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ABSTRACT

We develop a nonparametric Bayesian prior for a family of random probability measures by extending the Polya tree (PT) prior to ajoint prior for
aset of probability measures Gy, . . ., G,, suitable for meta-analysis with event-time outcomes. In the application to meta-analysis, G; is the event-
time distribution specific to study i. The proposed model defines a regression on study-specific covariates by introducing increased correlation
for any pair of studies with similar characteristics. The desired multivariate PT model is constructed by introducing a hierarchical prior on the
conditional splitting probabilities in the PT construction for each of the G;. The hierarchical prior replaces the independent beta priors for the
splitting probability in the PT construction with a Gaussian process prior for corresponding (logit) splitting probabilities across all studies. The
Gaussian process is indexed by study-specific covariates, introducing the desired dependence with increased correlation for similar studies. The
main feature of the proposed construction is (conditionally) conjugate posterior updating with commonly reported inference summaries for

event-time data. The construction is motivated by a meta-analysis over cancer immunotherapy studies.

KEYWORDS: Gaussian process; nonparametric inference; survival analysis.

1 INTRODUCTION

We introduce a multivariate Polya tree (PT) model for in-
ference on a set of dependent random distributions {G; i =
1, ..., n},suitable for meta-analysis of event-time data over mul-
tiple studies—or cohorts—in the motivating application. The
motivating application is a meta-analysis over # cohorts in S stud-
ies, with each study consisting of multiple patient cohorts (ie,
n > S) and G; being the distribution of progression-free sur-
vival (PFS) for patients in cohort i. The level of dependence
across G; is modeled as a function of cohort-specific covariate
vectors x;, including tumor type, treatment agent, study indica-
tor, biomarker status, and more. We model the dependence be-
tween cohort-specific event-time distributions G; by introduc-
ing a Gaussian process (GP) prior on the logit conditional split-
ting probabilities in the PT construction. We argue that a PT
prior is a natural model for meta-analysis with event-time out-
comes, which typically report a point estimate m; for the me-
dian event time and a corresponding confidence interval (¢;, h;).
We show that the triple s; = (¢;, m;, h;)T and the sample size
N; (under some assumptions) are equivalent to reporting counts
for the four intervals defined by ¢;, m; and h;. An appropriately
defined PT prior for such data allows for easy posterior updat-
ing, greatly facilitating inference. In a very natural and principled
way, the proposed model formalizes the integration of different
sources of knowledge, including data and clinical expert infor-

mation. Conditioning on the data is implemented through pos-
terior updating of G;, while expert knowledge about the similar-
ity of different cohorts is encoded in the GP covariance function.

Several extensions of the PT models to priors for families of
random probability measures have been proposed in the litera-
ture. In the upcoming discussion, we will refer to such models
generically as multivariate PT. Some of the earlier references ad-
dress the closely related problem of constructing PT priors for
a multivariate distributions, that is, by way of splitting probabil-
ities for multivariate intervals. This could in principle be used
to define a family of random probability measures by way of the
implied univariate marginals. For example, Yang et al. (2008) use
such PT’s to define a prior on a bivariate sample space. Jara et al.
(2009) use similar models as a nonparametric prior for random
effects in a semi-parametric regression. However, this approach
is only practicable for a small number of random probability
measures. A more general approach is proposed by Christensen
and Ma (2019), who generate dependent random probability
measures by adding an additional level in a hierarchical model,
with a nonparametric hyper-prior on the common base measure
for multiple PT’s. Another approach proposed in Trippa et al.
(2011) introduces a gamma process indexed by covariates. Ra-
tios of probabilities under the gamma process define marginally
beta-distributed splitting probabilities for dependent PT priors
with desired correlation across multiple cohorts arising from
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using the same underlying gamma process. Specifically in the
context of meta-analysis, Branscum and Hanson (2008) devel-
oped a Polya tree mixture model for the random effects prior.
Diana etal. (2023) introduce the replicate PT framework, which
models correlation by imposing constraints on the parameters
and replicating parts of the trees. In the approach that we pro-
pose in this article, we introduce correlations using the covari-
ance function of a GP, directly modeling the correlation between
splitting probabilities that define the cohort-specific event-time
distributions G;. The approach is most similar to the general de-
pendent tail-free process (DTFP) thatis defined in Jara and Han-
son (2011), who then proceed to propose and implement the
special case of the linear dependent tail-free process (LDTFP).
The LDTFP uses a normal linear regression for the logit splitting
probabilities. Flores and Miiller (2024) build a model for meta-
analysis using a nonparametric mixture of LDTFP’s. Our inter-
mediate model introduced in Section 3.2 is essentially another
special case of DTFP with a tailored prior that allows borrowing
information among heterogeneous cohorts.

The proposed construction is motivated by a meta-analysis
over 174 published studies on early-phase cancer immunother-
apy. Immunotherapy has shown promising efficacy results in sev-
eral types of cancer. However, only a subgroup of patients bene-
fit from this treatment, possibly due to patient and tumor hetero-
geneity. Depending on the tumor type, approximately 80% of pa-
tients do not respond or even develop hyper-progressive disease
(hyper-progression), while a proportion of patients who initially
responded eventually develop resistance. In addition, toxicity re-
mains an issue with some patients developing serious immune-
related adverse events. Finally, while the use of selected FDA-
approved biomarkers is known to be associated with improved
clinical outcomes in selecting patients receiving immunother-
apy (Marabelle et al., 2020; Patel and Kurzrock, 2015), most im-
munotherapy trials are still conducted without biomarker selec-
tion. These considerations suggest that the use of robust predic-
tive biomarkers (eg, gene expression or protein activation) could
enable optimal therapy recommendations for patients with di-
verse tumor types. This requires the development of study de-
signs that allow testing such hypotheses and provide inference
on promising biomarkers. However, published studies are sys-
tematically underpowered to test hypotheses about biomarker
subgroups. In this situation, meta-analysis, that is, the pooling of
information across multiple studies, may provide useful.

Standard methods for meta-analysis are based on weighted lin-
ear regression with random effects (Schwarzer et al., 2015; Sut-
ton and Abrams, 2001; Viechtbauer, 2010). See Ruberu et al.
(2023) for an example of a recent application for cancer studies
reporting relative risks, including a careful construction to ac-
commodate different reporting modalities across studies. They
implement meta-analysis using a parametric Bayesian inference
model. Implementations of meta-analysis specifically for sur-
vival endpoints are discussed, for example, in Parmar et al.
(1998) and Michiels et al. (2005). In particular, Michiels et al.
(2005) discuss meta-analysis when only the median survival
times are reported, including meta-analysis based on log median
ratios across two conditions. This approach was used in Fountzi-
las et al. (2023b) to analyze same data as in our motivating ap-
plication. We argue that such analysis fails to effectively model

the heterogeneity of the data. An alternative to account for some
of this heterogeneity could be the use of a parametric meta-
regression model, but the small number of observations (espe-
cially for rare tumor types and less commonly used agents) lim-
its the meaningful use of meta-regression. The proposed method
introduces a practically feasible, fully nonparametric alternative
in which information sharing across studies is established in a
principled manner within the framework of an encompassing

probability model.

2 A META-ANALYSIS OF CANCER
IMMUNOTHERAPY STUDIES

We analyze data from a meta-analysis and systematic review
of phase I/II clinical trials assessing the effect of biomarkers
on clinical outcomes in patients with solid tumors (Fountzilas
et al,, 2023a). The full data is available from Fountzilas et al.
(2023b). The analysis did not aim to demonstrate whether spe-
cific biomarkers are predictive of benefit from immunotherapy.
Such an analysis would be of limited validity for rarely evaluated
biomarkers. The goal was to determine whether, in general, the
selection of patients based on biomarkers could be associated
with clinical benefit. Data were collected using a PubMed search
for phase I/II cancer clinical trials evaluating immune check-
pointinhibitors approved by FDA between 2018 and 2020. Only
studies that reported summaries stratified by biomarker status
were selected. In total, 174 clinical studies with a total of 19 178
patient responses were included in the analysis in Fountzilas
et al. (2023b). Studies investigated several biomarkers, includ-
ing PD-L1 expression (111 studies), tumor mutational burden
(20 studies), and microsatellite instability/mismatch repair de-
ficiency (10 studies).

In this analysis we focus on progression-free survival (PES)
as a particular endpoint, which is reported by S = 33 studies,
for a total of n = 84 cohorts. Here, a cohort refers to a subset
of patients in a study for which results are reported separately,
including in particular marker-positive and -negative cohorts.
However, some studies break down results by additional char-
acteristics beyond biomarker status, thereby contributing with
more than two cohorts. The reported summaries for PES include
a point estimate for the median PFS (m;) and a corresponding
confidence interval (¢;, h;) for each cohort,i = 1, ..., n.Inthe
proposed inference approach, we model the unknown underly-
ing distribution G; of PFS that generated event times y;; for N;
patients in cohort i. However, posterior updating can only condi-
tion on the available summaries (mm;, £;, ;) and the known sam-
ple size N;. Asin most meta-analyses, patient-level data y;; are not
available.

Leti" and i~ denote the marker-positive and marker-negative
cohorts of the same study, that is, x;+ and ;- differ only by
biomarker status. Let G;” and G; denote the corresponding
event-time distributions with medians M;" and M; . The main
inference goal is the comparison of medians, ie, inference about
the hypothesis M;” > M;", formalizing the motivating question
about the use of biomarkers in cancer immunotherapy. The pro-
posed multivariate PT model represents an attractive statisti-
cal inference approach in this context, as it allows evaluation
of the likelihood function for (m;, ¢;, h;) and (conditionally)
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conjugate posterior updating. As a side benefit, the borrowing of
strength across cohorts significantly improves inference for rare
conditions, and allows more precise inference, for example, for
event-time distributions for patients with rare tumor types, or
less commonly used treatment agents.

3 AMULTIVARIATE POLYA TREE FOR
EVENT-TIME OUTCOMES

We first introduce notation by way of reviewing the construc-
tion of a univariate PT prior in Section 3.1. In Section 3.2, we
review the construction of the DTFP of Jaraand Hanson (2011),
which extends the construction to a multivariate PT with com-
mon partitioning subsets, which is then finally, in Section 4, ex-
tended to allow for different partitioning subsets for each distri-
bution. The latter is needed for the desired meta-analysis with
event-time data.

3.1 Univariate Polya trees

The PT (Lavine, 1992; 1994) is a prior distribution for a random
probability measure G defined over a sample space S. It is con-
structed recursively using nested partitions 7y = {B,....,; e €
{0,1},£=1,...,d},d=1,2, ..., of the sample space, start-
ing with § = By U By and recursively refining the partition with
Be,..; = Bey.iego U Bg,..p1- That is, Bg,...e,0 and By, ....;1 are de-
fined by splitting B,, ..., into a left and right binary partition-
ing subset. Following standard notation, we use subscript 0 for
left and 1 for right partitions. Weuse g4 = ¢; - - - ¢4 € {0, 1} to
uniquely identify a partitioning subset B,, € 7,4. A prior model
on G is implicitly defined by a prior on the conditional split-
ting probabilities Y; 0 = G(Be,0 | Be, ), together with the choice
of the partitioning subsets B,,. The standard PT prior assumes
Ye,0 ~ Be(te 0, ®e,1) (and Ye,; = 1 — Yy 0). The construction
can be described as a sequence of increasingly refined random
histograms, with bins defined by B,, and corresponding proba-
bilities G (B, d) = 1_[?:1 Y, ....,, and is illustrated in Web Figure S
in the online Supplementary Materials.

The construction defines a random probability measure G ~
PT(A, IT), where A = {0t )0, 2,1 : d = 1,2, ...} is the set
of hyper-parameters that index the beta priors on Yz and IT =
{mq: d=1,2,...} is the nested partition sequence. The hy-
perparameters A and IT can be chosen to ensure a desired prior
mean, E[G] = Gy. Expressing prior information by way of a cen-
tering distribution or prior mean is a common feature in non-
parametric Bayesian models. In the PT model, there are two
main strategies to achieve a desired prior centering. The first
is to fix IT and adjust the hyperparameters (0, @1 ) to en-
sure E[Y,,0] = Go(Bg,0 | B, ). The alternative strategy is to fix
A to ensure E[Y; 0] = 0.5 and then achieve the desired prior
centering by using dyadic quantiles under Gy as partitioning
subsets, that is; defining B0 such that Go(Be, | Be,) = 0.5
(Lavine, 1992; 1994). A common choice for &, in the latter case
isoe,0 = e, = ¢+ (d + 1)%, which ensures a continuous ran-
dom distribution under a PT prior. The hyperparameter c is a
scalar precision parameter, which is widely discussed in the PT
literature. We will later use both strategies. We use fixed parti-
tioning subsets for levels d = 1,2 (matching the intervals de-
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fined by ¢;, m; and h;), and dyadic splits for d > 2. PT priors
have several attractive and useful properties, including conju-
gacy under ii.d. sampling and flexibility in encoding prior be-
liefs. Compared to other nonparametric priors, the main draw-
back of the PT model is the lack of smoothness of the density
of G. However, this is of less concern in survival analysis, as the
primary target is often the cumulative density function or, equiv-
alently, the survival function shown in the Kaplan-Meier curve.

3.2 Multivariate Polya tree with Gaussian process
dependence

Jaraand Hanson (2011) introduce a prior for a family of random
probability measures {G;; i = 1, ..., I} based on a generaliza-
tion of a univariate PT prior. We review their construction, in-
troducing some variations in anticipation of the next extension.
In all variations, G; remains a random probability measure over a
sample space S with (at least approximately) a marginal PT prior.

Recall that in the motivating application n is the number of
cohorts with available data on PFS. In anticipation of poste-
rior predictive inference for future studies, we are setting up
the model for I > n cohorts, including cohorts indexed by i €
{n+1, ..., I} without observed data. We first set up a model
sharing a common partitioning sequence I across all i. Let then

Yggig = G;(B; 0 | Be, ) denote the splitting probabilities under G;

and let n(p) = log{ p (1 — p)~'} denote a logistic link func-

tion. The model maintains independence of splitting probabili-

ties Yg(i) for different partitioning subsets B, within the same tree,
but allows the splitting probabilities for the same ¢ to be corre-
lated across i. This is achieved by introducing a Gaussian pro-

cess (GP) prior on Zglg =7 (Y(i) )- The GPis indexed by cohort-

€40
specific covariates a; and replaces the independent beta prior of
the univariate PT construction. That is, we assume {Zg;)o} xex ™~
GP (4,0, Kej0) with mean function (.o and covariance func-
tion K, (see below for ¢ 0 and K ). There is a separate, inde-
pendent GP prior for each £40 = € - - - €40 (and recall that any

Ysgil) isimplied as 1 — Yg(dig). Dependence is limited to partition-
ing subsets up to a certain depth D of the tree, with GP priors
for each £,0 up to level D, and independent beta priors beyond.
We write (G, ..., G;) ~ mvPTgp(I1, D, K, A). The param-
eter Kis theset of 2P — 1 pairs of mean and covariance functions
(Mgdo (+): Kepo (-, )) that define the GP priors. The parameter I'1
is the (common) nested partition sequence. Finally, the set A is
defined as in the univariate PT prior and collects the parameters
Q¢ 0, 0,1 for d > D.Posterior updating is similar to the univari-
ate PT and depends on the counts of observations in each sub-

interval of I1. Logit splitting probabilities Zé;)o associated with
the same sequence &0 are dependent across i (ie, cohorts) and
it is convenient to sample them jointly. Using a logit link allows
easy posterior updates using the Polya-Gamma sampler intro-
duced by Polson et al. (2013). The same tree-based logit normal
is introduced as logistic-tree normal in Wang et al. (2022) and
LeBlanc and Ma (2022), where it is used as a prior for categori-
cal probabilities in a mixed membership model.

For the hyperparameters, we propose choices that imply a de-
sired marginal distribution for G;, similar to the univariate PT.
For details, see below (in the context of setting up marginal
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moments [4g,0 and afd , for the GP prior). For the shared nested
partition sequence IT we use the dyadic quantiles of a base mea-
sure Go. Additionally, for &, € {0, l}d atlevelsd =1,...,D
we need a covariance function K (-, -) and mean process
Hego0(+) for the GP prior. We factor the covariance function as
Keo(x, &) = 0o - R(x, &), and first consider the moments of
the marginal distribution Zg:)o ~ N(fte,0, 07,9)- Our choice is
based on fixing the parameters (1,0, 0.82;1 o) to approximately

match a Be(og,0, ®¢,1) prior on n_l(Zg)O), that is, the prior
under a univariate PT. Although beta and logistic-normal dis-
tributions are never exactly equal, any beta distribution can be
approximated with the logistic-normal distribution that mini-
mizes Kullback-Leibler divergence (Aitchison and Shen, 1980).
Let ¢ and v denote the digamma and trigamma functions,
respectively. We use i, 0(x) = ¥ (c- [d+ 1]*) — ¥ (c- [d +
1?) =0ando; =2 - ¥'(c- [d + 1]*). Having specified the
marginal moments j4,,0 and ogzd o» we are left to specify R(x, ),
ie, the correlation between logit-transformed splitting probabil-
ities for cohorts with covariates # and &’. The correlation func-
tion R(x, ") is used to introduce clinical expert judgment on
similarity of the event-time distributions G;. See Section S for an
example of constructing R («, &’) tailored to our application. For
levelsd > D we define partitioning subsets B, o and beta param-
eters o0, Os,1 to achieve a desired prior mean Gy as described
in Section 3.1, using &, = cd*.In summary, R (x, ") introduces
clinical expertjudgment on how similar event-time distributions
for different cohorts are likely to be, and the precision parameter
cand the centering measure Gy fix prior uncertainty and expecta-
tion of the marginal prior on G;. Defining prior elicitation for the
GP parameters by approximating the beta prior in the standard
PT construction allows us to use the same c and G, to charac-
terize splitting probabilities across all levels, including d = 1, 2
with the logit-normal GP prior as well as d > 2 with the beta
prior.

If desired, it is possible to define hyperpriors and potentially
learn about parameters in the covariance functions (Murphy,
2012, Chapter 15). However, this possibility is not explored
here. Finally, let B C A denote any two nested subsets, and let
Z = {zW)_, with z®) = n{G;(B | A)}. Via Monte Carlo prior
simulation, the proposed model allows to evaluate E[Z()] and
Cov(2W, 1)) for any i, . We shall use this later. Pseudo code
for this prior simulation is available online as Supplementary M
aterials. Figure 1 shows a random sample (Gi,i=1,...,20)
from a mvPT for two different correlation matrices R(x, x),
and illustrates how two marginal random distributions are con-

structed from G,-(Bg?o | Bg? ).

4 APOLYA TREE PRIOR FOR META-ANALYSIS
WITH EVENT-TIME DATA

4.1 Multivariate Polya tree with study-specific partitions
Recall the format of the data with s; = ({;, m;, h;) and sam-
ple size N; for each cohort in the meta-analysis. We assume
that m; and (€;, h;) were determined as the intersections of the
Kaplan-Meier (KM) survival curve (Kaplan and Meier, 1958)
and the corresponding error bounds, respectively, with the 0.5
threshold. We assume that the error bounds are based on the

KM estimator and the Greenwood formula (Greenwood, 1926;
Hosmer et al,, 2011). Conditioning on a censoring pattern (ie,
the order in which observed event times and censoring events
occur—see below about updating this assumption) s; implies
counts of observations in each of the four sub-intervals deter-
mined by (¢;, m;, h;). If these subintervals match the partition-
ing subsets in the first two levels of the marginal PT construction,
then the counts are a sufficient statistic for the posterior distri-
bution ono(i), YO((;), Yl(oi), i=1,...,n,ie to update knowledge
on G;. We therefore replace the shared partition sequence IT of
the mvPT¢p(I1, D, K, A) by a set of cohort-specific partition se-
quences {T1;}_,, with nl(i) = {[0, m;), [m;, +00)} and nz(i) =
{[0, £,), [£;, m;), [my, h;), [h;, +00)}. Nested partitions 774 at
deeper levels d > 2 are constructed by dyadic splits of the par-
ent set B such that G, (Bg? | Bg:{l) = 0.5. We refer to the

€d—1
extended model as mvPTep({I1;}_,, D, K, A), with {IT;}_,
replacing the common shared partitioning sequence IT of the
earlier construction. The extension requires careful considera-
tion of the mean process Mg;)o and the covariance function KS%.
Note the added superindex for cohort i, to allow for different

Bgi). The elicitation involves expected values and covariances for
each (logit transformed) conditional probability G,v(B(;)0 | Bgi) )

€

and Gy (Bgig | Bg) ), which now refer to possibly very different

d
sets Bgi)o and Bg?o. A principled and coherent specification of
such quantities is challenging. We use the following construc-
tion to reduce the problem to the earlier case of shared IT. We
first consider a process with shared partitions G* = ( G i=
1,...,I) ~mvPTgp(I1, D, K, A), defined as in the previous
section.

Under G* we can then by the earlier discussed prior simula-
tion evaluate probabilities for any events. In particular, we can
evaluate expected values and covariances for logit conditional
probabilities G,-(Bg?o | Bg;)), as needed for the construction of
mVPTGP({Hi},I:p D, ’C, A)

Finally, we have to select partition sequences I1; for future co-
horts (i > n). We proceed with ¢; defined as the median of ¢,
k=1, ..., n and similarly for m; and h;.

4.2 Censoring patterns and posterior inference

One feature of the proposed model is that it allows to condition
on all available information, beyond only the median point esti-
mates. Instead, we condition on the entire reported triple s;, in-
cluding confidence intervals (if available). To map s; to counts
used for posterior updating of PT parameters, we need to make
assumptions about the censoring pattern (ie, the sequence of ob-
served and censored event times). We start by assuming a dis-
tribution for censoring times, C](-i) ~ H for patient j in study
(cohort) i. To update an assumed censoring pattern, we employ
an ABC-like (Marin et al., 2012) Metropolis-Hastings scheme.
Specifically, we start with an initial assumption for the censoring
pattern and then update following Metropolis-Hastings transi-
tion probabilities, accepting only transitions that accurately re-
produce the observed triple (¢;, m;, h;). The latter is assumed to
be derived from a Kaplan-Meier estimator. We refer to the sim-
ulation as an ABC algorithm since we generate new values for

Cgi) and Tj(i) accepting only those that imply a match with the
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FIGURE 1 The top four panels (box a) show random samples (Gy, .. ., G,) from a mvPT prior, using two different choices of R(x, x”)

(plotted in the square insert in the left panels). The left panels show the densities. The right panels show the survival functions. Both use

Go = Exp(«x | = 1) and precision parameter ¢ = S. For the first row, R(x, ) is the identity (implying in particular that G; are
exchangeable); in the second row it is block diagonal (the G; are partially exchangeable within each block, for example , marker-positive and
-negative cohorts). The bottom panels (box b) show the random probabilities G; (Bg;)) ford = 1, 2 (in the bottom two rows) fori # i’ (in the
two columns). Splitting probabilities Yg(;) for subsets Bg? marked with the same color are dependent (across i), unfilled bins are deterministic

given the other bins (ie, YW

-0 implies Y;;l) ). The overlaid density curve shows the density defined by the limit as d — oc.
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reported statistics s;. See Appendix B for details of this simula-
tion, including the initialization.

Keep in mind that this simulation is only imputing censoring
patterns; there is no notion of the posterior simulation of param-
eters. This simulation-based approach enables us to accommo-
date different levels of information provided for each study. For
example, for a study that reports no censoring events, we use de-
terministic counts, while a study that reports the number of cen-
soring events can be treated differently from a study that reports
no details on censoring. Finally, for a study that reports confi-
dence intervals for different coverage probability than others, it
is straightforward to account for this choice in the derivation of
point estimate and confidence intervals for the median from the
Kaplan—Meier plot.

4.3 Posterior summaries

Recall that G; is the distribution of event times in cohort i,
with covariates x; and that the model is jointly defined on
Gi,...,G, (i=1,...,nare the cohorts with observed data)
and G,41, ..., Gy (future cohorts). Let Md(P) be the median
of a probability measure P, let M; = Md(G;) denote the me-
dian of G; and let S = {s;}__; denote the observed data. We
suggest reporting p(M; | S) to summarize inference under the
proposed model. If point estimates are needed, we use the pos-
terior median M; = Md{ p(M;|S) } For the observed cohorts,
i=1,...,n,the posterior distribution p(M; | S) summarizes
updated knowledge. However, from an inferential point of view,
the main interest is on the posterior distribution p(M; | S) for
future cohorts i = n+ 1, ..., I. Moreover, research often fo-
cuses on populations that correspond to multiple covariate vec-
tors x;, that is; mixtures of multiple future cohorts iwithi € A C
{n+1,...,I}. For example, inference on marker-positive pa-
tients is naturally represented as a mixture where A is the set
of all marker-positive future cohorts. Event-time distributions
for such populations are implicitly defined as P = ), _, ; G,
weighting different cohorts with possibly non-uniform weights
;.

One aspect to keep in mind with inference on M;, i > n, is
that p(M; | S) also includes study-to-study variation. In con-
trast, inference under classical meta-regression usually reports
P-values for fixed effects 0, that is, an average effect for future
studies with particular characteristics x. To define a comparable
inference summary under the proposed nonparametric model,
let 0 = {Yg(dh) :d=1,...; h=1,...,n} denote the condi-
tional splitting probabilities for the observed studies and define
G =E[G;|9]andM; = Md(G;),i=n+1,...,1 Then M,
is a function of @ and p(M; | S) reports uncertainty on the fu-
ture cohorts without cohort-to-cohort variation. In the upcom-
ing results, we report summaries of p(M; | S) or credible inter-
vals based on it as alternatives to p(M; | S).

Recall the definition of Gi+ , G, MI+ and M as the event-time
distributions and corresponding medians for matching marker-

positive and marker-negative cohorts. Similarly, let P* and P~
and corresponding medians M; , M refer to mixture popula-
tions differing only by the presence of biomarkers. Inference
summaries reported in the upcoming discussion will focus on
the paired comparison of M,+ vs. M; and M;," vs. My . Alterna-
tively, we will also report similar quantities for the expected val-

— = — —
ues, M; vs.M; and M; vs. Mp.

S CORRELATION FUNCTION AND PRIOR
SPECIFICATION

We describe the elicitation of the mvPT ¢p prior that is used for
the motivating meta-analysis problem and in the simulations,
with minor adjustments. In the studies under consideration, me-
dian PFS is usually reported for within the first few months. We
therefore use a half-Cauchy with o = 3.5 (in months) as cen-
tering distribution Gy to allow a heavy right tail. Next, we fix ¢
at a weakly informative value ¢ = S, which implies an a priori
95% credible interval of [1.08; 11.52] on the median for a new
study G..

We construct the correlation function R(x, «’) to represent
clinical judgment about the level of similarity between the event-
time distributions for any pair of cohorts i, i'. We first describe
the construction of R(x, ") for any two cohorts with matching
biomarker status. We proceed by introducing an additive similar-
ity score, adding points for each matching categorical covariate
xj = x’l , which is then rescaled to a unit maximum. The covari-
ates that are expected to have the strongest association with PFS
are tumor type and agent. If cohorts i and i’ share either of these
two characteristics, we record an increment of 2 points each
for the similarity score. Tumor type includes “other.” Two co-
horts with “other” as the tumor type are considered unmatched.
Covariates that are judged to be less likely strongly associated
with PFS include biomarkers status, study phase (1, 1/2, or 2),
line of therapy (1, > 2, or any), and type of therapy (combina-
tion, combination-or-monotherapy, or monotherapy). For each
matching secondary covariate, we record a 0.5 increment of the
similarity score. Next, 1 point was added for cohorts i, and i’ that
are part of the same study, and an extra point is added on the di-
agonal for i = i’ to add a nugget in the implied covariance func-
tion. For cohorts i, i with different biomarker status, we only ap-
ply the rule about the shared study, recording a similarity score
of 1 point for cohorts within the same study. The reduced cor-
relation for cohorts with different biomarker status avoids over-
smoothing of biomarker effects.

The described construction implies a maximum similarity
score of 8. Rescaling to a maximum of 1 defines R(x, ). In
summary, letting @; denote the previously introduced covariate-
specific weights, and assuming that «;; is a study indicator, and
x; is an indicator for biomarker status, we define R(x;, x;) for
x; = (x;1,...,%5) and &y = (x;1, ..., x;7) as follows:

R(xh xi/) =

U(l = l/) + w; - U(xil = x,-/l) + U(x,-z = x,'/z) . Zi:Z (1)} . ﬂ(x,] = x,-rj)

(1)
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TABLE 1 Simulation setup.
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Tumor Type 1 Tumor Type 2 Tumor Type 3
Exp(}) HN (L) 0.5 Exp(}) + 0.5 HA(X)
A0 A =(254+0.35) o M =0340535) o M =(354+035) o
){:250{1 )»72301, )\.7235(1,
Si =35 Si =S5 S,’ =3
Al M =0254+05+1) « M=0B4+05+1) o M =0354+054+1) o
A=0254+1) o AM=0B+1) o M =0B5+1) «
S,‘ =5 Si =35 S,’ =2

The table shows the assumed cohort-specific medians. Each event-time distributions are parameterized in terms of the median A. Parameters o; ~
14(0.8, 1.2) are study-specific multiplicative effect on the median. S; reports the number of simulzated studies sampled with each distribution.

See Appendix C for an argument that R defines a positive semi-
definite correlation matrix, and for suggested adjustments if a
similar construction does not define a positive definite matrix.
In our application, we apply (1) only for categorical covariates,
but a similar kernel construction can be adapted for continuous
variables. Also, keep in mind that R(x, ") is only used to con-
struct a valid I x I covariance matrix for the given studies. The
emphasis is on constructing a suitable R (x, &”) to represent prior
judgment.

The level of censoring for PES is only moderate. We assume an
exponential distribution with mean 10 for the censoring distri-
bution in all cohorts.

6 SIMULATION STUDY

The simulations aim to assess inference in a realistic scenario that
calls for standard meta-analysis, and to show that the assumed
dependence across cohorts can compensate for the more restric-
tive borrowing of strength under a parametric model. We con-
struct a simulation truth to mimic the setup in the motivating
study, using the Kaplan—-Meier estimator to generate simulated
datasets of summaries s; = (¢;, m;, h;) and for each hypotheti-
cal dataset, we compare inference under the mvPT model versus
standard methods for meta-analysis.

We assume three tumor types (TT1, TT2, TT3), and two
agents (A0, A1), with Al being associated with higher median
PFS. The resulting six cases were further divided on the basis of
biomarker status (positive or negative), resulting in 12 types of
cohorts shown in Table 1. Biomarker-positive status is assumed
to add a positive offset of 0.5 to the median. Simulating a certain
number of studies (see Table 1) for each of the combinations of
tumor and agent, we generated a total of 25 hypothetical stud-
ies, with a marker-positive and a marker-negative cohort for each
study, resulting in a total of n = 50 cohorts for each simulated
dataset. Finally, for each study, we generate a study-specific mul-
tiplicative random effect on the median, o; ~ 2/(0.8, 1.2). See
Table 1 for the assumed true medians (before applying the study-
specific random effects) for each of the 12 unique combinations
of covariates. We then simulated event times for N; = 20 sub-
jects for each of the 50 cohorts, using the distributions indicated
in Table 1. Finally, using the survfit function in the R pack-
age survival (Therneau, 2023), we evaluated point estimates m;
and corresponding 95% confidence intervals (¢;, h;) for median
PES for each cohort. The triples s; are the data. For simplicity, we
omitted censoring.

We used the same prior distributions as for the data analy-
sis with the real data, namely ¢ = S and a half Cauchy with
scale 3.5 for Gy. We construct a correlation function R(x, x")
as in Section S, using only the rules for tumor type, agent, and
biomarker status. We add future cohorts, i = n+ 1, ..., I, in-
cluding one cohort for each of the 12 unique combinations of
covariates, ie, I = n + 12. The choice of R(x, &’) is an impor-
tant step in the model construction, representing informative
prior expert judgment. To explore the impact of this choice,
we carried out some sensitivity analysis with alternative corre-
lation functions on the same simulated data. These simulations
are summarized in the online Supplementary Materials. The
simulations show noticable differences in inference under alter-
native constructions, confirming the importance of an expert-
informed construction, as described. To summarize posterior
inference on specific tumor-agent pairs, we evaluate log ratios
of median PFS, log(M;" /M;), for the 12 future cohorts, com-
paring marker-positive and -negative pairs (i*, i~) of cohorts
with matching tumor type and agent. We also evaluate an over-
all effect of biomarker status by considering a mixture of the
6 marker-positive (P") and the 6 marker-negative (P~) future
cohorts using weights proportional to S; in Table 1. We evalu-
ate point estimates as posterior medians of log(M;" /M, ) and
log(M; /Mj, ), respectively. We used log median ratios because
those are used in the classical meta-regressions that we report
for comparison. For the latter, we used a random effects model
with just the intercept (ie, that estimates the overall effect) and
a meta-regression including an interaction of tumor type and
agent (ie, including a parameter for each the six combinations).
The data are the log ratios of median survival times reported in
the studies (Michiels et al., 2005). For both models, we used
the implementation in the R package metafor (Viechtbauer,
2010).

Figure 2 shows box-plots of the bias for the different estimates
for the log median ratios. Each boxplot shows the realized bias
of the posterior estimated log ratios over 50 repeat simulations.
For comparison, we also report estimates under a classical meta-
regression. The classical meta-regression results show high vari-
ability in the estimates across simulations, which is substantially
reduced by the proposed model-based inference. This is due to
shrinkage towards the prior and the borrowing of strength across
similar cohorts. The increased precision is achieved despite the
greater flexibility and in the absence of parametric assumptions
in the multivariate mvPT model. Figure 2 suggests that this is due
to a trade-off with increased average bias over simulations under
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FIGURE 2 Box-plots of realized bias over 50 repeat simulations, for different point estimates. The top panel shows bias for the posterior median
oflog (Ml+ /M ) The middle panel shows bias for the posterior median of log (]\711-+ /M;"). The bottom panel shows bias for log median ratios
under meta-regression approach. For meta-regression bias is calculated using the fitted expected values. In all three plots, the + marks the bias
of prior expected values (ie, log(1) = 0). The shifts are due to the different simulation truths of the different covariate combinations.

the proposed approach. More summaries of absolute bias across
simulations are available in the online Supplementary Materials.
We avoid comparing results between tumor-agent pairs, as the
interpretation of such comparisons hinge on the specific simula-
tion truth and sample sizes, and thus would require substantially
more simulations scenarios. Finally, keeping in mind that the
main inference target is the evaluation of the hypothesis M;" >
M;", we also assessed methods in terms of inference on this hy-
pothesis by comparing Bayes factors and Bayes factor bounds
(Sellke et al., 2001) for classical inference. The latter are eval-

uated using p-values from a meta-regression. These results are
shown in the online Supplementary Materials.

7 RESULTS FOR THE CANCER
IMMUNOTHERAPY META-ANALYSIS

Opverall, the results support a recommendation for including rel-
evant biomarkers in the design of cancer immunotherapy stud-
ies. For almost all tumor-agent pairs, we find high posterior
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FIGURE 3 Immunotherapies. The top panel shows posterior distributions for Mj; and Mj, for a hypothetical future study, averaging over

study characteristics. The lower (small) panels show the same for M;" and M;  for hypothetical future studies, arranged by agent and tumor

type. Here hybrid treatment refers to studies with multiple agents, with (1) for ipilimumab or nivolumab and (2) for pembrolizumab or

nivolumab. Empty facets indicate there was no study for the tumor agent pair.
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FIGURE 4 Immunotherapies. Summary of posterior inference for the included studies. Intervals represented with 4 and solid lines are
credible intervals for median PFS. Intervals represented with x and dotted lines are confidence intervals reported in the original articles. Only
for original summaries, non-observed lower limits are marked with 0 and non-observed upper limits with 4+-00. The confidence level for all
intervals is 95% unless otherwise specified. Marker-positive and marker-negative cohorts are marked in different colours. .

probability for higher median PFS for marker-positive than for
marker-negative patients, ie, for M;' > M, .Here, P = Z ; G;,
for a mixture over all future studies with maker-positive and
-negative status, respectively, as described in Section 4.3. Fig-
ure 3 reports inference for hypothetical future studies, arranged

by combinations of tumor and agent (small panels) and overall
(large panel). Omitted minor covariates (except for biomarker
status) are fixed at the most common observed level. Web Fig-
ure 6 in the supporting materials reports the same as Figure 3,
but for M;; and M, .
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Our meta-analysis of PFS in immunotherapy studies supports
the hypothesis that biomarkers can be useful to identify patients
who will benefit from immune checkpoint inhibitors. However,
both the effect size and confidence in the results vary depending
x;. In particular, there is evidence for an interaction of agent and
tumor type. The results are strongest for melanoma and robust
for non-small cell lung cancer (NSCLC). For breast cancer (only
two studies) and cancers classified as “other” results are concor-
dant with clinical practice but with less strong evidence. We find
a protective effect for most agents. The results for atezolizumab
and avelumab are the most consistent across tumors. In con-
trast, for ipilimumab or nivolumab (hybrid treatment) and pem-
brolizumab, the data does not provide equally strong evidence.
Posterior credible intervals (one-sided) are available in the on-
line Supplementary Materials. Results on pembrolizumab and
breast cancer conflict with clinical experience that would suggest
an effect. This is likely due to the sample sizes of the cohorts in
the study reported by Adams et al. (2019). These cohorts report
equally low estimates for both medians, M and M; , with large
sample sizes (105 marker-positive and 67 marker-negative pa-
tients), which implies higher shrinkage of the medians of future
cohorts with breast cancer and pembrolizumab towards these
point estimates. This observation highlights the importance of
the covariance function and its local behavior.

Figure 4 summarizes inference for the original studies included
in Fountzilas et al. (2023b). For each study, the figure compares
posterior credible intervals for M;" and M; together with the
confidence intervals in the original papers. For most studies, the
posterior credible intervals for M;" are higher than those for M; .
In particular, for some studies that reported M;" < M, in the
original papers, posterior inference switched the order of the
point estimates borrowing strength across all cohorts (Liu et al.,
2018; Tamuraetal., 2019; Segal etal., 2019; Kim et al., 2019; Doi
etal, 2019, and Arkenau et al,, 2018 in Fig. 4). The reverse only
occurs in one case, for Janjigian et al. (2018), which is a study
reporting extreme values for the medians, under unusually high
and unequal sample sizes (100 marker-positive and 289 marker-
negative patients, respectively).

8 CONCLUSIONS

We developed a nonparametric Bayesian approach for meta-
analysis with event-time outcomes. Inference combines infor-
mation from all studies in the meta-analysis. The approach uses
weakly informative priors based on clinical expert judgment re-
garding the relationship between different studies. A simulation
study shows that for realistic sample sizes and data structure in-
ference under the proposed approach compares favorably with
standard methods. This is especially true for tumor types and
agents that are less commonly observed in the original studies.
This is achieved by borrowing strength across all studies.

One limitation of the proposed nonparametric approach is
that it is restricted to event-time outcomes. A possible future de-
velopment would be the inclusion of multiple endpoints. Many
of the studies in our data include in addition to PES also sum-
maries for objective response rate (OR), and overall survival
(OS). Sharing information on multiple event time endpoints,
like PES and OS, is easily accommodated by treating them as
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separate, but highly correlated, cohorts. The inclusion of binary
endpoints like OR in a joint model would require model exten-
sions to include a parametric submodel.

SUPPLEMENTARY MATERIALS

Supplementary material is available at Biometrics online.

Pseudo code, Web Tables and Figures referenced in Sections 3,
6, and 7, and data and code to reproduce the results of the Sec-
tions 6 and 7 are available with this paper at the Biometrics web-
site on Oxford Academic.
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APPENDIX A: POSTERIOR UPDATE VIA
POLYA GAMMA MODEL AUGMENTATION

Let Ng;) denote the number of observations in the interval
Bg;) . The posterior distribution for Z, o = {Zi;)o}f:l depends on

N, 5(;) and N, 5(22) The conditional posterior distribution closely re-
sembles a logistic regression. Let A,, denote the set of all co-

horts i for which at least one observation is recorded in Bg? ,
and split Z, o according to A, into Z,,0 = Zédo U Zgo- Not-
ing that only studies i € A contribute likelihood factors, this
implies

. (exp [Z0)) "

§%)
P(sto | ) 0] P(Zido) P(ngo | Zido)~
€d

i€Aey (1 + exp {Zg;)o})

The data augmentation strategy of Polson et al. (2013) is
then implemented as follows:

(1) Sample w; from p(w; | Zédo) for each i € A, indepen-
dently using a Polya gamma.

(2) Update Zi,?o foreachi € A, sampling from p(Z!

€40 | w)
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(3) Update Z( i) o foreach i & A, by sampling from p(Zgo |
st)' The latter takes the form of a conditional multi-
variate normal.

APPENDIX B: POSTERIOR UPDATE OF
(LATENT) COUNTS

Consider a generic cohort i with (known) sample size N. Omit-
ting the study-specific indices i and (i), let Ci.y and T .y de-
note the unknown patient level censoring and event times. We
first consider the conditional distribution of the complete data,
assuming that both censoring and event-time distribution are
known. Let H(C;) denote the earlier, and G(T;) the latter, and
let s denote the triple (£, m, h) implied by Ty, Cy.xy and s° the
observed data. Then conditioning on all currently imputed pa-
rameters, including in particular G itself, and the observed data

I(s =) [TL, G (T;) H(C)) H(C)G(T?) x H(C)G(T?)

Biometrics, 2024, Vol. 80,No.4 e 13

we have
N
p(Tin,Cin | -) xp(s’ |T1N7C1N)HG
j=1

)H(C;)

N
=0(s=5s°) 1_[ G(T;) H(C)).

j=1
We construct Markov chain Monte Carlos simulation to im-
pute (Cy.n, Ti.y) using two transition probabilities defined
with the following proposal distributions. Proposal Q; pro-
poses a new event and censoring time for two randomly se-
lected subjects r and s in the cohort. We use T and C with-
out superscript for the proposal, and T, C° for the currently
imputed values. Q, (T .x, C1.N | TN C‘{:N) = H(CS)G(TS) .
H(C,)G(T,)/(n(n — 1)) implying acceptance probability

o = min { 1,

I 6 (17) H(E

Proposal Q, randomly selects a subject s and proposes to “flip”
the censoring indicator §, = [(T; < C,) and thereby changing
the censoring pattern §. Let T, = min{T;, C,} denote the implied
observed times, and let T(s—l) and T(s+1) denote the largest ob-

= I(s = ).

served time less than T; and the smallest one greater than T, re-
spectively (all quantities are known by conditioning on the cur-
rently current imputed values). Then

0 1 770 770 6;
Q(Tix. Cinv | Th Cl) = 1 [H (CITe <G <) G (TG <T.C)
. 15
(T1Te ) <T <)) HGIT <G T)]
5
1 H (C,) G (Ty)
N 0 F10 G ’Ts > Cs CS
H (s ) <C5<T(S+1)> ( 1C)
1-5°
G (T, H(C,
(To) T (T)|T) (B1)
o s > L s
(s y<TL< T(s+1))
This implies the acceptance probability &, = min(1, r) with
(05 <T<TS )H(CS>TS|TSMW)
= ey 50 = 1
N E(T . <e<T,))emEcr
=[l(s=5s)
H<T°S_ <C <T° ) G(T, > C, | C™*)
) Gy 50 = 0.

G(T("S_l) <T < T(+1 ) H(C, > T, | T°)

We divided the cohorts into three groups. (1) Cohorts with
known censoring pattern (ie, no censoring or censoring only af-

ter the last event time); (2) cohorts with reported number of

events or number of censored outcomes; (3) cohorts for which
only the sample size is recorded. For (1) counts are not up-
dated since they are known. For (2) the filp step is never pro-
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posed. For (3) one of the two proposals is randomly selected
each time.

To initialize T .y and C;.y, we start with a censuring pattern
where all event times are observed and we followed the follow-
ing argument. Let T{;) denote the order statistic for T'1.y. We
can then consider a Kaplan-Meier plot with the index j on the
horizontal axis (that is, plotting against the indices of the order
statistic instead of the unknown actual times). We plot the esti-
mated survival function and (1 — ) confidence interval bands
(still plotted against j). Assuming w.l.o.g. N = 2k + 1, and as-
suming that the recorded data s = (¢, m, h) are determined as
the intersections of the three curves with the 0.5 threshold, we
can then identify the data (€, m, h) as (T(r), T(x+1)> T(sr))- The
remaining data T; are generated from G, subject to the given
(T(L), Tier1)s T(H)). That is, we generate L — 1 event times
T, ~G- |](T]- < T(L)) etc.

APPENDIX C: CORRELATION MATRIX

Recall the construction of R(x, #’) in §S. Consider two cohort-
specific covariate vectors x and &', and denote with k; (x, &) the
similarity score based on matching covariates.

* ki (x, x') bealinear kernel with coherent weights obtained
using the one-hot encoding of the categorical variables.

* ky(x,%") be an indicator for x and &' having matching
marker status.

* k;i(x, %) be an indicator for x and &’ sharing the same
study.

* ky(x, x’) be the identity kernel, ie, an indicator for x and x’
referring to the same cohort.

‘We combine the kernels to obtain the covariance functions de-
scribed in §5:

o ki(x, x) ko (&) + ks (e, &) + Ky (2, %)
— 5 .

Ris positive definite since the sum and the product of positive
semi-definitive kernels are positive semi-definite and k4 (x, ") is
positive definite.

For other choices of building the similarity score, the construc-
tion R(x, x’) might not be p.d. In that case, it is always possible
to scale k4 (x, ") by some ¢ > 0to ensure R to be p.d. This is the
case due to the following result. If A is a symmetric (I x I) ma-
trix, then thereisac > OsuchthatB = [A + ¢ - Ijx]is p.d. The
result is easy to prove by considering the normalized eigenvalues
of B. See also Rasmussen and Williams (2006 ) for a discussion of
covariance functions, keeping in mind that the requirement for
p.d. covariance matrices is only needed for the I cohorts under
consideration.

R(x, &)
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