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A B S T R A C T  

We develop a nonpa ra me tric Bayesi an prior for a family of random probability measures b y exte nding the Polya tree ( PT ) prior to a joint prior for 
a s e t of pro bability meas ures G 1 , . . . , G n , s uitab le for me ta-an alysis with ev ent-time outc omes . In the application to met a -analysi s, G i i s the eve n t- 
t ime distribut ion spec i fic to study i . The proposed model defines a r egr ession on study-spec i fic cov ari a tes by intr oducing incr ease d c orr ela tion 

for any pair of studies with similar ch aracteristics . The desire d m ultiva riate PT model is c onstructe d by introducing a hierarchical prior on the 
c ondition al split ting pr obabilities in the PT construction for each of the G i . The hie ra rchical prior rep l aces the indepe nde n t beta priors for the 
split ting pr obability in the PT construction with a Gaussian process prior for corresponding (logit) splitting pro babilities acros s all studies. The 
Gaus si an proces s is indexed b y s tudy-spec i fic cov ari a tes, intr oducing the desir ed depe nde nc e with increase d c orr ela tion for simila r s tudies. The 
main fea tur e of the pr opose d c onstruction is (c ondition ally) c on ju gat e post erior updating with commonly reported infe re nc e s umm aries for 
eve n t-time data. The construction is motivated by a met a -an alysis ov er canc er immunotherapy studies. 

KEY W OR DS : Gaus si an proces s; nonpa ra metric infe re nc e; s urvival an alysis. 
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1 I N T R O D U C T I O N 

e introduce a multiv ari ate Po lya tree ( PT ) model for in-
e re nce on a s e t of depe nde n t ra ndom dis tributions { G i i =
 , . . . , n } , suitable for met a -an alysis of ev ent-time data over mul-
iple studies—or cohorts—in the mot ivat ing applicat ion. The

ot ivat ing applicat ion is a met a -an alysis ov er n c ohorts in S s tud -
es, with each study consisting of multiple patie n t cohorts (ie,
 > S ) and G i being the distribution of pr ogr ession-fr e e s ur-
ival (PFS) for patie n ts in cohort i . The level of depe nde nce
cross G i is modeled as a function of c ohort-spe c i fic covariate
 e ctor s x i , includ ing tumor type, tr ea tme n t age n t, s tudy indica-
or, bioma rke r s tatus, a nd more. We model the depe nde nce be-
w e en c ohort-spe c i fic event-t ime distribut ions G i by introduc-
ng a Gaus si an proces s ( GP ) prior on the lo git c ondition al split-
 ing probabilit ies in the PT construct ion. We argue that a PT
rior is a natural model for met a -an alysis with ev e n t -time out -
omes, which typically report a point estimate m i for the me-
ia n eve n t time a nd a corresponding confide nce in te rval (� i , h i ) .
e show that the triple s i = (� i , m i , h i ) � and the s amp le size
 i (under s ome as sumption s) are equivalent to reporting counts

or the four in te rvals defined b y � i , m i and h i . An appr opria tely
efined PT prior for such data allows for easy pos te rior updat-

ng, gr ea tly facilita ting infer ence. In a very natural and principled
 ay, the propos e d model form alizes the inte gra tion of differ ent

ources of kno wledg e, including data and clinical expert infor-
e c eiv e d: D e c e mbe r 12, 2023; Revise d: O ctober 3, 2024; Ac c epte d: O ctober 29, 2024 
The Author(s) 2024. Published by Oxford University Press on behalf of The In te

ourn als .permis sion s@oup.com 
at ion. Condit ioning on the data is imple me n ted through pos-
erior updating of G i , while expert kno wledg e about the similar-
ty of diffe re n t cohorts is encoded in the GP cov ari ance function .

S e ve ral exte n sion s of the PT models to prior s for famil ies of
andom probability measures h av e be en propose d in the litera-
ure. In the upcoming dis cus sion, we wi l l refer to such models
e ne rically as m ultiva riate PT. Some of the ea rlie r refe re nces ad -
ress the close ly re la ted pr oblem of constructing PT priors for
 m ultiva riate dis tributions, that is, by w ay of sp lit ting pr obabil-
t ies for mult iv ari at e int erval s. Thi s could in principle be used
o define a family of random pr obability measur es by way of the
mp lied univ ari ate m argin als . For exa mple, Ya ng e t al. ( 2008 ) us e
uch PT ’s to define a prior on a biv ari ate s amp le space. Jara e t al.
 2009 ) use similar models as a nonparametric prior for random
ffects in a se mi -pa ra metric r egr ession. How ev e r, this a pproach
s only practicable for a small n umbe r of ra ndom probability

eas ures . A more ge ne ral a ppr oach is pr oposed b y Chris te n s en
nd Ma ( 2019 ), who generate dependent random probability
easures by a ddin g an a ddition al lev el in a hie ra rchical model,
ith a nonpa ra metric hype r-prior on the common base measure

or m ultiple PT ’s. Anothe r a ppr oach pr opos ed in Trippa e t al.
 2011 ) introduces a gamm a proc ess indexe d by c ov ari ate s. Ra -
ios of probabilities under the gamma process define marginally
et a -d istributed spl it ting pr obabilitie s for de pe nde n t PT priors
ith desire d c orrel ation acros s multip le co horts arising from
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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using the same underlying gamma process. Spec i fically in the
context of met a -an alysis, B ran s cum and Han s on ( 2008 ) devel-
oped a Polya tr ee mixtur e model for the random effects prior.
Di ana e t al. ( 2023 ) introduce the replicate PT framework, which
mode ls corre lation by imposing constraints on the parameters
and r eplica ting parts of the tre es . In the approach th at w e pro-
pose in this a rticle, we in troduc e c orrel ation s using the cova ri -
ance function of a GP, d irectly model ing the corr ela tion betw e en
split ting pr obabilities tha t define the c ohort-spe c i fic eve n t-time
distributions G i . The approach is most similar to the general de-
pe nde n t tail -fr ee pr oc ess ( DTFP ) th at is define d in Ja ra a nd Ha n-
son ( 2011 ), who then proc e e d to propose and imple me n t the
speci al cas e of the linear de pendent t ail-fr ee pr ocess ( LDTFP ).
The LDTFP uses a normal linear r egr ession for the logit splitting
pr obabilities. Flor es a nd Mülle r ( 2024 ) build a mode l for met a -
analysis using a nonparametric mixture of LDTFP ’s. Our inter-
mediate model introduc e d in Section 3.2 is es s e n tially a nothe r
speci al cas e of DTFP with a tailore d prior th a t allows borr owing
information among he tero gene ous c ohorts . 

The propose d c onstruction is motivated by a met a -analysis
ov er 174 publishe d s tudies on ea rly-p has e ca nce r imm unothe r-
a p y. Imm unothe ra p y has shown promising efficacy results in sev-
eral types of canc er. How ev er, only a s ubgr oup of pa tie n ts be ne-
fit from this treatme n t, pos sib ly due to patie n t a nd tumor hete ro-
ge neity. Depe nding on the tumor ty pe, approx imately 80% of pa-
tie n ts do not respond or even develop hyper-pr ogr es sive dis eas e
(hyper-pr ogr ession), while a pr oportion of pa tie n ts who initially
responde d ev e n tually deve lop re sist ance. In addition, toxicity re-
main s an is sue with some patie n ts developing se rious imm une-
re late d adv erse ev e n ts . Fin al ly, whi le the us e of s ele cte d FDA-
approv e d biom arkers is known to be as s oci a ted with impr ov e d
clinical outcomes in select ing pat ie n ts re c eiving imm unothe r-
a p y (Ma rabe lle et al., 2020 ; Pate l and Kurzrock, 2015 ), most im-
m unothe ra p y trials are sti l l c onducte d without biomarker se lec -
tion . Thes e con sideration s su gge st tha t the use of r obust pr edic-
tiv e biom a rke rs (eg, ge ne expression or protein act ivat ion) could
en able optim al therapy re c ommend ation s for patie n ts with di -
v erse tumor types . This re quires the developme n t of s tudy de-
signs that allow testing such hypothe se s and provide inference
on promising bioma rke rs. Howeve r, published s tudies a re sys-
te matically unde rpowe red to te st hypothe se s about biomarker
s ubgroups . In this situation, met a -an alysis, th at is, the pooling of
informa tion acr os s multip le studies, may provide us eful. 

Sta nda rd methods for met a -a nalysis a re based on wei gh ted lin-
ear r egr ession with random effects (Sch wa rze r et al., 2015 ; Sut-
ton and Abrams, 2001 ; Viechtb a uer, 2010 ). See Ruberu et al.
( 2023 ) for a n exa mple of a re c e n t a pplication for ca nce r s tudies
r eporting r ela tive risks, including a careful construction to ac-
commoda te differ ent r eport ing modalit ies across studies. They
imple me n t met a -analysis using a par ametric Bay esia n infe re nce
model. Imple me n tations of met a -an alysis spe c i fically for sur-
vival e ndpoin ts a re d isc ussed, for example, in Pa rma r et al.
( 1998 ) and Michiels et al. ( 2005 ). In particular, Michiels et al.
( 2005 ) d isc uss met a -a nalysis whe n only the media n survival
times ar e r eporte d, including meta-an alysis base d on log me dian
ra tios acr oss tw o c onditions . This approach w as us ed in Foun tzi -
l as e t al. ( 2023b ) to analyze s ame d ata as in our motiv ating ap-
p lication . We argue that s uch an alysi s fail s to effe ctiv e ly mode l
the he tero geneity of the data. An altern ativ e to ac c ount for some 
of this he tero geneity could be the use of a pa ra me tric me t a -
r egr ession model, but the small n umbe r of o bs erv ation s (espe- 
cially for rare tumor types and less commonly used age n ts) lim- 
its the meaningful use of met a - r egr ession. The pr oposed method 

introduces a practical ly feasible, ful ly nonparametric altern ativ e 
in which information sharing across studies is established in a 
principle d m a nne r within the fra mework of a n e ncompassing 
probability model. 

2 A  M ETA  - A  N A  LY  S  I S  O F  C A N C E R 

I M M U N OT H E R A  P  Y  ST U D I E  S  

We analyze data from a met a -a nalysis a nd sys te ma tic r eview 

of p has e I/II clinical tri als as s es sing the effect of bioma rke rs 
on clinical outcomes in patie n ts with s o l id tumor s (Fountzilas 
et al., 2023a ). The full data is available from Fountzilas et al. 
( 2023b ). The analysis did not aim to demon strate whe ther spe- 
c i fic bioma rke rs a r e pr e dictiv e of be nefit from imm unothe ra p y.
Such a n a n alysis w ould be of limite d val id ity for rar ely evalua ted
bioma rke rs. The goal was t o det e rmine whethe r, in ge ne ral, the 
select ion of pat ie n ts base d on biom a rke rs could be as s oci ated
with clinical benefit. Data w ere c olle cte d using a Pub Me d search 

for p has e I/II ca nce r clinical tri als ev aluating immune check- 
po int inhib itors approv e d by FDA betw e en 2018 and 2020. Only 
studies tha t r eporte d s umm a ries s tratified b y bioma rke r s tatus
w ere sele cte d . In total , 174 cl inical stud ie s with a tot al of 19 178
patie n t respon s es were included in the analysis in Fountzilas 
et al. ( 2023b ). Studies inves ti gate d sev eral biom arkers, includ- 
ing PD-L1 expression (111 studies), tumor mutational burden 

(20 s tudies), a nd micr osa t ellit e inst ability/mis ma tch r epair de- 
ficiency (10 studies). 

In this an alysis w e focus on pr ogr ession-fr e e s urvival ( PFS ) 
as a pa rticula r e ndpoin t, which is reported b y S = 33 studies, 
for a total of n = 84 c ohorts . Here, a c ohort refers to a s ubs e t
of patie n ts in a study for which results are reported separately, 
including in pa rticula r ma rke r-positive a nd -negative cohorts. 
How ev e r, some s tudies bre ak do wn res ults by addition al ch ar- 
acte ris tics beyond bioma rke r s tatus, the reb y con tributing with 

more than two cohorts. The reported summaries for PFS include 
a poin t es tim ate for the me dia n PFS ( m i ) a nd a corresponding 
c onfidenc e interval (� i , h i ) for each cohort, i = 1 , . . . , n . In the
pr oposed infer ence appr oach, we model the unknown underly- 
ing distribution G i of PF S that g e ne rate d ev e n t times y i j for N i 
patie n ts in cohort i . Howeve r, pos te rior updating can only condi- 
tion on the av ail ab le s umm aries (m i , � i , h i ) and the known sam-
ple size N i . As in most met a -analyse s, patie n t-leve l dat a y i j are not
av ail ab le. 

Let i + and i − denote the m arker-positiv e and m arker-ne gativ e 
cohorts of the same study, that is, x i + and x i − differ only by 
bioma rke r s tatus. Let G 

+ 

i and G 

−
i denote the corresponding 

eve n t-time dis tribution s with medi an s M 

+ 

i and M 

−
i . The main 

infe re nce goal is the comparison of medi an s, ie, inference about 
the hypothesis M 

+ 

i > M 

−
i , formalizing the motivating question 

about the use of bioma rke rs in ca nce r imm unothe ra p y. The pro- 
pos ed multiv ari ate PT model re pre se n ts a n attractive s tatis ti - 
cal infe re nce a pproach in this context, as it allows evaluation 

of the l ikel ihood function for (m i , � i , h i ) and (c ondition ally) 
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on ju gat e post erior updating. As a side benefit, the borrowing of
 tre n gth a cros s co horts si gnifica n tly improves infe re nce for ra re
onditions, and allows mor e pr ecise infer ence , for example , for
ve n t-time dis tributions for patie n ts with ra re tumor types, or
ess commonly used tr ea tme n t age n ts. 

3 A  M U LT I VA R I AT E  P O LYA  T R E E  F O R 

E V E N T-T I M E  O U TCO M E S  

e first introduce notation by way of rev iew ing the construc-
ion of a univ ari ate PT prior in Section 3.1 . In Section 3.2 , we
eview the construction of the DTFP of Jara and Han s on ( 2011 ),
hich extends the construction to a multiv ari ate PT with com-
on part it ioning subs e ts, which is then fin ally, in Se ction 4 , ex-

 ended t o allow for diffe re n t pa rt it ioning subs e ts for each dis tri -
ution . The l a t ter is ne e de d for the desire d meta-an alysis with
ve n t-time data. 

3.1 Univa riate Pol ya t rees 
he PT ( Lavine , 1992 ; 1994 ) is a prior distribution for a random
r obability measur e G define d ov e r a sa mple space S . It is con-
tructe d re c ur sive ly using ne s ted pa rt it ions πd = { B e 1 ···e d ; e � ∈
 0 , 1 } , � = 1 , . . . , d} , d = 1 , 2 , . . . , of the s amp le space, s ta rt-
ng with S = B 0 ∪ B 1 and rec ur sively refining the part it ion with
 e 1 ···e d = B e 1 ···e d 0 ∪ B e 1 ···e d 1 . That is, B e 1 ···e d 0 and B e 1 ···e d 1 are de-
ned by splitting B e 1 ···e d into a left and right binary part it ion-

ng subs e t. Fo llowing s ta nda r d nota tion, w e use s ubscript 0 for
eft and 1 for right part it ion s. We us e ε d = e 1 · · · e d ∈ { 0 , 1 } d to
niquely ide n tify a pa rt it ioning subs e t B ε d ∈ πd . A prior model
n G is implicitly defined by a prior on the conditional split-
 ing probabilit ies Y ε d 0 ≡ G (B ε d 0 | B ε d ) , to ge ther with the choice
f the part it ioning subs e ts B ε d . The standard PT prior assumes
 ε d 0 ∼ Be (αε d 0 , αε d 1 ) (and Y ε d 1 = 1 − Y ε d 0 ). The construction
an be described as a se quenc e of increasingly refined random
is togra ms, with bins defined by B ε d and corresponding proba-
ilities G (B ε d ) = 

∏ d 
� =1 Y e 1 ···e � , and is i l lustrated in Web Figure 5

n the online Supplemen ta ry Mate rials . 
The construction defines a random probability measure G ∼

T (A , �) , where A = { αε d 0 , αε d 1 : d = 1 , 2 , . . . } is the s e t
f hype r-pa ra mete r s that index the beta prior s on Y ε0 and � =
 πd : d = 1 , 2 , . . . } is the nes ted pa rt it ion se quenc e. The hy-
e rpa ra mete rs A a nd � ca n be chose n to e nsur e a desir ed prior
ean, E [ G ] = G 0 . Expressing prior information by way of a cen-

e ring dis tribution or prior mean is a common fea tur e in non-
a ra me tric Bayesi an models. In the PT model, the re a re two
 ain strate gies to achiev e a desire d prior c e n te ring. The firs t

s to fix � and adjust the hyperparameters (αε d 0 , αε d 1 ) to en-
ure E [ Y ε d 0 ] = G 0 (B ε d 0 | B ε d ) . The alte rnative s trat egy is t o fix
 to ensure E [ Y ε d 0 ] = 0 . 5 a nd the n achiev e the desire d prior

e n te ring b y usin g dya dic qua n tiles unde r G 0 as pa rt it ioning
ubs e ts, that is; defining B ε d 0 such that G 0 (B ε d 0 | B ε d ) = 0 . 5
 Lavine , 1992 ; 1994 ). A c ommon choic e for αε d in the la t ter case
s αε d 0 = αε d 1 = c · (d + 1) 2 , which ensures a con tin uous ra n-
om dis tribution unde r a PT prior. The hype rpa ra mete r c is a
 cal a r precision pa ra mete r, which i s widely di s cus s ed in the PT
itera tur e. We wi l l l ater us e both strate gies . We use fixe d pa rti -
ioning subs e ts for lev els d = 1 , 2 (m at ching the int ervals de-
ned by � i , m i and h i ), and dyad ic spl its for d > 2 . PT prior s
 av e sev eral a t tractive and useful properties, including conju-
acy under i .i .d . s amp ling and flexibility in encoding prior be-

iefs . Compare d to other nonparametr ic pr iors, the main draw-
ack of the PT model is the lack of s moothne ss of the density
f G . How ev er, thi s i s of less c onc ern in s urvival an alysis, as the
rima ry ta rget is ofte n the cum ulative de nsity function or, equiv-
le n tly, the survival function shown in the Ka pla n–Meie r curve.

3.2 Multiva riate Pol ya t ree with G auss ia n p rocess 
depe nde nce 

a ra a nd Ha n s on ( 2011 ) introduce a prior for a family of random
r obability measur es { G i ; i = 1 , . . . , I} based on a ge ne raliza-

ion of a univ ari ate PT prior. We review their construction, in-
roducing s ome v ari ation s in a n ticipation of the nex t ex ten sion .
n all v ari ation s, G i remain s a random pr obability measur e over a
 amp le space S with (at least appr oxima tely) a marginal PT prior.

Re call th a t in the motiva ting applica tion n is the n umbe r of
ohorts with available data on PFS. In a n t icipat ion of poste-
ior pre dictiv e infe re nce for future studies, we are s e tting up
he model for I > n cohorts, including cohorts indexed by i ∈
 n + 1 , . . . , I} without o bs erv e d data. We first s e t up a model
ha ring a com mon pa rtition i ng se q u ence � across all i . Let then
 

(i ) 
ε d 0 = G i (B ε d 0 | B ε d ) denote the splitting probabilities under G i 

nd let η(p) = log { p (1 − p) −1 } denote a log i stic link func-
ion. The mode l maint ains inde pe nde nce of splitting probabili-
ies Y 

(i ) 
ε for diffe re n t pa rtitioning subs e ts B ε within the s ame tree,

ut allows the splitting probabilities for the same ε to be corre-
a ted acr oss i . This is achiev e d b y in troducing a Gaus si an pro-
ess (GP) prior on Z 

(i ) 
ε0 = η(Y 

(i ) 
ε d 0 ) . The GP is indexed by cohort-

spec i fic cov ari ates x i and rep l aces the indepe nde n t beta prior of
he univ ari ate PT con struction . Th at is, w e ass ume { Z 

(i ) 
ε d 0 } x i ∈ X ∼

P (με d 0 , K ε d 0 ) with mean function με0 and cov ari ance func-
ion K ε d 0 (see below for με d 0 and K ε d 0 ). There is a separate, inde-
e nde n t GP prior for each ε d 0 = ε1 · · · εd 0 (and recall that any
 

(i ) 
ε d 1 is implied as 1 − Y 

(i ) 
ε d 0 ). Depe nde nce is limited to part it ion-

ng subs e ts up to a cert ain de pth D of the tree, with GP priors
or each ε d 0 up to level D , and independent beta priors beyond.

e write (G 1 , . . . , G I ) ∼ mvPT GP (�, D, K, A ) . The pa ra m-
ter K is the s e t of 2 

D − 1 pairs of mea n a nd cova ria nce functions
με d 0 (·) ; K ε d 0 (·, ·) 

)
that define the GP priors. The pa ra mete r �

s the (common) nes ted pa rt it ion sequence. Finally, the s e t A is
efined as in the univ ari ate PT prior and c olle cts the pa ra mete rs
ε d 0 , αε d 1 for d > D . Pos te rior upd ating is simil ar to the univ a ri -
te PT and depends on the counts of o bs erv ation s in each sub-
n te rv al of �. Lo git sp lit ting pr o babilities Z 

(i ) 
ε d 0 as s oci ated with

he s ame s e quenc e ε d 0 are dependent across i (ie, cohorts) and
t is c onv e nie n t to s amp le them jointly. Using a logit link allows
asy pos te rior updates using the Polya-Gamma sa mple r in tro-
uc e d by Po ls on e t al. ( 2013 ). The s ame tree-bas ed lo git normal

s introduc e d as log i stic-tre e norm al in Wang et al. ( 2022 ) and
eBla nc a nd Ma ( 2022 ), whe re it is used as a prior for categori-
al probabilities in a mixed me mbe rship model. 
For the hype rpa ra mete rs, w e propose choic es th at imply a de-

ire d m argin al distribution for G i , similar to the univ ari ate PT.
or de tails, s ee below (in the context of s e tting up m argin al

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data


4 � Biometrics , 2024, Vol. 80, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/4/ujae136/7914213 by D
ipartim

ento di sanita pubblica user on 02 D
ecem

ber 2024
mome n ts με d 0 and σ 2 
ε d 0 for the GP prior). For the sh are d neste d

part it ion se quenc e � w e use the dyadic qua n tile s of a base mea -
s ure G 0 . Addition ally, for ε d ∈ { 0 , 1 } d at lev els d = 1 , . . . , D
w e ne e d a c ov ari ance function K ε d 0 (·, ·) and mean process
με d 0 (·) for the GP prior. We factor the cov ari ance function as
K ε d 0 ( x , x 

′ ) = σ 2 
ε d 0 · R( x , x 

′ ) , a nd firs t conside r the mome n ts of
the m argin al distri bution Z 

( i ) 
ε d 0 ∼ N(με d 0 , σ

2 
ε d 0 ) . Our choice is

based on fixing the pa ra mete rs (με d 0 , σ
2 
ε d 0 ) to appr oxima tely

match a Be (αε d 0 , αε d 1 ) prior on η−1 (Z 

(i ) 
ε d 0 ) , that is, the prior

under a univ ari ate PT . Although beta and log i stic - normal dis-
tributions are never exactly equal, any beta distribution can be
appr oxima ted with the log i stic - normal distribution that mini-
miz es K ull back-Lei ble r dive rge nce ( Ait chison a nd She n, 1980 ).
Let ψ and ψ 

′ denote the digamma and trigamma functions,
respe ctiv ely. We use με d 0 ( x ) = ψ(c · [ d + 1] 2 ) − ψ(c · [ d +
1] 2 ) = 0 and σ 2 

ε d 0 = 2 · ψ 

′ (c · [ d + 1] 2 ) . Having spec i fied the
m argin al moments με d 0 and σ 2 

ε d 0 , we are left to spec i fy R( x , x 

′ ) ,
ie, the corr ela tion betw e e n logit-tra nsformed split ting pr obabil-
ities for cohorts with cov ari ates x and x 

′ . The corr ela tion func-
tion R( x , x 

′ ) is used to introduce clinical expe rt jud gme n t on
similarity of the event-time distributions G i . See Section 5 for an
examp le of con structing R( x , x 

′ ) tailored to our app lication . For
levels d > D we define part it ioning subs e ts B ε d 0 and beta param-
eters αε d 0 , αε d 1 to achieve a desired prior mean G 0 as described
in Section 3.1 , using αε d = cd 

2 . In s umm a ry, R( x , x 

′ ) in troduces
clinical expe rt jud gme n t on how simila r eve n t-time dis tributions
for diffe re n t cohorts a re likely to be, a nd the precision pa ra mete r
c and the centering measure G 0 fix prior unce rtain ty a nd expect a -
tion of the m argin al prior on G i . Defining prior e licit ation for the
GP pa ra mete rs b y a ppr oxima ting the bet a prior in the st andard
PT construction allows us to use the same c and G 0 to charac-
terize splitting pro babilities acros s all levels, including d = 1 , 2
with the logit-normal GP prior as well as d > 2 with the beta
prior. 

If desired, it is pos sib le to define hyperpriors and potentially
learn about parameters in the cov ari ance function s (Murp hy,
2012 , Cha pte r 15). Howeve r, thi s possibility i s not explored
here. Finally, let B ⊂ A de note a ny two nes te d s ubs e ts, and le t
Z = { Z 

(i ) } I i =1 with Z 

(i ) = η{ G i (B | A ) } . Via Mon te Ca rlo prior
simula tion, the pr oposed model allows t o evaluat e E [ Z 

(i ) ] and
C ov (Z 

(i ) , Z 

(i ′ ) ) for any i, i ′ . We shall use this later. Pseudo code
for this prior simulation is av ail ab le online as Supplemen ta ry M
ate rials . Fi gure 1 shows a ra ndom sa mple (G i , i = 1 , . . . , 20)
from a mvPT for two diffe re n t correlation m atric es R( x , x 

′ ) ,
and i l lustrates how two ma rginal ra ndom dis tributions a re con-
structed from G i (B 

(i ) 
ε d 0 | B 

(i ) 
ε d ) . 

4 A  P O LYA  T R E E  P R I O R F O R M ETA  - A  N A  LY S I S  

W I T H  E V E N T-T I M E  DATA  

4.1 Multiva riate Pol ya t ree with stud y-sp eci fic part it ion s 
Re call the form a t of the da ta with s i = (� i , m i , h i ) a nd sa m-
ple size N i for each cohort in the met a -an alysis . We ass ume
that m i and (� i , h i ) we re dete rmined as the in te rs ection s of the
Kap l an–Meier ( KM ) surviv al curve (Kap l an and Meier, 1958 )
and the corresponding err or bounds, r espe ctiv ely, with the 0.5

thresho ld. We as s ume th a t the err or bounds ar e based on the C
KM es timator a nd the Gree nwood form ula (Gree nwood, 1926 ; 
Hosmer et al ., 2011 ). Condit ioning on a cen s oring pa t tern (ie, 
the order in which o bs erv e d ev ent times and cen s oring events 
oc cur—se e below about updating this assumption) s i implies 
counts of o bs erv ation s in each of the four sub-in te rv als de ter- 
mined by (� i , m i , h i ) . If these subin te rvals match the part it ion-
ing subs e ts in the first tw o lev els of the m argin al PT c onstruction, 
the n the coun ts a re a su ffic ie n t s tatis tic for the pos te rior dis tri -
bution of Y 

(i ) 
0 , Y 

(i ) 
00 , Y 

(i ) 
10 , i = 1 , . . . , n , ie, t o updat e kno wledg e

on G i . We ther efor e r ep l ace the shared part it ion sequence � of 
the mvPT GP (�, D, K, A ) by a s e t of coh ort-s p ecific pa rtition se-
q u ences { �i } I i =1 , with π

(i ) 
1 = { [0 , m i ) , [ m i , + ∞ ) } and π

(i ) 
2 =

{ [0 , � i ) , [ � i , m i ) , [ m i , h i ) , [ h i , + ∞ ) } . Nes ted pa rt it ions πd at
de eper lev els d > 2 are c onstructe d by dyad ic spl its of the par-
e n t s e t B 

(i ) 
ε d−1 s uch th at G 0 (B 

(i ) 
ε d | B 

(i ) 
ε d−1 ) = 0 . 5 . We refer to the

extended model as mvPT GP ({ �i } I i =1 , D, K, A ) , with { �i } I i =1 
rep l a cin g the common shared part it ioning sequence � of the 
ea rlie r cons truction. The exte nsion r equir es car eful considera- 
tion of the mean process μ(i ) 

ε d 0 and the cov ari ance function K 

(i ) 
ε d 0 . 

Note the added superindex for cohort i , to allow for diffe re n t 
B 

(i ) 
ε d . The e licit ation inv olv es expe cte d values and c ov ari ances for 

each (logit transformed) conditional probability G i (B 

(i ) 
ε d 0 | B 

(i ) 
ε d ) 

and G i ′ (B 

(i ′ ) 
ε d 0 | B 

(i ′ ) 
ε d ) , which now refer to pos sib ly very different 

s e ts B 

(i ) 
ε d 0 and B 

(i ) 
ε d 0 . A principled a nd cohe re n t spec i fication of

such qua n t it ies i s challeng ing. We use the following construc- 
tion to re duc e the pro b lem to the earlier case of sh are d �. We
firs t conside r a proc ess with sh are d part it ions G 

∗ = (G 

∗
i , i =

1 , . . . , I) ∼ mvPT GP (�, D, K, A ) , defined as in the previous 
s ection . 

Under G 

∗ we can then by the earl ier d isc ussed prior simula- 
tion evaluate probabilities for any eve n ts. In pa rticula r, we ca n 

evaluat e expect ed values and cov ari ances for logit conditional 
probabilities G i (B 

(i ) 
ε d 0 | B 

(i ) 
ε d ) , as ne e de d for the construction of 

mvPT GP ({ �i } I i =1 , D, K, A ) . 
Fin ally, w e h av e to select part it ion se quenc es �i for future co- 

horts ( i > n ). We proc e e d with � i define d as the me dian of � k ,
k = 1 , . . . , n , and similarly for m i and h i . 

4.2 Ce ns o ring patte rns a nd poste rio r infe re nce 
One fea tur e of the proposed model is that it allows to condition 

on al l avai lable information, beyond only the media n poin t es ti - 
m ates . Instead, w e c ondition on the e n tir e r eported triple s i , in-
cluding c onfidenc e in te rv als (if av ail ab le). To m ap s i to c ounts
used for pos te rior updating of PT pa ra mete rs, w e ne e d to m ake
as sumption s about the cen s oring pa t tern (ie, the se quenc e of ob-
serv e d and cen s ore d ev ent times). We start by assuming a dis- 
tribution for cen s oring times, C 

(i ) 
j ∼ H for patie n t j in study 

(cohort) i . To update an ass ume d c ensoring pa t te rn, we e mplo y
an AB C-l ike (Marin e t al., 2012 ) Me tropo lis-Hastings s cheme. 
Spec i fically, we s ta rt with a n initi al as sumption for the cen s oring
pa t te rn a nd the n upd ate fo llowing Me tropo lis-Has tings tra nsi -
t ion probabilit ies, ac c ept ing only transit ions th at ac curately re- 
produce the o bs erved trip le (� i , m i , h i ) . The la t ter is ass ume d to
be deriv e d from a Kap l an–Meier e stima tor. We r efer to the sim-
ulation as an ABC algorithm since we ge ne rate ne w value s for 
 

(i ) 
j and T 

(i ) 
j ac c epting only those that imply a match with the 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data
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FIGURE 1 The top four panels (box a) show random s amp les (G 1 , . . . , G n ) from a mvPT prior, using two different choices of R( x , x ′ ) 
(plotted in the square insert in the left panels). The left panels show the densities. The right panels show the survival functions. Both use 
G 0 = Exp (x | λ = 1) and precision parameter c = 5 . For the first row, R( x , x ′ ) is the identity (implying in particular that G i are 
exchang e able); in the se c ond row it is block diagonal (the G i are partially exchang e able within each block, for example , ma rke r-positive a nd 

-ne gativ e c ohorts). The bottom panels (bo x b) show the r andom pr obabilities G i (B 

(i ) 
ε d ) for d = 1 , 2 (in the bot tom two r ows) for i � = i ′ (in the 

tw o c o lumn s). Sp lit ting pr o babilities Y (i ) 
ε d for subs e ts B 

(i ) 
ε d m arke d with the same c olor a re depe nde n t (across i ), unfil led bin s are de te rminis tic 

given the other bins (ie, Y (i ) 
ε d 0 implies Y (i ) 

ε d 1 ). The overlaid density curve shows the density defined by the limit as d → ∞ . 
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positive and ma rke r-negative co horts. Simil arly, le t P + and P −
and c orresponding me di an s M 

+ 

P , M 

−
P r efer to mixtur e popula- 

tions differing only by the presence of bioma rke rs. Infe re nce 
s umm arie s re porte d in the upc oming dis cus sion wi l l focus on 

the paire d c omparison of M 

+ 

i vs. M 

−
i and M 

+ vs. M 

−. A lter na- 
re ported st at ist ics s i . See Appendix B for details of this simula-
tion, including the initi alization . 

Keep in mind that this simulation is only imputing cen s oring
pa t te rns; the re is no notion of the pos te rior sim ulation of pa ra m-
ete rs. This sim ulation-based a pproach e nables us to accommo-

da te differ ent levels of informa tion pr o vided for ea ch study. For 
exa mple, for a s tudy tha t r eports no cen s oring eve n ts, we use de- 
te rminis tic coun ts, while a s tudy tha t r eports the n umbe r of ce n- 
soring eve n ts ca n be tr ea ted differ ently fr om a study tha t r eports 
no details on c ensoring. Fin ally, for a study that reports confi- 
de nce in te rvals for diffe re n t c ov erage probability th a n othe rs, it 
is s trai gh tforwa rd to ac c ount for this choic e in the derivation of 
poin t es timate a nd confide nce in te rv als for the medi an from the 
Kap l an–Meier p lot. 

4.3 Poste rio r su m maries 
Re call th at G i i s the di s tribution of eve n t times in cohort i , 
with cov ari a tes x i and tha t the model is jointly defined on 

G 1 , . . . , G n ( i = 1 , . . . , n are the cohorts with observ e d data) 
and G n +1 , . . . , G I (future co horts). Le t Md (P ) be the median 

of a pr obability measur e P, let M i = Md (G i ) denote the me- 
dian of G i and let S = { s i } n i =1 denote the o bs erv e d data. We 
su gge st re porting p(M i | S) to s umm a rize infe re nce unde r the 
proposed model. If poin t es timates a re ne e de d, w e use the pos- 
te rior media n 

̂ M i = Md 

{
p(M i | S ) 

}
. For the o bs erv e d c ohorts, 

i = 1 , . . . , n , the pos te rior dis tribution p(M i | S) s umm arizes 
update d knowle dge. How ev e r, from a n infe re n tial poin t of view, 
the main in te res t is on the pos te rior dis tribution p(M i | S) for 
future cohorts i = n + 1 , . . . , I. More ov e r, resea rch ofte n fo- 
cuses on populations that correspond to multiple cov ari ate vec- 
tors x i , that is; mixtures of multiple future cohorts i with i ∈ A ⊆
{ n + 1 , . . . , I} . For exa mple, infe re nc e on m a rke r-positive pa- 
tie n ts is na turally r epr ese n ted as a mixture where A is the s e t 
of all ma rke r-positive future cohorts. Eve n t-time dis tributions 
for such popul ation s are imp licitly defined as P = 

∑ 

i ∈ A πi G i , 
wei gh ting diffe re n t co horts with pos sib ly non-uni for m wei gh ts 
πi . 

One aspect to keep in mind with infe re nce on M i , i > n , is 
that p(M i | S) also includes s tudy-to-s tudy va riation. In con- 
tras t, infe re nce unde r cl as sical me t a - r egr ession usually r eports 
P -values for fixed effects θ , that is, a n ave rage effect for future 
s tudies with pa rticula r cha racte ris tics x . To define a comparable 
infe re nc e s umm a ry unde r the proposed nonpa ra metric model, 
let θ = { Y 

(h ) 
ε d : d = 1 , . . . ; h = 1 , . . . , n } de note the condi - 

t ional splitt ing probabilit ies for the observ e d studies and define 
G i = E [ G i | θ] and M i = Md ( G i ) , i = n + 1 , . . . , I. Then M i 
is a function of θ and p( M i | S) reports unce rtain ty on the fu- 
ture cohorts without co hort-to-co hort v ari ation . In the upcom- 
ing res ults, w e report s umm aries of p( M i | S) or credible in te r- 
v als bas e d on it as altern ativ es to p(M i | S) . 

Recall the definition of G 

+ 

i , G 

−
i , M 

+ 

i and M 

−
i as the eve n t-time 

dis tributions a nd c orresponding me di an s for matching ma rke r- 

P P 
tiv ely, w e wi l l also report simi la r qua n t it ies for the expe cte d val- 
ues, M i 

+ vs. M i 
− and M 

+ 

P vs. M 

−
P . 

5 CO R R E L AT I O N  F U N C T I O N  A N D  P R I O R 

S P E C I F I C AT I O N 

We describe the elicitation of the mvPT GP prior that is used for 
the mot ivat ing met a -a nalysis proble m a nd in the simul ation s, 
with minor adjus tme n ts. In the s tudies unde r conside ration, me- 
dian PFS is us ually reporte d for within the first few months. We 
ther efor e use a half-Cauchy with σ = 3 . 5 (in months) as cen- 
te ring dis tribution G 0 to allow a heavy ri gh t tail. Next, we fix c 
at a weakly informative value c = 5 , which impl ies an a pr ior i 
95% credible in te rval of [1 . 08 ; 11 . 52] on the median for a new 

study G i . 
We construct the corr ela t ion funct ion R( x , x 

′ ) to r epr ese n t 
clinical jud gme n t a bout the le vel of simil arity be tw e en the event- 
t ime distribut ion s for any pair of co horts i, i ′ . We first des cribe 
the construction of R( x , x 

′ ) for any tw o c ohorts with matching 
bioma rke r s ta tus. We pr oceed by introducing an additive similar- 
ity score, a ddin g points for ea ch matchin g cate gorical c ov ari ate 
x j = x ′ j , which is then rescaled to a unit maximum. The cova ri - 
a tes tha t ar e expe cte d to h av e the s tronges t as s oci ation with PFS 

are tumor type and agent. If cohorts i and i ′ share either of these 
tw o ch a racte ris tics, w e re c ord an incre me n t of 2 points each 

for the similarity score. Tumor type includes “other .” Two co- 
horts with “other ” as the tumor type are considered unmatched. 
Cov ari a tes tha t ar e judged to be less likely strongly as s oci ated 

with PFS include bioma rke rs s tatus, s tudy p has e (1, 1/2, or 2), 
line of the ra p y (1, ≥ 2 , or any), and type of therapy (c ombin a- 
tion, c ombin ation-or-monothe ra p y, or monothe ra p y). For each 

m atching se c ondary c ovariate, w e re c ord a 0.5 incre me n t of the 
simil arity s core. Next, 1 point w as adde d for c ohorts i , and i ′ th at 
a re pa rt of the sa me s tudy, a nd a n extra poin t is added on the di - 
agonal for i = i ′ to add a nugget in the implied cov ari ance func- 
tion . For co horts i, i ′ with diffe re n t bioma rke r s tatus, we only a p- 
ply the rule about the sh are d study, re c ording a similarity score 
of 1 point for cohorts within the sa me s tudy. The re duc e d c or- 
r ela tion for cohorts with diffe re n t bioma rke r s tatus av oids ov er- 
smoothing of bioma rke r effects. 

The describe d c onstruction implies a maximum similarity 
s core of 8. Res caling to a maximum of 1 defines R( x , x 

′ ) . In 

s umm a ry, letting ω j de note the previously in troduc e d c ov ari ate- 
spec i fic wei gh ts, a nd assuming that x i 1 is a study indicator, and 

x i 2 is an indicator for bioma rke r s tatus, we define R( x i , x i ′ ) for 
x i = (x i 1 , . . . , x iJ ) and x i ′ = (x i ′ 1 , . . . , x i ′ J ) as follows: 

R( x i , x i ′ ) = 

I (i = i ′ ) + ω 1 · I (x i 1 = x i ′ 1 ) + I (x i 2 = x i ′ 2 ) ·
∑ J 

j=2 ω j · I (x i j = x i ′ j ) 

1 + 

∑ 

j ω j 
. (1) 
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TA BLE 1 Simulat ion s e tup. 

Tumor Type 1 Tumor Type 2 Tumor Type 3 

Exp (λ) HN (λ) 0 . 5 Exp (λ) + 0 . 5 HN (λ) 

A0 λ+ 

i = (2 . 5 + 0 . 5) · αi 
λ−

i = 2 . 5 · αi 
S i = 5 

λ+ 

i = (3 + 0 . 5) · αi 
λ−

i = 3 · αi 
S i = 5 

λ+ 

i = (3 . 5 + 0 . 5) · αi 
λ−

i = 3 . 5 · αi 
S i = 3 

A1 λ+ 

i = (2 . 5 + 0 . 5 + 1) · αi 
λ−

i = (2 . 5 + 1) · αi 
S i = 5 

λ+ 

i = (3 + 0 . 5 + 1) · αi 
λ−

i = (3 + 1) · αi 
S i = 5 

λ+ 

i = (3 . 5 + 0 . 5 + 1) · αi 
λ−

i = (3 . 5 + 1) · αi 
S i = 2 

T he ta ble shows the ass ume d c ohort-spe c i fic me dians . Each ev e n t-time dis tributions a re pa ra mete rized in te rms of the media n λ. Pa ra mete rs αi ∼
U (0 . 8 , 1 . 2) are study-spec i fic mult iplicat iv e effe ct on the me di an . S i reports the n umbe r of sim ulzated s tudies sa mpled with each distribution. 
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See Appendix C for an argument that R defines a positive se mi -
efinite corr ela tion ma trix, and for su gge s ted adjus tme n ts if a
imil ar con struction does not define a positive definite matrix.
n our application, we apply ( 1 ) only for categorical cov ari ates,
ut a simila r ke rnel cons truction ca n be ada pte d for c on tin uous
 ari ab les. Als o, keep in mind that R( x , x 

′ ) is only used to con-
truct a valid I × I cova ria nc e m atrix for the given studies. The
mphasi s i s on c onstructing a s uit able R( x , x 

′ ) to re pre se n t prior
ud gme n t. 

T he le v el of c en s oring for PFS is only moderate. We as sume an
xpone n tial dis tribution with mea n 10 for the ce n s or ing distr i-
ution in all c ohorts . 

6 S I M U L AT I O N  ST U DY  

he simul ation s aim to as s es s infe re nce in a realis tic sce na rio that
alls for s ta nda rd met a -a nalysis, a nd to show that the ass ume d
epe nde nce across cohorts can compen s ate for the more re stric -

ive borrowing of s tre ngth unde r a pa ra metric model. We con-
truct a simulation truth to mimic the setup in the mot ivat ing
tudy, using the Kap l an–Meier e stimat or t o generat e simulat ed
 atas e ts of s umm aries s i = (� i , m i , h i ) and for each hypotheti-
al d atas e t, w e c ompa re infe re nce unde r the mv PT model ve rsus
 ta nda rd methods for met a -an alysis . 

We assume three tumor types ( T T 1 , T T 2 , T T 3 ), and two
ge n ts (A 0 , A 1) , with A 1 being as s oci ated with hi ghe r media n
FS. The resulting six cases were further divided on the basis of
ioma rke r s tatus (positiv e or ne gativ e), res ulting in 12 types of
ohorts shown in Table 1 . B ioma rke r-positive s tatus is ass ume d
o add a positive offs e t of 0.5 to the medi an . Simul ating a certain
 umbe r of s tudies (s ee Tab le 1 ) for each of the c ombin ations of

umor a nd age n t, we ge ne rated a total of 25 hypothetical s tud -
es, with a ma rke r-positive a nd a ma rke r-negative cohort for each
tudy, resulting in a total of n = 50 cohorts for each simulated
 atas e t. Finally , for each study , we ge ne rate a study-spec i fic m ul -
 iplicat ive random effect on the median, αi ∼ U (0 . 8 , 1 . 2) . See
able 1 for the ass ume d true me dians (before applying the study-

spec i fic random effects) for each of the 12 unique c ombin ations
f cov ari ates. We the n sim ulated eve n t times for N i = 20 sub-

ects for each of the 50 cohorts, using the distributions indicated
n Table 1 . Finally, using the survfit function in the R pack-
 ge surviv al ( The rneau, 2023 ), w e evaluate d poin t es timates m i 
nd corresponding 95% confidence in te rvals (� i , h i ) for median
F S for e ach co hort. The trip les s i are the data. For simplicity, we
mitte d c en s oring. 
We used the same prior distributions as for the data analy-
is with the real dat a, name ly c = 5 and a half Cauchy with
cale 3.5 for G 0 . We construct a corr ela t ion funct ion R( x , x 

′ )
s in Section 5 , using only the rules for tumor type, age n t, a nd
ioma rke r s ta tus. We add futur e cohorts, i = n + 1 , ..., I, in-
luding one cohort for each of the 12 unique c ombin ations of
ov ari ates, ie, I = n + 12 . The choice of R( x , x 

′ ) is an impor-
a n t s tep in the model construction, r epr ese n t ing informat ive
rior expert judgment. To explore the impact of this choice,
 e carrie d out some se nsitivity a nalysis with alte rn ativ e c orre-

at ion funct ions on the same simulated dat a. The se simulations
re s umm arize d in the online Supplementary Materials . The
imul ation s show noticable diffe re nces in infe re nce unde r alte r-
 ativ e c on struction s, confirming the importance of an expert-

nforme d c on struction, as des cribe d. To s umm a rize pos te rior
nfe re nce on spec i fic tumor -a ge n t pairs, we ev aluate lo g ratios
f median PFS, log (M 

+ 

i /M 

−
i ) , for the 12 future c ohorts, c om-

a ring ma rke r-positive a nd -negative pairs (i + , i −) of cohorts
ith matching tumor type and agent. We also evaluate an over-

ll effect of bioma rke r s tatus b y conside ring a mixture of the
 ma rke r-positive ( P + ) and the 6 ma rke r-negative ( P −) future
ohorts using wei gh ts proportional to S i in Table 1 . We evalu-
te point e stimate s as posterior medi an s of log (M 

+ 

i /M 

−
i ) and

og (M 

+ 

P /M 

−
P ) , respe ctiv ely. We use d log me dian ratios be cause

hose are used in the classical met a - r egr essions tha t we r eport
or comparis on . For the l a t ter, w e use d a random effects model

ith just the interc ept (ie, th at estim ates the ov erall effe ct) and
 met a - r egr ession including an interaction of tumor type and
ge n t (ie, including a pa ra mete r for each the six c ombin ations).
he da ta ar e the log ra tios of me dian s urvival time s re ported in

he studies (Michiels et al., 2005 ). For both models, we used
he imple me n tation in the R package metafor (Viechtb a uer,
010 ). 
Figure 2 shows box-plots of the bias for the diffe re n t es timates

or the log median r atios. Each bo xplot shows the realized bias
f the pos te rior es tim ate d log ratios over 50 repeat simul ation s.
or c omparison, w e also re port e stimate s under a cl as sical me t a -
 egr es sion . The cl as sical me t a - r egr ession r esults show hi gh va ri -
bility in the e stimate s across simulations, which is subs ta n tially
e duc e d by the proposed mode l- based infe re nce. Thi s i s due to
hrinkag e to wards the prior and the borrowing of s tre n gth a cross
imil ar co horts. The increas ed precision is achiev e d despite the
r ea te r flexibility a nd in the abse nce of pa ra me tric as sumption s

n the m ultiva riate mv PT model. Fi gure 2 su gge sts that thi s i s due
o a trade-off with increased average bias over simul ation s under

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data
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FIG URE 2 Box-p lots of reali zed b ias over 50 r epea t simula tions, for differ ent point estima t es. The t op panel shows bias for the pos te rior media n 

of log 
(

M 

+ 

i /M 

−
i 
)

. The middle panel shows bias for the posterior median of log ( M i 
+ 

/ M i 
−) . The bottom panel shows bias for log median ratios 

under met a - r egr ession appr oach. For met a - r egr ession bias is calculated using the fitted expected values. In all three plots, the + marks the bias 
of prior expe cte d values (ie, log (1) = 0 ). The shifts are due to the diffe re n t sim ul ation truth s of the diffe re n t cova riate c ombin ations . 
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the pr oposed appr oach. Mor e s umm aries of absolute bias across
simul ation s are av ail ab le in the online Supplemen ta ry Mate rials .
We avoid comparing results between tumor -a gent pairs, as the
in te rpr eta tion of s uch c omparisons hinge on the spec i fic simula-
tion truth a nd sa mple sizes, a nd th us w ould re quire s ubs ta n tially
mor e simula tions sc en arios . Fin ally, ke eping in mind that the
main infe re nce ta rget is the evaluation of the hypothesis M 

+ 

i >

M 

−
i , we als o as s es s ed me thods in term s of infe re nce on this hy-

pothesis by comparing Bayes factors and Bayes factor bounds
(Sel l ke et al., 2001 ) for classical infe re nce. The la t te r a re eval -
uated using p-values from a met a - regre s sion . Thes e results are 
shown in the online Supplemen ta ry Mate rials . 

7 R E S U LTS  F O R T H E  C A N C E R 

I M M U N OT H E R A  P  Y  M ETA  - A  N A  LY  S  I S  

Ov erall, the res ults s upport a re c ommendation for including rel- 
eva n t bioma rke rs in the desi gn of ca nce r imm unothe ra p y s tud -
ies. For almost all tumor -a gent pairs, we find high posterior 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data
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FIGURE 3 Imm unothe ra pies. The top pa nel shows pos te rior dis tributions for M 

+ 

P a nd M 

−
P for a hypothetical future s tudy, ave ragin g o ver 

s tudy cha racte ris tics. The lower (small) panels show the same for M 

+ 

i and M 

−
i for hypothetical future studies, arranged by agent and tumor 

type. Here hy brid treatmen t refers to studies with multiple agents, with (1) for ipilimumab or nivolumab and (2) for pembro liz umab or 
niv olum ab. Empty facets indicate there was no study for the tumor agent pair. 
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FIGURE 4 Imm unothe ra pies . Summ a ry of pos te rior infe re nc e for the include d studies . In te rvals r epr ese n ted with + and solid lines are 
credible in te rvals for median PFS. Intervals r epr ese n ted with × and dotted lines are confidence in te rvals reported in the original articles. Only 
for original summaries, non-o bs erv e d low er limits are m arke d with 0 and non-o bs erv e d upper limits with + ∞ . The c onfidenc e lev el for all 
in te rval s i s 95% unless otherwi se spec i fied. Ma rke r-positive a nd ma rke r-negative cohorts are marked in diffe re n t colours. . 
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probability for hi ghe r media n PFS for ma rke r-positive tha n for
ma rke r-nega tive pa tie n ts, ie, for M 

+ 

P > M 

−
P . Here, P = 

∑ 

πi G i ,
for a mixture over all future studies with m aker-positiv e and
-ne gativ e sta tus, r espe ctiv ely, as describe d in Section 4.3 . Fig-
ur e 3 r eports infer ence for hypothetical future s tudies, a rra nged
by c ombin ations of tumor a nd age n t (small pa nels) a nd ove rall 
(la rge pa nel). Omitte d minor c ov ari ate s (exce pt for bioma rke r 
s tatus) a re fixed at the most common o bs erv e d lev el. Web Fig -
ure 6 in the supporting materials reports the same as Figure 3 , 
but for M 

+ 

P and M 

−
P . 
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Our met a -a nalysis of PFS in imm unothe ra p y s tud ies su pports
he hypothesis that bioma rke rs ca n be useful to ide n t ify pat ie n ts
ho wi l l benefit from imm une checkpoin t inhibitors . How ev er,
oth the effect size and confidence in the results vary depending
 i . In pa rticula r, the re is evide nce for a n in te raction of age n t a nd
umor type. The results are s tronges t for mela noma a nd robus t
or non-small cell lung ca nce r (NS CL C). For breast cancer (only
wo studies) and cancers cl as sified as “other” results are c onc or-
a n t with clinical practice but with less strong evidence. We find
 prote ctiv e effe ct for mos t age n ts . The res ults for atezo liz umab
nd av elum ab a re the mos t consis te n t across tumors . In c on-
ras t, for ipilim um ab or niv olum ab ( hybri d treatment ) and pem-
ro liz umab, the d at a doe s not provide equally s trong evide nce.
os te rior credible in te rvals (one-sided) a re av ail ab le in the on-

ine Supplemen ta ry Mate rials . Results on pe mbro liz umab and
reas t ca nce r conflict with cl inical expe rie nc e th at w ould s u gge st
n effect. This is likely due to the s amp le sizes of the cohorts in
he study reported by Ad am s e t al. ( 2019 ). Thes e co hor ts repor t
qually low e stimate s for both medi an s, M 

+ 

i and M 

−
i , with large

 amp le sizes (105 m arker-positiv e and 67 m arker-ne gativ e pa-
ie n ts), which implies hi ghe r shrinkage of the media ns of future
ohorts with breast cancer and pembro liz umab tow ards thes e
oin t es tim ates . This o bs erv ation hi ghli gh ts the importa nce of

he cov ari ance function and its local behavior. 
Figure 4 s umm arizes inferenc e for the original studies included

n Fountzilas et al. ( 2023b ). For each study, the figure compares
os te rior credible in te rvals for M 

+ 

i and M 

−
i to ge ther with the

 onfidenc e intervals in the original papers. For most studies, the
os te rior credible in te rvals for M 

+ 

i are higher than those for M 

−
i .

n pa rticula r, for some s tudies tha t r eported M 

+ 

i < M 

−
i in the

ri ginal pa pe rs, pos te rior infe re nc e switche d the order of the
oin t es tima tes borr owing str en gth a cros s all co horts (Liu e t al.,
018 ; Ta m ura et al., 2019 ; Segal et al., 2019 ; Kim et al., 2019 ; Doi
t al., 2019 , and Arkenau et al., 2018 in Fig. 4 ). The reverse only
cc ur s in one case, for Ja nji gia n et al. ( 2018 ), which is a study
 eporting extr eme values for the medi an s, under unusually high
nd unequal s amp le sizes (100 m arker-positiv e and 289 marker-
e gativ e patie n ts, respe ctiv ely). 

8 CO N C LU S I O N S  

e dev elope d a nonpa ra me tric Bayesi a n a pproach for met a -
nalysis with eve n t-time outcomes. Infe re nce combines infor-
a tion fr om all studie s in the met a -an alysis . The approach uses
 eakly inform ativ e priors base d on clinical expe rt jud gme n t re-

arding the rel ation ship be tw e e n diffe re n t s tudies. A sim ulation
tudy shows that for realistic s amp le sizes and data structure in-
e re nce unde r the proposed a ppro ach comp ares favorably with
 ta nda rd method s. Thi s i s especially true for tumor types and
ge n ts that a re less commonly observ e d in the origin al studies .
hi s i s achiev e d b y borrowing s tre n gth a cross all studies. 
One limitation of the proposed nonpa ra metric a pproach is

hat it is restrict ed t o eve n t-time outcomes. A pos sib le future de-
elopme n t would be the inclusion of multiple endpoints. Many
f the studies in our data include in addition to PFS also sum-
aries for o bj ective respon s e rate ( OR ), a nd ove rall survival

 OS ). Sh aring inform at ion on mult iple eve n t time e ndpoin ts,
ike PFS and OS , is easily ac c ommodate d by tr ea ting them as
epa rate, but hi ghly corr ela ted, cohorts. The inclusion of binary
 ndpoin ts like OR in a joint model would r equir e model exten-
ions to include a pa ra metric submodel. 

S U P P L E M E N TA  RY  M AT E R I A  L S  

upple me n ta ry mate rial is available at Biometrics online. 
Pseudo code, Web Tables and Figur es r efer enc e d in Se ctions 3 ,
 , and 7 , and data and code to r epr oduce the r esults of the Sec-
ions 6 and 7 are av ail ab le with this paper at the Biometrics web-
ite on Oxford Acade mic . 

F U N D I N G  

irst author was s upporte d in part by the “Dipart iment i Ec-
elle n ti 2023-2027” minis te rial funds (Italy). Las t author was
 upporte d in part by National Science Foundation grants DMS
952679. 

CO N F L I C T  O F  I N T E R E ST  

one de clare d. 

DATA  AVA  I L A  B I L I T Y  

he data, code, and the simulation results that support the find-
ngs in this pa pe r a re als o av ail ab le on G itHub at link https:
/github.com/Giov anniPo li/mvPTgp . 

R E F E R E N C E S  

d am s , S. , Diamond, J. R., Hamilton, E., Pohlmann, P. R., To l aney, S.
M., Chang, C. W., et al. (2019). A tezo liz umab p lus nab-paclit axe l
in the tr ea tme n t of met ast atic triple- ne gativ e breast cancer with 2-
year survival follo w -up: a phase 1b clinical trial. JAMA Oncol , 5, 
334–342. 

itchison , J. a nd She n, S. M. (1980). L og i stic - normal distribution s: s ome
prope rties a nd use s. B iometrika , 67, 261–272. 

rkenau , H. T. , Mart in-Liberal , J., Calvo, E., Penel, N., Krebs, M. G.,
He rbs t, R. S., et al. (2018). Ra m ucirumab plus pembrolizumab in pa-
tie n ts with pr eviously tr ea te d advanc e d or met ast atic biliary tract can-
ce r: Nonra ndomized, ope n-l abel, p has e I tri al ( JVDF). On cologist , 23,
1407–e136. 

ran s cum , A. J. and Han s on, T. E. (2008). Bayesian nonp aramet -
ric met a -an alysis using Pólya tre e mixture models . Biometrics , 64,
825–833. 

hris te n s e n , J. a nd Ma, L. (2019). A Bayesian hierarchical model for re-
l ated den sities by using Pólya tre es. Jou rnal of the Royal Sta t is t ic al Soci-
ety Ser ie s B: Sta t is t ic al Methodology , 82, 127–153. 

iana , A. , Matechou, E., Griffin, J., Arnold, T., Te na n, S. a nd Volponi, S.
(2023). A ge ne r al modeling fr amework for open wi ld life popul ation s
based on the Polya tree prior. Biometrics , 79, 2171–2183. 

oi , T. , Iw as a, S., Muro, K., Satoh, T., Hironaka, S., Esaki, T., et al. (2019).
P h ase 1 trial of av elum ab (a n ti - PD- L1) in Ja pa nese patie n ts with ad -
vanc e d sol id tumor s, includ ing dos e expan sion in patie n ts with gas tric
or gastroes op h ageal junction canc er : the JAVELI N Solid Tumor JPN
tri al. Gastric Can cer , 22, 817–827. 

lores , B. and Müller, P. (2024). Clustering and met a -analysis using a mix-
ture of depe nde n t linea r tail -fre e priors . preprin t a rXiv:2406.15912.
https://doi.org/10.48550/arXiv.2406.15912 

ountz ilas , E . , Hie p Vo, H., Mue lle r, P., Kurzrock, R. a nd Tsimbe ridou,
A.- M. (2023a). Dat as e t of p has e I a nd II imm unothe ra p y clinical trials

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae136#supplementary-data
https://github.com/GiovanniPoli/mvPTgp
https://doi.org/arXiv:2406.15912


12 � Biometrics , 2024, Vol. 80, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

etrics/article/80/4/ujae136/7914213 by D
ipartim

ento di sanita pubblica user on 02 D
ecem

ber 2024
used for a met a -analysis to assess the role of bioma rke rs in tr ea tme n t
outcomes in d iver se cancer s. Data in Brief , 51, 109698. 

Fountz ilas , E . , Vo, H. H., Mülle r, P., Kurzrock, R. a nd Tsimbe ridou, A.-M.
(2023b). Corr ela tion betw e en biom arkers and tr ea tment outcomes
in d iver se ca nce rs: a sys te ma tic r evie w and met a -an alysis of ph ase I
a nd II imm unothe ra p y clinical trials . Eu ro p ea n Jou rnal of Cancer , 189,
112927. 

Gr een wood , M. (1926). A r eport on the natur al dur ation of ca nce r. Re-
po rts o n Public Health an d M edica l Subjects , London.: H.M.S.O., (iv +
26 pp.). 

Hosmer , D. W. Jr , Lemeshow, S. and May, S. (2011). App l ied Su rvival
An a lysis: Regression M o deli ng of Ti me-to-Ev ent Data . Ho bo ken, NJ:
Wiley-In te rscie nce. 

Ja nji gia n , Y . Y . , Bendell, J., Calvo, E., Kim, J. W., Ascierto, P. A., Sh arm a, P.,
et al. (2018). Che ckm ate-032 study: Efficacy and s afe ty of niv olum ab
and niv olum ab plus ipilimum ab in patie n ts with metas tatic es op ha-
g og as tric ca nce r. J Clin Oncol , 36, 2836–2844. h ttps://doi.org/10.1
200/JCO.2017.76.6212 

Ja ra , A. a nd Ha n s on, T. E. (2011). A cl as s of mixture s of de pe nde n t tail -
fr ee pr oces s es. Biom etrika , 98, 553–566. 

Ja ra , A. , Ha n s on, T. E. and Le sa ffre, E . (2009). Robust ifying ge ne ral -
ized linear mixed models using a new cl as s of mixtures of m ultiva ri -
ate Pólya tre es. Jou rnal of Co mpu ta t io nal and Grap h ic al Sta t is t ics , 18,
838–860. 

Kap l an , E. L. and Meier, P. (1958). Nonparametric est imat ion from in-
comp le te o bs erv ation s. Jo urn a l of the Am erican S t atistica l Association ,
53, 457–481. 

Kim , Y. J. , Keam, B., Ock, C. Y., Song, S., Kim, M., Kim, S. H.,
et al. (2019). A phase II study of pembro liz umab and paclit axe l
in patie n ts with rela psed or refractory s mall-ce ll lung ca nce r. L ung
Cancer , 136, 122–128. https://doi.org/10.1016/j.lungcan.2019.08.
031 31494530 

Lavine , M. (1992). Some aspects of Pólya tree distributions for stat ist ical
modellin g. The Ann a ls of St a t is t ics , 20,1222–1235. 

Lavine , M. (1994). More aspects of Pólya tree distributions for stat ist ical
modellin g. The Ann a ls of St a t is t ics , 22, 1161–1176. 

LeBla nc , P. a nd Ma, L. (2022). Microbiome s ubc omm unity lea rning with
log i stic-tre e norm al late n t Dirichlet allocation. Biometrics , 79, 2321–
2332. 

Liu , S. V. , Ca mid ge, D. R., Gettinger, S. N., G i ac c one , G ., H eist, R. S., H odi,
F. S., et al. (2018). Long-term survival follo w -u p of atezol izumab in
c ombin ation with p l atinum-bas ed doub le t che mothe ra p y in patie n ts
with advanc e d non-sm all-c ell lung ca nce r. Eur J C ancer , 101, 114–122.
https://doi.org/10.1016/j.ejca.2018.06.033 

Marabelle , A. , Le, D. T., Ascierto, P. A., Di G i acomo, A., De Je sus-Acost a,
A., Delord, J. P. et al. (2020). Efficacy of pembro liz umab in patie n ts
with nonc olore ctal high micr osa t ellit e inst ability/mis ma tch r epair–
deficie n t ca nce r: r esults fr om the p has e II KE YNOTE-158 study. Jour-
n a l of Cl in ical Oncology , 38, 1. 

Marin , J.-M. , Pudlo, P., Robert, C. P. and R y der, R. J. (2012). Appr oxima te
Baye sian comput ational me thods. S ta t is t ics and Co mpu t ing , 22, 1167–
1180. 

Michiel s , S. , Piedboi s, P., Bur det t , S., Syz, N., Stewart , L. and Pignon,
J.-P. (2005). Met a -a nalysis whe n only the medi an surviv al times
are known: a comparison with individual patie n t dat a re s ults . In-
t erna t io nal Journal of Tec hno lo gy Assessment i n He alth Care , 21,
119–125. 

Murphy , K. P. (2012). M a chi ne Le a rn ing: A Pro b abilis t ic Perspe ct ive , Cam-
brige, MA: MIT Press. 

Pa rma r , M. K. , Torri, V. and Stewart, L. (1998). Extra ctin g s umm ary
s tatis tics to perform met a -analyse s of the publ ished l itera tur e for sur-
vival e ndpoin ts. Sta t is t ics in Me dici ne , 17, 2815–2834. 

Patel , S. P. and Kurzrock, R. (2015). PD-L1 expression as a pre dictiv e
bioma rke r in ca nce r imm unothe ra p y. Molec ular C an cer Th erapeu t ics ,
14, 847–856. 

Po ls on , N. G. , Scott, J. G . and Windle , J. (2013). Bayesia n infe re nce for lo-
g i stic model s using Pólya–Gamma l atent v ari ab les . Jou rnal of the Amer-
ic an Sta t is t ic al Associa t io n , 108, 1339–1349. 
Rasmus s en , C. E. and Wi l liams, C. K. (2006) Gaussi a n Proce sse s for Ma-
chi ne Le arni ng (Ad ap tiv e Co mpu ta t io n and M a chi ne Le arni ng ser ie s) ,
Ca mbrid ge, MA: MIT Press. 

Ruberu , T. L. M. , Braun, D., Pa rmi gia ni, G. a nd B isw as, S. (2024). Me t a -
analysis of breast cancer risk for indiv iduals w ith PALB2 pathogenic 
v ari ants. Gen et Epi dem iol . https://doi.org/10.1002/gepi.22561 

Schwa rze r , G. , Ca rpe n te r, J. R. a nd Rücke r, G. (2015) M et a-An a lysis
wit h R . Cham, Switz erland: S pring er Intern ation al Publishing, 
21–53. 

Segal , N. H. , Ou, S.I., Balma noukia n, A., Fury, M. G., Massarelli, E., 
Brahmer, J. R., et al. (2019). Safety and efficacy of durvalumab in pa- 
tie n ts with head and neck squamous cell car cinoma: r esults fr om a 
p has e I/II expan sion co hort. Eur J Can cer 109, 154–161. https://doi. 
org/10.1016/j.ejca.2018.12.029 

Sel l ke , T. , Bayarri, M. and Berger, J. O. (2001). Calibration of p val- 
ue s for te s ting precise n ull hypothe se s . T he America n Sta t is t ici a n , 55,
62–71. 

Sutton , A. J. and Abrams, K. R. (2001). Bayesian methods in met a - 
a nalysis a nd evide nce syn thesis. Sta t is t ic al Methods in Medical Re- 
search , 10, 277–303. 

Ta m ura , K. , Has egaw a, K., Kats um ata, N., Mats umoto, K., Mukai, H.,
Takahashi , S., et al . (2019). Efficacy and s afe ty of nivo lumab in 
Ja pa nese patie n ts with ute rine ce rvical ca nce r, ute rine corpus ca nce r,
or soft tissue sarc om a: Multic enter, open-l abel p has e 2 trial. Cancer Sci , 
110, 2894–2904. https://doi.org/10.1111/cas.14148 

Therneau , T. M. (2023). A Packa ge fo r Surviva l An a lysis in R. R p ackage
ver sion 3.5-7 . https://doi.org/10.32614/CRAN.package.s urv iv al 

Trippa , L. , Müller, P. and Jo hn s on, W. (2011). The multiv ari ate be ta
process a nd a n exte nsion of the Pólya tree model. Biometrika , 98, 
17–34. 

Viechtb a uer , W. (2010). Conducting met a -analyse s in R with the met a for 
Pa ckage. Jo urn a l of Sta t is t ic al Software , 36, 1–48. 

Wang , Z. , Mao , J . and Ma, L. (2022). Microbiome c omposition al an alysis 
with log i stic-tre e norm al mode ls. pre prin t, h ttps://a rxiv.org/abs/21 
06.15051v4 . 

Ya ng , M. , Ha n s on, T. and Christen s en, R. (2008). Nonparametric 
Baye sian e st imat ion of a biv ari ate den sity with interv al cen s ored d ata.
Co mpu ta t io nal Sta t is t ics and Data Analysis , 52, 5202–5214. 

A P P E N D I X A : P O ST E R I O R U P DAT E  V I A  

P Ò LYA  G A M M A  M O D E L  A U G  M E N  TAT I O N  

Let N 

(i ) 
ε d denote the number of o bs erv ation s in the interval 

B 

(i ) 
ε d . The pos te rior dis tri bution for Z ε d 0 = { Z 

( i ) 
ε d 0 } I i =1 depends on 

N 

(i ) 
ε d and N 

(i ) 
ε d 0 . The c ondition al poster ior distr ibution closely re- 

s emb les a lo g i stic r egr es sion . Le t A ε d denote the s e t of all co-
horts i for which at least one o bs erv a tion is r e c orde d in B 

(i ) 
ε d ,

and split Z ε d 0 ac c ording to A ε d into Z ε d 0 = Z 

1 
ε d 0 ∪ Z 

∅ 

ε d 0 . Not- 
ing that only studies i ∈ A contribute l ikel ihood factor s, this 
implies 

p( Z ε d 0 | ·) ∝ 

⎡ 

⎢ ⎢ ⎣ 

∏ 

i ∈ A ε d 

(
exp 

{ 
Z 

(i ) 
ε d 0 

} )N (i ) 
ε d 0 

(
1 + exp 

{
Z 

(i ) 
ε d 0 

})N (i ) 
ε d 

⎤ 

⎥ ⎥ ⎦ 

p( Z 

1 
ε d 0 ) p( Z 

∅ 

ε d 0 | Z 

1 
ε d 0 ) . 

The dat a au gme n tation s trategy of Po ls on e t al. ( 2013 ) is
the n imple me n ted as follows: 

(1) Sample ω i from p(ω i | Z 

1 
ε d 0 ) for each i ∈ A ε d indepen- 

de n tly using a Pòlya gamma. 
(2) Update Z 

(i ) 
ε d 0 for each i ∈ A ε d sampling from p( Z 

1 
ε d 0 | ω ) . 
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(3) Update Z 

(i ) 
ε d 0 for each i �∈ A ε d by s amp ling from p( Z 

∅ 

ε d 0 | 
Z 

1 
ε d 0 ) . The la t ter t ake s the form of a c ondition al m ulti - 

v ari ate normal. 

A P P E N D I X B : P O ST E R I O R U P DAT E  O F  

( L AT E N  T )  CO U N  TS  

Conside r a ge ne ric co hort i with (known) s amp le size N. Omit- 
ting the study-spec i fic indices i and (i ) , let C 1: N 

and T 1: N 

de- 
note the unknown patie n t level cen s oring and event times. We 
firs t conside r the c ondition al distribution of the comp le te d ata, 
ass uming th at both c en s oring and event-time distribution are 
known . Le t H(C j ) denote the ea rlie r, a nd G (T j ) the la t te r, a nd 

let s denote the triple (�, m, h ) implied by T 1: N 

, C 1: N 

and s o the 
o bs erv e d data. Then conditioning on all curre n tly imputed pa- 
ra mete r s, includ ing in partic ula r G itself, a nd the obse rv e d data 

w e h av e 

p ( T 1: N 

, C 1: N 

| · ) ∝ p ( s o | T 1: N 

, C 1: N 

) 
N ∏ 

j=1 

G 

(
T j 

)
H(C j ) 

= I ( s = s o ) 
N ∏ 

j=1 

G ( T j ) H( C j ) . 

We construct Markov chain Monte Carlos simulation to im- 
pute ( C 1: N 

, T 1: N 

) using two transition probabilities defined 

w ith the follow ing propos al distribution s. Propos al Q 1 pro- 
pose s a ne w eve n t a nd ce n s oring time for two randomly s e- 
le cte d s ubje cts r and s in the co hort. We us e T and C with- 
out su per s cript for the propos al, a nd T 

o , C 

o for the curre n tly 
impute d values . Q 1 ( T 1: N 

, C 1: N 

| T 

o 
1: N 

, C 

o 
1: N 

) = H 

(
C s 

)
G 

(
T s 

) ·
H 

(
C r 

)
G 

(
T r 

)
/ ( n ( n − 1)) implying ac c e pt ance probability 

α = min 

⎧ ⎨ 

⎩ 

1 , 
I ( s = s ′ ) 

∏ N 

j=1 G 

(
T j 

)
H(C j ) ∏ N 

j=1 G 

(
T 

o 
j 

)
H(C 

o 
j ) 

H 

(
C 

o 
s 
)

G 

(
T 

o 
s 
) × H 

(
C 

o 
r 
)

G 

(
T 

o 
r 
)

H 

(
C s 

)
G 

(
T s 

) × H 

(
C r 

)
G 

(
T r 

)
⎫ ⎬ 

⎭ 

= I ( s = s o ) . 

Proposal Q 2 randomly selects a subject s and proposes to “flip ”
the cen s oring indicator δs = I (T s < C s ) a nd the reb y cha n gin g 
the cen s oring pa t tern δ. Let ˜ T s = min { T s , C s } denote the implied 

o bs erv e d times, and let ˜ T (s −1) and 

˜ T (s +1) denote the largest ob- 

serv e d time less than 

˜ T s and the s malle st one gr ea ter than 

˜ T s , re- 
spe ctiv ely (all qua n tities a re known b y cond itioning on the c ur- 
re n tly curre n t imputed values). Then 

Q 2 ( T 1: N 

, C 1: N 

| T 

o 
1: N 

, C 

o 
1: N 

) = 

1 

N 

[ 
H 

(
C s | ˜ T 

o 
(s −1) < C s < 

˜ T 

o 
(s +1) 

)
G ( T s | C s < T s , C s ) 

] δo 
s 

×
[ 

G 

(
T s | ˜ T 

o 
(s −1) < T s < 

˜ T 

o 
(s +1) 

)
H ( C s | T s < C s , T s ) 

] 1 −δo 
s 

= 

1 

N 

⎡ 

⎣ 

H ( C s ) 

H 

(
˜ T 

o 
(s −1) < C s < 

˜ T 

o 
(s +1) 

) G ( T s ) 
G ( T s > C s | C s ) 

⎤ 

⎦ 

δo 
s 

×
⎡ 

⎣ 

G ( T s ) 

G 

(
˜ T 

o 
(s −1) < T s < 

˜ T 

o 
(s +1) 

) H ( C s ) 
H ( C s > T s | T s ) 

⎤ 

⎦ 

1 −δo 
s 

. (B1) 

This implies the ac c eptanc e probability α2 = min (1 , r) with 

r = I ( s = s o ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

G 

(
˜ T 

o 
( s −1 ) < T s < 

˜ T 

o 
( s +1 ) 

)
H ( C s > T s | T 

new 
s ) 

H 

(
˜ T 

o 
( s −1 ) < C s < 

˜ T 

o 
( s +1 ) 

)
G ( T s > C s | C 

o 
s ) 

if δo 
s = 1 

H 

(
˜ T 

o 
( s −1 ) < C s < 

˜ T 

o 
( s +1 ) 

)
G ( T s > C s | C 

new 
s ) 

G 

(
˜ T 

o 
( s −1 ) < T s < 

˜ T 

o 
( s +1 ) 

)
H ( C s > T s | T 

o 
s ) 

if δo 
s = 0 . 
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We divided the cohorts into three groups. (1) Cohorts with
nown cen s oring pa t tern (ie, no cen s oring or cen s oring only af-
e r the las t eve n t time); (2) cohor ts with repor ted n umbe r of
ve n ts or n umbe r of cen s ored outcomes; (3) co horts for which
nly the s amp le size is re c orde d. For (1) coun ts a re not up-
ate d sinc e they are known. For (2) the filp step is never pro-
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posed. For (3) one of the two proposal s i s randomly sele cte d
each time. 

To initialize T 1: N 

and C 1: N 

, we s ta rt with a c ens uring pa t tern
where all event times are o bs erv e d and we followed the follo w -
ing a rgume n t. Let T ( j) de note the orde r s tatis tic for T 1: N 

. We
ca n the n conside r a Ka p l a n–Meie r plot with the index j on the
horizontal axis (tha t is, plot ting against the indices of the order
s tatis tic ins te ad of the unkno wn actual times). We plot the es ti -
m ate d s urvival function and (1 − α) c onfidenc e interval bands
(sti l l plotted against j). Assuming w.l.o.g. N = 2 k + 1 , and as-
s uming th a t the r e c orde d data s = (�, m, h ) a re dete rmined as
the in te rs ection s of the three curves with the 0.5 threshold, we
ca n the n ide n tify the data (�, m, h ) as (T (L ) , T (k+1) , T (H) ) . The
r emaining da ta T j ar e ge ne ra ted fr om G , s ubje ct to the giv en
(T (L ) , T (k+1) , T (H) ) . Th at is, w e ge ne rate L − 1 eve n t times
T j ∼ G · I (T j < T (L ) ) etc. 

A P P E N D I X C : CO R R E L A  T I O N  M A  T R I X  

Recall the construction of R( x , x 

′ ) in §5 . Consider two cohort-
spec i fic cov ari at e vect ors x and x 

′ , a nd de note with k 1 ( x , x 

′ ) the
simil arity s core bas e d on m atching c ov ari ates. 

� k 1 ( x , x 

′ ) be a linear kernel with coherent weights obtained
using the one-hot encoding of the categorical v ari ab les. 
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� k 2 ( x , x 

′ ) be an indicator for x and x 

′ having matching 
ma rke r s tatus. 

� k 3 ( x , x 

′ ) be an indicator for x and x 

′ sharing the same 
study. 

� k 4 ( x , x 

′ ) be the ide n tity ke rnel, ie, an indicator for x and x 

′ 
referring to the same cohort. 

We combine the kernels to obtain the cov ari ance function s de- 
scribed in §5 : 

R( x , x 

′ ) = 

k 1 ( x , x 

′ ) · k 2 ( x , x 

′ ) + k 3 ( x , x 

′ ) + k 4 ( x , x 

′ ) 
8 

. 

R is positive definite since the sum and the product of positive 
se mi -definitive ke rnels a re positive se mi -definite a nd k 4 ( x , x 

′ ) is 
positive definite. 

For other choices of building the similarity score, the construc- 
tion R( x , x 

′ ) mi gh t not be p.d. In that case, it is alw ays pos sib le
to scale k 4 ( x , x 

′ ) by some c > 0 to ensure R to be p.d. This is the
case due to the following result. If A is a symmetric (I × I) ma- 
trix, the n the re is a c > 0 s uch th at B = [ A + c · I I×I ] is p.d. The
result is easy to prove by considering the normalized ei ge nvalues 
of B. See also Rasm usse n a nd Wi l liams ( 2006 ) for a d isc ussion of 
cov ari ance function s, keeping in mind that the require me n t for 
p.d. cov ari anc e m atric es is only ne e de d for the I c ohorts under
con sideration . 
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