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This study examines the role of genes and environments in predicting educational outcomes. 

We test the Scarr-Rowe hypothesis, suggesting that enriched environments enable genetic 

potential to unfold, and the compensatory advantage hypothesis, proposing that low genetic 

endowments have less impact on education for children from high socioeconomic status 

(SES) families. We use a pre-registered design with Netherlands Twin Register data (426 ≤ 

Nindividuals ≤ 3,875). We build polygenic indexes (PGIs) for cognitive and noncognitive skills 

to predict seven educational outcomes from childhood to adulthood across three designs 

(between-family, within-family, and trio) accounting for different confounding sources, 

totalling 42 analyses. Cognitive PGIs, noncognitive PGIs, and parental education positively 

predict educational outcomes. Providing partial support for the compensatory hypothesis, 

39/42 PGIxSES interactions are negative, with 7 reaching statistical significance under 

Romano-Wolf and 3 under the more conservative Bonferroni multiple testing corrections 

(p-value < 0.007). In contrast, the Scarr-Rowe hypothesis lacks empirical support, with just 

2 non-significant and 1 significant (not surviving Romano-Wolf) positive interactions. 

Overall, we emphasise the need for future replication studies in larger samples. Our findings 

demonstrate the value of merging social-stratification and behavioral-genetic theories to 

better understand the intricate interplay between genetic factors and social contexts. 

 
Keywords: gene-environment (GxE) interaction, educational inequality, Scarr-Rowe 

hypothesis, compensatory advantage hypothesis, between-family analysis, within-family 

analysis, trio analysis, Netherlands Twin Register. 

1. Introduction  

Educational attainment influences future individuals’ socioeconomic status (SES) and health 

outcomes. Therefore, extensive research has investigated the intergenerational determinants 

of educational success. In social stratification research, the importance of family SES1 in 

reproducing educational opportunities over generations is a stylised fact (Blossfeld et al., 

2016; Breen and Jonsson, 2005). Environmental inequalities in cultural and economic 

resources and investments would largely explain why children from high-SES families are 

more likely to succeed in schools than their low-SES peers (Jackson, 2013). At the same time, 

from behavioural genetics scholarship, it is well established that individual differences in 

nearly every phenotype of interest to social scientists are heritable to some degree (Van 

                                                 
1 From now on, for the sake of simplicity, we generically use parental or family SES to refer to children’s social background even when in 

this article we measure it with the highest parental educational attainment. 
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Hootegem et al., 2023; Polderman et al., 2015; Turkheimer, 2000). Classical twin studies 

(Silventoinen et al., 2020; Branigan et al., 2013) and novel molecular studies directly 

measuring the genome (Okbay et al., 2022; Lee et al., 2018) show that educational attainment 

is no exception, with genetics explaining between 40% and 16% of the variance, respectively. 

While the fact that both genes and environments influence educational attainment within 

generations is clear (Nielsen, 2016; Conley et al., 2015; Diewald et al., 2015), an 

interdisciplinary research area on gene-environment interactions (G×E) further scrutinises 

whether the effect of genetic variants on a phenotype depends on the environment where 

individuals are raised or schooled—and vice versa (Conley et al., 2015; Shanahan and Hofer, 

2005). Nevertheless, whether genetic propensity for education matters more among children 

from high or low-SES families is still an open question from a theoretical and empirical 

viewpoint (Domingue et al., 2020). 

Theoretically, two main competing hypotheses from behavioural genetics and social 

stratification research streams predict G×E interactions on educational attainment, outlining 

different patterns and mechanisms (Ruks, 2022). The Scarr-Rowe hypothesis (Scarr-

Salapatek, 1971) from behavioural genetics posits that enriched social environments allow 

individuals to fully express their genetic potential so that genes are more predictive of 

cognitive performance among socioeconomically advantaged families (Rowe, Jacobson and 

van den Oord, 1999). Alternatively, the compensatory advantage hypothesis (Bernardi, 2014) 

from social stratification predicts that negative traits or events for status attainment—e.g., a 

low genetic propensity for education—are less detrimental to high-SES children’s 

educational attainment due to well-off parents’ aversion to downward mobility and 

compensatory strategies (Holm, Hjorth-Trolle and Jaeger, 2019; Breen and Goldthorpe, 

1997). 

Empirically, a growing interdisciplinary literature spanning sociology, psychology and 

economics is accumulating evidence around G×E interactions. Previous research from 

classical twin models (Turkheimer and Horn, 2014; Turkheimer et al., 2003) and new 

advancements in molecular genetics scholarship (Conley et al., 2015) reach mixed 

conclusions on whether advantaged families fully express or compensate their children’s 

genetic endowments for education. In line with the Scarr-Rowe hypothesis, several twin 

(Baier and Lang, 2019; Harden, Turkheimer, and Loehlin, 2007) and molecular genetics 

studies (Ronda et al., 2022; Uchikoshi and Conley, 2021) show that genes are more predictive 

of intelligence or educational attainment among socioeconomically advantaged individuals. 
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A meta-analysis by Tucker-Drob and Bates (2016) supports the Scarr-Rowe hypothesis for 

intelligence and test scores in the US, but it was not replicated in Western Europe or 

Australia. Conversely, in line with the compensatory hypothesis, some studies find a steeper 

genetic association among low-SES individuals, neighbourhoods, or schooling environments 

(Stienstra and Karlson, 2023; Arold, Hufe and Stoeckli, 2022; Baier et al., 2022; Cheesman 

et al., 2022; Knigge et al., 2022; Ruks, 2022; Harden et al., 2020; Lin, 2020; Trejo et al., 2018). 

Other authors find null effects or no consistent G×E interactions (Breinholt et al., 2023; 

Malanchini et al., 2023; Baier et al., 2022; Stienstra et al., 2021; Isungset et al., 2021; de Zeeuw 

et al., 2019; Figlio et al., 2017; Conley et al., 2015).  

In this article, we examine whether parental SES moderates the effect of children’s genetic 

propensity for education on different educational outcomes over the life course. Precisely, 

we contribute to the literature by testing whether previously mixed findings on G×E 

interactions in educational attainment might be related to three main aspects: (1) the type of 

research design implemented, (2) the measures of genetic endowments studied, and (3) the 

type and timing of the educational outcomes analysed. 

First, we implemented several research designs. One central challenge in detecting 

unbiased G×E interactions is to control for the endogeneity between social contexts and 

genetic endowments, known as gene-environment correlations (rGE). Each parent 

transmits, on average, 50 % of their genetic material to their offspring. Some of these genes 

also affect the environment where children are raised, for instance, family SES and parenting 

practices (Marks and O’Connell, 2023). That leads to a correlation between the family’s SES 

characteristics and the child’s genetics, named passive rGE (Hart, Little, and van Bergen, 

2021; Wertz et al., 2019; Plomin et al., 1977). Estimating gene-environment interactions in 

the presence of rGE can lead to false positive results (Keller, 2014). However, most previous 

studies employ a between-family analysis (Papageorge and Thom, 2020), which does not deal 

with rGE or unmeasured environmental factors across families (Fletcher and Conley, 2013). 

To address rGE, controlling for parental genotypes is a possible solution (Isungset et al., 

2021; Breinholt and Conley, 2023). In the case of the within-family design, when sibling and 

genetic data are available (Fletcher et al., 2023), family fixed-effects models can exploit 

random segregation of alleles between siblings while controlling for all usually unmeasured 

(genetic and environmental) family circumstances shared within the household (Cheesman 

et al., 2022; Domingue et al., 2015). Still, there is evidence that passive rGE biases PGI 

coefficients in the within-family design (Trejo and Domingue, 2018). A trio design can be 

implemented under the rare but increasing availability of parental genetic information 
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(Breinholt and Conley, 2023) to directly control for mothers’ and fathers’ genotypes and 

exploit random variation in non-transmitted alleles. In doing so, one can get a more robust 

estimation of G×E interactions since controlling for parents’ PGIs makes it credible to 

assume that a child’s PGI is exogenous to family characteristics (Isungset et al., 2021). Thus, 

in this article, we triangulate findings from these between-, within-family and trio research 

designs to shed light on different sources of variation and confounding to identify more 

robust G×E interactions (Demange et al., 2022). 

Second, we study cognitive and noncognitive skills PGIs. Previous G×E interaction 

studies on educational outcomes mainly focus on the genetic propensity for adult attainment, 

using the PGI for total years of education (Lee et al., 2018). However, educational attainment 

can be further distinguished into cognitive and noncognitive skills (Demange et al., 2021), 

which are among the most predictive and closest traits in the causal chain explaining 

educational performance (McGue et al., 2020; Borghans et al., 2016). While cognitive skills 

are measured with validated intelligence and cognitive performance tests (Nisbet, 2012), 

noncognitive skills are a less-well-defined concept (Demange et al., 2021), including a wide 

range of traits generally improving one’s educational performance (Jackson and Moullin, 

2023), such as grit, conscientiousness, motivation, or social skills (Kevenaar et al., 2023; 

Smithers et al., 2018). As cognitive and noncognitive skills are two distinct latent constructs 

that can act as complements or substitutes in learning and educational performance (Light 

and Nencka, 2019), family SES might moderate (e.g., compensate or enhance) their (genetic) 

association with educational outcomes differently (Gil-Hernández, 2021; Holtman, Menze 

and Solga, 2021; Damian et al., 2015). The first GxE study using a PGI for noncognitive 

skills found no interaction with parental SES in explaining academic achievement from ages 

7 to 16 in the United Kingdom (Malanchini et al., 2023). Building on this study, we use PGIs 

for cognitive and noncognitive skills to untangle the genetic architecture of the main 

predictors of educational attainment and estimate G×E interactions over further educational 

outcomes, triangulating from different research designs. 

Third, we investigate different educational outcomes. Previous studies independently 

covered several educational outcomes such as test scores in late primary and lower-secondary 

school (Malanchini et al., 2023; Cheesman et al., 2022; Isungset et al., 2021), high-school 

outcomes (e.g., persistence in mathematics; Harden et al., 2020), or college completion 

(Papageorge and Thom, 2020). Yet, adult educational attainment results from successive 

teacher assessments and transitions over the educational system with different selectivity and 

implications for social demotion (Blossfeld et al., 2016). For instance, Ghirardi and Bernardi 
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(2023) hypothesised and evidenced that the interaction between PGIs and parental SES 

might depend on the selectivity of the educational outcomes investigated. Thus, we take a 

life-course approach (Blossfeld et al., 2019) investigating seven educational outcomes from 

childhood to adulthood: grades in mathematics and reading (age 7-10), high-stakes 

standardised test scores (CITO: age 12), school track in secondary school (age 12-18), and 

adult educational attainment (age ≥ 25). This life-course approach might shed further light 

on G×E interactions and mechanisms, while snapshots or single educational outcomes 

might give a fuzzy picture of potential G×E interactions. 

In this study, we test two competing hypotheses on G×E interactions in educational 

outcomes, the compensatory and Scarr-Rowe hypotheses, asking the following research 

question: Does the effect of genetic propensity for cognitive and noncognitive skills on 

educational outcomes matter more for high- or low-SES children? We answer this question 

through a pre-registered research design and a genotyped panel of twins, siblings, and parents 

from the Netherlands Twin Register (NTR) (Ligthart et al., 2019). We use PGIs for cognitive 

and noncognitive skills to predict seven educational outcomes across three research designs, 

namely the between-family, within-family, and trio designs, conducting 42 distinguished 

analyses (i.e., 2 PGIs x 7 outcomes x 3 designs). While most previous research focused on 

comprehensive educational systems from the United States (US), UK, or Norway, we test 

the Scarr-Rowe and compensatory hypotheses in the context of the modern Dutch early 

tracked educational system, which is highly selective and horizontally stratified (Blossfeld et 

al., 2016). 

The following sections outline our two hypotheses’ theoretical framework, explain the 

data, methods and variables, and discuss our findings’ implications for the interdisciplinary 

social stratification and sociogenomics literature. 

2. Theoretical Framework  

The existing literature shows that genes and environments correlate and interact in a complex 

interplay to influence individuals’ educational attainment (Papageorge and Thom, 2020; 

Belsky et al., 2018; Schmitz and Conley, 2017). This section discusses the main theories from 

behavioural genetics and social stratification accounting for the interaction between a family 

SES and genetic propensity for education.  

2.1. The Scarr–Rowe hypothesis 
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The Scarr–Rowe hypothesis claims that the relative importance of genetics for cognitive ability 

is higher in socioeconomically advantaged families than in disadvantaged families (Rowe, 

Jacobson and van den Oord, 1999; Scarr-Salapatek, 1971). The underlying assumption of 

this interaction effect, in which genetic variation is suppressed in low-SES families, is that 

those children reared in deprived environments, generally characterised by material scarcity, 

chronic stress and low levels of cognitive stimulation (Mcewen and Mcewen, 2020), cannot 

fully express their genetic potential (Uchikoshi and Conley, 2021; Baier and Van Winkle, 

2021). Contrastingly, children from advantaged families experience an enriched rearing 

environment where their genetic potential is fully expressed.  

The Scarr-Rowe hypothesis was initially developed in studies about intelligence, using 

classical twin models of variance decomposition and finding support in the specific context 

of the US, a country characterised by high child poverty, meagre social policies and high-

income inequality (Turkheimer and Horn, 2014), while among Western European countries 

and Australia, this hypothesis was not replicated (Tucker-Drob and Bates, 2016). Some 

authors argue that the genetic heritability of intelligence might not follow a linear pattern, 

being only suppressed in highly deprived environments to plateau after reaching a minimum 

environmental quality threshold (Nielsen, 2016; Pennington et al., 2009).  

This hypothesis was extended by looking at other educational outcomes beyond 

intelligence (Baier and Lang, 2019) and using molecular data—directly measuring the 

genome. Studies using molecular data have investigated this hypothesis across various 

educational outcomes such as school test scores (Isungset et al., 2021), school tracking 

(Uchikoshi and Conley, 2021; Harden et al., 2020), educational attainment (Lin, 2020), and 

years of education (Conley et al., 2015). Moreover, instead of examining the moderation of 

genetic expression by family SES, some studies further examine the moderating role of 

environments like schools (Trejo et al., 2018), teachers (Arold, Hufe and Stoeckli, 2022), or 

neighbourhoods (Cheesman et al., 2022). However, the evidence regarding the Scarr-Rowe 

hypothesis is highly inconclusive, as reviewed in Table A1 in the Appendix.  

Figure 1 Panel A illustrates an application of the Scarr-Rowe hypothesis for the 

relationship between genetic predisposition for cognitive and noncognitive skills and 

educational outcomes and its moderation by family SES. The line representing individuals 

with low SES is flatter, indicating that individuals with a high genetic propensity for cognitive 

and noncognitive skills do not realise their full genetic potential in disadvantaged 
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socioeconomic environments. According to the Scarr-Rowe hypothesis, we expect to 

observe in our study that:  

H1. PGIs for cognitive and noncognitive skills are more predictive of educational outcomes for 

children with high-SES parents than low-SES parents. 

2.2. The Compensatory Advantage Hypothesis 

In social stratification literature, the compensatory advantage hypothesis posits heterogeneity by 

parental SES in the penalty of a negative trait or event for status attainment at 𝑡0 on a 

subsequent outcome at 𝑡+1. According to this hypothesis and related findings, the 

educational and labour market trajectories of individuals from privileged backgrounds are 

less influenced by previous adverse events or traits (Bernardi and Gil-Hernández, 2021; 

Bernardi and Grätz, 2015; Bernardi, 2014), such as a low genetic propensity for education. 

This hypothesis was initially developed to examine educational inequalities, proposing and 

showing that children from advantaged social backgrounds are more likely to overcome the 

negative consequences of prior poor academic performance (e.g., bad grades, grade 

repetition) by progressing towards higher education (Bernardi and Triventi, 2018; Bernardi, 

2012).  

Thanks to their cultural and economic resources, high-SES families might (un)consciously 

nurture their low-endowed children’s nature with compensatory investments2 (Breinholt and 

Conley, 2023; Houmark et al., 2020). Thus, high-SES families would compensate for their 

children’s unfavourable (genetic) traits to eventually develop higher—than usually predicted 

by low genetic potential—cognitive and noncognitive skills, academic performance (e.g., 

grades and test scores) or transition rates to academic tracks leading to college so to avoid 

downward educational mobility. In line with this hypothesis, some recent molecular genetics 

studies found a negative interaction between enriched environments and educational 

outcomes, showing the compensatory or substitutive role of high-SES families, 

neighbourhoods and schools, or high-quality teachers to lift students with low genetic 

endowments for education (Arold et al., 2022; Cheesman et al., 2022; Harden et al., 2020; 

                                                 
2 This compensatory mechanism could work in absolute terms independently of relative within-family resource allocation patterns across 

siblings (i.e., parents investing relatively more in the sibling with higher PGI for education than in the sibling with lower PGI) (Engzell and 
Hällsten, 2022). 
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Lin, 2020). However, the evidence for the compensatory hypothesis is as mixed as with the 

Scarr-Rowe hypothesis, as reviewed in the introduction and Table A1 in the Appendix. 

Specifically, the penalty in later educational outcomes associated with an initial negative 

trait or event is expected to be smaller for high-SES individuals due to class-based differences 

in expectations and resources. The compensatory advantage hypothesis is based on the 

Relative Risk Aversion model formalising SES inequalities in educational transitions (Breen and 

Goldthorpe, 1997). This model draws from prospect theory to propose that individuals are more 

sensitive to losses than gains due to evolutionary pressures so that, given their relative 

position in the class structure, high-SES subjects are more driven to avoid downward social 

mobility than low-SES subjects to move upward. For high-SES individuals, a previous 

adverse event or trait, such as low academic potential or performance, does not necessarily 

impact their later educational and occupational attainment because they stick to high 

educational expectations to maintain their privileged status (Bernardi and Valdés, 2021). In 

contrast, low-SES students would be more sensitive to a previous adverse event (Holm, 

Hjorth-Trolle and Jaeger, 2019), trait or contextual (i.e., macroeconomic) climate in their 

educational careers (Salazar et al., 2020), as relatively lower educational attainment would 

suffice to maintain or improve their status. Compared to disadvantaged parents, advantaged 

families have a large pool of economic, cultural and social resources (Lareau, 2015) to 

compensate for early adverse events through, for instance, private tutoring and schools, 

alternative educational pathways, or school involvement to influence teacher’s track 

recommendations. 

Figure 1 Panel B displays the compensatory advantage hypothesis applied to the 

association between genetic propensity for cognitive and noncognitive skills and educational 

outcomes and its heterogeneity by family SES. As can be seen, the slope is flatter for high-

SES compared to low-SES children. According to this hypothesis, we expect to observe in 

our study that:  

H2. PGIs for cognitive and noncognitive skills are less predictive of educational outcomes for children 

with high-SES parents than low-SES parents. 

Finally, Figure 1 Panel C represents the null hypothesis of no interaction GxE interaction 

that would reject both the compensatory advantage and Scarr-Rowe hypotheses, where the 

genetic propensity for cognitive and noncognitive skills is equally predictive for high- and 

low-SES students with parallel slopes. 
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[Figure 1 around here] 

3. The Context of the Dutch Educational System  

The modern Dutch educational system is primarily public and, despite some minor changes, 

relies on the 1968 Mammoth Act. This legal framework established free-of-charge compulsory 

education until the age of 16—if a degree is obtained or until 18 if no degree yet, and early 

tracking into different school tracks from the primary-to-secondary transition at age 12 

(grade 6) (Luijkx and de Heus, 2008).  

Primary education is compulsory from age 5 until age 12, but almost all children are 

enrolled from age 4, with a total duration of 8 grades (2 kindergarten and 6 elementary 

education grades). In secondary education, the system comprises three3 main educational 

tracks in lower-secondary education from age 12 and grade 7 (Luijkx and de Heus, 2008), 

including (1) 4-year pre-vocational tracks (VMBO), further divided into four sub-tracks with 

different degrees of practical or theoretical focus; (2) a 5-year senior general education track 

(HAVO); (3) and a 6-year pre-university track (VWO).  

The tracking process occurs at the end of primary school. It mainly depends on a 

combination of the student’s high-stakes standardised CITO test scores (Dutch National 

Institute for Educational Measurement), measuring arithmetic and language competencies, and the 

teacher’s recommendations based on a student’s GPA and behaviour. The CITO test is 

administered in most Dutch schools, with scores ranging from 501 to 550, with a grade above 

535 generally granting a recommendation to the two upper secondary tracks (HAVO and 

VWO). The CITO scores and track recommendations are strongly associated with final track 

enrolment. 

Students enrolled in the pre-vocational tracks in lower secondary education most often 

transit into a vocational school (MBO) in upper secondary education, lasting between 1 and 

4 years, depending on the specialisation. Access to higher education is granted either through 

a degree from the HAVO track, which provides access to universities of applied sciences 

(HBO), the most widespread option, or the completion of the VWO track leading to college 

or research-oriented universities (WO). However, achieving a level-4 MBO degree gives 

access to a university of applied sciences. At the end of the second phase of HAVO (years 

                                                 
3 In early secondary schools (grade 7 and 8), many students are in bridge classes typically that include two out of three tracks. Most bridge 

classes take one or two years, so by grade 9, most students have been funnelled into a single school track. Two adjacent tracks are often 
grouped, for instance, VMBO-t/HAVO classes or HAVO/VWO classes. 
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4-5) and VWO (years 4-6), to access higher education, students must pass a standardised 

central exam for most of their subjects in combination with school-administered and 

designed tests for each subject to get a certificate and assign the final graduation grade. 

Due to these institutional arrangements, parents of low-performing children may have 

less room to influence or bypass track decisions (Blossfeld et al., 2016). Thus, the Dutch 

educational system of early tracking is a stringent test for the compensatory advantage hypothesis. 

However, there is still room for high-SES families with high educational expectations to 

deploy compensatory strategies if their children struggle at school or underperform to 

prevent them from downward mobility and enrol them into upper secondary tracks 

(Dronkers and Korthals, 2016). Among the possible mechanisms at play, high-SES parents 

might, for instance, help their kids with homework or pay for private tutoring to improve 

their performance in the CITO test, pressure teachers to get a higher recommendation 

(Timmermans et al., 2018), proactively search for alternative schools, or in case of a negative 

recommendation, push their children for upper-track mobility.  

4. Data, Samples and Variables  

Before accessing the data and analyses, this study’s hypotheses and research design were pre-

registered on the Open Science Framework repository. Additional non-preregistered analyses 

indicated below should be considered exploratory. Further deviations from the 

preregistration are detailed in Section 2 of the Appendix. All the statistical code necessary 

for replication is available on a GitHub repository. We cannot publish the NTR data, as 

participants did not consent to sharing their data publicly.  

4.1. Data  

The unique data of the Netherlands Twin Register4 (NTR) (Ligthart et al., 2019) contains 

multiomics, phenotypic, and sociodemographic information about monozygotic (MZ) and 

dizygotic (DZ) twins (identical and opposite sex) and their family members, such as parents 

and siblings. The NTR’s collection of blood and saliva DNA samples to identify single 

nucleotide polymorphisms (SNPs) allows us to construct PGIs for cognitive and 

                                                 
4 Ethical approval for the NTR was provided by the Central Ethics Committee on Research Involving Human Subjects of the VU. 

University Medical Center, Amsterdam, and Institutional Review Board certified by the US Office of Human Research Protections (IRB 
number IRB-2991 under Federal-wide Assurance 3703; IRB/institute codes 94/105, 96/205, 99/068, 2003/182, 2010/ 359) and 
participants provided informed consent. 
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noncognitive skills building on genome-wide association studies (GWAS) with large 

discovery samples of genetically unrelated individuals (Lee et al., 2018).  

The NTR comprises two large sub-groups: families with young and adolescent twins (the 

Young Netherlands Twin Register) and adult twins (the Adult Netherlands Twin Register). First, the 

Young Netherlands Twin Register (YNTR) recruited families with young and adolescent twins 

with a cross-sequential design based on the birth cohort (1986-2019) and age (1, 2, 3, 5, 6/7, 

9/10, 12, 14, 16, 18) with surveys administered from 1988 to 2020. The YNTR draws cross-

sectional and longitudinal information from parental reports of children aged 1 to 12, 

children’s self-reports from age 14 to 18, and twins’ full siblings’ self-reports from age 14. 

Second, the Adult Netherlands Twin Register (ANTR) comprises adult twins aged 18 or older 

born between 1909 and 2001 (mean = 1990, SD = 17) and their family members with 2- to 

3-yearly surveys on health, lifestyle, and personality from 1991 to 2020 (Willensen et al., 

2013). Once they become adults, the YNTR twins and other individuals can join the ANTR, 

so a small subset (5%) of the YNTR is followed up from age 1 to adulthood. Here, we use 

both these datasets. YNTR is used as an unbalanced panel (e.g., follow-ups and new entrants 

in each survey) to study early educational outcomes from age 7 to 18., such as school grades, 

test scores (CITO) and secondary school track. Furthermore, we use the ANTR to analyse 

adult educational attainment from age 25 (mean birth year = 1972, SD = 13). To make the 

birth year distribution more overlapping with the YNTR analytical samples (mean = 1995, 

SD = 7), we restrict the ANTR sample to individuals born from 1980 (mean birth year = 

1987, SD = 3) in the main analysis, while in the Appendix (section 7.3.3) we run additional 

analyses for those born before 1980. 

As illustrated in Appendix’s Table A2, the YNTR covers 70% (n=68,771) of all Dutch 

twin pairs born between 1986 and 2019 (N=98,877), based on official statistics (Statistics 

Netherlands, 2024c), while older adult cohorts born before 1980 are less well represented 

(Ligthart et al., 2019). Despite its ample population coverage, as with most twin registers, the 

NTR slightly overrepresents high-SES parents and high-achievers5 compared to the general 

Dutch population, especially when filtering out those cases with available genetic 

information. As shown in Appendix Table A2, about 41% (36%) of the fathers and 35% 

(29%) of the mothers have higher education in our genotyped analytical (full) samples (mean 

                                                 
5 Regarding reading ability, the average of the NTR twins was 0.18 SD above the national average (van Bergen et al., 2018). NTR twins 

read equally well as their non-twin siblings. Thus, NTR families perform on average slightly higher, and twins are representative of non-

twins. Besides, drawing from own analyses exploiting the Dutch PISA data from 2000 to 2018, overlapping with the NTR birth cohorts, 

by grade 9, 44 % of Dutch 15-year-olds’ pupils were enrolled in HAVO or VWO tracks, while 56 % were attending the VMBO tracks. In 

the YNTR data, 65 % of students attended the HAVO/VWO tracks, while 35 % the VMBO tracks. These figures imply that there is a 

slight positive selection in terms of ability in the NTR data. 
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survey year = 2003). At the same time, in the general equivalent population (individuals aged 

25-55 in 2003) to the YNTR birth cohorts, these figures reach 30% for men and 26% for 

women (Statistics Netherlands, 2024a). The average mother’s age at first birth in the NTR 

data (mean = 33) is also slightly higher than the total population in the equivalent period 

between 1986 and 2019, with a mean of 28.9 (Statistics Netherlands, 2024c). The YNTR 

students took the CITO standardised test in 2005, on average, with a mean score of 538.9 

(SD = 9) versus a 536 average in the academic year 2005/2006, according to population data 

(Statistics Netherlands, 2024b). Finally, children with a migration background are 

underrepresented due to the need to control for population stratification in genetic analysis, 

excluding ethnic outliers. Unluckily, the NTR does not provide sampling weights to adjust 

for participation rates and population characteristics, which should be considered when 

interpreting findings. 

4.2. Samples 

Table A3 in the Appendix documents the selection procedure from the full to the analytical 

samples, including the sample sizes and share of missing values by variable. Most missing 

cases are due to genotype information only being available in about 25% of the observations, 

resulting in a slightly positive selection of the analytical compared to the full samples, broadly 

representative of the corresponding population. The YNTR full samples range from 29,274 

to 21,331 cases among the survey waves where the outcome variables are mainly reported 

(ages 7-12). At the same time, the ANTR dataset reaches 61,350 observations before variable 

selection.  

We analyse all twins and their siblings with available information for the between-family 

analysis (see sections 5.1. and 5.3. below). However, we exclude one MZ co-twin randomly6 

in families with a pair of MZ-twins to avoid the lack of variation in the genetic characteristics 

(Mills et al., 2018), as the MZ-twins genetic correlation is ≈ 1. For the trio analysis, we follow 

the same criteria as the between-family analysis, except we limit the analysis to children with 

no missing information on parents’ genotypes. In the within-family analysis (see Section 5.2.), 

we keep a balanced sample of two family members by family to implement family fixed 

effects (FE) models by comparing (1) two DZ-twins in families where we observe the pair; 

(2) if one DZ co-twin is missing and there is only one full sibling observed within the family, 

we compare them and, if more than one sibling is observed, we pick a random sibling; (3) if 

                                                 
6 In the Appendix, we display a robustness check analysis (section 7.3.) for the between-family and trio design analyses where we keep 

both MZ-twins and results hold. 
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two MZ-twins are observed in the same family, to avoid no within-family variation, we 

randomly selected one MZ-twin by family and assigned it a sibling if only one is observed, 

or a random one if more than one is available.  

After applying the selection criteria, excluding non-European ancestry individuals (13.1% 

of the sample with available PGIs) due to population stratification issues with PGIs, and 

deleting missing values in our independent variables of interest (PGIs, and parental education 

in all designs, and parental PGIs in the trio design), the analytical samples range from 426 to 

3,875 observations (see Table 1) depending on the research design (see Section 5) and 

outcome analysed (see Section 4.3.1). As the NTR follows a cross-sequential design that does 

not require participation across all surveys, information on one or more analysed variables 

might be missing. We use different analytical samples by research design and outcomes to 

maximise sample size and power.7 In addition, adult educational attainment (from age 25) is 

the only outcome from the ANTR cohort, with available individuals born on average in 1972, 

while for the remaining outcomes taken from the YNTR, participants were born on average 

between 1994 and 1996. Thus, to select a more homogenous sample in terms of its historical 

context, we restrict the primary analysis sample to those born from 1980 for adult educational 

attainment within the ANTR cohort. The distribution of the main variables of interest is 

consistent across subsamples by outcome and research design. 

 

 

[Table 1 around here] 

                                                 
7 To get an idea of the required sample size to study GxE interactions with enough statistical power, we reviewed the most recent studies 

examining the interaction between educational PGIs and parental SES (see Table A1 in the Appendix). Moreover, we conduct two types 

of power analysis (see Section 5 in the Appendix). First, we compute the minimum incremental R2 for each subsample with a power of 
80% and a statistical significance of 5%. This analysis suggests that, by including an additional tested covariate (i.e., the interaction) in each 
sample, we can confidently observe a significant change in the model’s explanatory power (see Tables A13-A15 and Figures A1-A3 in the 
Appendix). Second, we conduct a post-hoc power analysis using Monte Carlo simulations (see Tables A16-A17 in the Appendix). These 
analyses suggest that power is often below standard levels of acceptability (power < 0.8). However, this is not the case for upper secondary 
track and educational attainment, at least in the between-family analysis where the sample sizes are higher. Thus, we suggest cautiously 
interpreting interaction effects when sample sizes and the beta coefficients are low.   
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4.3. Variables 

4.3.1. Dependent variables 

We study seven educational outcomes8 measured at different time points in the life course 

as dependent variables. First, we use school grades in mathematics and reading in primary 

education (at ages 7 and 10) measured on a 1-to-5 scale (1=poor; 2=weak; 3=fair; 4=good; 

5=very good) as reported by mothers.9 Second, we look at standardised national test scores 

(CITO) at age 12, a crucial outcome that influences teacher’s track recommendation and 

student’s track choice in lower-secondary education, ranging from 501 to 550 in its original 

scale, which we transformed into z-scores. Third, we take information about the type of 

secondary school attended using the last available information from age 12 to 18.10 We coded 

as 1 those children who attend university preparation education (VWO) or senior general 

secondary education (HAVO) and as 0 those who attended pre-vocational secondary 

education or upper-secondary vocational education (MBO). Finally, we look at adult 

educational attainment from age ≥ 25 by distinguishing between those who have a university 

(wo) or university of applied sciences (HBO) degree (1) and those who finished secondary 

or primary education (0).  

4.3.2 Independent and moderator variables 

As the main independent variables, we use mean PGIs for cognitive and noncognitive skills. 

A PGI is a quantitative variable summarising the individual’s genetic propensity for certain 

traits or behaviours (Mills and Tropf, 2020).11 PGIs for cognitive and noncognitive skills are 

based on the GWAS effect sizes estimated by Demange et al. (2022) and the GWAS-by-

subtraction method developed by Demange et al. (2021).12 This method leverages genomic 

structural equation modelling to create latent genetic constructs from existing summary 

statistics. A noncognitive construct was created by “subtracting” the genetic variance of 

cognitive skills from the genetic variance of educational attainment. The PGIs we built from 

                                                 
8 In the pre-registration, we included teachers’ recommendation for the type of secondary school at age 12 as an additional outcome. 

However, the analytical sample sizes of this variable were very low, thus, we do not include it in the final analyses (see Section 2 in the 
Appendix). 
9 Self-reported variables by parents might contain measurement. In case of systematic misreporting by family SES, we might observe a 

biased GxE interaction but, to our knowledge, there is no evidence on data quality issues in the NTR data. 
10 In our sample, 90 % of students, on average, remain on the same track from age 14 to 18. 
11 Variance PGIs is a promising strategy to more reliably estimate GxE interactions (Johnson et al., 2022; Miao et al., 2022). Unfortunately, 

we use mean PGIs since, at the moment, there are few available vQTL/vGWAS summary statistics and no well-powered educational 
attainment or cognitive skills studies to our knowledge. Additionally, it is unclear how Genomic SEM might be able to leverage vQTL 
summary statistics. 
12 The summary statistics of the GWAS for cognitive and non-cognitive skills can be found at the following link: 

https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/MMXYPL 
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these GWAS, therefore, reflect the genetic variance of cognitive performance (cognitive 

skills PGI) and the genetic variance of educational attainment independent of cognitive 

performance (noncognitive skills PGI), as tagged by common genetic variations (SNPs). 

PGIs were computed using Plink software version 1.9 based on weighted betas obtained 

using the LDpred v1.0.0 software, using infinitesimal prior, a linkage disequilibrium (LD) 

pruning window of 250kb and 1000Genomes phase 3 CEU population as LD reference. In 

the primary analysis, we use the PGI for cognitive and noncognitive skills as a continuous 

variable transformed into z-scores. We also categorise them in terciles in the robustness 

checks (see Sections 7.2.2. and 7.2.3. in the Appendix) to account for potential nonlinearities.  

As the main measure of a family’s SES, we use a dichotomous variable distinguishing 

between high- and low-medium-educated parents (1=university; 0=primary, secondary 

education, and higher vocational schooling), taking this information in the first year available 

(e.g., at age 3 for YNTR participants). Using a dominance approach, we look at the highest 

educational level among fathers and mothers. As a robustness check, we replicate the 

analyses using the parental highest occupation (1=higher-grade professionals; 0=rest) as an 

alternative measure of a family’s SES, and we find robust results (see Section 7.4 in the 

Appendix). 

4.3.3. Control variables 

In all the designs, we control for ancestry’s first 10 genetic principal components (PCs) and 

the genotyping platform, a standard practice in the genomics literature (see Okbay et al., 

2016). The trio analysis includes controls for the mother’s and father’s PGIs for cognitive 

and noncognitive skills, constructed following the same procedure used to operationalise the 

children’s PGIs (see Section 4.3.2. above). As a robustness check, we replicate all the main 

analyses controlling for gender and birth year to account for potential biases in the original 

GWASs on which the PGS weights are based. Still, the results align with the main models 

(see Tables A20-22 in Section 7.1. of the Appendix).  

5. Methods  

We conduct three different designs, between-, within-family and trio, to account for different 

sources of confounding and bias. In all three designs, we run linear probability models (LPM) 

for tracking and adult educational attainment, dummy outcomes, and ordinary least squares 
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(OLS) regressions for school grades and CITO outcomes, with standard errors adjusted by 

family cluster to account for the non-independence of observations.  

We follow two strategies to ensure our results are robust when estimating GxE 

interactions. First, we add interaction terms between PGIs, parental education and all control 

variables outlined above to properly account for potential confounding between covariates 

and the interaction term (Keller, 2014). Second, we apply formal corrections to the p-values 

of our estimations to account for multiple comparisons. In particular, we use Bonferroni and 

Romano-Wolf corrections to exclude the possibility that our results are false positives by 

chance from multiple hypothesis testing. According to Bonferroni’s conservative correction 

for 7 outcomes, interactions must have a p-value below the adjusted threshold of 0.007 

(0.05/7 for each PGI) to be considered statistically significant. Romano-Wolf’s (2005) 

correction is less stringent following a bootstrap procedure (Clarke et al., 2020; Romano and 

Wolf, 2016). Section 6 in the Appendix details these multiple testing methods and presents 

the results adjusted from both approaches.  

Moreover, as robustness checks, we replicate the analysis in all three designs using 

alternative model’s specifications (e.g., logistic regression of our dichotomous outcomes: 

school tracking and adult educational attainment), samples and control variables, and 

operationalising PGIs in terciles for all outcomes to account for potential nonlinearities in 

an attempt to prevent bias and false discovery in our findings (Domingue et al., 2022). As 

shown in the Appendix in Section 7, these robustness analyses back the article’s main 

findings. 

5.1. Between-family analysis   

We estimate equation (1a) where i is a child, and 𝒁𝑖 is a vector of controls (10 genetic principal 

components and genotyping platform). Specifically, to assess the predictive power of 

children’s PGI for cognitive and noncognitive skills, in baseline equation (1a), we include the 

PGI for cognitive skills, PGI for noncognitive skills and family’s SES. We expect β1, β2 and 

β3 to be positive and statistically significant in equation (1a). 

 

𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽3𝑆𝐸𝑆𝑖 +  𝒁𝑖 + 휀𝑖 (𝐸𝑞. 1𝑎) 

The below equations formalise the two-way interactions between a child’s PGI for 

cognitive (1b) or noncognitive skills (1c) and parental SES. According to the Scarr-Rowe 
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hypothesis (H1), we expect β4 (equations 1b and 1c) to be positive and significant: PGIs for 

cognitive or noncognitive skills are more predictive among high-SES children. Alternatively, 

according to the compensatory advantage hypothesis (H2), β4 is expected to be negative and 

statistically significant: PGIs for cognitive or noncognitive skills are less predictive for high-

SES children’s educational outcomes than low-SES children. 

𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽3𝑆𝐸𝑆𝑖 +  𝒁𝑖 + 𝛽4𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑆𝐸𝑆𝑖   

+ 𝛽5𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽6𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝒁𝑖 + 𝛽7𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖

+ 𝛽8𝑆𝐸𝑆𝑖 𝑥  𝒁𝑖 + 휀𝑖 (𝐸𝑞. 1𝑏) 

𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽3𝑆𝐸𝑆𝑖 +  𝒁𝑖 + 𝛽4𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑆𝐸𝑆𝑖   

+ 𝛽5𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽6𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝒁𝑖 + 𝛽7𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖

+ 𝛽8𝑆𝐸𝑆𝑖 𝑥  𝒁𝑖 + 휀𝑖 (𝐸𝑞. 1𝑐) 

5.2. Within-family design 

We implement an additional research design to account for potential bias due to rGE and 

exploit random variation in siblings’ genetic endowments. We apply the within-family design 

with twin and sibling FE. Using this design, we can assume that variation in siblings’ PGIs 

for cognitive and noncognitive skills is exogenous (direct genetic effects) (Demange et al., 

2022) since each sibling randomly gets 50% of their genetic makeup in the process of 

reproduction, being unconfounded by parental SES.  

In equation 2a, i is a child within family j, 𝛿𝑗 represents the family-FE and 𝒁𝑖𝑗 is a vector 

of controls including 10 principal genetic components and the genetic testing platform. We 

run family FE models, including children’s PGIs for cognitive and noncognitive skills and 

controls in the main model in equation (2a) above. Again, in line with previous between-

family models, we expect β1 and β2 to be positive and statistically significant in equation 

(2a). However, effect sizes might be slightly smaller due to attenuation bias, partial control 

for gene-environment correlations and other family-constant factors. Since parental SES is 

the same for twins and siblings within the same family, its constitutive term can not be 

estimated by design and, hence, is absent in Figure 2. 

𝑌𝑖𝑗 =  𝛼 + 𝛽1 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖𝑗 + 𝛽2 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖𝑗 + 𝒁𝑖𝑗 +  𝛿𝑗 + 휀𝑖𝑗  (𝐸𝑞. 2𝑎) 

Finally, we run heterogeneous family FE models as in equation 2a by parental SES in 

equations 2b (low SES) and 2c (High SES) (Giesselmann and Schmidt-Catran, 2020). We 

expect the coefficient β1 on cognitive skills PGI and β2 on noncognitive skills PGI to be 
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smaller for low SES in equation 2b than for high SES in equation 2c under the Scar-Rowe 

hypothesis (H1) or larger under the compensatory advantage hypothesis (H2). In Figures 4-5, we 

display the coefficient difference for β1 and β2 between high and low-SES groups, which 

would be of positive sign according to H1 or negative under H2. 

𝑌𝑖𝑗 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖𝑗 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖𝑗 + 𝒁𝑖𝑗 + 𝛿𝑗 + 휀𝑖𝑗  | 𝑆𝐸𝑆𝑖 = 𝐿𝑜𝑤 (0) (𝐸𝑞. 2𝑏)  

𝑌𝑖𝑗 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖𝑗 + 𝛽2 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖𝑗 + 𝒁𝑖𝑗 + 𝛿𝑗 + 휀𝑖𝑗  | 𝑆𝐸𝑆𝑖 = 𝐻𝑖𝑔ℎ (1) (𝐸𝑞. 2𝑐) 

5.3. Trio design  

We restrict the samples to children with available parental genetic information to perform 

the trio design. We estimate the models above in the between-family analysis and additionally 

control for parents’ and mothers’ PGIs for cognitive and noncognitive skills to control for 

rGE.  

Firstly, we estimate the model expressed in equation (3a) where i is child, and 𝒁𝑖 is a vector 

of controls (10 genetic principal components and genetic testing platform). Then, in equation 

(3b), we add the father’s and mother’s PGIs for cognitive and noncognitive skills to account 

for rGE. The coefficients β1 and β2 should remain positive and statistically significant in the 

presence of direct genetic effects of children’s PGI for cognitive and noncognitive skills on 

educational outcomes. Besides, the coefficient β3 on parental SES should remain positive 

and significant net of intergenerational genetic transmission. 

𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔 𝑖 + 𝛽3𝑆𝐸𝑆𝑖 +  𝒁𝑖 + 휀𝑖 (𝐸𝑞. 3𝑎) 

𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔 𝑖 + 𝛽3𝑆𝐸𝑆𝑖 + 𝛽4 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 +  𝛽5𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟

+ 𝛽6 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 + 𝛽7 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝒁𝑖 + 휀𝑖 (𝐸𝑞. 3𝑏) 

 

Finally, in the trio design, we look at the two-way interactions between a child’s PGI for 

cognitive (equation 3c) or noncognitive skills (equation 3d) and parental SES. As for the 

between- and within-family designs described above, we expect the interaction between 

parental SES and children’s PGI in β8 to be positive and statistically significant under the 

Scarr-Rowe hypothesis (H1), and negative and statistically significant under the 

compensatory advantage hypothesis (H2).  
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𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽3𝑆𝐸𝑆𝑖 + 𝛽4 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 +  𝛽5𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟

+ 𝛽6 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 + 𝛽7 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝒁𝑖 + 𝛽8𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑆𝐸𝑆𝑖  

+  𝛽9𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖  + 𝛽10𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟

+ 𝛽11𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 +  𝛽12𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟

+ 𝛽13𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 +  𝛽14𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑥  𝒁𝑖 

+ 𝛽15𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽16 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟

+ 𝛽17 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝛽18 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 

+ 𝛽19 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝛽20 𝑆𝐸𝑆𝑖 𝑥 𝒁𝑖 + 휀𝑖 (𝐸𝑞. 3𝑐) 

 

𝑌𝑖 =  𝛼 + 𝛽1𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽2𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 + 𝛽3𝑆𝐸𝑆𝑖 + 𝛽4 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 +  𝛽5𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟

+ 𝛽6 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 + 𝛽7 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝒁𝑖 

+ 𝛽8𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑆𝐸𝑆𝑖  

+  𝛽9𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖  + 𝛽10𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟

+ 𝛽11𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝛽12𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟

+ 𝛽13𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 +  𝛽14𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑥  𝒁𝑖 

+ 𝛽15𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 + 𝛽16 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟

+ 𝛽17 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝛽18 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝐹𝑎𝑡ℎ𝑒𝑟 

+ 𝛽19 𝑆𝐸𝑆𝑖 𝑥 𝑃𝐺𝐼 𝑁𝑜𝑛𝐶𝑜𝑔𝑖 𝑀𝑜𝑡ℎ𝑒𝑟 + 𝛽20 𝑆𝐸𝑆𝑖 𝑥 𝒁𝑖 + 휀𝑖 (𝐸𝑞. 3𝑑) 

6. Results 

6.1. Cognitive and noncognitive skills PGIs and educational outcomes 

We first evaluate whether the PGIs for cognitive and noncognitive skills and family SES 

predict educational outcomes, as illustrated in Figures 2 and 3 by research designs (see Tables 

A4-A5, A7, A9-11 in the Appendix). The PGIs for cognitive and noncognitive skills and 

family SES positively predict educational outcomes regardless of the research design 

implemented, namely between-family, within-family, and trio designs.  

Children with higher PGIs for cognitive skills have higher educational outcomes net of 

their family’s SES. The PGI for cognitive skills positively and significantly predict all 

outcomes except for adult educational attainment in the within-family design—with high 

uncertainty but similar effect size. Specifically, as shown in Figures 2 and 3, a one-unit SD 

increase in the PGI for cognitive skills is associated with an increase of 0.13-0.23 points on 

a 1-to-5 scale (SD~0.9) for school grades, a 0.2-0.25 SD increase in CITO test scores, a 9-

11% higher chance of attending upper secondary tracks, or 7-10% higher likelihood of 

attaining higher education in adulthood.  
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Similarly to PGI for cognitive, children with higher PGIs for noncognitive skills have 

higher educational outcomes net of their family’s SES. A one-unit SD increase in the PGI 

for noncognitive skills is associated with an increase of 0.06-0.10 points on a 1-to-5 scale for 

school grades, a 0.09-0.17 SD increase in CITO test scores, a 5-8% higher chance of 

attending upper secondary tracks, or 6-10% higher likelihood of attaining higher education 

in adulthood. One can note that the coefficients for the noncognitive skills PGI are, 

depending on the outcome, from 14 to 55% smaller when compared to the cognitive skills 

PGI. However, they are still positive and statistically significant at 5% across the different 

designs after adjusting for the family’s SES and all covariates, except for reading at age 10 in 

the within-family analysis—with high uncertainty but similar effect sizes. 

 Family SES is also positively associated with children’s educational outcomes. 

Controlling for children’s PGIs for cognitive and noncognitive skills—and parents’ PGIs in 

the trio design, individuals with highly educated parents get 0.2-0.3 points higher school 

grades, score 0.4 SD higher in the CITO exam, and have about 20% higher likelihood to 

attend upper secondary tracks or university education than their least advantaged peers. One 

can notice that the PGIs and family SES estimates are remarkably similar across the three 

designs, going against the expectation that rGE upwardly biases between-family estimates 

considerably.  

[Figure 2 around here] 

[Figure 3 around here] 

6.2. Heterogenous genetic associations on educational outcomes by family SES  

We test whether the impact of PGIs for cognitive and noncognitive skills on educational 

outcomes varies according to the family SES. Figure 4 shows the coefficients of the 

interactions between the PGIs for cognitive skills and the family’s SES. Focusing on school 

grades, we find a negative and statistically significant (p-value < 0.05) interaction only for 

mathematics at age 10 in the within-family and trio designs. Regarding CITO scores, the 

coefficients are substantial and have a negative sign in all three designs but are not statistically 

significant. We find a negative and statistically significant interaction (p-value < 0.05) for 

upper secondary tracks across all three designs, surviving Romano-Wolf multiple testing 

correction in the between and trio designs and Bonferroni correction in the between-family 

design (see Table A18 in the Appendix). Concerning educational attainment, there is a 
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negative interaction statistically significant (p-value < 0.01), surviving Bonferroni correction, 

only in the between-family design, while in the within-family and trio designs, the estimates 

are non-significant and decrease by half but keep their negative sign. Tables A6, A8 and A12 

in the Appendix show the interaction coefficients of these analyses for each model. 

The pattern is less clear when looking at the interaction between PGI for noncognitive 

skills and the family SES, as shown in Figure 5. If we focus on school grades, we observe no 

consistent and statistically significant interactions with any of these outcomes across research 

designs, except for a positive and significant interaction (p-value<0.05) for reading at age 7 

in the within-family design not surviving the Romano-Wolf correction. Regarding the 

remaining outcomes, the between-family design detects statistically significant negative 

interactions for upper secondary tracks (p-value<0.05) and adult educational attainment (p-

value<0.01), while the trio design does the same for CITO test scores (p-value<0.05) and 

tracking (p-value<0.05), with a suggestively (p-value<0.10) negative interaction for 

educational attainment of similar effect size as in the between-family model. Interestingly, 

non-statistically significant but negative interactions of similar size are found for tracking and 

educational attainment in the within-family design. Adjusting interaction p-values for 

multiple testing, Romano-Wolf correction confirms a negative interaction for CITO in the 

trio design, as well as tracking and educational attainment in the between-family design. The 

latter also survives Bonferroni correction (see Tables A19 in the Appendix). Tables A6, A8 

and A12 in the Appendix show the interaction coefficients of these analyses for each model. 

For a clearer understanding of our findings, Figure 6 plots the GxE interaction models 

by PGIs and outcomes for the trio design since this is the most reliable method (Breinholt 

and Conley, 2023). We focus on the tracking outcome since, as shown in Figures 4 and 5, its 

negative interaction between family SES and PGI for cognitive skills is the most consistent 

result by designs and multiple testing corrections. Looking at the probability of upper 

secondary attendance in Figure 6, the slope of the PGI for cognitive skills is considerably 

flatter among high-SES children compared to low-SES peers, meaning that a low genetic 

propensity for cognitive skills is less consequential for advantaged children compared with 

disadvantaged pupils. While about 80% of high-SES students with low PGI for cognitive 

skills (-2 SD) attend the upper secondary tracks, only 40% of low-SES with low PGI for 

cognitive skills do the same. Therefore, educational inequalities by family SES seem to be 

the largest among students at the bottom of the genetic distribution for cognitive skills, while 

this SES gap narrows progressively at the medium top.  
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[Figure 4 around here] 

[Figure 5 around here] 

Figure 6 also shows a similar pattern for mathematics at age 10 and test scores (CITO). 

Looking at the interaction between family SES and the cognitive skills PGI on mathematics 

at age 10, we can see that the cognitive skills PGI is more predictive among low-SES than 

high-SES. Interestingly, the interaction between noncognitive skills PGI and family SES is 

negative and statistically significant also on test scores (CITO), with the PGI for 

noncognitive skills positively predicting the outcome for low-SES and the opposite for high-

SES. 

[Figure 6 around here]
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Overall, 93% (39/42) of the estimated interactions between PGIs and SES are negative, contrasting 

with the Scarr-Rowe hypothesis (H1). Indeed, the Scarr-Rowe hypothesis lacks substantial empirical 

support, with only 3/42 positive interactions and only 1 out of 3 being statistically significant (p-

value<0.05) but not surviving multiple testing corrections. On the other hand, the overall negative 

direction in 39 out of 42 PGIxSES interactions, with 10 being statistically significant at 5%, seems more 

in line with the compensatory advantage hypothesis (H2). When we account for multiple comparisons 

to prevent false positives due to chance, 7 detected negative interactions pass the Romano-Wolf 

correction threshold, but only 3 survive the more conservative Bonferroni correction (p-value < 

0.05

7 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑏𝑦 𝑃𝐺𝐼
 = 0.007). We recognise the need for caution in interpreting these results as they are not 

fully robust to multiple testing, and the smaller samples of the within-family and trio designs and adult 

educational attainment could undermine the statistical power to identify false negatives reliably. 

6.3. Robustness checks 

We run several robustness checks to assess the credibility of our findings. First, using a linear model in 

studying interactions may lead to bias and false discovery in dichotomous or categorical outcomes 

(Domingue et al., 2022; Rohrer and Arslan, 2021; Mize, 2019). Thus, we (re)estimate our analysis using 

logistic models for dichotomous outcomes and nonparametric PGIs specified in terciles to successfully 

replicate the compensatory patterns found in the main analyses (see Figures A4-A15 and Tables A23-

A27 in the Appendix). These results confirm the negative interaction between family SES and PGI 

cognitive skills on the upper secondary track. 

Second, we replicate the models using alternative definitions of our samples. On the one hand, we 

run the between-family and trio analyses without excluding one random MZ twin per family (see Tables 

A28-A33 in the Appendix). We find consistent results with the main samples and analyses. Again, the 

interactions between family SES and cognitive skills’ PGI replicate in the between-family and trio designs. 

On the other hand, regarding educational attainment, we run additional analyses with (1) the full ANTR 

sample without excluding individuals born before 1980 and (2) excluding those born after 1980 (see 

Tables A34-A39 in the Appendix). Splitting the educational attainment subsamples shows stable negative 

interaction coefficients in the between-family models but not in the within-family and trio designs, where 

its sign varies by birth cohort. Interestingly, focusing on the trio-design results and the subsample of 

cohorts born before 1980, the interaction coefficient becomes positive and statistically significant (p-

value <0.05) for the cognitive skills PGI in line with the Scarr-Rowe hypothesis. This latter pattern 

suggests that there might be heterogeneity in the GxE by birth cohorts and that this also could reflect 

changing selectivity in attaining a university degree in older cohorts (Ghirardi and Bernardi, 2023).  
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Finally, we replicate our analyses by building alternative definitions of parental and children’s 

educational attainment. We use the highest parental occupation drawing from the earliest available 

information, as with parental education (see Tables A40-42 in the Appendix). Results align with the main 

analysis concerning the G×E interactions for the upper secondary track, while the results for the G×E 

interaction on school grades for cognitive skills PGI in mathematics at age 10 and noncognitive skills 

PGI for CITO test scores are not statistically significant. Then, we repeat the analysis without 

dichotomising the children’s educational attainment outcome variable. We still distinguish between the 

sample used in the main analysis (born from 1980) and the other two split samples presented above (i.e., 

the overall sample and those born before 1980). In this robustness check, educational attainment consists 

of the following four categories: primary school only, lower vocational school and lower secondary 

school, intermediate vocational school and intermediate or higher secondary school, higher vocational 

school, and university. Findings align with the main results (see Tables A43-A45 in the Appendix).  

7. Conclusion and discussion 

This article examines the intergenerational transmission of educational inequality by testing whether 

genetic endowments for education matter differently by family SES. We investigate GxE interactions 

framed in behavioural genetics and social stratification theories to examine the competing Scarr-Rowe 

(H1) and compensatory advantage hypotheses (H2). While the former expects a positive interaction, 

arguing that high-SES families enhance full children’s genetic expression, the latter predicts a negative 

pattern where high-SES families compensate for their children’s low genetic endowments. 

We provide three contributions to shed new light on previously mixed findings on these hypotheses. 

First, we look at GxE on educational phenotypes by untangling the genetic architecture of educational 

attainment—total years of education in adulthood—into cognitive and noncognitive skills, the main 

predictors of learning and educational performance. Second, due to data constraints, most studies 

implemented between- or within-family research designs that cannot fully account for gene-environment 

confounding. Few studies applied the trio design to enhance causal identification, which is ideal for 

combining parental genetic information with between-family models. Its application was limited to the 

US and Norway, countries with comprehensive educational systems. Hinging on Dutch panel family data, 

we triangulate findings from between-, within-family, and trio designs to bypass rGE in an early-tracked 

educational system. Third, while most previous research only looked at single outcomes with cross-

sectional data, we analysed seven childhood-to-adulthood educational outcomes with different selectivity 

and implications for social demotion avoidance: grades and high-stakes test scores in primary education, 

school tracking in secondary education and adult attainment.  
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We report four main findings and discuss their implications for future research. First, the evidence 

presented in this study shows no empirical support for the Scarr-Rowe hypothesis (H1) since most GxE 

interactions estimated between cognitive and noncognitive skills PGIs and family SES were of negative 

sign (out of 42 GxE interactions, only 3 were positive with 2 non-significant and 1 significant not 

surviving multiple testing corrections). The weight of the evidence leans more into the competing 

compensatory advantage hypothesis (H2), with 39/42 negative GxE interaction coefficients that hold generally 

consistent across different research designs and PGIs. Still, we should be particularly cautious if we take 

our findings at face value. Out of 39 negative GxE interaction terms, only 7 are statistically significant 

under the conventional 5% threshold and the Romano-Wolf multiple-testing adjustment, while barely 3 

survived the most stringent Bonferroni correction (p-value < 0.007) to prevent false positives.  

Second, our findings suggest that previously mixed findings on G×E interactions on educational 

attainment might relate to the type of outcomes investigated. We found evidence for GxE interactions 

among specific outcomes, only documenting a sound negative G×E interaction—robust across research 

designs and surviving multiple testing corrections—for the cognitive skills PGI and attendance to school 

tracks leading to college. In line with this finding, previous social stratification studies found that high-

SES parents tend to compensate for their children’s low academic ability and performance (i.e., GPA, 

test scores, grade repetition) to keep progressing into academic pathways bound to college (Bernardi and 

Triventi, 2018).  

Still, focusing on the trio as the most robust design accounting for parental genetics, findings suggest 

a negative G×E interaction for the noncognitive skills PGI when predicting high-stakes test scores (age 

12) and upper-secondary tracking, and the cognitive skills PGI on math grades (age 10). These findings 

align with previous evidence that high-SES schools can compensate for a low PGI for educational 

attainment regarding mathematics persistence across secondary education in the US (Harden et al., 2020) 

or test scores in Norway (Cheesman et al., 2022). Examining single outcomes with snapshots might 

conceal that educational attainment results from successive academic achievements and transitions over 

the educational system. A life course approach based on longitudinal data allows for tracing educational 

careers and focusing on those educational outcomes that are especially critical for social demotion 

avoidance and future SES attainment (i.e., early track choice). This life-course approach might shed 

further light on G×E interactions and mechanisms in future studies.  

Third, we expected inflation of our between-family estimates due to rGE, which would be visible by 

attenuation in the within-family and trio designs. However, the direction and magnitude of the estimated 

coefficients are broadly consistent across research designs. The main effects of PGIs for cognitive and 

noncognitive skills and family SES on educational outcomes suggest that parental education fully 

accounts for passive rGE mechanisms influencing children’s education (Selzam et al., 2019). Likewise, 
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adjusting for family SES and its interactions with covariates might suffice to control for inflation of GxE 

interactions due to rGE. Exploring the replication of this result with alternative polygenic scores or 

various environmental factors could yield further insights.   

Fourth, we found more robust negative GxE interactions for the genetic propensity for cognitive 

skills than noncognitive skills. This pattern might be related to the higher predictive power of the PGI 

for cognitive skills or due to the definition of noncognitive skills used in the GWAS (residual variance of 

adult educational attainment), which might make this PGI less reflective of noncognitive aspects of 

childhood education (Demange et al. 2021). This pattern calls for further research to study 

complementarity or substitution dynamics between cognitive and noncognitive genetic endowments and 

skill formation over the life course. In this direction, Malanchini et al. (2023) suggest that the contribution 

of the PGI for noncognitive skills to academic achievement is most prominent later in life.  

This study has some limitations that should be considered for improvement in future research. First, 

interaction analyses are sensitive to the definition and distribution of outcome variables (Domingue et 

al., 2022). Using a linear model in studying GxE interactions with censored outcomes may lead to bias 

and false discovery when the outcome is dichotomous or categorical. Our sensitivity analyses estimating 

nonlinear specifications showed consistent results with the main linear analyses. Still, our study could be 

refined in future replication analyses to keep up with the continuous methodological advancements in 

sociogenomics in PGI prediction and interaction estimation, such as implementing variance PGIs 

(Johnson et al., 2022; Miao et al., 2022). 

The second limitation is the small number of observations in some subsamples, especially for the 

within-family and trio designs and the adult educational attainment outcome. The larger the sample size, 

the higher the reliability in detecting GxE interactions (Domingue et al., 2020). We, indeed, explored this 

potential limitation in two ways. Firstly, we estimate the minimum incremental 𝑅2 that would yield a 

statistically significant result using an F-test and assuming a statistical power of 0.8 in each subsample 

(see Tables A13-A15 and Figures A1-A3 in the Appendix). Our analyses indicate that including an 

additional tested covariate, the interaction term, significantly changes the model’s explanatory power. 

Secondly, using Monte Carlo simulation, we conducted a post-hoc power analysis confirming that 

sufficient power was only achieved in the between-family analysis for specific outcomes, such as school 

tracking and educational attainment (see Tables A16-A17 in the Appendix). We argue that future research 

on G×E interactions should seriously address statistical power to better detect false negatives and 

minimise the risk of false positives using a larger sample size or meta-analysis (IntHout et al., 2016). Thus, 

we caution that our findings might be subject to replication when bigger samples are available in the 

Netherlands or other countries. 
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Third, we used different analytical samples and units of analysis according to the research design and 

the outcome examined. Thus, the differences in the results by outcome and over the between-, within-

family, and trio designs might be due to successfully isolating different confounding sources, statistical 

power, as outlined above, or sample selection bias. However, as briefly discussed previously, this does 

not seem to be a concern since there are not considerable sociodemographic, genetic or educational 

differences between the various subsamples used in this study.  

Fourth, the Netherlands Twin Registry study does not fully represent the Dutch population, raising 

concerns about positive selection and external validity as in most twin studies.  Unfortunately, NTR data 

lacks sampling and longitudinal weights, which could help re-weight our analysis and increase our 

findings’ generalizability. Furthermore, as standard in sociogenomics studies relying on PGIs, our analysis 

is restricted to individuals with European ancestry available in current GWAS. Still, genetic variant 

associations might vary across populations with different ancestries (Martin et al., 2019). We hope future 

G×E studies will combine large-scale genotyped family data with longitudinal administrative information 

to improve power and population coverage and extend these analyses to be more inclusive of ethnic 

minorities.    

While acknowledging these limitations to guide future research, this study indicates that the Scarr-

Rowe hypothesis lacks empirical support. In contrast, its competing compensatory advantage hypothesis 

finds partial support, suggesting that advantaged families might offset the impact of low genetic 

propensity for cognitive and noncognitive skills and contribute to the intergenerational reproduction of 

educational inequality. At the same time, these findings, limited to parental education and occupation as 

proxies of the family SES environment, spark investigation of enriched learning environments, for 

instance, in schooling systems, and its policy potential to lift students with low genetic endowments for 

academic skills. Looking at mechanisms explaining our findings was beyond the scope of this study. Thus, 

we hope future studies will investigate the mechanisms underlying the interaction process between family 

SES and genetic propensity for education, such as parental educational investments and expectations, to 

shed light on the complex intertwining between DNA and social environments.  
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Figures and Tables 

 

Figure 1. Hypotheses for the interaction between family SES and genetic propensity for cognitive and noncognitive skills on 

educational outcomes 

 
 

 

 

Table 1. Analytical sample by research designs and outcomes 
  

Research Design 

Age Outcome Between  Within  Trio  

7 Mathematics grade 3,728 2,124 1,861 

7 Reading grade 3,756 2,130 1,869 

10 Mathematics grade 3,829 2,212 2,022 

10 Reading grade 3,875 2,236 2,051 

12 Test scores (CITO) 2,690 1,500 1,254 

12-18 Upper secondary track  3,318 2,004 1,500 

 ≥ 25 Educational attainment (≥1980) 1,224 426 576 

Jo
ur

na
l P

re
-p

ro
of



   

 

36 

Figure 2. Children’s cognitive and noncognitive PGIs, and family SES (inestimable in the within-family analysis) coefficients 

on school grades in the three designs (between, within and trio)  

 

Note: 95% confidence intervals. Standard errors clustered by families. We run OLS (for between-family and trio analysis) and family FE (for within-family 

analysis) models with controls.  See sample sizes in Table 1. PGIs and CITO scores are z-standardised. See the Appendix for full output in Tables A4-A5, 

A7, and A9-A11. SES is fixed in the within-family models, so not shown in this figure. In black are the coefficients that are not statistically significant anymore 

after correcting for Bonferroni multiple testing (p-value < 0.007). 
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Figure 3. Children’s cognitive and noncognitive PGIs, and family SES (inestimable in the within-family analysis) coefficients 

on CITO test scores, upper secondary tracks attendance, and higher educational attainment in the three designs (between-

family, within-family and trio analysis)  

 

Note: 95% confidence intervals. Standard errors clustered by families. We run OLS or LPM (for between-family and trio analysis) and family FE (for within-

family analysis) models with controls. See sample sizes in Table 1. PGIs and CITO scores are z-standardised. See the Appendix for full output in Tables A4-

A5, A7, and A9-A11. SES is fixed in the within-family models, so it is not shown in this figure.  
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Figure 4. Interaction coefficients between PGI for cognitive skills and family’s SES on educational outcomes in the three 

designs (between-family, within-family and trio analysis)  

 

Note: 95% confidence intervals. Standard errors clustered by families. We run OLS or LPM (for between and trio analysis) and family FE (for within-family 

analysis) models with controls. Following Keller (2014), gene-covariates (cognitive skills PGI) and environment-covariates (family’s SES) interactions are 

included. See sample sizes in Table 1. PGIs and CITO scores are z-standardised. See Tables A6, A8 and A12 in the Appendix for full output. In red are the 

statistically significant coefficients after correcting for Bonferroni multiple testing (see Tables A16 and A17 in the Appendix). 
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Figure 5. Interaction coefficients between PGI for noncognitive skills and family’s SES on educational outcomes in the three 

designs (between-family, within-family and trio analysis) 

 

Note: 95% confidence intervals. Standard errors clustered by families. We run OLS or LPM (for between-family and trio analysis) and family FE (for within-

family analysis) models with controls. Following Keller (2014), gene-covariates (noncognitive skills’ PGI) and environment-covariates (family’s SES) 

interactions are included. See sample sizes in Table 1. PGIs and CITO scores are z-standardised. See Tables A6, A8 and A12 in the Appendix for full output. 

In red are the statistically significant coefficients after correcting for Bonferroni multiple testing (see Tables A16 and A17 in the Appendix). 
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Figure 6. Predicted grades in mathematics and reading, CITO scores, and predicted probabilities of upper 

secondary tracks attendance and higher educational attainment by cognitive and noncognitive PGIs for 

children from low- and high-SES families (trio analysis)  

 

Note: 95% confidence intervals. Standard errors clustered by families. We run OLS and LPM models with controls. Following Keller 

(2014), gene-covariates (PGIs) and environment-covariates (family’s SES) interactions are included. See sample sizes in Table 1. PGIs 

and CITO test scores are z-standardised 
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Highlights 

• Genes and family socio-economic status (SES) interact in predicting educational 

outcomes. 

• The Scarr-Rowe hypothesis states that high-SES families enable children to 

express their genetic potential.  

• The compensatory advantage hypothesis claims that high-SES families decrease 

the genetic influence on educational outcomes when their children have a low 

genetic propensity for education.  

• We build polygenic indexes (PGIs) for cognitive and noncognitive skills to 

predict seven educational outcomes across three designs: between-family, 

within-family, and trio.  

• The Scarr-Rowe hypothesis lacks empirical support, while some suggestions 

exist for the compensatory advantage hypothesis.  
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