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ABSTRACT
Process-based Forest Models (PBFMs) offer the possibility to capture important spatial and 
temporal patterns of carbon fluxes and stocks in forests. Yet, their predictive capacity should be 
demonstrated not only at the stand-level but also in the context of broad spatial and temporal 
heterogeneity. We apply a stand scale PBFM (3D-CMCC-FEM) in a spatially explicit manner at 1  
km resolution in southern Italy. We developed a methodology to initialize the model that 
includes information derived from the integration of Remote Sensing (RS) and the National 
Forest Inventory (NFI) data and regional forest maps to characterize structural features of the 
main forest species. Gross primary production (GPP) is simulated over 2005–2019 period and 
the model predictive capability of the model in simulating GPP is evaluated both aggregated as 
at species-level through multiple independent data sources based on different nature RS- 
based products. We show that the model is able to reproduce most of the spatial (~2800 km2) 
and temporal (32 years in total) patterns of the observed GPP at both seasonal, annual and 
interannual time scales, even at the species-level. These promising results open the possibility 
of confindently applying the 3D-CMCC-FEM to investigate the forests’ behaviour under climate 
and environmental variability over large areas across highly variable ecological and bio- 
geographical heterogeneity of the Mediterranean region.
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Introduction

Forest ecosystems absorb globally ~ 2 Gigatonnes 
of Carbon (C) stocking the carbon in their bio-
mass and soil, thus acting as a net carbon sink. In 
Europe alone, forest ecosystems, which cover 
about a 40%, currently act as a net carbon sink 
for ~ 315 Megatonnes of CO2eq and compensate 
for about 8% of EU-27’s total greenhouse emis-
sions (Verkerk et al., 2022). However, adverse 
climate impacts such as heat waves and drought 
(Allen et al., 2015; D’Andrea et al., 2020, 2021; 
Schuldt et al., 2020) and increasing natural distur-
bance rates (Grünig et al., 2023; Patacca et al.,  
2023) are all stressors which have potentially sig-
nificant effects on current and future forest 
dynamics, jeopardizing the European forest eco-
systems functioning and their carbon mitigation 
potential under future climate change (De Marco 
et al., 2022; Schuldt et al., 2020; Senf et al., 2020).

Nevertheless, ground data scarcity and short-term 
monitoring efforts still represent major challenges in 
studying the effects of climate change on forest dynamics 
in Mediterranean areas because are characterized by a 
large ecosystem heterogeneity and a biogeographically 
diverse structure shaped by human activity (Gauquelin 
et al., 2018; Médail et al., 2019; Peñuelas et al., 2017). As 
the Mediterranean region are known as a climate change 
“hotspot” (Dubrovský et al., 2014; Noce et al., 2016), 
experiencing already increasing frequency in extreme 
events such heat waves and droughts (Vogel et al.,  
2021), it is thus crucial in these areas to provide large- 
scale forest monitoring and eventually predict the future 
state of forest ecosystems. Recent efforts have addressed 
the shortage of ancillary or ground data by integrating 
National Forest Inventories (NFI) data and high-resolu-
tion remote-sensing (RS) data. These initiatives pro-
duced comprehensive wall-to-wall maps of various 
forest variables, such as growing stocks volumes or bio-
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mass (Chirici et al., 2020; Giannetti et al., 2022; Nord- 
Larsen & Schumacher, 2012; Vangi et al., 2023; Waser et 
al., 2017). These maps represent meaningful data for and 
carbon cycle assessment (e.g. Vangi et al., 2023). In 
parallel, process-based forest models (PBFMs) are analy-
tical tools developed and tested over a wide range of 
applications, because of their capability in simulating 
forest ecosystem even on long-term dynamics 
(Bugmann & Seidl, 2022; Vacchiano et al., 2012), carbon 
fluxes exchange and stocks (Chiesi et al., 2010; 
Dalmonech et al., 2022; Mahnken et al., 2022; Reyer,  
2015; Reyer et al., 2014) under external environmental 
variability by accounting for population dynamics and 
inner physiological processes mechanistically 
(Maréchaux et al., 2021; Pretzsch et al., 2008; 
Vacchiano et al., 2012). On the other side, given the 
large amount of requested data for their initialization 
and parameterization, such models are mostly run at a 
very local scale, i.e. site level (one hectare or a bit more), 
where high-quality/measured ancillary data and meteor-
ological data are available (Collalti et al., 2016; Suárez- 
Muñoz et al., 2023). Yet, initializing stand scale PBFMs 
from actual, measured forest state variables (or close to 
the observed states), rather than from equilibrium con-
ditions, is the desirable option to implicitly take into 
account the climate and management history of the 
site, and to more realistically simulate the response of 
forests and their resilience, even in the context of climate 
change, and natural and anthropogenic disturbances (e. 
g. Kannenberg et al., 2020; Pretzsch et al., 2008; Zampieri 
et al., 2021).

Despite their undoubted utility, only recently, stand- 
scale PBFMs were applied on a regular grid (Minunno et 
al., 2019; Sanchez-Ruiz et al., 2018) with the purpose of 
estimating aggregated, country-level, carbon stocks and 
wood products. Yet, in southern Europe and in the 
Mediterranean the ability of a PBFMs to simulate the 

GPP at large scale is crucial, but largely overlooked, 
because photosynthesis respond sensitively to both 
meteorological and climate variability and spatial hetero-
geneity at the daily to decadal scales (e.g. Fernández- 
Martínez et al., 2023; Mahnken et al., 2022), therefore 
GPP can be, and has been, considered a good proxy of 
the ecosystem physiological functionality especially in 
Mediterranean forests (Chen et al., 2023; Collalti et al.,  
2018). The objective of this study is, thus, the application 
and the testing of the biochemical, biophysical, process- 
based forest model 3D-CMCC-FEM (Collalti et al., 2016,  
2018, 2014), on a regular grid at 1 km spatial resolution 
in the Mediterranean area, initializing the model through 
the use of spatial information derived by integrating data 
of different nature: NFI data, RS-based wall-to-wall map, 
and regional forest maps to characterize structural fea-
tures of the main forest species. The final aim is to 
simulate GPP at regional scale. As a case study, the 
model was tested over one of the southernmost regions 
in Italy, the Basilicata Region, which, as most regions in 
the Mediterranean basin, spans over a multitude of eco-
logical, morphological and soil-type gradients and cli-
mate conditions. The capability of the model to simulate 
the GPP in terms of mean annual, seasonal and inter-
annual variability is evaluated by comparing model 
results against a portfolio of different independent RS- 
based GPP-estimates. The 3D-CMCC-FEM GPP vs. RS- 
based GPP data agreement is presented, and sources of 
uncertainties and challenges of applying a PBFMs with 
the presented modeling strategy are also discussed.

Materials and methods

Study area

The Basilicata region has a spatial extent of about 10,000  
km2 and is located in southern Italy (Figure 1(a)). It is 

Figure 1. a) study area in the Italian peninsula and elevation map of the Region Basilicata. The red line indicates the administrative 
limits of the region, b) distribution of the dominant forest class at 1 × 1 km spatial resolution.
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characterized by typical Mediterranean climate condi-
tions with hot and dry summers and wet and mild 
winters. The region has been chosen to test the model 
in a complex biogeographic area with pronounced envir-
onmental gradients. The territory is characterized by 
about 47% of mountain areas represented by the 
Apennines Mountains, followed by hilly areas, about 
45%, and then plain. Average annual precipitation varies 
between ~ 500 and ~ 2000 millimeters (mm) per year, 
mirroring the orographic complexity of the region and 
the proximities to the sea, with a west-to-east gradient 
from humid to dry sub-humid areas.

According to the last NFI (INFC 2015), forest vege-
tation and other wooded lands occupy 392,412 hec-
tares (ha), about 39% of the region. Deciduous species 
cover 54% of the forest area and are represented 
mainly by oaks spp (Q. cerris L., Q. ilex L.), which 
dominated the hilly areas between 400 and 1200 m 
above sea level (a.s.l.), and European beech (Fagus 
sylvatica L.) the main species above 1000 m a.s.l. 
Coniferous species are less abundant and are repre-
sented mainly by pines spp (P. halepensis Mill., and P. 
nigra J.F. Arnold), often used for reforestation pur-
poses (Figure 1(b)).

The study area was tessellated into a 1 km spatial 
resolution regional grid whose pixel area represents 
the best compromise between the forcing variables 
and the operative model resolution, for a total of ~  
10,073 pixels. The regional grid served as a spatial 
reference grid for resampling the input data needed 
for the model initialization to 1 km spatial resolution.

The process-based model 3D-CMCC-FEM

The 3D-CMCC-FEM (“Three Dimensional – Couple 
Model Carbon Cycle – Forest Ecosystem Module”) is an 
ecophysiological, biogeochemical, biophysical pro-
cess-based model which simulates the dynamic of 
carbon, water and nitrogen and the allocation through 
a cohort-structured forest stands (Collalti et al., 2016,  
2018, 2014, 2017, 2020, 2022; Dalmonech et al., 2022; 
Marconi et al., 2017; Testolin et al., 2023), providing 
detailed output from daily to annual time scale of 
carbon fluxes and stocks. The model simulates forest 
growth and structural development at varying envir-
onmental conditions and different climate, atmo-
spheric CO2 concentrations and forest management 
scenarios (Collalti et al., 2018; Dalmonech et al., 2022; 
Testolin et al., 2023).

The daily gross photosynthesis is simulated 
through the Farquhar–von Caemmerer–Berry bio-
chemical model (Farquhar et al., 1980), modified for 
sun and shaded leaves (De Pury & Farquhar, 1997), 
and acclimated for temperature (Kattge & Knorr,  
2007). The carbon and nitrogen allocation schemes 
are described extensively in Collalti et al. (2016,  
2019, 2020) and Merganičová et al. (2019). Tree 

removal can occur via management (Testolin et al.,  
2023) or by natural mortality (Collalti et al., 2018). 
Self-thinning, age-related, carbon starvation and back-
ground mortality represent the different types of mor-
talities simulated by the model (Collalti et al., 2016). 
Soil hydrology is simulated by means of a one-soil 
layer bucket model with free drainage. The plant 
water availability in the model is thus modulated by 
the soil depth (i.e. rooting depth until which the water 
is uptake to sustain leaf transpiration), because of the 
zero-dimensional soil model. Soil water stress operates 
on canopy exchange processes via stomatal and bio-
chemical pathways (e.g. photosynthesis). An in-depth 
description of the model’s underlying characteristics, 
effects of climate change and model parameter sensi-
tivity and uncertainty, as well as model limitations, is 
reported in Collalti et al. (2019).

Forest data source

The model requires the description of the forest struc-
tural characteristics: i.e. diameter at breast height 
(DBH), tree height (H), stand density (number of 
trees per cell) and age class, in order to be initialized 
and to run the simulations. In this work, to initialize 
the model for each grid cell of the matrix, we used data 
from the second NFI for 2005 (www.inventariofores 
tale.org). The NFI is based on a three-phase, systema-
tic, unaligned sampling design with 1 km grid cells. In 
the first phase, 301,300 points were extracted and 
classified using aerial orthophotos into forest/non- 
forest categories. In the second phase, a field survey 
was carried out in a sub-sample of the first-phase 
points falling in the forest category, to collect qualita-
tive information such as forest type, management, and 
property. Finally, in the third phase, for a sub-sample 
of 6782 points extracted from the second-phase 
points, a dendrometric survey was carried out for 
circular plots of a 13 m radius. All tree stems with 
DBH of at least 2.5 cm were callipered, and for a 
subsample, height was measured.

Field-survey data from the NFI were used to pro-
duce a “wall-to-wall” map of the forest basal area at a 
23 m spatial resolution. This map consists of random 
forests predictions of basal area per hectare for all 23  
m spatial resolution forest pixels. The random forests 
model was trained using NFI plot-level data and 
Landsat and other RS-based datasets as predictors, 
including climate information such as minimum, 
mean, and maximum temperature, and daily precipi-
tations from the E-OBS dataset, the land-only gridded 
daily observational dataset for Europe (see Section 
2.4). The statistical model fitting and tuning steps 
were carried out using the “randomForest” package 
in the statistical software R 4.0.5 (Liaw & Wiener,  
2002). More information about the procedure can be 
found in Chirici et al. (2020), Vangi et al. (2021) and 
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Giannetti et al. (2022). The pixel-level estimations of 
the basal area range between 5 and 43 m2 ha−1 with a 
mean value of 12 m2 ha−1 that is in line with the range 
reported in the context of NFI for the field plots data 
estimation.

The basal area data were then resampled to the 
regional grid at 1 km resolution. The resampled amp 
was then masked according to the regional forest map 
by Constantini et al., (2006). This map provided the 
forest type according to Barbati et al. (2007) and the 
development stage of the forests. Estimation of the 
forest structural data used to initialize the model in 
each regional grid cell is described in section 2.5.1.

Forcing and soil data

The 3D-CMCC-FEM was forced with daily maximum 
(Tmax,°C) and minimum (Tmin,°C) air temperatures, 
precipitation (P, mm day−1), downward short-wave 
radiation at the surface (SW MJ m−2 day−1) and relative 
humidity (RH, %). Meteorological data for the period 
2005–2019 were retrieved from the E-OBS v.23.1e 
gridded dataset (Cornes et al., 2018), which is provided 
at 0.1° decimal degree resolution. The E-OBS dataset 
has already been used in environmental impact studies 
(e.g. Rita et al., 2020), climate scenarios bias correction 
(Dosio & Paruolo, 2011; Rojas et al., 2011) and bench-
mark activities (Herrera et al., 2019; Lorenz et al., 2019; 
Massari et al., 2020; Moreno & Hasenauer, 2016).

All the physical variables were bilinearly interpolated 
to the regional grid at 1 km resolution, and the tem-
perature data were corrected for the topographic effect 
by applying a lapse rate correction based on elevation 
differences between the E-OBS reference elevation and 
the finest and most accurate DEM (Digital Elevation 
Model) currently available in Italy, obtained in the 
framework of the TINITALY project. The 
TINITALYDEM is a national DEM of Italy at 10 m 
resolution (Tarquini et al., 2009), and for the lapse 
rate correction it was resampled at 1 km resolution of 
the regional grid. The lapse rate estimates of −5°C km−1 

for Tmax and −3°C km−1 for Tmin were derived from 
termo-pluviometric ground station measurements over 
an elevation transect in the Basilicata region.

The model was forced by global annual atmo-
spheric CO2 concentrations from Dlugokencky and 
Tans (https://www.esrl.noaa.gov/gmd/ccgg/trends/), 
covering in total the years 2005–2019.

The model requires information on soil depth as 
well as soil texture for each grid cell. As a proxy of soil 
depth, we used the estimated depth available to root 
from the European Soil Database Derived Data pro-
duct ESBD v2 (Hiederer, 2013) provided at 1 km reso-
lution. The lower depth value of each class of the map 
was attributed, and a maximum of 1 m for the rooting 
depth was set. This boundary value can be considered 
a good approximation for European forests (Schenk & 

Jackson, 2005). Soil texture as a percentage of clay, silt, 
and sand was estimated from the pedological map of 
the region (year 2005).

The meteorological and geographic information 
were all re-projected using the same coordinate refer-
ence system WGS84/UTM zone 33 North (EPSG: 
32633), and then resampled onto the regional grid at 
1 km resolution. The main data analyses were per-
formed using the computing language R (R Core 
Team 2021). Key packages used for data preprocessing 
included “terra” (Hijmans et al., 2022) and “rgdal” 
(Bivand et al., 2015).

Model simulations

Model initialization
The 3D-CMCC-FEM model (v.5.6) was applied on the 
regional grid at 1 km spatial resolution to simulate the 
forest carbon dynamic starting in January 2005 until 
December 2019. The model requires the description of 
the forest attributes at the beginning of simulation in 
order to be initialized. The initial forest state was set 
according to a simplified model initialization of the 
forest aboveground structural complexity, i.e. for each 
grid cell, we determined the dominant forest species 
and estimated the average structural data: the average 
tree diameter at breast height (DBH), the average tree 
height (H), the stand density and the average age class 
which represent the mandatory initial data for model 
initialization.

The following six key species were considered: 
European beech (F. sylvatica L.), Black pine (P. nigra 
J.F. Arnold), Sweet chestnut (C. sativa Mill.), Turkey 
oak (Q. cerris L.), Aleppo pine (P. halepensis Mill.) and 
Holm oak (Q. ilex L.) as representative of the most 
common forest types in the study area. The regional 
forest map was used to define for each 1 km grid cell 
the dominant forest species as the one covering the 
highest forest fraction (Figure 1(b)) and the average 
age class based on the development stage (provided by 
the regional forest map along with the forest class). 
Areas with dominance of maquis and other minor 
forest species (the latest accounts for ~ 3.9% of the 
region and are not currently parameterized in the 
model) were masked out from the regional gird. 
The final dominant forest age classes result in a total 
of ~2800 km2, corresponding to ~ 80% of the entire 
regional forested area.

Tree density data of the NFI field plots were used to 
provide a representative estimate of the forest density 
in each grid cell. To do so, we zonally averaged the 
density data according to the regional grid and the 
dominant forest classes. The basal area map was then 
used in combination with the density map data to 
calculate an average cell-level DBH and to provide a 
1 km resolution DBH map for each dominant species 
(data not shown).
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To be consistent with the model processing and 
inherent logic, the H was calculated from the average 
DBH by applying the calibrated Chapman-Richards 
equation (Richards, 1959), which links DBH and H, 
for each forest class with each cell. Starting from these 
mandatory structural variables, i.e. DBH and H, the 
model self-initializes the other state variables: i.e. leaf, 
stem, branches, coarse and fine root, reserves (non- 
structural carbon, NSC; which includes starch and 
sugars) carbon and nitrogen pools using a species- 
specific parameterization at the beginning of the 
model simulations. Species-specific model parameters 
(e.g. specific leaf area or maximum stomatal conduc-
tance; see Table S1) were retrieved and calibrated from 
literature data. Specifically, the species-specific allo-
metric equations linking DBH to H and DBH to 
stem biomass were calibrated in this study using the 
second NFI tree-level data.

Simulations settings
Due to the relatively short time period covered by the 
simulations, i.e. 2005–2019, we did not consider any 
change in dominant species or land use. For the same 
reason, and because of the spatial resolution, a con-
stant thinning rate implemented each year was con-
sidered as the only silvicultural intervention as 
similarly as in Gutsch et al. (2018). The thinning rate 
was an approximation derived from the forest man-
agement guidelines of the region as set to a yearly 
removal rate of 1%, corresponding to ~ 20% of bio-
mass removed in 20 years. Forests in protected areas of 
the Natura2000 network of the region are character-
ized by lower disturbance extension compared to the 
other forested areas according to the disturbance maps 
produced by Francini et al. (2021), and are assumed to 
be interested by a lower level of tree harvesting. For 
simplicity, we assume, thus, that mortality in protected 
area is mainly caused by natural and background 
mortality alone. Grid cells interested in fire events 
over the period 2005–2019 were identified using the 
national dataset of burnt areas from forest fires, pro-
duced by the Italian Forest Service (Comando Unità 
Forestali, Ambientali e Agroalimentari of Carabinieri). 
This dataset is acquired through a ground survey using 
Global Navigation Satellite System receiver (GNSS) 
and is available from 2005 to 2019. Grid cells where 
more than 30% of the forest area was interested in fire 
events were excluded from the analysis as the model 
does not simulate extended natural disturbances (i.e. 
fire and pests). This threshold was a compromise 
between excluding too many grid cells and including 
too many fire-disturbed areas.

Remote sensing – GPP datasets

Datasets based on RS-based data (or modeled by for-
cing with remote sensed data) are the most suitable 

candidate to assess the overall model capability at 
reproducing the GPP over large areas, due to their 
continuous spatial and temporal coverage. In order 
to make a more complete and comprehensive agree-
ment assessment, we selected gridded GPP estimates 
from different independent sources as reference data-
sets, which are:

GOSIF-GPP
The GOSIF GPP dataset (Li & Xiao, 2019b) is a recently 
developed GPP product that is based on the global 
OCO-2 based SIF product (Li & Xiao, 2019a). The 
GOSIF setup combines in a data-driven approach the 
remotely sensed sun-induced fluorescence (SIF), 
observed by the Orbiting Carbon Observatory-2 
(OCO-2), the enhanced vegetation index (EVI) from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite data, meteorological data, i.e. photo-
synthetically active radiation (PAR), vapor pressure 
deficit (VPD) and air temperature obtained from the 
NASA reanalysis MERRA-2 data set to return a gridded 
SIF dataset (Li & Xiao, 2019a). Established relationships 
between the original OCO-2 SIF and flux tower GPP (Li 
et al., 2018; Xiao et al., 2019) were then used to provide 
the final gridded GPP product. For the model-data 
comparison in this study we used the monthly and 
annually aggregated ensemble mean of eight different 
GPP estimates resulting from different GPP-SIF rela-
tionships, (http://globalecology.unhedu). This GPP 
product, hereinafter simply referred as “GOSIF”, pro-
vides GPP estimates at 0.05 degree (corresponding to 
~5 km) spatial resolution aggregated on a monthly time 
step, over the years 2005–2019.

CFIX-GPP
The CFIX dataset provides gridded GPP values covering 
Italy. The estimates are obtained combining meteorolo-
gical and remotely sensed data within a Light Use 
Efficiency modeling approach (Maselli et al., 2006; 
Veroustraete et al., 2002). The original model version 
was further modified to simulate the GPP in water- 
limited, Mediterranean forest ecosystems by Maselli et 
al. (2009), who introduced a short-term water stress 
factor based on daily meteorological data. In particular, 
the authors utilized the 1 km normalized difference 
vegetation index (NDVI) from the Spot- 
VEGETATION imagery to linearly retrieve the fraction 
of absorbed photosynthetically active radiation (APAR), 
and the downscaled E-OBS meteorological data (both air 
temperature and precipitation) (Fibbi et al., 2016; Maselli 
et al., 2012) to retrieve the GPP of all Italian forests at 1 
km spatial resolution. The accuracy of the product was 
assessed by comparison to Eddy-Covariance GPP data 
(Pastorello et al., 2020) collected at several EC sites 
spread over the Italian peninsula and for different forest 
types, showing satisfactory performances (Chirici, 2016). 
The currently utilized product provides forest GPP 
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estimates at 1 km spatial resolution aggregated on a 
monthly time step, over the years 2005–2013.

FLUXCOM-GPP
The FLUXCOM dataset is an upscaled product derived 
from different Machine Learning-based approaches 
(ML) combining data from the FLUXNET network of 
eddy covariance towers with RS and meteorological data 
as predictors (Jung et al., 2019; Pastorello et al., 2020). In 
this study we used the FLUXCOM-RS dataset which 
embeds in its statistical processing RS land products at 
8-day resolution from the MODIS instrument, such as 
EVI, fAPAR and the land surface temperature (see Jung 
et al. (2019), for a thorough description of the 
FLUXCOM products). Compared to other products of 
the FLUXCOM-database, the FLUXCOM-RS dataset has 
a finer spatial resolution, 0.083 degree (corresponding to 
~8 km) spatial resolution, allowing to better deal with the 
complex topography of the region under study.

The FLUXCOM-RS dataset, hereinafter simply 
referred to as FLUXCOM, has been widely used as a 
reference dataset in several inter-comparison studies 
with both model and other reference datasets (O’Sullivan 
et al., 2020; Wang et al., 2021; Zhang & Ye, 2021). The 
selected dataset is provided as the ensemble mean of 
monthly data computed from multiple ML algorithms 
covering the period 2000–2015 (www.fluxcom.org).

3D-CMCC-FEM GPP versus RS-based GPP

For comparability with the 3D-CMCC-FEM GPP 
results, all the RS-based datasets were resampled to 
the regional grid at 1 km resolution and reprojected 
using the WGS84/UTM zone 33 North coordinate 
reference system (EPSG: 326633) and compared at 
both spatial and temporal levels against the 3D- 
CMCC-FEM GPP data. Results at species-level are 
first shown as aggregated data over regional level and 
then shown at species-level.

Spatial variability analyses
The spatial agreement between the 3D-CMCC-FEM 
GPP and the RS-based GPP data was assessed by 
considering: Root Mean Square Error (RMSE), 
Relative Difference (RD, expressed as: (modelled – 
observed)/observed *100, where “observed” stands 
for RS-based data and “modeled” for 3D-CMCC- 
FEM GPP), Pearson’s correlation (r) and the SPAtial 
EFficiency (SPAEF) metrics. The SPAEF (see Eq. 1) is 
an integrated evaluation index which considers the 
Pearson’s spatial correlation (r), the fraction of the 
coefficient of variation β ¼ σsim=μsim

� �
= σobs=μobs
� �

and the model-data histogram intersection 
γ ¼

Pn
j¼1 minðKj=LjÞ=

Pn
j¼1 K, where n is the number 

of bins in the histogram and K and L are the histogram 
for observed and simulated data (Koch et al., 2018). 

SPAEF is equal to 1 in the case of a perfect match and 0 
in case of mismatch. 

SPAEF ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � 1ð Þ
2
þ β � 1ð Þ

2
þ γ � 1ð Þ

2
q

(1) 

The statistics were computed on the mean annual GPP 
and seasonal GPP: i.e. winter (December, January, 
February: DJF), spring (March, April, May: MAM), 
summer (June, July, August: JJA) and autumn 
(September, October, November: SON) for 3D- 
CMCC-FEM and RS-based data.

Temporal variability analyses
The temporal agreement between the 3D-CMCC- 
FEM GPP and the RS-based GPP data was assessed 
by considering RMSE, RD, the Fractional Variance 
(FV), which returns values bounded between −2 and 
2 and it is equal to 0 when “modelled” and “observed” 
have the same variance (Janssen & Heuberger, 1995). 
The Pearson’s correlation coefficient r was also used at 
grid-cell level, which returns the direction of the cor-
relation i.e. model-data correspondence of the sign of 
year to year variability. Conversely to the spatial ana-
lysis the mean seasonal cycle (MSC) was also consid-
ered here. Anomalies were calculated for the model 
and data by first removing the long-term linear trend, 
and normalized by their standard deviation.

Both the 3D-CMCC-FEM and the RS-based GPP 
climate sensitivity in the summer period have been eval-
uated through the Standardized Precipitation 
Evaporation Index, SPEI (Vicente-Serrano et al., 2010). 
The SPEI drought index helps to highlight periods of 
wetter or drier conditions. This is a multi-scalar meteor-
ological drought index based on a statistical transforma-
tion of the climatic water balance, i.e. precipitation minus 
potential evapotranspiration. We computed the SPEI 
using the simplistic Hargreaves equations for the poten-
tial evapotranspiration calculation and considered differ-
ent time scales, with the aim to cover the growing season 
period before the month of August. Following a similar 
approach as in Mahnken et al. (2022), we regressed the 
residuals of the 3D-CMCC-FEM and RS-based dataset 
anomalies against the SPEI values as the predictor, and 
the slope of the linear regression computed. Values of the 
slope close to 0 indicate that the 3D-CMCC-FEM shows a 
GPP-sensitivity to SPEI like the RS-based dataset.

The overall analyses were carried out considering 
the entire RS-based dataset available years, thus 
2005–2013 for CFIX, 2005–2015 for FLUXCOM 
and 2005–2019 for GOSIF (i.e. 32 years in total).

Results

Spatial variability analysis

The 3D-CMCC-FEM simulated average annual GPP 
for the period 2005–2019 is shown in Figure 2, with 
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overall values ranging from ~ 600 up to ~ 2200 gC m−2 

yr−1. 3D-CMCC-FEM GPP follows a west-east gradient 
with higher productivity over the western side of the 
region in correspondence with the more humid and the 
more productive beech-dominated areas; the forested 
areas over the plain zones are mainly dominated by 
Mediterranean pine species, which show the lowest 
GPP values (Figure 2). At annual level (multiyear 
mean annual) better correlations between 3D-CMCC- 
FEM and RS-based GPP data are with GOSIF and 
FLUXCOM (r = 0.77 and 0.67, respectively; Table 1) 
as also for SPAEF metric (SPAEF = 0.62 and 0.59, 
respectively), while lower RMSE and RD are when 
3D-CMCC-FEM GPP is compared with GOSIF and 
CFIX (RMSE = 235.8 and 221.9 gC m−2 yr−1, and 
RD = −4.3 and 0.01%, respectively). At seasonal level, 
3D-CMCC-FEM GPP better correlates with GOSIF and 
CIFX during summer (RMSE = 181.3 and 123.8 g 
C m−2 yr−1, RD = −13.7 and 10.7% and r = 0.79 and 
0.8, respectively). Similarly, also in spring 3D-CMCC- 
FEM better correlates, although with lower values, with 
GOSIF and CIFX (RMSE = 104.4 and 103.6 gC m−2 

yr−1, RD = 9 and −7.9% and r = 0.4 and 0.28, respec-
tively). In winter 3D-CMCC-FEM GPP better 

correlates with CIFX and FLUXCOM (r = 0.55 and 
0.5, and SPAEF = −1.26 and 0.53, respectively) but 
with slightly lower RMSE values when compared with 
GOSIF and FLUXCOM (RMSE = 54.3 and 39.97 gC 
m−2 yr−1). During autumn 3D-CMCC-FEM is in agree-
ment with GOSIF and CIFX (RMSE = 64.47 and 52.41 
gC m−2 yr−1, RD = 2.4 and 15% and r = 0.74 and 0.67, 
respectively).

Temporal variability analysis

Generally, the 3D-CMCC-FEM GPP shows overall 
lower correlations of the temporal (which corresponds 
to the interannual variability, IAV) vs. spatial compar-
ison for the mean annual GPP. Similarly, as in the 
spatial analysis, 3D-CMCC-FEM GPP shows better 
agreement with GOSIF (RMSE = 231.6 gC m−2 yr−1, 
RD = −4.6% and r = 0.4, see Table 2 for overall statis-
tics and Figures 3, 4, 5, 6 for the maps) and the lowest 
Fractional Variance between the RS-based dataset con-
sidered (FV = 0.83, see also Standard Deviation analysis 
Figure S1). At seasonal level, during summer, 3D- 
CMCC-FEM GPP correlates better with the 
FLUXCOM (r = 0.62 and FV = 1.64) although with the 

Figure 2. 3D-CMCC-FEM mean annual GPP values (gC m−2 yr−1) for the period 2005–2019 at 1 km spatial resolution. White areas 
indicate areas not simulated by the 3D-CMCC-FEM.
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highest RMSE (182.53 gC m−2 yr−1) among the RS- 
based dataset considered. Conversely, in spring 3D- 
CMCC-FEM GPP correlates better with CFIX 
(r = 0.31) and with the lowest RMSE (86.81 gC m−2 

yr−1) and RD (−7.9%). In winter modeled GPP values 
from 3D-CMCC-FEM better correlates with CFIX 
(r = 0.69) but with lower RMSE, RD and FV values 
when compared with FLUXCOM (RMSE = 36.24 gC 
m−2 yr−1, RD = −24.1 and FV = 1.77). Also during 
autumn season, the 3D-CMCC-FEM GPP better corre-
lates with CFIX (r = 0.3) and with the lowest RMSE 
(57.97 gC m−2 yr−1) although the lowest Relative 
Difference is when compared with GOSIF (RD = 1.7%).

At the Mean Seasonal Cycle level (thus comparing 
month per month average GPP values) 3D-CMCC- 
FEM GPP well correlates with all RS-based dataset 
with r varying from 0.95 (when compared with 
CFIX) to 0.91 (when compared with GOSIF) (see 
Figure 7, Table 2 and Figure S2)

SPEI

We first computed the SPEI at a time-scale of 5 months 
(SPEI5) representing the spring and summer period 

Table 1. Spatial comparison of the 3D-CMCC-FEM GPP vs. RS – 
based GPP. RMSE= root mean square error (gC m−2 yr−1), 
RD = relative difference (%), SPAEF = SPatial EFficiency, 
r = Pearson’s correlation. DJF, winter months; MAM, spring 
months, JJA, summer months; SON, autumn months. In bold 
values with the best agreement between 3D-CMCC-FEM GPP 
and RS-based GPP.

RMSE (gC m−2 yr−1) RD (%) SPAEF r

3D-CMCC-FEM GPP vs. GOSIF GPP
ANNUAL 235.81 −4.30 0.62 0.77
DJF 54.34 −31.3 −1.50 0.39
MAM 104.43 9.0 0.22 0.40
JJA 181.35 −13.7 0.61 0.79
SON 64.47 2.4 0.46 0.74

3D-CMCC-FEM GPP vs. CFIX GPP
ANNUAL 221.91 0.01 −0.07 0.59
DJF 65.26 −47.8 −1.26 0.55

MAM 103.61 −7.9 −0.31 0.28
JJA 123.78 10.7 0.38 0.80

SON 52.41 15.1 0.48 0.67

3D-CMCC-FEM GPP vs. FLUXCOM GPP

ANNUAL 477.42 40.0 0.59 0.67
DJF 39.97 −13.4 −0.53 0.50
MAM 198.47 45.9 −0.45 −0.09

JJA 203.44 37.2 0.57 0.72
SON 118.25 57.7 0.40 0.68

Figure 3. Root mean square error (RMSE, gC m−2 yr−1) between mean annual 3D-CMCC-FEM GPP (gC m−2 yr−1) and the RS-based 
GPP: a) 3D-CMCC-FEM GPP vs. GOSIF GPP for the period 2005–2019, b) 3D-CMCC-FEM GPP vs. CFIX GPP for the period 2005–2013, 
c) 3D-CMCC-FEM GPP vs. FLUXCOM GPP for the period 2005–2015; d) histogram of the relative difference, dashed lines indicate the 
median value. White areas on the maps indicate areas not simulated by the 3D-CMCC-FEM.
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where the correlation between the RS-based summer 
GPP and SPEI was stronger. We estimate whether the 
3D-CMCC-FEM data and RS-based data differ in GPP 
sensitivity toward interannual variation in SPEI by com-
puting the slope of the regression between 3D-CMCC- 
FEM vs. RS-based differences of GPP and the SPEI. 
Generally, results show how, when considering CFIX 
and FLUXCOM, the slope is not significantly different 
from 0 for almost the entire simulation domain (Figure 
8). Such a behavior indicates that 3D-CMCC-FEM and 
RS-based GPP summer anomalies respond to SPEI5 
similarly. When comparing with the GOSIF the slope is 
still not significant over large areas. However, in clustered 
areas, corresponding to about a 20% of the simulation 
domain, the slope is positive and significant showing that 
the 3D-CMCC-FEM response to aridity is stronger than 
the GOSIF data (Figure 8).

Species-level comparison

Data analysis at species level reveals as 3D-CMCC-FEM 
model GPP tends to correlate better for some species for 
some RS-based datasets than other (Table 3 and Figure 

9). 3D-CMCC-FEM GPP correlates well for Q. cerris and 
Q. ilex with GOSIF (r = 0.73 and 0.82) but with low 
RMSE and RD for CFIX (RMSE = 141.09 and 141.99 
gC m−2 yr−1, and RD = −2.69 and 3.39%, respectively). 
In all cases 3D-CMCC-FEM GPP for F. sylvatica are 
slightly far from results from all RS-based datasets with 
better correlations with CFIX (r = 0.43) and lower RMSE 
and RD values for GOSIF (193.35 gC m−2 yr−1 and 
3.43%). Satisfactorily correlations are shown for C. sativa 
with the GPP values of FLUXCOM (r = 0.61) but with 
lower RMSE and RD with GOSIF (200.45 gC m−2 yr−1 

and −1.71%). For Pinus species (both as P. halpensis and 
P. nigra), 3D-CMCC-FEM GPP shows to better corre-
lates and with lower RMSE and RD values with GOSIF 
(r = 0.84, RMSE = 170.84 gC m−2 yr−1 and RD = −7.91% 
for P. halepensis; and r = 0.65, RMSE = 223.92 gC m−2 

yr−1 and RD = 7.85% for P. nigra) than with CFIX and 
FLUXCOM (Table 3 and Figure 9).

Discussion

In this study, we applied the 3D-CMCC-FEM spatial 
explicitly over a Mediterranean region characterized 

Figure 4. Relative difference (RD, %) between mean annual 3D-CMCC-FEM GPP and the RS-based GPP: a) 3D-CMCC-FEM GPP vs. 
GOSIF GPP for the period 2005–2019, b) 3D-CMCC-FEM GPP vs. CFIX GPP for the period 2005–2013, c) 3D-CMCC-FEM GPP vs. 
FLUXCOM GPP for the period 2005–2015; d) histogram of the relative difference, dashed lines indicate the median value. White 
areas on the maps indicate areas not simulated by the 3D-CMCC-FEM.
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by elevated bio-geographical and climatological het-
erogeneity. Initializing the forest structure, combining 
ground data from the NFI and the RS-based wall-to- 
wall basal area map, allows having a more realistic 
initial state of the carbon pools and forest structure, 
reducing, thus, uncertainties related to spin-up proce-
dures which often translate into significant differences 
in the carbon fluxes (Carvalhais et al., 2008, 2010; 
Lindeskog et al., 2021; Massoud et al., 2019). The 
calibration of the allometric equations, to which the 
model has shown to be sensitive (Collalti et al., 2019), 
sets an additional constraint on the modeled initial 
growing biomass, which in turn influences the simu-
lated GPP via the amount of sapwood. By means of the 
use of the basal area map to build the forest character-
istics at the beginning of simulation, the model is able 
to retain part of the spatial information of the initial 
aboveground biomass and average forests structure, 
contributing, for instance, to the very satisfactorily 
spatial correlations of the modeled annual GPP with 
2 out of 3 RS-based datasets. While aggregating basal 

area data at the 1 km resolution might reduce random 
uncertainties in basal area, additional uncertainty 
might stem from the tree density data, a data which 
is less constrained. Yet, performed tests (not shown 
here) indicate no significant sensitivity of the simu-
lated GPP to stand density.

Overall, 3D-CMCC-FEM performances in simulat-
ing GPP when compared to other large-scale and 
independent RS-based data are shown to be generally 
satisfactory at both spatial and temporal scales. In 
particular in the summer period across the seasons 
3D-CMCC-FEM GPP show satisfactorily correlations 
and low relative differences and RMSE values when 
most of the vegetation activity takes place and it is thus 
the most robust signal across model and RS-based 
datasets. Yet, the comparative analyzed pinpointed 
some important challenges in applying the 3D- 
CMCC-FEM in Mediterranean areas and highlighted 
sources of uncertainties explaining the residual 3D- 
CMCC-FEM and RS-based data differences across RS- 
based datasets, which are grouped as follows:

Figure 5. Fractional variance (FV) between mean annual 3D-CMCC-FEM GPP and the RS-based GPP: a) 3D-CMCC-FEM GPP vs. 
GOSIF GPP for the period 2005–2019, b) 3D-CMCC-FEM GPP vs. CFIX GPP for the period 2005–2013, c) 3D-CMCC-FEM GPP vs. 
FLUXCOM GPP for the period 2005–2015; d) histogram of the relative difference, dashed lines indicate the median value. White 
areas on the maps indicate areas not simulated by the 3D-CMCC-FEM.
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3D-CMCC-FEM GPP vs. RS-based GPP

The 3D-CMCC-FEM GPP is close to the GOSIF and 
CFIX GPP estimates, while a general systematic positive 
overestimation emerge when comparing the 3D- 
CMCC-FEM GPP to FLUXCOM GPP (although for 
not all species, Figure 9). The 3D-CMCC-FEM and 
RS-based data differences resulting from the analyses 
are here discussed in relation to the different nature of 
the RS-based datasets used and their underlying algo-
rithms and adopted approaches. FLUXCOM is an up- 
scaled product of the local EC-tower GPP estimates 
which is often used as benchmark RS-based dataset in 
model evaluation analyses (e.g. Byrne et al., 2018). Part 
of its worldwide application relies on the capability to 
sample in the entire climate-vegetation space. However, 
some particular areas at the rear edge of the 
Mediterranean forests might not be covered by this 
product (Jung et al., 2020). In addition, FLUXCOM 
operates also at coarse spatial resolution (Zhang et al.,  

2022; Zheng et al., 2020). Compared to GOSIF and 
CFIX, the spatial, seasonal and interannual variability 
in FLUXCOM relies on the RS-based dataset alone, 
without including any climatic drivers. Unfortunately, 
climate has been shown to play a significant role in the 
local, regional and global GPP. The lack of climatic 
drivers in FLUXCOM, might, thus, partly explain the 
systematic differences observed when compared to the 
3D-CMCC-FEM GPP, which, at the opposite, showed 
to be sensitive to climate (Mahnken et al., 2022). 
However, the noticeable differences found, although 
some good correlations for some species, between the 
3D-CMCC-FEM GPP and FLUXCOM, is common to 
other process-based and dynamic vegetation models 
comparative studies (Jung et al., 2020; Li & Xiao,  
2019b; Zhang & Ye, 2021), and recent studies found 
that the GPP may be underestimated in the 
FLUXCOM-GPP in temperate areas (e.g. Bacour et al.,  
2019; Norton et al., 2019; Wild et al., 2022).

Figure 6. Pearson’s correlation (r) between mean annual 3D-CMCC-FEM GPP and the RS-based GPP: a) 3D-CMCC-FEM GPP vs. 
GOSIF GPP for the period 2005–2019, b) 3D-CMCC-FEM GPP vs. CFIX GPP for the period 2005–2013, c) 3D-CMCC-FEM GPP vs. 
FLUXCOM GPP for the period 2005–2015; d) histogram of the relative difference, dashed lines indicate the median value. Grey 
areas on the maps indicate where correlations are not significant. White areas on the maps indicate areas not simulated by the 3D- 
CMCC-FEM.
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Figure 7. Pearson’s correlation (r) between mean seasonal cycle (MSC) 3D-CMCC-FEM GPP and the RS-based GPP: a) 3D-CMCC-FEM 
GPP vs. GOSIF GPP for the period 2005–2019, b) 3D-CMCC-FEM GPP vs. CFIX GPP for the period 2005–2013, c) 3D-CMCC-FEM GPP 
vs. FLUXCOM GPP for the period 2005–2015, d) histogram of the r, dashed lines indicate the median value. White areas on the 
maps indicate areas not simulated by the 3D-CMCC-FEM.

Table 2. Temporal comparison of the 3D-CMCC-FEM GPP vs. RS – based GPP. RMSE= 
root mean square error (gC m−2 yr−1); RD = relative difference (%); FV = fractional 
variance; r = Pearson’s correlation. Metrics are first computed at grid cell level and 
reported as the median value. DJF, winter months; MAM, spring months, JJA, summer 
months; SON, autumn months; MSC, mean seasonal cycle. In bold values with the best 
agreement between 3D-CMCC-FEM GPP and RS-based GPP.

RMSE (gC m−2 yr−1) RD (%) FV r

3D-CMCC-FEM GPP vs. GOSIF GPP
ANNUAL 231.60 −4.6 0.83 0.40
DJF 54.64 −40.6 1.70 0.51
MAM 105.61 10.4 0.77 0.15
JJA 146.72 −12.7 0.97 0.53

SON 77.33 1.7 0.38 0.17
MSC / / / 0.91

3D-CMCC-FEM GPP vs. CFIX GPP
ANNUAL 179.55 −1.3 1.17 0.12

DJF 66.67 −58.7 1.09 0.69
MAM 86.81 −7.9 1.36 0.31
JJA 86.12 7.5 0.68 0.65
SON 57.97 15.2 0.65 0.30
MSC / / / 0.95

(Continued)
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Table 2. (Continued).

RMSE (gC m−2 yr−1) RD (%) FV r

3D-CMCC-FEM GPP vs. FLUXCOM GPP
ANNUAL 486.65 40.6 1.69 0.39

DJF 36.24 −24.1 1.77 0.55
MAM 209.14 49.4 1.66 0.26
JJA 182.53 37.9 1.64 0.62

SON 120.33 54.7 1.41 0.17
MSC / / / 0.92

Figure 8. Spatial distribution of the slope of the linear regression of the summer GPP residuals and SPEI5 for: a) 3D-CMCC-FEM vs. 
GOSIF, b) 3D-CMCC-FEM vs. CFIX, c) 3D-CMCC-FEM vs. FLUXCOM. Grey areas indicate the slope is not significantly different from 0 
at p < 0.05. White areas on the maps indicate areas not simulated by the 3D-CMCC-FEM.

Table 3. Comparison of the 3D-CMCC-FEM GPP vs. RS-based GPP at single species 
level. RMSE= root mean square error (gC m−2 yr−1), RD = relative differences (%), r =  
Pearson’s correlation. Metrics are first computed at grid cell level and reported as the 
median value. In bold values with the best agreement between 3D-CMCC-FEM GPP 
and RS-based GPP.

RMSE (gC m−2 yr−1) RD (%) r

3D-CMCC-FEM GPP vs. GOSIF GPP
Quercus cerris 245.66 −6.33 0.73
Fagus sylvatica 193.35 3.43 0.28
Quercus ilex 267.65 3.96 0.83
Pinus halepensis 170.84 −7.91 0.85
Pinus nigra 223.92 7.86 0.66
Castanea sativa 200.45 −1.72 0.25

3D-CMCC-FEM GPP vs. CFIX GPP
Quercus cerris 141.1 −2.7 0.60
Fagus sylvatica 477.4 31.1 0.43
Quercus ilex 141.9 3.4 0.70
Pinus halepensis 355.1 (28%) −26.8 0.65

Pinus nigra 314.5 (21%) 16.9 0.25
Castanea sativa 203.3 7.0 0.36

3D-CMCC-FEM GPP vs. FLUXCOM GPP
Quercus cerris 440.4 39.1 0.66
Fagus sylvatica 777.8 63.1 0.10

Quercus ilex 462.1 40.0 0.75
Pinus halepensis 140.7 7.2 0.68

Pinus nigra 656.1 57.4 0.57
Castanea sativa 584.1 49.0 0.61
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The GOSIF and the CFIX datasets, which 3D- 
CMCC-FEM GPP seems to reply better than 
FLUXCOM, have the advantage of having a finer spatial 
resolution (~5 and 1 km versus ~8 km in FLUXCOM) 
and, thus, contain more information, with the GOSIF 
having a globally higher continuous coverage via the 
original SIF data, which is the proxy of the photosyn-
thetic activity at canopy scales (Li & Xiao, 2019a; Sun et 
al., 2017). CFIX is instead driven by a Light Use 
Efficiency model driven by NDVI, which is a vegetation 
index more suitable to investigate plant greenness 
rather than purely photosynthetic activities, as high-
lighted by Camps-Valls (2021) and Walther et al. 
(2019). This inherent characteristic for NDVI might 
explain the lack of spatial correlation but also lower 
spatial correlations when compared to FLUXCOM 
and GOSIF. In addition, the Light Use Efficiency mod-
els are known to not saturate at increasing solar radia-
tion, but that would lead CFIX having higher GPP 
values than 3D-CMCC-FEM GPP, which uses the bio-
chemical model of Farquhar et al. (1980). However, 
while in some species CFIX has higher GPP values 
than 3D-CMCC-FEM GPP (e.g. F. sylvatica and Q. 
Ilex) in other species values are lower (P. halepensis 
and Q. cerris)(Figure 9). Differences between 3D- 
CMCC-FEM and CFIX may thus more probably rely 
on different models’ parameterization and not just on 
the different approach used to simulate photosynthesis. 
Indeed, as outlined in other studies carried at global 
scales, there is a higher uncertainty in interannual varia-
bility even across different RS-based datasets 
(Butterfield et al., 2020; Zhang & Ye, 2021) and even 
in its correct (of GPP) calculation across different mod-
els (Dunkl et al., 2023).

The differences in standard deviation between the 
3D-CMCC-FEM and the RS-based GPP (see Figure 
S1), despite high in absolute terms, are still compar-
able to the range shown for instance in Zhang and Ye 
(2021) and Zheng et al. (2020). Similarly, the partial 

lack of agreement in the winter (but this is worth also 
for the spring and autumn) months that we found in 
this study has been observed also in other RS-based 
data and process-based models comparative analyses 
(Zhang and Ye, 2021). However, this it is not surpris-
ing, at least for deciduous species, given that 3D- 
CMCC-FEM simulates dominant vegetation only 
and no photosynthesis when there are no leaves on 
at the opposite to RS-based data which may account 
for underneath vegetation and this might explain the 
better correlations with evergreen species than for the 
deciduous for some RD-based datasets. Spring and 
autumn also depend on the spatial and temporal varia-
bility of bud breaks and leaf falls which control photo-
synthetic activity during and across the years. 
However, mismatches and asynchronies for the begin-
ning and the end of the growing season largely vary 
between species and RS-based datasets considered as 
also found in the literature for other models (Peano et 
al., 2019, 2021). In addition, the RS-based datasets 
capture the fluxes embedding the entire sub-grid 
variability, including the contribution of the vegeta-
tion not simulated by the model (e.g. crops, maquis 
and understory which in any case comprise about one 
fifth of the entire vegetation area only), in particular in 
areas where the forest cover is indeed low because of 
low stand density, such as in the plain areas of the 
region under study or in degraded areas. Spatial scale 
mismatch between data and models may explain, thus, 
likely part of the low performances in some areas of 
the region. Zhao and Zhu (2022) showed how GOSIF 
has apparently a similar interannual variability and 
trends when compared to the TRENDY simulations 
(an ensemble of simulations from Dynamic Global 
Vegetation Models; Sitch, 2015), as similarly as we 
found here using a process-based, stand-level, forest 
model.

On the other hand, some have raised doubts and 
concerns on the robustness of the relationship 

Figure 9. Mean annual 3D-CMCC-FEM GPP vs. RS-based GPP scatter plot (gC m−2 yr−1) at the species-level: a) the 3D-CMCC-FEM 
GPP vs. GOSIF b) 3D-CMCC-FEM GPP vs. CFIX and c) 3D-CMCC-FEM GPP vs. FLUXCOM estimates (black line is the 1:1 line, dashed 
line is the linear fit). Each point represents data at grid cell level, different colors indicate the different species considered.
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between GPP and remotely sensed sun-induced fluor-
escence (SIF) (Bacour et al., 2019; Chen et al., 2021; 
Wohlfahrt et al., 2018) showing that the SIF might 
overestimate the GPP values at least in temperate 
broadleaved forests (Qiu et al., 2020). However, to 
our knowledge, there are no specific indication that 
this retains also for Mediterranean forests. Yet the SIF 
data from RS remain one of the best proxies for photo-
synthesis over large areas to date (Li & Xiao, 2019a; 
Sun et al., 2017), making the GOSIF estimates poten-
tially the more robust estimates compared to both 
CFIX and FLUXCOM.

Differences in the original spatial resolution of RS- 
based data or land cover used to drive the GOSIF and 
CFIX datasets, might additionally contribute to 
explain the 3D-CMCC-FEM GPP and RS-based data-
sets – but also between RS-based datasets – differ-
ences. Interestingly, when compared RS-based 
dataset vs. RS-based dataset GPP (e.g. GOSIF vs. 
FLUXCOM), and not just 3D-CMCC-FEM GPP vs. 
RS-based dataset, low correlations and discrepancies 
(in both in the relative and in the absolute sense), 
although minor than against 3D-CMCC-FEM, across 
the results (see Table S3 and Table S4), at both the 
spatial and the temporal scales (including at the spe-
cies level, see for example the large RMSE for all 
deciduous species in Table S4), have been found. 
That was, however, expected given that RS-based 
methods are diagnostic and of similar nature tools 
rather than inherently prognostic (and with greater 
uncertainties) tools as potentially all models are. A 
recent large review on RS-based products intercom-
parison confirmed the large variability and different 
sensitivity to climatic factors between different 
approaches and criteria when compared at site-level 
(Sun et al., 2019).

3D-CMCC-FEM-related uncertainties

The 3D-CMCC-FEM model has been extensively eval-
uated at the site level all over Europe and evaluated 
against measurements of carbon fluxes from the 
FLUXNET database (Collalti et al., 2016, 2018; 
Marconi et al., 2017). The evaluation has been carried 
out in the past over a broad spectrum of climate, forest 
management, and species at stand level (e.g. Dalmonech 
et al., 2022; Testolin et al., 2023). In some recent model 
inter-comparison studies, the 3D-CMCC-FEM was 
shown to be able to simulate, among other things, C 
fluxes, e.g. GPP, and key structural variables, e.g. dia-
meter, basal area, etc, with very good performance when 
compared to measured data and to other state-of-the-art 
forest models (Engel et al., 2021; Mahnken et al., 2022). 
However, when applying the 3D-CMCC-FEM at a dif-
ferent spatial scales model parameters, structural, and 
input-related uncertainties might amplify or even buffer 
the error in simulating GPP as observed for other models 

(e.g. Dalmonech et al., 2015; Dunkl et al., 2023; Zhang et 
al., 2022). In any case, the overall, 3D-CMCC-FEM GPP 
(~600 - ~2200 gC m−2 yr−1) is well in the bounds of the  
~ 600 - ~2500 gC m−2 yr−1 GPP values described in 
Collalti and Prentice (2019) for temperate deciduous 
and coniferous forests in Europe.

The seasonal cycle of GPP describes the seasonal 
pattern of carbon gross assimilation by plants and the 
beginning and end of the growing season for the decid-
uous forests. For two out of the three datasets used here 
the 3D-CMCC-FEM may simulate a slightly earlier 
beginning of the growing season (e.g. for Q. cerris) 
(Figure S2). This might be partially attributable to the 
budburst parameterization, which is based on the 
Thermic sum and the growing degree days metric 
which is a trigger for the leaf flushing. Such a parameter 
is kept constant (as in many other models, see Collalti et 
al., 2019; Peano et al., 2019; Peaucelle et al., 2019) as a 
species-specific parameter, irrespective of any local cli-
matic adaptation. The observed discrepancy in the 
beginning of the growing season, compared to the 
delay projected by the 3D-CMCC-FEM model, may 
be partly attributed also to the influence of under-
growth vegetation (such as grass or shrubs) on RS- 
based data. These understory plants frequently begin 
photosynthesis earlier, a phenomenon not accounted 
for by the 3D-CMCC-FEM model. The seasonality of 
the GPP in the evergreen species is instead apparently 
more shaped by the direct environmental effect on the 
photosynthetic process at a seasonal time scale (and less 
affected by underneath vegetation), suggesting that the 
3D-CMCC-FEM GPP and RS-based datasets differ-
ences might be also attributable to some bias in the 
meteorological data used or for the other physiological 
parameters adopted or in the below-canopy vegetation. 
Indeed, model ecophysiological parameter values are 
derived from the literature, yet not calibrated for the 
specific sites or regions, in order to allow the 3D- 
CMCC-FEM general applicability as reported in 
Mahnken et al. (2022). In addition, other potential 
source of uncertainty, although minor, for the apparent 
mismatches in the beginning and in the end of the 
growing season between 3D-CMCC-FEM and RS- 
based datasets may stem from the different temporal 
resolutions, indeed, e.g. FLUXCOM is an 8-day product 
while 3D-CMCC-FEM is a daily one.

To capture the summer GPP sensitivity to hydro-
logical variability, i.e. wetter or drier conditions, we 
use a simple GPP-SPEI diagnostics. The 3D-CMCC- 
FEM was first shown to be able to simulate compar-
ably to the RS-based datasets the interannual variabil-
ity (see Table 2) and then of the summer GPP and 
aridity signal over a large extent (see Figure 8). In large 
areas of the region, the 3D-CMCC-FEM and the RS- 
based datasets have similar responses in terms of GPP- 
SPEI5. Yet, in some areas, a too-strong model 
response to SPEI5 also emerges, indicating that the 
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3D-CMCC-FEM has a higher summer GPP-response 
to negative SPEI5 (i.e. drier conditions) compared to 
the RS-based datasets. In particular, results indicate a 
higher model sensitivity of GPP to SPEI for oaks- 
dominated forests clustered on higher elevations. 
Oak’s species are known to be an isohydric species, i. 
e. they weakly regulate stomatal openness under 
drought conditions and are more resilient to drought 
(Castellaneta et al., 2022; Ripullone et al., 2020), and it 
is possible that the high sensitivity of GPP to SPEI5 in 
the 3D-CMCC-FEM is a result either of a too strong 
control of VPD on stomatal conductance (Grossiord 
et al., 2020) or of a too strong soil moisture control on 
the photosynthesis (Crow et al., 2020; Fang et al.,  
2021). Summer period is the season where most of 
the annual vegetation activity takes place and reaches 
its maximum, and which variability is the most pro-
minent feature in Mediterranean areas. As a matter of 
fact, in a previous study (see Collalti et al., 2016) was 
shown how, at site level in beech and coniferous for-
ests, the 3D-CMCC-FEM was able to sufficiently 
simulate the sign of the year-to-year variability of the 
annual GPP anomalies, and in particular in years 
affected by important summer drought (i.e. 2003). 
Yet interannual variability is the most uncertain signal 
event when comparing different data and often con-
sidered as an “acid test” in vegetation modeling 
(Collalti et al., 2016; Dunkl et al., 2023; Keenan et 
al., 2012; Yang et al., 2022).

However, stand-level studies showed how the 3D- 
CMCC-FEM model realistically simulates the response 
of GPP to atmospheric VPD and temperature (Mahnken 
et al., 2022). In the model soil hydrology is simulated via 
a single-layer bucket model and this might be another 
factor contributing to the stronger than observed mod-
eled response, as it has been shown as overall that the 
majority of models with a soil bucket hydrology tend to 
limit GPP more than models with other soil conceptual e. 
g. multilayered schemes (Hanson et al., 2004). This 
higher sensitivity and the apparent stronger drop of 
modeled summer GPP might partially explain the higher 
standard deviation of the modeled signal compared to 
RS-based datasets (see Figure S1). One potential addi-
tional explanation to the modeled stronger GPP sensitiv-
ity to SPEI, would be the detected, although the narrow, 
earlier onset of the growing season in the model com-
pared to the GOSIF dataset. In fact, leaf development not 
only drives how earlier or later the uptake of carbon from 
the atmosphere starts in the season, but also how earlier/ 
later other processes, such as the leaf transpiration occurs 
in spring, potentially affecting the summer GPP response 
(Bastos et al., 2021; Chen et al., 2023; Peano et al., 2019).

Meteorological and soil data uncertainties

Low accuracy in the reconstructed meteorological for-
cing (see Bandhauer et al., 2022) might play an additional 

important role in studies that are conducted at high 
spatial resolution. The impact of the meteorological 
data used in data-driven and PBFMs was already 
shown to be important to accurately simulate GPP (e.g. 
Wu et al., 2017; Zhang & Ye, 2022; Zhang et al., 2022). 
The 3D-CMCC-FEM was shown to be able to simulate 
GPP closer to observations at the site level in northern, 
central and southern Europe, where the downscaling and 
bias correction of the climate data was facilitated by the 
local geography (Collalti et al., 2018; Testolin et al., 2023).

Potential positive biases in the original E-OBS tem-
perature dataset, as its accuracy relies also on the den-
sity of the termopluviometric stations and altitudinal 
cover, might translate into higher temperatures at 
higher elevations where, indeed, there are few stations 
as in southern Italy. A positive bias in temperature over 
areas where the temperature should be a limiting factor 
for vegetation may partially explain the high modeled 
GPP values in beech forests leading to an anticipated 
onset or at thermic stress during the summer. Beech in 
the Italian Apennine Mountain regions represents the 
upper limit of forest vegetation, and other studies (Fang 
& Lechowicz, 2006; Marchand et al., 2023) showed that 
the most limiting factor for the presence and growth of 
the beech in Europe is, indeed, temperature. The simu-
lated values of GPP in beech-dominated forests are, on 
average higher than the three reference dataset, with 
simulated values in some areas larger than 2000 gC m−2 

yr−1. However these values are overestimated as 
observed average annual values of GPP in a beech forest 
in central Italy, a monitoring site with fluxes measured 
by means of the eddy covariance technique, are in the 
order of 1600 gC m−2 yr−1 with range between ~ 550 
and 2500 gC m−2 yr−1 from Reyer et al. (2020). When 
applied in the same beech forest, the 3D-CMCC-FEM 
was shown to be able to fall within the observed range 
of GPP (Mahnken et al., 2022), indicating how the 
source of bias might be indeed attributable to uncer-
tainties stemming from the up-scaling and affecting 
mostly the medium to higher elevation areas.

Simulated values for the deciduous oaks are indeed 
more comparable to EC-estimates in a site in central 
Italy (Roccarespampani, www.fluxnet.com, Tedeschi 
et al., 2006), with annual values of the order of 1600 
gC m−2 yr− 1for model and observations. However, a 
west-east gradient in the model-data difference is 
apparent at the regional level when comparing the 
3D-CMCC-FEM to CFIX and GOSIF. In the former 
case, differences correlate with elevation and tempera-
ture, very likely a results of the lack of accuracy in the 
E-OBS dataset. Spatial differences in the 3D-CMCC- 
FEM GPP emerge in this study, which cannot be 
explained only by uncertainties in the modeling 
setup alone. The amount of water available for plants 
is determined in the 3D-CMCC-FEM by the balance 
between the precipitation (the inflow) and the evapo-
transpiration (the outflow) as well as the soil 
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characteristics, such as soil depth and texture. The 
water availability and the soil texture translate into 
the matric potential, which directly affects the stoma-
tal regulation, leaf transpiration and the photosynth-
esis. When the model is applied spatially in a 
Mediterranean area with orographic and geographical 
complexity, the capability of the climate to retain the 
spatial and temporal variability of precipitation might 
have important effects in modulating the modeled 
spatial and temporal GPP variability (see Zhang & 
Ye, 2022), and this will be the object of further 
investigations.

The last source of uncertainties in the 3D-CMCC- 
FEM GPP and RS-based GPP might stem from the soil 
characteristics and, in particular, the soil depth. The 
dataset used in the analyses as a proxy of depth avail-
able to root does not show any sensible spatial varia-
bility, e.g. with elevation, which is not realistic 
considering the topography and plasticity of plants 
roots (Fan et al., 2017; Stocker et al., 2023). The 3D- 
CMCC-FEM at this scale of application would benefit 
from coupling with more advanced hydrological 
scheme or a soil depth parameterization, to better 
couple the vegetation with the effective soil water 
availability (Kollet & Maxwell, 2008; Niu et al., 2011) 
or from soil moisture assimilation from remote sen-
sing products (Crow et al., 2020; Kumar et al., 2014).

Limitations and further considerations

In this study we did not consider the land use change 
and the model does not simulate any spatial interaction 
from neighboring grid cells, not allowing for example 
simulating forest expansion. We additionally aggregated 
the forest species according to macro classes, hence 
neglecting intra-specific differences, if any. However, 
some compromises between input data requirements 
and time for model runs were needed to keep simula-
tions and calculations feasible. In particular, at the spatial 
resolution of the study, we were more interested in 
capturing trends and spatial variability in GPP than the 
finest sub-grid variability within the forest ecosystem.

No nitrogen cycle is included; however, the pre-
cipitation is commonly identified as the main limit-
ing factor for photosynthesis in Mediterranean areas 
(Flexas et al., 2014; Fyllas et al., 2017; Keenan et 
al., 2009).

Conclusions and outlook

PBFMs offer a complementary tool to ground forest 
inventory networks and satellite-based records in mon-
itoring carbon sequestration forest growth and the cli-
mate change impacts on forests, on many other variables 
which are otherwise difficult to measure extensively or 
monitor continuously. However, any model’s reliability 

needs to be verified and tested even in high heterogeneity 
contexts and not only to site-level ones.

With this aim, we used RS-based data to initialize, 
apply, and test for the first time the biogeochemical, 
biophysical, process-based model 3D-CMCC-FEM on 
a regular grid at high spatial resolution under typical 
Mediterranean climate. We compare the obtained gross 
primary production over a large area (~80% of the 
Basilicata region) against a suite of different-in-nature 
independent RS-based data. In spite of the simplified 
initial forest setup and the underlined uncertainties, the 
3D-CMCC-FEM was shown capable of capturing both 
the spatial and the temporal variability of the RS-based 
data, even at species-level. Further tests are needed, yet 
the very promising results open the possibility of using 
the PBFMs to investigate the spatio-temporal dynamics 
of forest growth over larger spatial scales and under 
drought conditions and future climate scenarios, 
shaped by the spatial climatic and ecological heteroge-
neity such as in the Mediterranean areas.
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