PT

code [14]. The parameter constraints are obtained with the
MONTEPYTHON Markov chain Monte Carlo (MCMC) sam-
pler [28,29] and analyzed using the GetDist package [30].

II. PRELIMINARY ANALYSIS

It is instructive to begin with a simplified example
whereupon Pðk; μÞ is fully characterized by its first four
moments, just as in linear theory [31]. In this instance, there is
a simple rotationlike transformation between themoments of
μ and the Legendre multipoles Pl,

Pðk; μÞ ¼
X

l¼0;2;4

PlðkÞLlðμÞ ¼
X

n¼0;2;4

QnðkÞμn; ð2:1Þ

where Ll is the Legendre polynomial of order l. The power
spectrum perpendicular to the line of sight, i.e., at μ ¼ 0, is
given byQ0. By definition, this coincides with the real-space
galaxy power spectrum, which can be well described by the
one-loop PT model up to kmax∼ 0.4 hMpc−1 [13]. In con-
trast, the one-loop PT model for Q2 and Q4 breaks down on
larger scales, since these moments are dominated by FoG
[3,11,14]. FoG are a strong UVeffect that lowers the cutoff of
the redshift-space effective field theory [32–34]. Indeed,
estimates from the BOSS LRG sample give a redshift-space
cutoff [1],

kNL;FoG ≈ σ−1v ≃ 0.25 hMpc−1; ð2:2Þ
where σv is the short-scale velocity dispersion. This can be
contrasted with the cutoff of the real-space effective field
theory kNL;rs (see Refs. [27,35,36]), which Ref. [26] estimates
to be

kNL;rs ≃ 0.5 hMpc−1: ð2:3Þ

Our goal is to extract the information contained in Q0 while
marginalizing over Q2 and Q4. An important problem is that
the quantities measured by standard FFT power spectrum
estimators are the multipoles (see, e.g., Refs. [37–39]) and not
the moments of μ. The multipoles pick up contributions from
all moments, including those affected by FoG, i.e.,
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P0 ¼Q0 þ
1

3
Q2 þ

1

5
Q4; P2 ¼

2

3
Q2 þ

4

7
Q4; P4 ¼

8

35
Q4:

ð2:4Þ

However, given these simple linear relations, one can easily
construct an estimator for Q0 from the multipole estimators.
Indeed, a straightforward estimator forQ0 is givenby theusual
Scoccimarro-Yamamoto formula [38],

Q̌0ðkiÞ ¼ P̌0 −
1

2
P̌2 þ

3

8
P̌4

¼ 1

V

Z
ki

d3k
4πk2iΔk

δ0

�
ð2 · 0þ 1Þδ0 −

ð2 · 2þ 1Þ
2

δ2

þ 3ð2 · 4þ 1Þ
8

δ4

�
; ð2:5Þ

where V is the survey volume and
R
ki
is the integral over the

momentum shell of width Δk which is centered at ki.
Moreover, we have assumed the flat-sky approximation
and the Kaiser limit [31] for the local redshift-space
overdensity δl, weighted with the appropriate Legendre
polynomials,

δlðk; μÞ≡ ðb1 þ fμ2ÞδlinðkÞLlðμÞ: ð2:6Þ

In practice, if themeasurements ofP0;2;4 are available,Q0 can
be constructed from this data vector by a simple linear
summation of these multipoles with appropriate coefficients.
The covariancematrix forQ0 canbe obtaineddirectly from the
estimator (2.5),

hQ̌0ðkiÞQ̌0ðkjÞi − hQ̌0ðkiÞihQ̌0ðkjÞi

¼ ð2πÞ3δij
V4πk2iΔk

Z
1

0

dμPðkiÞ2ðb1 þ fμ2Þ4
�
L0ðμÞ −

2 · 2þ 1

2
L2ðμÞ þ

3

8
ð2 · 4þ 1ÞL4ðμÞ

�
2

¼ ð2πÞ3δij
V4πk2iΔk

�
225P̌2

0

64
−
225P̌0P̌2

88
þ 3775P̌0P̌4

2288
þ 6975P̌2

2

9152
−
775P̌2P̌4

1144
þ 54975P̌2

4

155584

�
: ð2:7Þ

Note that P0 in the above formula contains the stochastic
shot-noise term, equal to the inverse number density n̄−1 in
the Poisson limit. The leading contribution to the covariance
is given by themonopole moment (including the shot noise),

2

Nk

225P2
0

64
≃

2

Nk
3.5P2

0; ð2:8Þ

which is 3.5 times larger than the (auto)covariance on the
monopole and∼4 times larger than the real space covariance
(the additional increase is due to the Kaiser effect [31]). This
apparent inflation of the error bars is driven by higher-order
multipoles P2 and P4, which are characterized by a large
covariance. Thus, the large error on the reconstructed trans-
verse moment Q0 is the inevitable price of using the noisy
Legendre multipoles in the estimator.
Alternatively, one can obtain the covariance matrix for

Q0 directly from the covariance matrix of the multipoles by
an orthogonal transformation dictated by Eq. (2.4).
Denoting this transformation as Pl ¼ MlnQn (assuming
Einstein summation conventions), we obtain

ĈðQÞ
00 ¼ ½ðM̂TÞ0l � Ĉ−1

ll0 � M̂l00�−1

¼ Ĉ00 − Ĉ02 þ
3Ĉ04

4
þ Ĉ22

4
−
3Ĉ24

8
þ 9Ĉ44

64
; ð2:9Þ

which reduces to Eq. (2.7) in the Gaussian approximation.
For a realistic survey, the covariance of Q0 can also be

estimated from mock catalogs with the usual empirical
estimator.
Let us consider the Qn moments extracted from the PT

challenge data, as shown in Fig. 1. Note that the PT challenge
redshift-space power spectrummomentsPl aremodulated by
the Alcock-Paczynski (AP) effect [40], which is absent in the
actual real-space power spectrum Pgg, for which the comov-
ing distances are computed using the true cosmology. In order
to account for the difference betweenQ0 and Pgg, we rescale
the latter by the isotropic AP factor. As expected, we see that
Q0 is almost identical to the real-space power spectrum, once
the AP effect is taken into account (see also Fig. 8 from an
earlier work [25]). However, the higher moments Qn vary
quite significantly on mildly nonlinear scales. In particular,
Q2 crosses zero at k ≃ 0.3 hMpc−1, which may be inter-
preted as the PT breakdown for these moments; the zero-
crossingmeans that the nonlinear correction is comparable to
the linear one. Moreover, nonlinearities in the velocity field
generate higher-order multipoles with l > 4. We show these
multipoles (up to l ¼ 8) estimated from the PT challenge
data in the bottom panel of Fig. 1. In the presence of higher-
order power spectrum multipoles, the estimator for Q0 is
given by (see Appendix for a derivation)

Q̌0 ¼ P̌0 −
1

2
P̌2 þ

3

8
P̌4 −

5

16
P̌6 þ

35

128
P̌8 þ � � � ð2:10Þ

In the next section, we introduce a general formalism that
allows one to take higher-order multipoles into account
consistently.
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III. FORMAL DERIVATION

In this section, we will present a general formalism that
allows one to reconstruct Q0 from any survey for arbitrary
lmax. We saw in the previous section that using large lmax
in the estimator of Q0 leads to the inflation of the statistical
errors since higher-order Legendre multipoles have larger
variances. However, one can imagine a situation in which
the survey volume is such that these moments can become
important, and their exclusion can lead to noticeable
systematic errors. To include Q0 for an arbitrary lmax, it
is more convenient to rederive the previous results using a
different approach, which we present here.

A. Case of lmax = 4

Let us start again with the familiar case lmax ¼ 4 and
consider the likelihood for power spectrum multipoles in
the Gaussian diagonal approximation,

− 2 lnLðQ0; Q2; Q4Þ ¼ ΔP⃗l · Ĉ
−1
ll0 · ΔP⃗l0 ; where

ΔP⃗0 ¼
�
Q0ðkiÞ þ

1

3
Q2ðkiÞ þ

1

5
Q4ðkiÞ − Pdata

0 ðkiÞ
�
;

ΔP⃗2 ¼
�
2

3
Q2ðkiÞ þ

4

7
Q4ðkiÞ − Pdata

2 ðkiÞ
�
;

ΔP⃗4 ¼
�
8

35
Q4ðkiÞ − Pdata

4 ðkiÞ
�
; ð3:1Þ

where we have suppressed the explicit summation over
multipoles and and wave number indices.
In the Gaussian approximation, all k-bins are indepen-

dent. Thus, we can consider the likelihood for each bin
separately. Marginalizing the likelihood (3.1) for the ith bin
over Q2 and Q4, we obtain we following reduced
likelihood,1

−2 lnLmargðQ0Þ ¼
XNbins

i¼1

ðPdata
0 ðkiÞ − 1

2
Pdata
2 ðkiÞ þ 3

8
Pdata
4 ðkiÞ −Q0ðkiÞÞ2

C00 − C02 þ 3C04

4
þ C22

4
− 3C24

8
þ 9C44

64

; ð3:2Þ

FIG. 1. Upper panel: comparison of moments,Qn, and multipoles, Pl, for the redshift-space power spectrum of PT challenge galaxies.
The real-space power spectrum Pgg (rescaled to match the AP effect present in Q0) in the left plot is slightly shifted horizontally for
clarity, as the data points overlap with those of Q0. Lower panel: higher-order Legendre multipoles with l ¼ 4, 6, 8.

1For simplicity, we will ignore the logarithmic corrections to the marginalization result in what follows. The leading effect of these
corrections is to change the likelihood normalization, which can be neglected in MCMC analysis.
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which exactly coincides with the likelihood forQ0 from the
previous section. Clearly, this derivation has allowed too
much freedom; we have marginalized over Q2 and Q4,
allowing independent and arbitrarily large fluctuations in
every k-bin. However, we expect that the scale-dependent
FoG contributions are smooth finite functions. This con-
dition can be implemented by means of the prior on the
(unknown) full theoretical model, along the lines of
Ref. [26].

B. Warm-up: Theoretical prior on the quadrupole

Next, let us discuss how the likelihood for Q0 changes if
we include some prior information on the power spectrum
multipoles. Our derivation will closely follow the deriva-
tion of the covariance matrix in the theoretical error

formalism [26]. For simplicity, let us consider a situation
in which the redshift-space power spectrum depends only
on the two moments, Q0 and Q2. We need to marginalize
this likelihood over Q2. Repeating the derivation above, we
find following likelihood for Q0 alone:

−2 lnLðQ0Þ ¼
XNbins

i¼1

ðPdata
0 ðkiÞ − Pdata

2 ðkiÞ=2 −Q0ðkiÞÞ2
C00ðkiÞ − C02ðkiÞ þ C22ðkiÞ=4

:

ð3:3Þ

We now assume that there is some prior knowledge of
the expectation value P2 with some error Ei. In other words,
there is a likelihood for the theoretical prediction of P̄2,

−2 lnLE ¼ ðP2½Q2� − P̄2Þ · Ĉ−1
ðP2Þ · ðP2½Q2� − P̄2Þ ¼ ðΔQ⃗2 − ΔQ⃗0

2Þ · Ψ̂ðEÞ · ðΔQ⃗2 − ΔQ⃗0
2Þ;

ΔQ⃗2 ¼ Q⃗2 − Q⃗data
2 ; ΔQ⃗0

2 ¼ ⃗Q̄2 − Q⃗data
2 ; ð3:4Þ

where the second equality has rewritten the likelihood for P2 in terms of the likelihood for Q2, using Q̄2 ≡ 3P̄2=2 and
defining some precision matrix Ψ̂ðEÞ. The split into ΔQ⃗2 and ΔQ⃗0

2 will be clear shortly. Note that, in principle, the
covariance C−1

ðP2Þ is fully correlated. The total likelihood takes the following form:

−2 lnLðQ0; Q2Þ ¼
XNbins

i¼1

ΔP⃗lC−1
ll0ΔP⃗l0 þ

XNbins

i;j

C−1
E ðP2½Q2�ðkiÞ − P2ðkiÞÞðP2½Q2�ðkjÞ − P̄2ðkjÞÞ;

¼ ΔQ⃗m · Ψ̂mn · ΔQ⃗n þ ΔQ⃗2 · Ψ̂ðEÞ · ΔQ⃗2: ð3:5Þ

The likelihood marginalized over Q2 can be easily obtained,

−2 lnLðQ0Þ ¼ ðΔQ⃗0 þ fΨ̂00 − Ψ̂02ðΨ̂22 þ Ψ̂ðEÞÞ−1Ψ̂02g−1ðΨ̂02ðΨ̂22 þ Ψ̂ðEÞÞ−1Ψ̂ðEÞ · ΔQ⃗0
2ÞÞ

× ðΨ̂00 − Ψ̂02ðΨ̂22 þ Ψ̂ðEÞÞ−1Ψ̂02Þ
× ðΔQ⃗0 þ fΨ̂00 − Ψ̂02ðΨ̂22 þ Ψ̂ðEÞÞ−1Ψ̂02g−1ðΨ̂02ðΨ̂22 þ Ψ̂ðEÞÞ−1Ψ̂ðEÞ · ΔQ⃗0

2ÞÞ: ð3:6Þ

To obtain some insight into the structure of this likelihood, we use several approximations. First, let us neglect the cross-
covariance C02 between the multipoles; this is reasonable since the normalized correlation coefficient is typically small,
r02 ¼ C02=ðC1=2

00 C1=2
22 Þ ∼ 0.1 ≪ 1 for the PT challenge mocks. Note that the prediction matrix is not diagonal; i.e., Ψ̂02 is

still nontrivial in this approximation, with

Ψ̂02 ¼ Ĉ−1
00 =3: ð3:7Þ

As a second approximation, we consider the asymptotic regime CE=C → ∞. This corresponds to very poor prior
knowledge about P̄2. In this limit, the terms with the theoretical error drop out, and to leading order in OððCE=CÞ−1Þ, we
obtain

−2 lnLðQ0Þ ¼ ðPdata
0 − Pdata

2 =2 −Q0Þ · ðΨ̂00 − Ψ̂02Ψ̂−1
22 Ψ̂02Þ · ðPdata

0 − Pdata
2 =2 −Q0Þ

¼
XNbins

i¼1

ðPdata
0 − Pdata

2 =2 −Q0Þ2
C00 þ C22=4

����
ki

; ð3:8Þ
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where in the last line we have implemented the Gaussian
approximation. Equation (3.8) gives a usual likelihood with
the variance on the estimator Q̂0 ¼ P0 − P2=2 recon-
structed from the monopole and the quadrupole. In the
opposite limit CE=C → 0, where the theoretical prior is
infinitely precise, we have

−2 lnLðQ0Þ ¼
XNbins

i¼1

ðQ0 − Pdata
0 þ P̄2=2Þ2
C00

þOðCEÞ: ð3:9Þ

As expected, at leading order in CðEÞ, adding the prior
knowledge on P2 is analogous to fitting the Q0 moment
constructed with the prior prediction P̄2, i.e.,

Q̂0 ¼ P0 −
1

2
P̄2: ð3:10Þ

Importantly, in this case, one does not pay the price of
including (noisy) P2 in the estimator for Q̂0; i.e., the
covariance is given only by the monopole contribution.

C. Generalization to higher-order multipoles

Generalization is straightforward and takes the form

− 2 lnLðQ0;…; Qlmax
Þ

¼
XNbins

i¼1

X
l;l0≤lmax

C−1
ll0dataΔPlΔPl0

þ
Xlmax

l¼0

XNbins

i;j

ðPl½Q�ðkiÞ − P̄lðkiÞÞ

× ðĈðEÞ;ðll0ÞÞ−1ij ðPl½Q�ðkjÞ − P̄lðkjÞÞ; ð3:11Þ

where Pl½Q� denotes a general expression for the power
spectrum multipole l through moments of μ (see
Appendix). The prior P̄l can be either a fit to the data
with some smooth function or taken from the perturbation
theory prediction. For l > 4, either option gives an
envelope very close to 0 on mildly nonlinear scales. The
final likelihood for Q0 is obtained by marginalizing (3.11)
over all Ql functions with l ≥ 2, which can be performed
analytically. In general, smoothness in μ and k implies that
the prior covariance should be 100% correlated [14]:

CðEÞ;ðll0Þ
ij ¼ ElðkiÞEl0 ðkjÞ: ð3:12Þ

However, given that the true shape is not known, we impose
a weaker condition on smoothness in μ and k-space.
Namely, we will use [27]

CðEÞ;ðll0Þ
ij ¼ ElðkiÞEl0 ðkjÞ exp

�
−
ðki − kjÞ2
2Δk2

�

× exp

�
−
ðl − l0Þ2
2Δl2

�
: ð3:13Þ

Conservatively, we can choose the theory prior to be 100%
of the expected value, e.g.,

ElðkiÞ ¼ P̄lðkiÞ: ð3:14Þ

The full likelihood (3.11) simplifies in the two extreme
limits, CE ≪ Cdata and CE ≫ Cdata. As we have seen in the
previous section, in the first case, one needs to simply
replace the true data vector Pl by P̄l in the estimator of Q̂0.
This does not require any change to the covariance; hence,
we do not pay the price of using the noisy Pl in our Q0

estimator. In the second case, we must use the Pl from the
data when constructing Q̂0 and include the noise of this
multipole in our covariance. For all practical purposes, it is
sufficient to work within these two limits. To estimate the
transition between the two regimes, we may compare the
effective χ2 contribution coming from the data and the prior
on Pl:

χ2data ¼ ðP⃗l − ⃗P̄lÞ · Ĉ−1
ll · ðP⃗l − ⃗P̄lÞ

χ2prior ¼ ðP⃗l − ⃗P̄lÞ · ðĈðEÞ
ðll0ÞÞ−1 · ðP⃗l − ⃗P̄lÞ: ð3:15Þ

This suggests the following algorithm to deal with multi-
poles l ≥ 4:
(1) Select some lmax ≥ 4, and estimate all mutipoles

with l ≤ lmax. Fit these multipoles with some
smooth curves P̄l.

(2) For each 4 ≤ l ≤ lmax compute the ratio χ2data=χ
2
prior.

If χ2data=χ
2
prior > 1, Pl should be included in the Q0

estimator along with its effect on the covariance. In
the opposite regime, Q̌0 and its covariance should be
estimated using only the lower multipoles. For all
higher multipoles, add the contribution from the
relevant multipole moment l as a smooth prior P̄l

to Q̌0.

D. Modeling Q0

Finally, let us discuss the theoretical model for Q0. In
linear theory,Q0 would be the real-space galaxy auto power
spectrum Pgg. The situation becomes more complicated
when IR resummation (i.e., the effects of long-wavelength
displacements, which cannot be treated perturbatively) is
taken into account. Indeed, the nonlinear BAO damping
factor is direction dependent [41]. Assuming a wiggly/
smooth decomposition of the linear power spectrum Plin ¼
Pnw þ Pw [42–45], at leading order, we may write
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Pðk; μÞ ¼ ðb1 þ fμ2Þ2
× ðPnw þ Pwe−Σ

2k2ð1þfμ2ð2þfÞÞ−δΣ2k2f2μ2ðμ2−1ÞÞ;
ð3:16Þ

where the BAO damping functions are given by

Σ2 ¼ 1

6π2

Z
kS

0

dqPnwðqÞð1 − j0ðqrBAOÞ þ 2j2ðqrBAOÞÞ;

δΣ2 ¼ 1

2π2

Z
kS

0

dqPnwðqÞj2ðqrBAOÞ; ð3:17Þ

for spherical Bessel functions jlðxÞ, comoving BAO scale at
the drag epoch rBAO, and separation scale kS. Since the
damping factor is large, the exponential suppression cannot
be Taylor expanded. This means, that, in general, we need to
use an infinite series in Pl in our estimator ofQ0 in order to
remove the direction dependence of the BAO wiggles.
However, as the shape of the BAO wiggles is known
analytically to all orders in μ, we can just compute red-
shift-spacemultipoles, fPlg, theoretically and then combine
them into Q0 just as for the data. This guarantees that the
suppression of the BAOwiggles inQ0 is the same in the data
vector and in the theory model. Thus, our theory model is

Q0ðkÞ ¼ P0ðkÞ −
1

2
P2ðkÞ þ

3

8
P4ðkÞ; ð3:18Þ

where P0;2;4 contain all necessary redshift-space counter-
terms. The priors on these counterterms can be extracted
from fitting the full data vector P0;2;4 at low kmax, where the
perturbative modeling of FoG is still accurate.

IV. VALIDATION ON PT CHALLENGE MOCKS

In this section, we apply the formalism described above
to the PT challenge data. We will use the Gaussian
approximation for all sample covariance matrices, which
has been shown to be very accurate for the purpose of
parameter constraints [46].

A. Estimation of Q0 from the data

As a first step, we obtain an estimate for P̄l from the fits
to the data, as in the left panel of Fig. 2. As a second step,
we compute χ2data=χ

2
prior, assuming the following 100% prior

on Pl:

CðEÞ ðll0Þ
ij ¼ P̄lðkiÞP̄l0 ðkjÞ exp

�
−
ðki − kjÞ2
2Δk2

�

× exp

�
−
ðl − l0Þ2
2Δl2

�
: ð4:1Þ

The coherence length Δk characterizes the amount of
correlation across different k-bins and ensures that the

likelihood properties do not depend on the binning.
Choosing a large Δk increases the significance of the
theoretical prior by assuming an extra correlation between
k-bins. The coherence in l space corresponds to a smooth-
ness of the power spectrum as a function of μ. In practice, we
choose Δk ¼ 0.001 h=Mpc and assume also that the theo-
retical prior covariance matrix is diagonal in the multipole
space, i.e., Δl ¼ 0. This choice corresponds to a very
conservative situation where the prior on P̄l is quite poor.
Essentially, we do not require the two-dimensional power
spectrum prior Pðk; μÞ to be a smooth function in both k and
μ. Even this very conservative situation will be sufficient for
our purposes. With our choice of Δk and Δl, and using
kmax ¼ 0.3 h=Mpc, we find

χ2prior
χ2data

¼ 0.9; 80; 75 for l ¼ 4; 6; 8: ð4:2Þ

One can also check that χ2prior=χ
2
data ≪ 1 is always true for

l ¼ 0, 2. For a more aggressive choice of
Δk ¼ 0.01 hMpc−1, we obtain the following numbers,

χ2prior
χ2data

¼ 2; 232; 196 for l ¼ 4; 6; 8; ð4:3Þ

which do not change results qualitatively. These results
suggests that our prior is marginally important for l ¼ 4,
and it is much more significant than the actual likelihood
contribution for l > 4. If we include off-diagonal-in-l
matrix elements, which correspond to a prior on the smooth-
ness of the power spectrum in μ, the significance of the priors
will increase even further. In particular, forΔl ¼ 2, we have

χ2prior
χ2data

¼ 3.3; 152 for l ¼ 4; 6: ð4:4Þ

On the one hand, the l ¼ 4 prior never dominates over the
data by more than a factor of few, regardless of the setup. To

FIG. 2. Higher-order multipoles of the PT challenge data and
their fits by quadratic polynomials.
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be maximally conservative, we will always include the
hexadecapole in our analysis and take into account its
contribution into the covariance matrix. On the other
hand, we see that the contribution of higher order multipoles
ðl > 4Þ is always dominated by priors. Thus, we conclude
that, even for the large-volume PT challenge mocks, the
higher-order multipole moments l > 4 can be ignored in the
estimation of the covariance matrix for Q0 in the mildly
nonlinear regime. However, we may want to include higher
multipoles in the form of the mean prior to the theoretical
model. To this end, we need to check if their inclusion is
strictly needed to describe the data. To that end, we perform
several MCMC analyses of the Q0 likelihood from the PT
challenge data for different choices of lmax.
We fit the joint likelihood comprising themultipolesP0;2;4

for kmax¼0.14hMpc−1 andQ0 in the range0.14 hMpc−1 ≤
k < 0.3 hMpc−1. Since the k-bins do not overlap between

the two likelihoods, they are uncorrelated in the Gaussian
limit. We fit theP0;2;4 data vector with the one-loop effective
field theory template of Refs. [3,11,14,34]. Note that we
include the next-to-leading-order operator c̃k4μ4PlinðkÞ in
our analysis to account for higher-order FoG effects.
Additionally, we use the full set of stochastic contributions
from Refs. [34,47],

Pstochðk; μÞ ¼
�
a0

�
k
kNL

�
2

þ a2μ2
�

k
kNL

�
2

þ Pshot

�

·
1

n̄
½Mpc=h�3; ð4:5Þ

where n̄ is the inverse number density of tracers. Using the
hexadecapole moment, we are able to break the strong
degeneracy between a2 and c̃, which is present in the P0;2

FIG. 3. Posteriors from the PT challenge data for the analysis with fixed Ωb=Ωm and ns.
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likelihood.As toQ0, weuse themodel (3.18),which depends
on the same nuisance parameters as our likelihood for the
multipoles for kmax ¼ 0.14 h=Mpc. We use the following
parameter vector (see Ref. [14] for our notations):

fωm; h; Asg × fb1; b2; bG2
; bΓ3

; c0; c2; c4; c̃; a0; a2; Pshotg:
ð4:6Þ

We fix ns and Ωb=Ωm to the known fiducial values as in
Ref. [11]. The following Gaussian priors on the nuisance
parameters are assumed,

a0 ∼N ð0; 12Þ a2 ∼N ð0; 12Þ Pshot ∼N ð0; 0.32Þ;

bΓ3
∼N

�
23

42
ðb1 − 1Þ; 12

�
; ð4:7Þ

using flat infinite priors on b1, b2, c0, c2, c4, c̃, and bG2
. The

mean value of bΓ3
is taken from the prediction of the

coevolution model [48,49]. Since the Poissonian shot-noise
contribution was subtracted from the data, we assume that
the mean residual contribution is zero, with variance corre-
sponding to∼30% of n̄−1, consistent with the deviations due
to the halo exclusions [13,50] expected for the BOSS-like
host halos.
Let us now study the convergence of our method with

respect to the value of the maximal multipolar index. In
particular, we consider lmax ¼ 4, 6, 8. In all cases, the
hexadecapole is fully included in the theory, data, and the
covariance, with l ¼ 6, 8 included only via priors. The
results of our analysis are shown in Fig. 3 and Table I. Each
parameter p (except b2 and bG2

) is shown in the format
Δp=p≡ p=ptrue − 1, where we use fiducial values for true
cosmological parameters and extract the true value of b1
from the galaxy-matter cross spectrum [11]. For b2 and bG2

,
we use the format Δp≡ p − ptrue, where the true values of
b2 and bG2

are measured from the combined power

spectrum and bispectrum analysis [51]. For comparison,
we show also the baseline results for the P0;2 likelihood at
kmax ¼ 0.14 h=Mpc. On the one hand, we can see that Q0

narrows the contours for the ωm and H0 by ≲20%. This
improvement is expected since these parameters are mea-
sured from the shape of Q0. In contrast, the amplitude
parameters A1=2 and σ8 cannot be accurately measured from
the real-space galaxy power spectrum alone because of the
degeneracy with galaxy bias. This explains why the
posteriors for these parameters do not appreciably shrink
after the inclusion of Q0. The priors on higher order
multipoles in the estimator Q̌0 have a negligible effect
on the posterior distribution, which motivates us to use
lmax ¼ 4 as our baseline choice.

B. Cosmological constraints with the ωb prior

The information gain from Q0 depends on the adopted
priors and particular cosmological model. To illustrate this,
we refitted the mock power spectra fixing ωb instead of
Ωb=Ωm, which was the choice adopted in our previous
analysis. This simulates the addition of the ωb prior, which
is readily available in, e.g., Planck or big bang nucleosyn-
thesis (BBN). We additionally allow ns to vary freely. The
corresponding results are presented in Fig. 4 and in Table II.
We find that the fit to Q0 is unbiased all the way up to
kmax ¼ 0.4 hMpc−1. We also see that in the case of a single
prior on ωb the addition of Q0 improves the constraints on
all the remaining cosmological parameters roughly by a
factor of 2.
It is useful to compare our results with the case of the true

real-space galaxy power spectrum, using the same k ranges.
To that end, we replaceQ0 with the actual real-space power
spectrum Pgg extracted from the same PT challenge
simulations and refit the data. The diagonal elements of
the Gaussian covariance for Pgg are roughly four times
smaller than similar elements of Q0 for the same volume
and shot noise. As a result of this small covariance, the

TABLE I. Constraint on key cosmological and nuisance parameters from the PT challenge mock power
spectra, obtained with fixed Ωb=Ωm and ns as in Ref. [11]. Pl denotes the data vector fP0; P2; P4g with
kmax ¼ 0.14 hMpc−1. The second and third columns show results of the addition of Q0 in the range
0.14 ≤ k=ðhMpc−1Þ < 0.3. In the third column, we add mean priors on the multipole moments with l ¼ 6, 8
to the theory model. Parameters in the upper group part of the table were varied directly, while the lower group are
the derived parameters.

Parameter P0;2 (kmax ¼ 0.14 hMpc−1) Pl þQ0, lmax ¼ 4 Pl þQ0, lmax ¼ 8

ΔH0=H0 −0.0020� 0.0059 −0.00096� 0.0052 −0.0011� 0.0052
ΔA1=2=A1=2 −0.0004� 0.0096 0.0019� 0.0093 0.0021� 0.0093
Δωm=ωm 0.000� 0.016 0.001þ0.013

−0.014 0.000þ0.012
−0.014

Δb1=b1 0.0033� 0.0044 0.0018þ0.0041
−0.0037 0.0016� 0.0040

Δb2 −0.04þ0.55
−0.96 −0.33þ0.31

−0.93 −0.36þ0.32
−0.90

ΔbG2
0.31� 0.41 0.14þ0.34

−0.50 0.14þ0.34
−0.49

ΔΩm=Ωm 0.0035� 0.0062 0.0025� 0.0043 0.0022� 0.0044
Δσ8=σ8 −0.0008� 0.0088 0.0021� 0.0079 0.0021� 0.0079
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FIG. 4. Posteriors from the analysis of the PT challenge mock galaxy power spectrum with a prior on ωb.

TABLE II. Constraints from the analysis of the PT challenge data with the ωb prior. Pl denotes the data vector
fP0; P2; P4g with kmax ¼ 0.14 hMpc−1. The second column shows results of the addition of Q0 in the range
0.14 ≤ k=ðhMpc−1Þ < 0.4, while in the third column, instead, we add the actual real-space power spectrum PggðkÞ
in the range 0.14 ≤ k=ðhMpc−1Þ < 0.2.

Parameter P0;2ðkmax ¼ 0.14Þ Pl þQ0ðkmax ¼ 0.4Þ Pl þ Pggðkmax ¼ 0.2Þ
ΔH0=H0 −0.0036� 0.0032 −0.0004� 0.0019 −0.0029� 0.0022
ΔA1=2=A1=2 0.016� 0.023 −0.005� 0.013 0.014þ0.011

−0.012
Δωcdm=ωcdm −0.015� 0.020 0.008� 0.013 −0.0121� 0.0096
Δns=ns 0.016� 0.022 −0.008� 0.011 0.014� 0.010
Δb1=b1 0.013� 0.014 −0.0024� 0.0066 0.0119� 0.0082
Δb2 0.25þ0.70

−1.1 −0.40þ0.42
−0.66 0.29þ0.56

−1.0
ΔbG2

0.36� 0.40 0.17þ0.31
−0.39 0.34þ0.41

−0.37
ΔΩm=Ωm −0.005� 0.013 0.0073� 0.0085 −0.0044� 0.0059
Δσ8=σ8 0.011� 0.018 −0.003� 0.010 0.0110þ0.0094

−0.011
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one-loop perturbation theory fit to Pgg becomes biased
beyond kmax ¼ 0.2 hMpc−1, which we adopt as a baseline
data cut in this case. The resulted parameter limits are very
similar to those obtained from our baseline Q0 analysis at
kmax ¼ 0.4 hMpc−1. This matches the expectation that the
two statistics should be equivalent at the level of total
information for appropriate data cuts.

V. APPLICATIONS TO REALISTIC SURVEYS

So far, we have studied Q0 in application to the PT
challenge mocks whose total volume is 566 h−3Gpc3 at the
effective redshift z ¼ 0.61. Current and future surveys will
have somewhat smaller volumes; therefore, it is useful
to test to what extent the real-space power spectrum
can improve cosmological parameter measurements from

realistic surveys. We address this question in this section
and analyze the spectroscopic data from BOSS and DESI-
like mock catalogs.

A. BOSS survey

We apply now our method to the redshift-space galaxy
power spectrum measurement of the BOSS survey [9].
Using the quadratic window-free estimator of Ref. [52], we
measure the galaxy power spectrum multipoles of the
BOSS data from four independent data chunks: low-z
(z ¼ 0.38) north galactic cap (NGC), high-z (z ¼ 0.61)
NGC, low-z south galactic cap (SGC), and high-z SGC
[3,9]. For each chunk, we construct the likelihood as
follows. We use the full P0, P2, P4 moments up to kmax ¼
0.2 hMpc−1 and Q0, estimated with lmax ¼ 4, in the

FIG. 5. Posteriors from the cosmological analysis of the BOSS galaxy power spectrum measurements combined with the BBN prior
on ωb.
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ranges 0.2 hMpc−1 ≤ k < 0.3 hMpc−1 and 0.2 hMpc−1 ≤
k < 0.4 hMpc−1. We do not include additional BAO data,
as in Refs. [6,53,54], because we want to clearly assess the
improvement from Q0 with respect to the usual multipoles
analysis.
We fit parameters of the minimal Lambda þ cold dark

matter model (ΛCDM) model assuming a single massive
neutrino whose mass is fixed to 0.06 eV [55] and the BBN
prior on the baryon density ωb ¼ 0.02258� 0.0038. We
use the same priors on nuisance parameters as Ref. [53].
The covariance matrix for the full data vector is calculated
using the empirical estimator based on 2048 Patchy mocks
[56]. Our results for the joint fit of all four data chunks are
displayed in Fig. 5 and in Table III,2 where we show results
from the usual redshift-space multipoles alone and withQ0,
taken at kmax ¼ 0.3 hMpc−1 and 0.4 hMpc−1.
In this case, the inclusion of Q0 leads to somewhat

marginal improvements of ∼10%, which are barely visible
in the triangle plot. This is a result of a relatively large shot-
noise level of the BOSS galaxy sample, n̄−1 ≃ ð3 − 5Þ×
103 h−3Mpc3. In order to illustrate this, we may analyze
mockswith lower shot noise, as appropriate for theupcoming
DESI survey.

B. DESI-like emission line galaxy mocks

In order to estimate the performance of our method for
surveys such as Euclid and DESI, we apply it to the
analysis of the mock emission line galaxy (ELG) catalogs
from the extended Baryon Acoustic Oscillation Survey
(eBOSS) survey [57]. These mocks simulate the clustering
of the ELGs, which exhibit a weaker fingers of God
signature than the BOSS LRG sample [54], so the Pl
analysis is valid up to higher kmax in this case. On the one
hand, this factor suggests that the improvement from Q0

may be somewhat less sizable than the improvement that
we expect from the LRG samples. On the other hand, this
sample has lower shot noise, and hence the inclusion of Q0

might be more beneficial here. To understand which effect
takes over, we need a quantitative comparison with reliable
mocks, such as those recently produced using the Outer
Rim simulation.
These eBOSS ELG mocks are based on the Outer Rim

dark matter simulation [58], which were populated with
ELG mock galaxies according to the eBOSS ELG cluster-
ing measurements [59]. We use the HOD-3 mock catalogs
at z ¼ 0.865. We combine the 27 publicly available sub-
boxes into one large box from which we measure the mock
redshift-space power spectrum multipoles.3 The mocks
have the following fiducial ΛCDM cosmology:

h ¼ 0.71; ωcdm ¼ 0.1109; ωb ¼ 0.02258;

ns ¼ 0.963; σ8 ¼ 0.8; Mtot ¼ 0 eV: ð5:1Þ

We compare three different analyses: fits to l ¼ 0, 2, 4
moments at kmax ¼ 0.2 hMpc−1, fits to l ¼ 0, 2, 4
moments at kmax ¼ 0.2 hMpc−1 andQ0 for 0.2 hMpc−1 ≤
k < 0.3 hMpc−1, and fits to l ¼ 0, 2, 4 moments at kmax ¼
0.2 hMpc−1 and Q0 for 0.2 hMpc−1 ≤ k < 0.4 hMpc−1.
We compute the covariance in the Gaussian approximation
using the true shot-noise value n̄−1 ≃ 500 h−3Mpc3 and the
total volume of V ¼ 27 h−3Gpc3, similar to the DESI ELG
volume [60]. We use the same priors on nuisance param-
eters as in Ref. [54] but vary the spectral index ns in the fit
in addition to h, Ωm, and As. The physical baryon density
ωb is fixed to the fiducial value of the simulation.
Our results are shown in Fig. 6 and in Table IV. First, all

true cosmological parameters are recovered within
68% confidence limits. Second, we see that the inclusion

TABLE III. Cosmological parameter constraints from the BOSS data with the ωb prior. Pl denotes the l ¼ 0, 2, 4
moments in the range 0.01 ≤ k=ðhMpc−1Þ < 0.2, and Q0 is the real-space power spectrum within 0.2 ≤
k=ðhMpc−1Þ < 0.3 (third column) or 0.2 ≤ k=ðhMpc−1Þ < 0.4 (fourth column).

Parameter Pl Pl þQ0 ð kmax
hMpc−1 ¼ 0.3Þ Pl þQ0 ð kmax

hMpc−1 ¼ 0.4Þ
H0=ð km=s=MpcÞ 69.89þ1.5

−1.7 69.51þ1.3
−1.6 69.79þ1.3

−1.6
lnð1010AsÞ 2.63þ0.15

−0.16 2.68þ0.15
−0.16 2.64þ0.14

−0.16
ωcdm 0.139þ0.011

−0.015 0.136þ0.011
−0.014 0.137þ0.011

−0.014
ns 0.883þ0.076

−0.072 0.889þ0.075
−0.07 0.881þ0.07

−0.066
Ωm 0.333þ0.019

−0.02 0.329þ0.017
−0.02 0.328þ0.017

−0.019
σ8 0.704þ0.044

−0.049 0.711þ0.042
−0.049 0.699þ0.04

−0.047

2Only the parameters that are well constrained by the data, i.e.,
not dominated by priors, are shown in this table.

3The public data on ELG mocks (based on the Outer Rim
snapshots) is given in the form of subcatalogs extracted from 27
nonoverlapping sub-boxes, which were cut from the original
Outer Rim box. In the previous version of this paper, we
measured the power spectrum from each sub-box, incorrectly
assuming periodic boundary conditions. This has generated a bias
in theΩm recovery. The bias disappears when the power spectrum
is measured from the cumulative catalog produced by a proper
combination of the sub-boxes, as presented above.
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of Q0 shrinks the one-dimensional marginalized contours
for Ωm and ns by ∼20%. Third, the posteriors do not
significantly shrink when the data cut for Q0 is increased

from 0.3 hMpc−1 to 0.4 hMpc−1. This implies that cos-
mological information in the real-space power spectrum is
limited even for low shot-noise samples.

FIG. 6. Posteriors from the cosmological analysis of the Outer Rim (OR) emission line galaxy mock power spectrum measurements.

TABLE IV. Constraints from the analysis of the Outer Rim mock data with the ωb prior. We show only the
parameters that are well constrained by the data. For Pl, the data cut is kmax ¼ 0.2 hMpc−1 in all analyses. ForQ0,
we use the ranges 0.2 hMpc−1 ≤ k < 0.3 hMpc−1 (middle column) and 0.2 hMpc−1 ≤ k < 0.4 hMpc−1 (right
column).

Parameter Pl Pl þQ0ðkmax ¼ 0.3Þ Pl þQ0ðkmax ¼ 0.4Þ
H0 (km=s=Mpc) 71.27þ0.43

−0.43 71.15þ0.41
−0.42 71.09þ0.42

−0.42
lnð1010AsÞ 3.094þ0.066

−0.068 3.111þ0.065
−0.062 3.125þ0.061

−0.063
ωcdm 0.111þ0.0043

−0.0048 0.109þ0.0039
−0.0045 0.1079þ0.0037

−0.0043
ns 0.9896þ0.034

−0.033 0.9944þ0.032
−0.03 1.004þ0.028

−0.028
b1 1.375þ0.031

−0.034 1.364þ0.031
−0.033 1.36þ0.03

−0.031
Ωm 0.263þ0.0071

−0.0081 0.2598þ0.0064
−0.0076 0.2581þ0.0064

−0.0069
σ8 0.8185þ0.019

−0.02 0.8165þ0.017
−0.017 0.8198þ0.016

−0.017
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All in all, we see that the improvement from Q0 in the
case of DESI-like mocks with high number density is quite
significant. Therefore, the Q0 statistic can be an important
statistic for future surveys.

VI. CONCLUSIONS

In this paper, we have proposed a new statistic, dubbed
Q0, which acts as a proxy for the real-space power
spectrum and can be used to mitigate the impact of fingers
of God. This can be easily constructed from the conven-
tional redshift-space power spectrum Legendre multipoles.
We have shown how to perform such a reconstruction for
an arbitrary survey and systematically include the infor-
mation from higher-order Legendre multipoles if they carry
non-negligible signal. Using our approach, Q0 and its
covariance matrix can be trivially computed from theory
or mock catalogs and included in the analysis at negligible
extra cost. We have shown that the addition of Q0 leads to
notable improvements on cosmological constraints from
mock catalogs, the amplitude of which varies within ð10 −
100Þ% depending on survey characteristics, the choice of
parameters, and priors in a particular analysis.
It is useful to compare Q0 to the two-dimensional

redshift-space power spectrum Pðk; μÞ. In terms of the
signal-to-noise ratio, at kmax ¼ 0.3 hMpc−1, the transverse
momentQ0 contains the same signal as Pðk; μÞ in the range
jμj ∈ ½0; 0.3�. Thus, we expect information gains from Q0

to be roughly equivalent the corresponding μ-wedge. Given
that the remaining μ-modes are quite sensitive to fingers of
God, we expect that the jμj-range [0.3, 1] contains very
little, if any, viable cosmological information.
Crucially, Q0 is more economic than Pðk; μÞ, as it

captures all relevant cosmological information in a rela-
tively condensed data vector. This allows us to reduce the
dimensionality of the total data vector compared to the
Pðk; μÞ case, an effort which is of use if one wishes to avoid
sampling noise biases if the covariance matrix is estimated
from mock catalogs [61]. Alternative ways of avoiding this
issue include analytic covariance matrix calculation [46,62]
or subspace-projection techniques [63].
The information gain from the addition of Q0 for future

surveys depends on several factors. First and foremost, it is
dependent on the strength of FoG. The effect is large for the
BOSS-like luminous red galaxies [3,9] and the bright
galaxy sample to be observed by DESI [60], though less
so for emission line galaxies. Hence, we expect Q0 to be
particularly useful for the former galaxy selections.
The second factor determining the usefulness ofQ0 is the

particular theoretical model chosen to fit the data and
adopted priors. We have found that within Lambda þ cold
dark matter þ massive neutrinos model (νΛCDM) the
improvement fromQ0 increases when less restrictive priors
are used and more free parameters are kept in the fit.
Therefore, we expect even more information gain for
models beyond ΛCDM, e.g., for the early dark energy

scenario (see, e.g., Ref. [64] and references therein),
models with neutrino masses and additional relativistic
degrees of freedom [4], axion dark matter cosmologies
[65], or dynamical dark energy models [53,66].
Our work can be extended in several ways. First, the

transverse modes measured in a realistic survey can be
contaminated by systematics [39,54], so it is important to
study to what extend this systematics can be mitigated in a
realistic survey. Second, it would be interesting to see how
much Q0 can improve the constraints in combination with
other techniques, such as the bispectrum and the BAO
postreconstruction information. This study can be per-
formed for different tracers and within different cosmo-
logical models. Finally, it will be interesting to work out an
extension of our formalism to higher-order statistics. We
leave these research directions for future work.
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APPENDIX: GENERAL RELATION BETWEEN
MOMENTS AND MULTIPOLES

The general relationship between power spectrum multi-
poles P2n and momentsQ2m can be derived as follows. The
power spectrum Pðk; μÞ can be represented by an expan-
sion in even Legendre polynomials L2n or in even powers
of μ:

Pðk; μÞ ¼
X∞
n¼0

P2nðkÞL2nðμÞ ðA1Þ

¼
X∞
m¼0

Q2mðkÞμ2m: ðA2Þ

They are related by
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P2nðkÞ ¼
4nþ 1

2

Z
1

−1
dμPðk; μÞL2nðμÞ ðA3Þ

¼
X∞
m¼n

MnmQ2mðkÞ; ðA4Þ

where M is an upper triangular matrix given by

Mnm ¼
� ð4nþ1Þð2mÞ!

2m−nðm−nÞ!ð2nþ2mþ1Þ!! ; m ≥ n;

0 else:
ðA5Þ

This follows by expressing powers of μ in terms of
Legendre polynomials. If Eqs. (A1) and (A2) can be
truncated at a finite nmax ¼ mmax, then the equations
relating moments and multipoles are a finite linear system
of equations, and M is a nmax × nmax matrix. Under that
assumption, the moments in terms of multipoles are

QðkÞ ¼ M−1PðkÞ ðA6Þ

or explicitly

Q2mðkÞ ¼
Xnmax

n¼m

ðM−1ÞmnP2nðkÞ: ðA7Þ

In particular, the μ0 part of Pðk; μÞ is a sum over all nonzero
multipoles,

Q0ðkÞ ¼
Xnmax

n¼0

ðM−1Þ0nP2nðkÞ: ðA8Þ

As discussed in the main text, care must be taken when the
measured power spectrum multipoles are noisy.
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