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ABSTRACT  

Background and Aims: Among reprogrammed metabolic pathways described in cancer stem cells, 

aberrant lipid metabolism has recently drawn increasing attention. Our study aimed to explore the 

contribution of fatty acids (FA) in the regulation of stem-like features in intrahepatic 

cholangiocarcinoma (iCCA). 

Methods: We previously identified a functional stem-like subset in human iCCA by using a 3D 

sphere (SPH) model in comparison to parental cells grown as monolayer (MON). In this study, 

quantification of intracellular free FA and lipidomic analysis (triacylglycerol [TAG] composition, de 

novo synthesis products) were performed by LC-MS and LC-MS/QTOF, respectively, in both SPH 

and MON.   

Results: Stem-like SPH showed a superior content of free FA (citric, palmitic, stearic and oleic acids) 

and unsaturated TAG. Molecularly, SPH showed upregulation of key metabolic enzymes of de novo 

FA biosynthesis (AceCS1, ACLY, ACAC, FASN, ACSL1) as well as of the mTOR signaling pathway. 

In iCCA patients (n=68), tissue expression levels of FASN, a key gene involved in FA synthesis, 

correlated with five-year overall survival. Interference with FASN activity in SPH cells through both 

specific gene silencing (siRNA) or pharmacological inhibition (orlistat) decreased sphere-forming 

ability and expression of stem-like markers. In a murine xenograft model obtained by injection of 

iCCA-SPH cells, FASN inhibition by orlistat or injection of FASN-silenced cells significantly reduced 

tumor growth and expression of stem-like genes.  

Conclusion: An altered FA metabolism contributes to maintenance of a stem-like phenotype in 

iCCA. FASN inhibition may be a new potential approach to interfere with the progression of this 

deadly disease. 

 

Impact and implications 

Recent evidence indicates that metabolic disorders correlate with an increased susceptibility to 

intrahepatic cholangiocarcinoma (iCCA). Our investigation emphasizes the pivotal involvement of 

lipid metabolism in the tumor stem-cell biology of iCCA, facilitated by the upregulation of crucial 

enzymes and the mTOR signaling pathway. From a clinical perspective, this underscores FASN's 

dual role as both a prognostic indicator and a therapeutic target, suggesting that FASN inhibitors 

could enhance patient outcomes by diminishing stemness and tumor aggressiveness. These 

findings pave the way for novel therapeutic strategies for iCCA and shed light on its relationship with 

metabolic disorders such as diabetes, obesity, metabolic syndrome and MASLD.  
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INTRODUCTION 

Stem cell programs in cancer initiation, progression, and therapy resistance are considered as the 

centerpiece of tumor biology. The identification of cancer stem cells (CSC) in many solid tumors, 

including hepatic cancer (1-3), has provided novel insight into the mechanisms of carcinogenesis. In 

CCA, the presence of stem-like cells has been correlated with more aggressive tumor characteristics 

and poorer patient prognosis (4). Investigation on CSC has been favored by the development of in 

vitro systems enriched in stem-like cells. At this regard, we and others have developed and employed 

3D tumor sphere (SPH) formation as an efficient in vitro tool to enrich for stem-like cells (1-3).  

Although studies on CSC biology have identified relevant signals sustaining tumor-stemness, the 

exploration of metabolic reprogramming in the control of the stem state is in its infancy. Novel lines 

of evidence are shedding light on the dependence of CSC on lipid metabolism and particularly on 

fatty acids (FA) (5-8). This emerging concept linking lipid metabolism and stem-cell fate mostly 

derives from studies assigning a CSC-promoting function to the excess of monounsaturated fatty 

acids (9, 10).  

Recently, new experimental evidence, although divergent, has highlighted a role for lipid metabolism 

in the pathogenesis of CCA. In line with the histological and molecular heterogeneity of this 

neoplasm, highly proliferative CCA cells are strongly lipid-dependent, as shown by their up-regulated 

lipid and lipoprotein uptake and catabolism for proliferation. On the other hand, more advanced 

stages of disease or CCAs associated with C. sinensis infection appear to exhibit elevated 

expression of FASN. Furthermore, in lymph node metastases, CCA colonization appears to be 

driven by PPARγ-regulated lipid metabolic reprogramming (11-15). 

Despite these recent lines of evidence, little is known about the role of lipids and lipid metabolism in 

iCCA-stemness. Here we show that altered fatty acid metabolism is a distinctive feature of tumor 

stem-like cells in iCCA. 

 

RESULTS 

Fatty acids enhance stemness features in iCCA cells 

To assess the relevance of fatty acids (FA) in the biology of iCCA stem cells, CCLP1 and HUCCT1 

cells were first exposed to increasing concentrations of unsaturated (oleic, palmitoleic, linoleic acids) 

or saturated (palmitic acid) FA for different time spans (Figure S1-2, Table S1-2). In line with previous 

studies (14), all tested FA promoted cell growth (Figure S1-2, Table S1-2). Thus, based on the 

highest effect (Figure S1-3), we focused our study on the role of oleic acid (OA) and palmitoleic acid 

(POA) in the modulation of iCCA stemness. 

Since CSC are key players in tumorigenesis including tumor initiation and metastasis, we next 

evaluated whether FA are able to modulate these aspects in vitro by reprogramming parental cells 

grown in monolayer (MON). Indeed, treatment of MON cells (HUCCT1 or CCLP1) with OA or POA 

markedly enhanced their sphere-forming ability (i.e. sphere number, volume, and growth overtime) 
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as indication of self-renewal potential (Figure 1A, Figure S4A-B), significantly increased aldehyde 

dehydrogenase activity, serving as a functional marker of tumor stemness (Figure S4C) and the 

notably improved the capacity to invade a basement-like membrane (Figure 1B, Figure S5). 

Accordingly, expression levels of multiple genes implicated in the maintenance of stemness, self-

renewal and regulation of epithelial-to-mesenchymal transition (EMT) were modulated in a pro-

malignant fashion (Figure 1C), thus further supporting the in vitro functional importance of FA in 

acquiring a stem-like traits. On the other hand, due to their drug-resistance, cancer stem cells can 

escape cytotoxicity and survive chemotherapy and radiotherapy. Therefore, we assessed the 

influence of monounsaturated FA on iCCA resistance to chemotherapeutic agents. Pre-treatment 

with OA or POA before exposure to cisplatin, oxaliplatin and gemcitabine, commonly used drugs for 

iCCA therapy (1), led to a significant rescue of cell viability under pharmacological-treatment as 

shown by analysis of apoptosis (Figure 2, Figure S6, TableS3).  

 

 

The fatty acid metabolic machinery is boosted in CCA stem-like cells 

Based on the observed enrichment of stem cell properties in vitro in MON cells treated with 

exogenous OA or POA, we further investigated the metabolic apparatus of fatty acids in the 3D 

sphere (SPH) culture system. This system functions as a model of tumor stemness in CCA, as 

previously described by our group (1) and confirmed at the molecular level by RNA-sequencing 

profiling of SPH cells (FigureS7, Table S4). Utilizing Enrichr analysis, we observed a significant 

enrichment of stem-related molecules among the differentially expressed genes in SPH compared 

to MON across both cell lines. The acquisition of stemness is further supported by the predominant 

activation of stem cell signaling pathways, including PI3K-Akt, Hippo, and TGF-beta-dependent 

pathway. Additionally, there was an upregulation of significant networks associated with the EMT 

process, TNF-alpha signaling via NF-kB, the p53 pathway, as well as factors related to pluripotency, 

stemness, and EMT, such as POU5F1, STAT3, EZH2, ZEB1, MYC, SOX2, and ZEB2 (Figure S7, 

Table S4).  

Gene set enrichment analysis (GSEA) of SPH RNA sequencing data indicated a marked increase 

in the expression of several genes participating in FA metabolism, including both anabolic and 

catabolic pathways (Figure 3A). In accordance, unsupervised clustering heat map indicated a 

primary divergence in expression pattern of differential expression genes involved in FA metabolism 

between SPH and MON for both cell lines (Figure 3B). Furthermore, overexpression of key enzymes 

involved in FA synthesis (FASN, SREB, ACSL1, SCD1), desaturation (SCD1), and exogenous 

uptake (CD36, FATP4) was further confirmed at mRNA levels in SPH cells compared to MON cells 

(Figure 3C). Of note, protein content of mTOR signaling pathway and key metabolic enzymes of de 

novo fatty acid biosynthesis (cytoplasmic acetyl-CoA synthetase (AceCS1), ATP citrate lyase 

(ACLY), Acetyl-CoA carboxylase (ACAC) the rate-limiting step in fatty acid synthesis, FASN, Acyl-
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CoA synthetase long chain family member 1 (ACSL1) were up-regulated in SPH with respect to 

MON of both CCLP1 and HUCCT1 cells lines, as shown by western blot analysis with relative 

densitometric analysis (Figure 3D, Figure S8). Notably, it is well known that mTOR stimulates de 

novo lipogenesis via SREB dependent pathway throughout S6K phosphorylation (16). 

Based on these evidence, content of selected intracellular free FAs in iCCA stem-like cells was next 

quantified by liquid chromatography mass spectrometry. Notably abundance of citric acid, the FA 

precursor as well as palmitic acid, stearic acid and oleic acid were revealed in SPH cells compared 

to respective MON in both cell lines (Figure 4) in accordance with molecular data (Figure 3) showing 

differences in expression of key enzymes of FA biosynthesis. Coherently, BODIPY staining showed 

that iCCA-SPH had a higher amount of lipid droplets which are dynamic organelles constituted 

mainly by triglycerides containing FA with different degree of saturation or size (i.e. number of 

carbons due to elongation) (Figure 5A-B).  

Therefore, an untargeted lipidomic analysis was performed using high resolution mass spectrometry 

and targeted quantification of most relevant lipids. By comparing triglycerides amount and 

composition in SPH and the respective parental cells grown as monolayer, we observed that iCCA-

SPH were characterized by a higher triacylglycerols (TAGs) with saturated and monounsaturated 

fatty acids (i.e. TAG with 1-2 double bonds) with respect to MON (data not shown). This was 

particularly evident in HUCCT1 although both SPH contain TAG with lower length than MON (i.e. 

TAG with less than 52 Carbons). Incubation with deuterated water was used to quantify contribution 

of fatty acids from de novo lipogenesis (DNL) to single triglycerides species. Palmitic acid (C16:0) is 

the main product of DNL and can either be desaturated to palmitoleic acid (C16:1) or elongated to 

stearic acid (C18:0) that in turn can be desaturated to oleic acid (C18:1). The iCCA-SPH exhibited a 

larger percentage of de novo synthesized triglycerides (Figure 5C), as assessed through the 

measurement of incorporation of deuterium. Within TAGs with lower length, SPH contained more 

TAG with monounsaturated triglycerides than MON, i.e., TAGs with palmitoleic and oleic fatty acids 

(48:1, 50:1, 52:1, than TAG incorporating only saturated FA like palmitic and stearic acid, (48:0, 50:0, 

52:0), as shown in Figure 5C-D. Accordingly, the desaturation index, i.e. the ratio between 

triglycerides with one double bond in the FA chain and triglycerides without double bonds indicated 

a larger amount of monounsaturated FA in SPH (Figure S9). 

We next evaluated the pathways responsible for fatty acid metabolism. SPH cells were characterized 

by elevated activity of intracellular fatty acid beta-oxidation (FAO) compared to MON (Figure S10). 

This observation is supported by the increased content in lipid droplets evident in CCA-SPH (Figure 

5A-B). Collectively, these findings identify a distinct alteration in mitochondrial function within SPH 

compared to MON, corroborated by the previous study from our group (2). To provide a more 

comprehensive perspective, we explored the classification of CCA patients based on stemness and 

FA metabolic pathways in publicly available datasets (GSE32879 and GSE89749). Gene expression 

profiles for GSE89749 and GSE32879 were obtained from the gene expression omnibus. Curated 
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list of stemness and chemoresistance genes, as well as Gene Ontology fatty acid beta oxidation 

(FAO) and KEGG Biosynthesis of unsaturated fatty acids (DNL) were used in the analysis. Within 

each dataset, samples underwent z-scoring and hierarchical clustering based on the expression of 

stemness genes. Next, GSEA was used to establish association of clusters with chemoresistance, 

DNL and FAO. Hierarchical clustering allowed the clear definition of 2 clusters (A and B), based on 

the expression of 139 resistance and stemness genes (resistance&stemness signature). In each 

dataset, Cluster B was significantly enriched in expression of stemness and resistance genes that 

was validated with GSEA (Figure S11-12). In both GSE32879 and GSE89749 set, Cluster B was 

enriched in both FAO and DNL suggesting positive association of stemness and FAO and stemness 

and DNL. Taken together, these data suggest that the stem-like subset has an amplified machinery 

for fatty acid metabolism in iCCA. 

 

Higher expression of FASN is associated with a more aggressive course in patients with iCCA  

To explore the possible relevance of our in vitro data to the clinical setting, we analyzed 

transcriptomic data from a published cohort of patients with iCCA to search for possible correlations 

between genes implicated in FA metabolism and clinical outcomes (17). In particular, we focused 

our attention on FASN gene, the master regulator of fatty acids synthesis, which was upregulated in 

SPH compared to MON iCCA cells. Clustering data based on FASN expression level, Kaplan-Meyer 

curves demonstrated that higher FASN, was strongly associated with significantly lower survival 

(Figure 6A), in accordance with recently published data (13).   Notably FASN levels correlated with 

available clinical pathological parameters (Table S5) in particular with portal trunck invasion, a 

significant adverse prognostic factor in iCCA (Figure 6B).  In addition, FASN expression significantly 

correlated with a number of stemness-related genes including SOX2, NOTCH1 and ABCG2 in the 

same iCCA dataset (n=68) (Figure 6C).  

 

FASN promotes the growth of experimental iCCA and confers stem cell features to the tumor  

Based on the results of transcriptomic analysis in patients, we next investigated the effect of genetic 

(siRNA) or pharmacological inhibition of FASN in SPH cells. Drug inhibition was performed by using 

orlistat, an anti-obesity drug that irreversibly inhibits the enzymatic activity of FASN  (18-22). Both 

specific genetic depletion (siRNA) (Figure S13) or enzymatic inhibition (orlistat) of FASN in SPH cells 

significantly reduced in vitro functionally properties such as proliferation, sphere-forming ability, 

invasion as well drug-resistance (13) (Figure 7A-C; Figure S13-14).  

Molecularly, FASN reduction impaired the expression of several key genes implicated in pluripotency 

(i.e. NANOG, SOX2, KLF4, OCT4, BMI1), drug-resistance (ABC transporters) and EMT (CHD2, VIM, 

ZEB1, ZEB2, SNAI1), and impact the phosphorylation of pro-survival proteins (i.e. AKT, p38 and 

ERK1/2) as well as expression MYC oncoprotein (Figure 7D-E).  
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Based on the strong in vitro data indicating the involvement of FASN in the features of iCCA stem 

compartment relevant for tumor progression, we evaluated the possible impact of the inhibition of 

this protein in an in vivo model of CCA. To this aim, the effect of both orlistat pharmacological 

treatment and genetic FASN inhibition (shRNA) was investigated in a mouse xenograft model in 

which dissociated CCLP1 SPH cells were injected subcutaneously in flank(s) of NOD/SCID mice (2).  

 

After confirming that treatment with orlistat at a dose of 240 mg/kg/day was not toxic (FigureS15A) 

and in accordance with previously reported studies (18, 21, 22), mice were randomized once the 

tumor was palpable and treated with orlistat via i.p. injection (SPH-T ORL) or vehicle (SPH-T CTR) 

for 4 weeks. In parallel, we performed subcutaneous xenografts using CCLP1 cells silenced for 

FASN (SPH-T shFASN) or cells transfected with shCTR (SPH-T shCTR) after confirming FASN 

depletion at protein level (Figure S15B). Tumor growth was monitored with a dedicated in vivo 

imaging system. Tumor volume and weight in the ORL-treated and shFASN group were significantly 

reduced compared with SPH-T CTR and SPH-T shCTR, respectively (Figure 8A-B, FigureS15C), 

while no differences in liver/body weight and lung/body weight ratios were observed (Figure S15D-

E). At the end of treatment, in vivo cell proliferation was evaluated by PCNA staining (Figure 8C). 

Both SPH-T ORL and SPH-T shFASN showed a lower number of cycling cells, in agreement with 

the observed impact on tumor progression. Moreover, comparison of the molecular characteristics 

of the xenografts (Figure 8D-E) showed in both SPH-T ORL and SPH-T shFASN tissues a 

downregulation of genes involved in proliferation (i.e. STAT3, MTDH, BCL2L1, XIAP, AKT, EGF, 

EGFR, E2F1, HGF, HRAS, IGF2, NRAS, PDGFRA, FZD7, PTK2, c-MYC), invasion (i.e. ZEB1, 

SLUG, Ncadherin, betacatenin, ADAM17, CXCR4, FDZ7,MET,PTK2), drug-resistance (ABCG2, 

ABCF1, ABCC2) and pluripotency (NANOG, NOTCH, HNF4, KLF4), cancer stem cell markers 

(CD44, CD13, EpCAM) together with upregulation of tumor-suppressor (i.e. OPCML, TP53, HHIP, 

SMAD4, RB1, GADD45B, PTEN, SFRP2, SOCS3) and proapoptotic genes (i.e. FADD, CASP8, 

BAX,BUD, TNFRSF10B) (Figure 8E).  

Accordingly, at the protein level, FASN inhibition and depletion was associated with a lower 

activation/expression of proteins involved in proliferation or survival (i.e. STAT3, AKT, ERK1/2, c-

MYC) and anabolic pathways (mTOR and PPARɣ) (Figure 8F), confirming the key role of FASN and 

FA metabolism in tumor growth.  
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MATERIALS AND METHODS 

 

Metabolites extraction  

For MON cell culture, cells in a 6 well-plate were quickly rinsed with NaCl 0.9% and quenched with 

500 μl ice-cold 70:30 acetonitrile:water. Plates were placed at - 80 ◦C for 10 min, then cells were 

collected by scraping and sonicated 5 s for 5 pulses at 70% power twice. For SPH cell culture, 48 

spheroids were collected from a 96-well plate for each sample and centrifuged at 600 rpm for 5 mins 

at 4°C. Pellets were washed with 1 ml of NaCl 0.9%, centrifuged as above and resuspended in 500 

μl ice-cold 70:30 acetonitrile:water. Samples were placed at - 80 ◦C for 10 min and then sonicated 5 

s for 5 pulses at 70% power twice. At this point, for both MON and SPH experiments, samples were 

centrifuged at 12000g for 10 min and supernatants were collected in a glass insert and dried in a 

centrifugal vacuum concentrator (Concentrator plus/Vacufuge plus, Eppendorf) at 30 °C for about 

2.5 h. Samples were then resuspended with 150 μl H2O prior to analyses. 

 

Liquid Chromatography-Mass Spectrometry (LC-MS) analysis  

LC separation was performed using an Agilent 1290 Infinity UHPLC system and an InfintyLab 

Poroshell 120 PFP column (2.1 × 100 mm, 2.7 μm; Agilent Technologies). Mobile phase A was water 

with 0.1% formic acid. Mobile phase B was acetonitrile with 0.1% formic acid. The injection volume 

was 10 μL and LC gradient conditions were: 0 min: 100% A; 2 min: 100% A; 4 min: 99% A; 10 min: 

98% A; 11 min: 70% A; 15 min: 70% A; 16 min: 100% A with 2 min of post-run. Flow rate was 0.2 

ml/ min and column temperature was 35 ◦C. MS detection was performed using an Agilent 6550 

iFunnel Q-TOF mass spectrometer with Dual JetStream source operating in negative ionization 

mode. MS parameters were: gas temp: 285 ◦C; gas flow: 14 l/min; nebulizer pressure: 45 psig; 

sheath gas temp: 330 ◦C; sheath gas flow: 12 l/min; VCap: 3700 V; Fragmentor: 175 V; Skimmer: 

65 V; Octopole RF: 750 V. Active reference mass correction was done through a second nebulizer 

using masses with m/z: 112.9855 and 1033.9881. Data were acquired from m/z 60–1050. Data 

analysis and isotopic natural abundance correction were performed using MassHunter Profinder 

(version 10.0.2). Data preprocessing was performed using the Batch Targeted Feature Extraction 

algorithm and Agile 2 algorithm. This software assigned identities to metabolites by searching 

against an in-house compound database built with Agilent PCDL Manager (version B.08.00) based 

on the metabolite formula and its corresponding retention time with a score > 75.  Peak areas 

obtained were normalized for protein content for each sample. LC-MS analysis was performed by 

the Metabolomics Unit of JRU ISBE-SYSBIO Center and Elixir European Infrastructure in Milan 

(Milan, Italy). 

 

In vivo experiment 
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Animal experiments were performed in accordance with national guidelines and approved by the 

ethical committee of the Animal Welfare Office of Italian Health Ministry. All procedures conformed 

to the legal mandates and the Italian guidelines for the care and maintenance of laboratory animals. 

All animals received human care and study protocols comply with the institution's guidelines. Studies 

involving animal experiments conform to the Animal Research: Reporting of In Vivo Experiments 

(ARRIVE) guidelines (http://www.nc3rs.org.uk/arriveguidelines), developed by the National Centre 

for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) to improve 

standards and reporting of animal research. Male NOD/SCID mice (n=6 per group) of six weeks 

(Charles River Laboratories International) were subcutaneous injected with 3x106 CCLP1 SPH cells. 

When tumor became palpable mice were randomly divided in two experimental groups to receive 

intra-peritoneal injection of solution (10% DMSO, 40% PEG300, 5% TWEEN80 and 45% saline) or 

240mg/Kg orlistat (three times a week). Animals were monitored daily. In parallel, we performed 

subcutaneous xenografts using injected CCLP1 cells (3x106) silenced for FASN (SPH-T shFASN) 

or cells transfected with shCTR (SPH-T shCTR) (male NOD/SCID mice (n=6 per group) of six weeks 

(Charles River Laboratories International). 

 

 

Statistical analysis 

Suitable statistical tests were performed using GraphPad Prism 9 software and R version 4.1.0. For 

each experiment, statistical details can be found in the figure legends, including statistical tests and 

sample sizes. All in vitro experiments were confirmed by independent biological replicates. Data is 

represented as mean ± SD or  SEM. Significance levels are as follows: *p≤0.05, **p≤0.01, 

***p≤0.001. Group comparison was performed using the nonparametric Mann-Whitney U test. 

Clinical data were examined using Fisher’s exact test. The Kaplan- Meier method was employed to 

determine survival rates, with significance assessed using the Log-rank test. Pearson correlation 

was utilized to assess the relationship between gene expressions.  

Detailed information is provided in the Supporting Information and in the Supplementary CTAT 

Table. 

 

 

DISCUSSION  

Metabolic rewiring is a new hallmark of cancer, and in recent years information on this topic has 

changed the view of tumor biology. Among several tumor metabolic alterations, lipid metabolism is 

receiving increasing attention, and several studies have demonstrated its central role in the process 

of carcinogenesis (23). As major components of lipids, FA provide energy, membrane building 
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blocks, signaling molecules and post-translational modifications of proteins which are determinants 

for cancer cell survival. 

The present study provides several lines of information on the role of increased FA metabolism in 

conferring a stem-like phenotype in iCCA. Notably, exposure to monounsaturated FA increased 

stem-like features at both functional (resistance to antineoplastic drugs, spherogenicity) and 

molecular (expression of stemness-associated genes) level. Taking advantage of a 3D SPH culture 

system as a model for cancer stem cells (1, 2), and comparing these cultures with more differentiated 

parental cells grown in monolayers, we provide compelling evidence for the importance of fatty acids 

in the regulation of the stemness features of iCCA. Several key enzymes involved in FA synthesis 

and transport were significantly overexpressed in the iCCA stem-compartment, indicating that a CSC 

phenotype is strictly associated with altered FA metabolism. Additionally, lipidomic analysis 

demonstrated that iCCA-SPH exhibit a higher de novo synthesis and desaturation FA that are then 

esterified to triglycerides that results enriched in monosaturated fatty acids. This finding may suggest 

that de novo synthesis and desaturation of FA may have an essential role in fueling the activation of 

pluripotency and self-renewal associated signaling networks contributing either reprogramming 

iCCA cells towards a less differentiated stem-like phenotype or favoring the expansion of the stem 

subpopulation by supporting their metabolism. In line with our results, a recently published study (14) 

highlighted the pathogenic role of fatty acids, showing that exogenous supply of FA modulated the 

growth of CCA cells. Unlike more differentiated tumor cells, enhanced FA biosynthetic apparatus of 

iCCA stem-like cells probably render them more independent from the external source.  

Additionally, increased expression of FASN, the key enzyme in FA synthesis, was correlated with 

shorter survival in a dataset of 68 iCCA patients thus suggesting that tumors with a worse prognosis 

are characterized with an increased content of intracellular fatty acids. This might be potentially 

interesting considering our in vitro evidence of increased drug-resistance after exposure fatty acids. 

However, a detailed analysis of the underlying molecular mechanism(s) FA-driven is needed to 

provide the base knowledge for effective acquisition of a pharmacologically resistant iCCA 

phenotype. 

 

 

Nevertheless, we went further to demonstrate the functional relevance of FASN in stem-like iCCA 

cells both in the in vitro and in vivo settings. In vitro, FASN inhibition with both orlistat and a specific 

gene silencing induced a significant decrease in pluripotency and stemness markers, as well as in 

the expression of genes involved in EMT and drug-resistance. These effects were replicated in a 

preclinical model of iCCA in vivo, where FASN inhibition caused a significant reduction in tumor 

growth after injection of resuspended iCCA-SPH. This was associated with dramatic changes in the 

expression of genes related to stemness and aggressiveness of iCCA. These data, together with 

those obtained in patients with iCCA, collectively indicate that tumor stem-like cells have distinct 
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rearrangements of FA metabolism compared to more differentiated cells, and metabolic rewiring 

contributes to self-renewal and stemness maintenance with a major impact on the aggressiveness 

of iCCA cells.  

Although the development and progression of cancer are frequently associated with increased de 

novo production of fatty acids in several tumor types, the role of FASN in CCA is still controversial 

(12-15). Indeed, several studies (12), have shown that cholangiocarcinogenesis can be insensitive 

to FASN deprivation since CCA cells displayed enhanced fatty acid uptake-related machinery. 

Differences observed in various studies may be ascribed to variances in patient cohorts, including 

different underlying etiological factors (e.g., higher prevalence of MASLD, metabolic syndrome, or 

diabetes) and the intricate dynamics of the tumor microenvironment, especially the immune milieu. 

Furthermore, the diversity between liver tumor populations may result in variable reliance on FASN 

across cellular subsets. An additional explanation for these apparently divergent results can be that 

enhanced de novo lipogenesis and increased FASN expression are strictly related to the stemness 

component rather than to the more differentiated iCCA cells. Moreover, the abnormally activated de 

novo synthesis of FA may contribute to satisfy the energy needs for the maintenance of a stemness 

state in iCCA, as also suggested by our previous study (2). Thus, our results identify a new player 

in the regulation of lipid metabolism in iCCA with particular relevance to the biology of the stem cell 

compartment, and which could represent a target for treatment to be explored in dedicated studies. 

Of note, new FASN inhibitors are being developed, including TVB-2640, already used in clinical trials 

for the treatment of MASLD (24). 

An important aspect that will deserve additional research is relate to the possible interaction beween 

altered FA metabolism and metabolic disorders, such as MASLD, which are associated with an 

elevated risk of iCCA (25-28).  

 

Recently, it has been shown that metabolic disorders are associated with an elevated risk of 

intrahepatic CCA (25-28). These metabolic risk factors encompass diabetes, obesity, metabolic 

syndrome and MASLD, which are frequently associated with dyslipidemia. Unfortunately, the current 

datasets including clinical data do not specifically report the presence of MASLD, metabolic 

syndrome, or diabetes. However, it is imperative to investigate the potential presence and role of 

increased stemness in iCCA patients with these comorbidities. Further exploration and additional 

clinical data encompassing these specific aspects are warranted. 

In conclusion, this study provides evidence that an altered fatty acid metabolism contributes to the 

maintenance of stem-like phenotype in iCCA. These data allow to better understand the biology of 

CSCs in iCCA and suggest that inhibition of FASN may be a new potential target to interfere with 

tumor initiation of this deadly disease. 
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Figure Legends 

 

Figure 1. Effects of monounsaturated FAs on stem-like proprieties in iCCA cells. (A) 

Intrahepatic CCA cells were grown as spheres for seven days, in presence or absence of FAs. Then 

SPH were counted, and their volume measured. Mean ± SEM (n=3, ***p≤0.001). Representative 

images of iCCA SPH are reported below the graphs (original magnification 40X). (B) Migration of 

iCCA cells was measured in modified Boyden chambers, after 48 hours treatment. Mean ± SEM 

(n=3, ***p≤0.001). Representative images of filters are shown below the barograms (original 

magnification 40x, scale bar 10μM). (C) Expression of different genes involved in EMT, drug-

resistance and stem like acquisition in CCLP1 and HUCCT1 cells were treated with OA or POA for 

48h, reported as fold changes normalized to mean expression of vehicle treated cells. Mean ± SEM 

(n=3, *p≤0.05, **p≤0.01, ***p≤0.001; Mann-Whitney U test). 

 

Figure 2. Monounsaturated FAs pretreatment protects iCCA cells from antiblastic toxic 

effects. CCLP1 and HUCCT1 cells were pretreated for 24 hours with oleic acid (OA) or palmitoleic 

acid (POA) in starvation medium, then with (A) cisplatin, (B) oxaliplatin or (C) gemcitabine for further 

24 hours. Apoptosis was measured with Annexin V/PI staining. Data are mean ± SEM (n=3, 

***p≤0.001, ∮ p≤0.05, ∮∮ p≤0.01, ∮∮∮ p≤0.001; Mann-Whitney U test). The * are calculated respect 

to cisplatin, oxalilplatin or gemcitabine, ∮ are calculated respect to vehicle. Complete statistical data 

are shown in Table S3. 

 

Figure 3. Molecular aspects behind altered FA pathways in iCCA stem-like cells. (A) Results 

of a GSEA Pre-ranked analysis on the fatty acids metabolism gene set of the Hallmark MSigDB 

collection. (B) Heatmap plot of differentially expressed genes of the genes involved in fatty acid 

metabolism in spheres (SPH) and monolayers (MON), using Euclidean distance as similarity metrics 

and complete linkage as linkage method. Modified Zscores of the individual genes, as median‐

centered log2 intensity values divided by standard deviation, are shown by a blue-to-red gradient 

variation. Different colors specified different FA metabolic pathways.  (C) CCLP1 and HUCCT1 cells 

were grown as monolayer (MON) or as spheres (SPH), then RNA was extracted.  Expression of 

different genes involved in FA metabolism is reported as fold changes normalized to mean 

expression of MON. Mean ± SEM (n=3, *p≤0,05, ** p≤0,01, *** p≤0,001; Mann-Whitney U test).  

(D)Representative immunoblot of mTOR, phosho mTOR, S6K, phosphoS6K, AceCS1, ACLY, 

ACAC, FASN, ACSL1 protein levels in CCLP1 and HUCCT1 cells grown as MON and SPH. β-Actin 

immunoblot was performed to ensure equal loading. ES, enrichment score; FA, Fatty Acids; FDR, 

false discovery rate; GSEA, gene set enrichment analysis; MFI, mean fluorescent intensity; NES, 

normalized enrichment score.  

Jo
urn

al 
Pre-

pro
of



 15 

 

Figure 4. Content of free fatty acid in iCCA stem-like compartment. Relative metabolite 

abundance of intracellular free citric, stearic, oleic and palmitic acid in CCLP1 or HUCCT1 cell lines, 

grown in monolayer (MON) or as spheroids (SPH), identified by LC-MS analysis. Peak areas 

obtained were normalized for protein content for each sample. Mean ± SEM (n=9, ** p≤0,01, *** 

p≤0,001; Mann-Whitney U test). 

 

Figure 5. Triglycerides composition in iCCA cells grown as monolayer or spheres.  (A) 

Intrahepatic CCA cells were grown as monolayer (MON) or sphere (SPH), then cells were stained 

with Bodipy 493/503. Confocal microscopy analysis of lipid droplets in MON and SPH. (light yellow: 

Bodipy 493/503; blue: Hoechst; scale bar = 5m). (B) Lipid droplets quantification by cytofluorimetric 

analysis. Histograms represent the MFI of the Bodipy probe normalized to mean MFI of MON. 

Results are mean ± SEM (n=3, **p≤0.01, *** p≤0.001; Mann-Whitney U test). (C) Representation of 

triglycerides concentration in CCLP1 and HUCCT1 grown as MON or SPH, respectively. Single 

triglycerides were identified according to their degree of saturation (x axis) i.e., the number of double 

bonds, and elongation number (y axis) i.e., the number of carbons. Triglycerides concentrations were 

scaled to zero mean and unit variance and reported as median for each cell line grown as MON or 

SPH. (D) Concentration of the main saturated triglycerides (TAG) and their desaturated counterpart 

in CCLP1 MON (blue), SPH (green), HUCCT1 MON (red), SPH (orange) cultured cells, respectively. 

The measured concentrations are composed by two parts: the de novo synthesized component, 

characterized by deuterium incorporation levels ranging from 1 to 5 (M1-M5) and displayed in lighter 

shades, and the pre-existing component that was not newly synthesized i.e., without any 

incorporation of deuterium (M0), and is depicted in darker tones. In table, molar percents of de novo 

synthesized TAG, measured as deuterium enrichment after D2O incubation, were reported. * p<0.05 

; nonparametric test of the Mann Whitney ranks.  

 

Figure 6. Expression of Fatty Acid Synthase is associated with poor survival in iCCA patients. 

(A). Kaplan-Meyer plot showing overall survival in iCCA patients (n=68) stratified according to good 

or bad prognosis. (B)The univariate association of FASN expression with clinical pathological 

parameters (C) Scatterplot representing the correlation between FASN and SOX2, NOTCH, ABCG2 

and VEGF expression in a public dataset (17). 

 

Figure 7. Effects of FASN depletion in CCLP1 SPH. (A) Effect of FASN depletion on proliferation 

by BrdU incorporation 48 hours after orlistat treatment (upper panel) or gene silencing (lower panel). 

Mean ± SEM (n=3, ***p≤0.001). (B) Effects of orlistat (upper panel) or FASN gene silencing (lower 

panel) on iCCA sphere forming efficiency. Mean ± SEM (n=3, ***p≤0.001; Mann-Whitney U test). 

Representative images of iCCA SPH are reported below the graphs (original magnification 40X). (C) 
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Migration of orlistat treated SPH (upper panel) or FASN silenced SPH (lower panel) was measured 

in modified Boyden chambers. The number of migrated cells is represented as fold increase respect 

to vehicle. Mean ± SEM (n=3, ***p≤0.001; Mann-Whitney U test). Representative images of filters 

are shown below the barograms (original magnification 40x). (D) Expression of different genes 

involved in CSCs pathways, EMT and drug resistance expressed as fold changes normalized to 

mean expression of respective vehicle. Mean ± SEM (n=3, *p≤0,05, ** p≤0,01, *** p≤0,001; Mann-

Whitney U test). (E) Immunoblot of several proteins and phosphoproteins involved in cell proliferation 

and survival, following orlistat treatment or FASN silencing. β-Actin immunoblot was performed to 

ensure equal loading. 

 

Figure 8. Effects of orlistat treatment in iCCA xenografts mouse model. (A) Analysis of tumor 

volume by Vevo LAZR-X photoacoustic imaging. Tumors (SPH-T) were obtained by subcutaneous 

injection of SPH cells in NOD/SCID mice. Mice were treated with vehicle (SPH-T CTR) or orlistat 

(240mg/kg/day) (SPH-T ORL) (n = 6 per group) or injected with FASN silenced SPH cells (SPH-T 

shFASN) or cells transfected with shCTR (SPH-T shCTR) ( ∮∮∮ p≤0.001 SPH-T ORL vs SPH-T 

CTR;  SPH-T shFASN vs SPH-T shCTR ***, p≤0.001; Mann-Whitney U test). (B) Ultrasound images 

of representative subcutaneous tumor masses derived from injection of CCLP1 SPH generated 

tumors in different conditions. 3D rendering of the tumor mass is shown in the inset. (C) PCNA and 

hematoxylin eosin co-staining by immunohistochemical analysis. Representative stainings are 

shown below the histogram. Ki67 positive nuclei are in brown color (***p≤0.001; Mann-Whitney U 

test). (D-E) Heatmap of different tumor samples based on qRT-PCR of arrays of genes focused on 

liver cancer pathways (84 genes) or cancer stem-like markers (31 genes). Gene expression levels 

are expressed as log2 transformed values in color code from blue (low) to orange (high) according 

to the color key scale bar. Hierarchical clustering was based on complete linkage on euclidean 

distances between genes (rows) or samples (columns).  F) Immunoblot of several proteins involved 

in proliferation and survival in tumor samples. Vinculin immunoblot was performed to ensure equal 

loading. 
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JHEP Reports  

CTAT methods 

Tables for a “Complete, Transparent, Accurate and Timely account” (CTAT) are now 

mandatory for all revised submissions. The aim is to enhance the reproducibility of methods.  

● Only include the parts relevant to your study 

● Refer to the CTAT in the main text as ‘Supplementary CTAT Table’  

● Do not add subheadings 

● Add as many rows as needed to include all information 

● Only include one item per row 

 

If the CTAT form is not relevant to your study, please outline the reasons why: 

 
 

 

1.1 Antibodies 

Name Citation Supplier Cat no. Clone no. 

Phospho AKT (Ser473)  Cell Signaling Technology #9271  

AKT  Cell Signaling Technology #9272  

Phospho STAT3 
(Y705) 

 Cell Signaling Technology #9145  

STAT3  Cell Signaling Technology #30835  

Phospho ERK1/2 
(Thr2020/Y204) 

 Cell Signaling Technology #9101  

ERK1/2  Cell Signaling Technology #4348  

Phospho P38 
(Thr180/Y182) 

 Cell Signaling Technology #4511  

P38  Abcam ab59461  

cMYC  Cell Signaling Technology #5605  

P27  Cell Signaling Technology #3686  

P21  Cell Signaling Technology #2947  

FASN  Cell Signaling Technology #3180  

AceCS1  Cell Signaling Technology #3658  

ACSL1  Cell Signaling Technology #9189  

ACAC  Cell Signaling Technology #3666  

ACLY  Cell Signaling Technology #4332  

PPARγ  Cell Signaling Technology #2430  

Phospho mTOR 
(Ser2448) 

 Cell Signaling Technology #2971  

mTOR  Cell Signaling Technology #2983  

Phospho S6K (Thr689)  Cell Signaling Technology #9205  

S6K  Cell Signaling Technology #9202  

β-actin  Merck A5441  

Vinculin  Merck V9131  

PCNA  Cell Signaling Technology #2586  

 

 

 

Jo
urn

al 
Pre-

pro
of



 
 
 

Created :  November, 2018 

 

1.2 Cell lines 

Name Citation Supplier Cat no. Passage 
no. 

Authentication 
test method 

CCLP1  kind gift 
from Dr. A.J. 
Demetris 

   

HUCCT1  kind gift 
from Dr. A.J. 
Demetris 

   

SG231  kind gift 
from Dr. A.J. 
Demetris 

   

iCCA4  Kind gift of 
Dr. V. 
Cardinale 

   

 

1.3 Organisms 

Name Citation Supplier Strain Sex Age Overall n 
number 

       

 

1.4 Sequence based reagents 

Name Sequence Supplier 

   

 

1.5 Biological samples 

Description Source Identifier 

   

 

1.6 Deposited data 

Name of repository Identifier Link 

   

 

  

1.7 Software 

Software name Manufacturer Version 

GraphPad Prism GraphPad Software ver.6 

 

1.8 Other (e.g. drugs, proteins, vectors etc.) 

Name Supplier Cat.no 

Orlistat MedChem Express HY-B0218  

QuantiNova LNA PCR Qiagen #SBHS-133ZE 
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Created :  November, 2018 

Focus Panels 384-well 
plates 

shFASN Origene TR313058 

ALDH Assay kit Merck MAK082 

Annexin V PI staining kit Roche 11858777001 

BrdU Proliferation Assay Roche 11647229001 

BODIPY 493/503 Cayman Chemicals 25892 

FAO assay kit Assay Genie BR00001 

 

1.9 Please provide the details of the corresponding methods author for the 

manuscript: 

 
Chiara Raggi 

 

2.0  Please confirm for randomised controlled trials all versions of the clinical 

protocol are included in the submission. These will be published online as 

supplementary information. 
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Highlights 

 

• The stem cells in intrahepatic cholangiocarcinoma (iCCA) exhibit disrupted fatty acid 

metabolism and increased production of specific fatty acids. 

 

• Exposure of iCCA cells to fatty acids results in a notable increase in tumor stem cell 

program.   

 

• FASN is upregulated in iCCA SPH and its expression correlates with poor prognosis 

in CCA patients. 

 

• Depletion of FASN or its inhibition reduces the aggressive characteristics of the iCCA 

cancer stem cell subset 
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