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Abstract

This thesis is centered on Formal Methods for dynamical systems. In par-
ticular, we focus on continuous dynamical systems specified by systems of
ordinary differential equations (ODEs).

We first consider the task of finding invariants, which are useful in the
Safety analysis of systems. We focus on a particular type of invariants,
conservation laws. We present a method to compute all the polynomial
conservation laws up to a specified order of derivatives and degree for systems
of partial differential equations (PDEs). The method is based only on the
definition of conservation law and on linear algebraic computations.

We then study conditions and methods to compute reduced linear approx-
imations of nonlinear ordinary differential equations (ODEs) that are accurate
also non locally, and present an algorithm that, given an initial set and a finite
time horizon, builds a tight overapproximation of the set of its reachable states
(reachset) at specified times, relying on Carleman linearization and Krylov
projection.

Next, we consider stream differential equations (SDEs), a generalization
of differential equations in the framework of stream calculus, that is centered
on the manipulations of infinite sequences of scalars from a field, or streams.
Working within this framework, we provide a method to find all polynomial
invariants that fit in a user specified polynomial template, for a given SDE-
based initial value problem. We also establish a stream version of Implicit
Function Theorem (IFT) for systems of stream polynomial equations, and
show the advantages of the stream IFT with respect to the classical IFT from
a computational point of view.

We then consider parametric ODEs systems. We introduce an algorithm
to compute guaranteed estimates of posterior expectations for the parameters
from given observations. We work in a general model, where the relation
between observations and parameters is a function, with additive noise; the
function can be, in particular, the solution of a ODE. The algorithm relies on
a combination of methods based on uncertain probability, Interval Arithmetic
and Monte Carlo simulation. Guarantees come in the form of confidence
intervals. Finally, we consider a more general and flexible approach to param-
eter inference based on Probabilistic Programming. In particular, we present
an action-based probabilistic programming language equipped with a small-
step operational semantics, where discrete and continuous distributions can be
freely mixed and unbounded loops are allowed. Our semantics directly leads
to an exact sampling algorithm that can be efficiently SIMD-parallelized.
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Chapter 1

Introduction

1.1 The landscape of formal methods for dynamical
systems

1.1.1 Dynamical Systems and Ordinary Differential Equations

A dynamical system is a mathematical model, often specified by means of differential
equations, that describes how the state of a phenomenon of interest evolves over time,
in particular its trajectory in a given state space. Differential equations mathematically
represent the relation among all the variables involved in the system, including an
independent variable t typically representing time, and can be used to analyze and
simulate the behaviour of dynamical systems.

In Physics, Newtonian mechanics is most naturally formulated in terms of ordi-
nary differential equations (ODE) and dynamical systems. Over time, the range of
applications of dynamical systems has extended to Engineering, Chemistry, Biology,
Ecology,.... For example, systems of differential equations can be used to model
biodiesel production [149], to reproduce important characteristics of the human ven-
tricular tissue such as action potential or conduction velocity [37, 88], or to represent
connectivity among human brain regions [185]. The analysis of dynamical systems is
a challenging task that spans across various disciplines. In Computer Science, over the
last three decades, Formal Methods for the analysis of dynamical systems have been
extensively studied and developed, and represent now a very active area of research.
Indeed, in a large number of real-world applications, hardware and software artifacts,
while running, must interact with external phenomena whose behaviour can be de-
scribed as a dynamical system. The analysis of such systems becomes then an integral
part of the design and analysis of the software/hardware artifact as a whole. This is
particularly evident in such fields as autonomous driving, digital controllers of trains
and aircrafts, and more generally embedded and cyber-physical systems [142, 3]. The
analysis of dynamical systems conducted with Formal Methods lies at the intersection
between Computer Science and Control Theory, and is especially related to establish-
ing Safety of a system. Broadly speaking, this means mathematically certifying that
the system will never enter a predefined region of the state-space that is considered as
dangerous, such as: an aircraft with an excessive angle of attack that might stall [181];
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two autonomous vehicles driving too close to each other or too fast; and so on; see
[166].

Dynamical systems can be classified as discrete, continuous or hybrid, depending
on whether one models time as a discrete or continuous variable, or in a mixed
discrete-continuous fashion. The evolution of discrete systems can be described by
a sequence of state changes taking place at a discrete set of time instants. Any
ordinary program running on a computer can be seen as a discrete system: in fact, each
program instruction, executed at prescribed time, corresponds to a discrete update of
the variables of the program, hence of its state. Mathematically, difference equations
and discrete-time Markov chains can be seen as models of specific types of discrete
dynamical systems. In continuous systems the state evolves continuously over time,
and often represents physical quantities, such as the velocity or the acceleration of a
car, the temperature of a room, the position of a rocket, and so on. ODEs are the
main descriptive formalism of continuous systems. Finally, hybrid systems [170, 3]
combine discrete and continuous behaviour: the law of continuous change (ODE) can
switch among a discrete set of modes, with switching happening at discrete times.
For instance, the system that describes the motion of a bouncing ball will switch
between two modes: one for the ball falling, and one for the ball raising after a bounce.
Driver-assistance systems, or the autopilot of an aircraft are examples of more complex
systems that can be modeled as hybrid systems. Mathematically, hybrid systems can be
modelled using e.g. hybrid automata [92], finite state machine with a set of continuous
variables whose law of change depends on the discrete location (state) of the hybrid
automaton.

In this thesis we mainly focus on continuous systems, defined on a real-valued
state space. Continuous systems represent the core of the problem, in fact, hybrid
systems are built connecting multiple continuous systems; see e.g. the discussion in
[46]. Continuous systems are described by differential equations. In detail, we will
mainly consider systems that can be defined by finite systems of first order ODEs [104],
written as follows:

ẋ1 = f1(t,x1, ...,xn)
ẋ2 = f2(t,x1, ...,xn) (1.1)
...

ẋn = fn(t,x1, ...,xn).

Here, xi, ẋi are abbreviations for xi(t), ẋi(t), with ẋi denoting the derivative of variable
xi with respect to the time variable t. A compact vectorial notation will be often used:

ẋ = f(t,x) (1.2)

with x = [x1,x2, ...,xn]T and f = [f1(t,x), f2(t,x), ..., fn(t,x)]T . We refer to (1.2)
as the state equation of the system, and to x as the vector of the state variables. We
consider mainly first-order systems, in which only first derivatives of the variables
appear. In terms of expressiveness, this is not a limitation, as higher-order systems can
be reduced to first-order ones by introducing new variables to represent higher order
derivatives.
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1.1.2 Safety and Reachability
As many applications are safety-critical, a central point in the analysis of both contin-
uous and hybrid dynamical systems is to verify that “nothing bad will ever happen”,
that is proving a Safety property of interest. In other words, it is important to be able to
prove that, for a given system, a set of states identified as unsafe will never be reached
by system trajectories. For the purpose of proving that a system is unsafe, a scenario
with bad behaviour is a sufficient evidence. On the contrary, to prove that a system is
safe, stronger evidence than some successful scenarios is necessary. The most direct
way to prove Safety of a continuous system consists in identifying exactly the set of
states reachable by the system, possibly over a finite time horizon of interest, and then
checking that it does not contain any unsafe state. However, for reasonably expressive
models, in fact even for linear systems, this can be a computationally intractable task
[46]. Therefore, several techniques to provide tight overapproximations of the set of
reachable states from a given set of initial states have been developed, collectively
described as reachability analysis [176, 6, 47]. Proving that an overapproximation
of the set of reachable states does not contain unsafe states is sufficient to establish
the safety of the system. In Formal Methods, specific approaches rely on dynamic
logics [142, 143]; others try to assess safety of a system directly simulating a finite
set of its trajectories, and then trying to rigorously extrapolate all the others [65, 79].
Other methods [106, 147, 146] use special functions called Barrier Certificates in
order to separate the unsafe region from all the possible trajectories starting from a
given set of initial conditions. Other methods generalize barrier certificates by means
of (algebraic) invariants [78, 29].

When considering systems that model real-world phenomena, we have to deal with
complicated nonlinear ODEs. Moreover the dimension of the space tends to be large,
often making the direct application of formal methods analysis practically unfeasible
(curse of dimensionality). Thus, methods that reduce the size (number of variables)
of the system, while preserving the important aspects of the original dynamics, play a
key role in this field. Many methods have been proposed. A few rely on differential
elimination and abstract interpretation [143, 59, 142]. In [28, 27], dimensionality
reduction is achieved via projection onto a space of lower dimension, and then by
working in the embedding coordinate space. Instead, in [41, 42, 39, 177, 40] the ODEs
reduction problem is recast into finding an appropriate equivalence relation over ODEs
variables. On the same line, in [98], differential bisimulation, an equivalence relation
that captures symmetries in the ODE semantics, is shown to lead directly to a partition-
refinement algorithm to compute the coarsest ODEs aggregation.

1.1.3 Coalgebras and stream differential equations
A generalization of systems of differential equations is given by systems of stream
differential equations (SDEs) in the realm of coalgebra [154, 155]. In fact, depending
on the semantics of the polynomial product one adopts in the definition, different
interpretations can be given to differential equations: considering the shuffle product
leads us to ordinary differential equations, but if we consider convolution we get
stream differential equations. Relations among streams, differential equations, and
polynomials are explored in depth in [26] and have several important applications, for
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instance to obtain closed forms of algebraic generating functions, or to solve ordinary
differential equations [26].

1.1.4 Parameter inference
Often, systems of differential equations involve parameters whose value is not directly
measurable, but whose selection in the modeling phase is critical. It is important for
applications to assign the correct values to these parameters, or at least to identify a
plausible range of values for them. Estimates of parameters values can be obtained
starting from real-world observed data and relying on statistical techniques, such as
Maximum Likelihood Estimation or Bayesian Inference approaches. We will exclu-
sively follow the last approach, which requires to postulate a prior distribution on the
set of possible values. Monte-Carlo methods such asMarkov ChainMonte Carlo [125]
and Sequential Monte Carlo [63] have been applied to carry out Bayesian Inference in
practice. Also hybrid approaches such as [52, 62] have been investigated. Unfortu-
nately, it is in general very hard to get adequate formal, or even statistical, guarantees
for the obtained estimates. Recently, combining Bayesian inference and programming
languages, a new programming paradigm has emerged: Probabilistic Programming
(PP) [85]. Probabilistic programs can be interpreted as models conditioned on obser-
vation data, and thus can be used to make inference and predictions. Applications to
dynamical systems are described in [85].

1.2 Outline of the thesis

1.2.1 Topics and chapters
A general goal of this thesis is to develop new methods to analyze and predict the
behaviour of dynamical systems. We will pursue this goal by adopting a variety of
different points of view and combining different approaches, ranging from algebraic
geometry, to coalgebra, to Bayesian inference. In particular, we will present methods
that can be used for reasoning on safety properties, to approximate reachable sets, and to
provide guaranteed estimates in the context of parameter inference and of probabilistic
programming. Accordingly, the central part of the thesis will consist of the following
five chapters:

• Chapter 2: Invariants and conservation laws.

• Chapter 3: Linearization and reachability.

• Chapter 4: SDEs, a (co)algebraic approach.

• Chapter 5: Inference: Bayesian parameter estimation.

• Chapter 6: Inference, a more general view: Probabilistic Programming.

In the final Chapter 7 we will draw some concluding remarks. A number of proofs
and additional technical details have been confined to separate appendices A—D. The
following sections of this chapter give a detailed overview of the central chapters 2—6
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of the thesis. In each section, we will first describe the State of the Art in the considered
subject and then present our contribution.

1.2.2 Papers and publications
This thesis is based on work developed in the papers listed below. We separate those
that have already been published or accepted from those that are currently under
revision. For each work, we also provide an abstract.

Works published or accepted for publication

[1] M. Boreale and L. Collodi. A linear algebraic method to compute polynomial
PDE conservation laws. Journal of Symbolic Computation, 108:55-72, 2022.

Abstract. We present a method to compute polynomial conservation laws for
systems of partial differential equations (PDEs). The method only relies on
linear algebraic computations and is complete, in the sense it can find a basis
for all polynomial fluxes that yield conservation laws, up to a specified order of
derivatives and degree. We compare our method to a state-of-the-art algorithm
based on the direct approach on a few PDE systems drawn from mathematical
physics.

[2] M. Boreale and L. Collodi. Linearization, model reduction and reachability in
nonlinear odes. In Reachability Problems 2022, volume 13608 of Lecture Notes
in Computer Science, pages 49-66. Springer, 2022.

Abstract. In the analysis of nonlinear ordinary differential equations, linear and
Taylor approximations are fundamental tools. Such approximations are generally
accurate only in a local sense, that is near a given expansion point in space or time.
We study conditions and methods to compute linear approximations of nonlinear
odes that are accurate also non locally. Relying on Carleman linearization and
Krylov projection, our method yields a small, hence tractable linear system
that is shown to produce accurate approximate solutions, under suitable stability
conditions. In the general, possibly non stable case, we provide an algorithm that,
given an initial set and a finite time horizon, builds a tight overapproximation
of the reachable states at specified times. Experiments conducted with a proof-
of-concept implementation have given encouraging results. We also establish
a formal relation between our approach and Koopman approximation, a well-
known framework for the analysis of nonlinear systems.

[3] M. Boreale and L. Collodi. Bayesian parameter estimation with guarantees via
interval analysis and simulation. In VMCAI 2023, volume 13881 of Lecture
Notes in Computer Science, pages 106-128, Springer, 2023.

Abstract. We give a method to compute guaranteed estimates of Bayesian a
posteriori distributions in a model where the relation between the observation y
and the parameters θ is a function, possibly involving additive noise parameters
ψ, say y = f(θ) + h(ψ). This model covers the case of (noisy) ode parameters
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estimation and the case when f is computed by a neural network. Applying
a combination of methods based on uncertain probability (P-boxes), Interval
Arithmetic (IA) and Monte Carlo (MC) simulation, we design an efficient ran-
domized algorithm that returns guaranteed estimates of the posterior CDF of the
parameters θ, and moments thereof, given that the observation y lies in a (small)
rectangle. Guarantees come in the form of confidence intervals for the CDF
values and its moments. Comparison with state-of-the-art approaches on odes
benchmarks shows significant improvement in terms of efficiency and accuracy.

[4] M. Boreale, L. Collodi, D. Gorla. Products, polynomials and differential equa-
tions in the stream calculus. ACMTransactions on Computational Logic, volume
25(1), pp 1–26, 2024.

Abstract. We study connections among polynomials, differential equations and
streams over a field K, in terms of algebra and coalgebra. We first introduce
the class of (F ,G)-products on streams, those where the stream derivative of
a product can be expressed as a polynomial function of the streams and their
derivatives. Our first result is that, for every (F ,G)-product, there is a canonical
way to construct a transition function on polynomials such that the resulting
unique final coalgebra morphism from polynomials into streams is the (unique)
commutative K-algebra homomorphism – and vice versa. This implies that one
can algebraically reason on streams via their polynomial representation. We
apply this result to obtain an algebraic-geometric decision algorithm for poly-
nomial stream equivalence, for an underlying generic (F ,G)-product. Finally,
we extend this algorithm to solve a more general problem: finding all valid
polynomial equalities that fit in a user-specified polynomial template.

[5] M. Boreale and L. Collodi. Guaranteed inference for probabilistic programs: a
parallelisable, small-step operational approach. In VMCAI 2024, volume 14500
of Lecture Notes in Computer Science, pages 141-162, Springer, 2024.

Abstract. We put forward an approach to the semantics of probabilistic pro-
grams centered on an action-based language equipped with a small-step opera-
tional semantics. This approach provides benefits in terms of both clarity and
effective implementation. Discrete and continuous distributions can be freely
mixed, unbounded loops are allowed. In measure-theoretic terms, a product of
Markov kernels is used to formalize the small-step operational semantics. This
approach directly leads to an exact sampling algorithm that can be efficiently
SIMD-parallelized. An observational semantics is also introduced based on a
probability space of infinite sequences, along with a finite approximation the-
orem. Preliminary experiments with a proof-of-concept implementation based
on TensorFlow show that our approach compares favourably to state-of-the-art
tools for probabilistic programming and inference.

[6] M. Boreale, L. Collodi, D. Gorla. An implicit function theorem for the stream
calculus. Accepted for publication in Logical Methods in Computer Science,
arXiv:2303.11876v3[cs.LO].
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Abstract. In the context of the stream calculus, we present an Implicit Function
Theorem (IFT) for polynomial systems, and discuss its relationswith the classical
IFT from calculus. In particular, we demonstrate the advantages of the stream
IFT from a computational point of view, and provide a few example applications
where its use turns out to be valuable.
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[7] M. Boreale and L. Collodi. Linearization, model reduction and reachability in
nonlinear odes. Paper submitted to Formal Methods in System Design (revision
requested).

Abstract. An expanded version of the conference paper [2].

Other work

The material in the following work has not been included in the thesis.

[8] MC. Viscardi, S. Monchetti, L. Collodi, G. Bartoli, M. Betti, M. Boreale and F.
Corradi. Approximate Bayesian Computation for Probabilistic Damage Identi-
fication. In SIS 2023 International Meeting, SEAS-IN volume, pages 544-550,
PEARSON, 2023.

Abstract. Damage identification analyses are fundamental to guarantee the
safety of civil structures. They are often formalised as inverse problems whose
solution ignores any source of uncertainty that could be accounted for by us-
ing appropriate statistical models. However, these models often exhibit an
intractable likelihood function. We propose quantifying uncertainty through a
fully Bayesian approach based on Approximate Bayesian Computation (ABC), a
class of methods that overcome the evaluation of the likelihood and only require
the ability to simulate from the model. Furthermore, we suggest a strategy to
reduce ABC computational burden using Neural Networks. Finally, we test the
method at work on a damaged beam to discuss its strengths and weaknesses.

1.3 Invariants and conservation laws

1.3.1 State of the art
The verification of Safety properties for dynamical systems is of great importance and
has significant practical implications. Unfortunately, it is as crucial as complicated,
because it involves dealing with the problem of computing, or at least overapprox-
imating, the set of reachable states, usually called reachset, for systems defined by
nonlinear differential equations.

In this regard, an indirect but very effective method to prove Safety, based on
the concept of invariant, can be applied. An invariant is a subset of states of the
considered system, with the property that any trajectory of the system that starts from
or ‘touches’ the invariant will never leave it. An invariant that includes the initial set
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of a given dynamical system can be considered to prove its safety, as it represents an
overapproximation of its reachset. LetW an invariant for system (1.2),X0 andXU the
initial and the unsafe set, respectively; then system (1.2) is safe ifW does not contain
any unsafe state, more precisely if X0 ⊆ W and XU ∩W = ∅. Specifically, we will
mainly consider algebraic invariants. An algebraic invariant is an invariant that can be
described as the set of common zeros of a finite set of multivariate polynomials, i.e. as
an algebraic variety. Polynomials that vanish on all solutions of the considered system
are called invariant polynomials.

In the case of ODEs of polynomial form, a number of algorithms to compute
invariants have been proposed. Some of them generate algebraic invariants by ex-
ploiting their polynomial representations. In detail, they rely on the theory of ideals
over polynomial rings and on Groebner’s bases [57] to reduce the linear and nonlinear
invariant generation problem to a constraint solving problem [107, 164]. For instance,
in [29, 27] they generate an overapproximation for the set of all the polynomials invari-
ants that are implied by a given initial set and that also fit a given polynomial template,
relying on the notion of ideal membership and on the fact that any infinite ascending
chain of ideals stabilizes in a finite number of steps. In [163] the notion of invariant
ideal is reformulated as the greatest fixed point of a monotone refinement operator
over the lattice of ideals in a polynomial ring. They provide an algorithm to compute
this monotone operator relying on the Tarski-Knaster fixed point theorem and using
basic ideas from commutative algebraic geometry. However, the resulting iteration
sequence does not always converge to a fixed point, then they consider a relaxation of
the refinement operator using the notion of degree-bounded pseudo-ideals [56].

1.3.2 Our contribution
We focus on a particular type of invariant: conservation laws. A conservation law is an
equation expressing that certain relations among characteristic quantities of the system
are conserved over time, despite the fact that the system evolves. Conservation laws
often express physical principles, such as conservation of mass, energy, momentum.
For instance, consider a pendulum consisting of a ball of massm > 0 hanging from a
rod of length l > 0. Its dynamics is modeled by the ODE

d2

dt2
θ(t) = g

l
· cos(θ(t))

where θ is the angle from the roof to the rod, and g > 0 is the (constant) gravity
acceleration. Setting ω(t) := θ̇(t), x(t) := cos(θ(t)) and y(t) := sin(θ(t)), we get the
following first order system of ODEs:

θ
l

m



θ̇ = ω

ẋ = −yω
ẏ = xω

ω̇ = g
l
x .

(1.3)

In system (1.3), the mechanical energy, i.e. the sum of kinetic energy and grav-
itational potential energy, is conserved. This corresponds to the following invariant,
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where l(1− y) is the height of the mass1

mgl(1− y) = 1
2m(lω)2 .

This equation defines an algebraic variety V in the 4-dimensional space: the set of all
(θ,x, y,ω) that make the polynomial mgl(1 − y) − 1

2m(lω)2 vanish. Every solution
of (1.3) must stay in the variety V .

In our treatment of conservation laws, we widen considerably the scope of ap-
plication of our method by considering partial differential equations (PDEs), that is
differential equations that may involve multiple independent variables. For example,
D’Alembert wave equation in one spatial dimension x can be written, in its simplest
form, as the following PDE with two independent variables t,x and one dependent
variable u:

∂u(t,x)
∂t2

= ∂u(t,x)
∂x2 .

Here u(t,x) represents the vertical displacement of a vibrating string at time t and
horizontal position x. A number of methods to compute PDE’s conservation laws have
been proposed. Some of them are linked to the existence of symmetries: for example
[94] is based on scaling symmetries. Others use a direct approach [93, 50] that aims to
find multipliers whose linear combinations with the system’s equations yield particular
type of (divergence) expressions vanishing on its solutions. This methods does not
presuppose the existence of symmetries and is more widely applicable.

Our method can be considered as a development of the direct approach, with ad-
ditional guarantees of completeness. The method itself is quite simple, and ultimately
boils down to imposing linear constraints on the coefficients of a generic polynomial
template representing a divergence, so as to guarantee that it vanishes on the solutions
of the PDE. To be a bit more specific about our contribution, let φ = (p1, p2, ..., pn) be
a n-tuple of multivariate polynomials. The set of indeterminates consists here of all
(dependent and independent) variables of the PDE system at hand. The divergence of
φ is defined as:

∇φ :=
n∑
j=1

Dxjpj

where Dxjpj is the (total) derivative of pj with respect to xj , taken according to
the given system of PDEs. We will seek polynomial conservation laws where the
divergence is an invariant polynomial, that is vanishes on all solutions of the system
[140]. In this case, φ is called a flux of the system. Our method is relatively complete,
in the sense that it can find all the polynomial conservation laws up to a pre-specified
degree.

1In a coordinate system where the origin coincides with the point where the rod is fixed to the roof,
and the y axis is positive from the roof downward. We also assume that θ(0) = 0, i.e. that the ball
touches the roof initially, which makes the initial mechanical energy equal tomgl.
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1.4 Linearization and reachability

1.4.1 State of the art
Many natural and computational phenomena possess an inherently nonlinear nature,
which naturally leads to dynamical systems described by nonlinear differential equa-
tions. Non-linearity is essential for expressiveness. For example, in neural networks
[82], one of the most well-known universal approximators, nonlinearity is crucial, and
is introduced by means of activation functions. In more detail, nonlinear ODEs sys-
tems [104] are systems of ordinary differential equations in which variables and their
derivatives appear in nonlinear combinations. The solution of these systems is very
sensitive to initial conditions and represent complicated behaviours. Unfortunately,
nonlinear ODEs are difficult to analyze, specifically it is not easy to design control
systems or make prediction for them. One way to handle the complexities of nonlinear
systems is through linearization. That is, it is sometimes possible to approximate a
nonlinear ODEs system with a linear one

ż = Az (1.4)

with z ∈ RN and A ∈ RN×N , and then to apply powerful techniques from linear
systems theory to get an approximation of the original solution, taking into account the
linearization error. Linearization techniques are relevant to reachability analysis. In
fact, reachability analysis for nonlinear systems is muchmore complicated compared to
linear systems, due to the complexity introduced by nonlinear dynamics, in particular
many valuable properties, such as the superposition principle, are no longer valid [6].
Moreover, since geometric representations are closed under linear transformations, in
the case of linear systems, it is possible to represent the set of initial states and also
the reachset, using for instance ellipsoids, zonotopes, or polytopes, because they will
be again mapped by the flow of the system to ellipsoids, zonotopes, and polytopes,
respectively. The same is not possible for nonlinear systems, because reachsets cannot
be computed by a linear map.

There exists a vast literature on the linearization in time or space for nonlinear
systems, using Taylor series expansion or the Jacobian matrix; see e.g. [104] and
references therein. However, traditional methods are generally accurate only in a
local sense, that is near a given expansion point, thus the quality of their approxi-
mation decreases moving away from the expansion point. For the same purpose of
linearization, also infinite-dimensional approaches can be applied: they require work-
ing on infinite dimensional spaces. Examples are Carleman linearization [109] or the
Koopman operator approach [124]. In both cases, a linear, but infinite dimensional
system is generated in order to approximate the nonlinear one, and then a truncation
at a finite cut off is performed to make the computation feasible. In the case of the
Koopman operator, the dynamics of the system is lifted from the original state space
to a higher dimensional space of smooth functions called observables. The dynamics
becomes linear in the space of observables, although the dimension of this space is
infinite. Instead, Carlemann linearization essentially generates an infinite dimensional
linear system, where each dimension corresponds to a monomial. Closely related to
Carlemann embedding, the linearization approach presented in [167] generates linear
abstractions relying on a change of basis transformations of the original nonlinear
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system. It is based on a finite submatrix of the infinite matrix created by the Carleman
linearization, such that the rows of this submatrix correspond to monomials whose
derivative is a linear combination of monomials that belong the submatrix.

With the aim to approximate globally nonlinear ODEs for reachability analysis,
in [103] Jungers and Tabuada propose a linearization technique based on polyflows.
Polyflows are dynamical systems satisfying a nilpotency property: this basically means
that the set of all Lie derivative of the system’s dependent variables form a finite
dimensional vector space. The method in [103] is based on building polyflows that
approximate the original system, using as basis the Lie derivatives of the state variables
up to some fixed order. Furthermore, in [103] also asymptotic results have been
proposed, but they do not easily yield concrete bounds for the error.

In the field of reachability analysis, Cora and Flow* are two of the most widely
used tools. Cora [8] considers vector and matrix set representations and implements
operations on these set representations as well as reachability algorithms for various
dynamical systems classes. In particular, reachability analysis for nonlinear systems
in Cora relies on a mix of techniques, including linearization, in fact it is based on
abstraction either to a linear system, or to a polynomial system. Instead, Flow* [47]
is based on Taylor models. Taylor models [120, 46] are a combination of bounded
degree polynomials obtained applying Picard iteration with a given initial condition,
and bloated by an interval. They represent an effective means for computing rigorous
bounds on the trajectories also for nonlinear differential equations. In detail, Taylor
models are used to represent flowpipes, i.e., a set of states reachable by continuous
dynamics from an initial set within a given time interval. Flow* also supports a variety
of optimizations including adaptive step sizes, adaptive selection of approximation
orders and the heuristic selection of template directions.

1.4.2 Our contribution
In Chapter 3, we explore conditions andmethods to devise linear approximations of the
solution of nonlinear systems, that can be accurate also non locally. Then we leverage
our results in reachability analysis. The main step of our method is the generation of
a smaller, computationally tractable, linear system from the original nonlinear system.
In detail, we apply Carleman linearization to transform a given polynomial nonlinear
system into an infinite linear system, then we blend Carleman linearization with Krylov
orthogonal projection techniques in order to achieve dimension reduction, following
the approach of [28].

Furthermore, we use the computed reduced linear system to outline a method
for reachability analysis inspired by [54]. This method will generate a sequence of
overapproximations of the reachsets for the original nonlinear system at specified
times, over a finite time horizon, representing reachsets as polytopes. The basic idea
of this approach is to perform advection for the vertices of an initial set relying on the
reduced linearized system, rather than on the initial nonlinear system. In particular,
the solution of the reduced system acts as an approximation of the advection function
for the original system, hence we use it to propagate the initial vertices to successive
time steps. Finally, the obtained polytope is inflated in order to take into account the
approximation and nonlinearity errors, thus obtaining a reachset that is both tight and
validated. Experiments conducted with a proof-of-concept implementation of both the
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approximation scheme and the reachability algorithm have given encouraging results,
especially in terms of accuracy.

1.5 SDEs, a (co)algebraic approach

1.5.1 State of the art
A stream is an infinite sequence of real numbers. The stream calculus [154] is based
on the presence of a final coalgebra structure on the set of streams, arising from an
operation of stream derivative, which simply consists in removing the first element
of a stream. This basically means that streams possess a deterministic automaton
structure, that has the property of being final in the class of coalgebras: that is, from
every coalgebra C in this class, there exists a unique coalgebra morphism (preserving
transitions and output values at states, in a precise sense) from C to the coalgebra
of streams [155]. On the other hand, starting from a polynomial ODE, or rather an
initial value problem (ivp), one can endow the ring of multivariate polynomials with
an automaton structure (coalgebra), where the transition function is given by the Lie
derivativewith respect to the given ivp: see [27]. Thus, the set of streams can be seen as
a final coalgebra in which to interpret the elements of the coalgebra of polynomials. In
practice, polynomials can be seen as a syntax for denoting the behaviours induced by the
given initial value problem, whereas the streams represent an abstract (denotational)
semantics for them [27]. The obtained semantics is compositional, in particular it
transforms the product between polynomials into the shuffle product between streams;
and ODEs into Stream Differential Equations (SDEs), a sort of directly implementable
recipes for the stepwise generation of streams [154].

In [26], different types of stream products are considered (convolution, shuffle,
Hadamard,...), and connections among polynomials, streams, ODEs and SDEs have
been further explored. In detail, in [26] a general class of products on streams, called
(F ,G)-products, is introduced: they are the class of streams where the stream deriva-
tive of a product can be expressed as a polynomial of the streams themselves and their
derivatives. (F ,G)-products are useful to uniformly accommodate all the different no-
tions of products: this allows one to derive an operational semantics for polynomials
appropriate for a generic type of stream product (under certain technical conditions).
In fact, [26] establishes that for every (F ,G)-product, there is a canonical way to
construct a derivative for polynomials such that the induced unique final coalgebra
morphism from polynomials into streams is the unique K-algebra homomorphism,
and vice versa. This leads to a full abstraction, and implies that it is possible to al-
gebraically reason on streams, through their polynomial representations, and applying
powerful techniques from algebraic geometry [57]. Relying on this result, in [26] an
algorithm to decide stream equivalence is proposed, based on an algebraic-geometric
procedure.

1.5.2 Our contribution
In Chapter 4 we generalize the algorithm presented in [26] and describe a method to
find all valid polynomial equations of a given pre-specified form, for a generic (F ,G)-
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product. To this aim, we use polynomial templates [27], that basically represent a way
to compactly specify sets of polynomials. Given a template T and an initial value
problem (L, ρ), our algorithm returns the intersection between the set of polynomials
described by the template and the kernel of the homomorphism µ from the coalgebra
of polynomials to that of streams. Essentially, the generated set corresponds to the set
of polynomials p such that p(j)(ρ) = 0 for each j ≥ 0, where ρ is the initial condition.
Otherwise said, the algorithm returns the set of all the invariant polynomials that
are instances of the template T for the given initial value problem. In practice, our
algorithm builds two chains of sets. Firstly, a descending chain of vector spaces is
generated to represent template parameter valuations such that all the derivatives of
p up to order j vanish when computed on the initial conditions ρ. In addition, an
ascending chain of ideals is built to detect the stabilization of the previous sequence.

We also present an Implicit Function Theorem (IFT) for systems of polynomial
equations. This theorem provides sufficient syntactic conditions under which a system
of polynomial equations has a unique stream solution, and gives a method to build
it effectively by an SDE of polynomials for the stream solution. The formulation of
this theorem is very similar to the classical theorem, but involves stream derivatives
and the corresponding version of the Jacobian. We discuss the mathematical relation
between the stream IFT and the classical IFT and show that the stream IFT has a neat
computational advantage over the classical one.

1.6 Inference: Bayesian parameter estimation

1.6.1 State of the art
Systems of ODEs frequently involve parameters that have a great impact on their
behaviour, but that are not directly measurable by experiments, or are such that there
is inherent uncertainty on their values. This uncertainty must be rigorously taken
into account when the model is used to make predictions, in order to avoid reaching
conclusions about system characteristics that are unfounded, or making predictions
that are too optimistic, given the model uncertainty. More formally, we will consider
parametric ODEs systems of the form

ẋ(t) = f(x(t), θ) (1.5)

and initial condition x(0) = x0. The problem of providing guaranteed estimates for
the values of parameters θ is crucial, especially for safety verification. In general,
statistical inference techniques are applied. Statistical inference [44] aims to learn
the general characteristics of a population using only a subset of members of that
population. Considering ODEs, estimates for parameters are inferred relying on a
finite number of noisy observations of the trajectories of a real-world system. In this
contest, probability measures play an essential role, since they numerically quantify
uncertainty and/or rational beliefs about unknown quantities. In particular, the Bayes’
theorem provides a rational method to update a given probability measure as more
evidence or data become available. The process of inductive learning via the Bayes’
theorem is called Bayesian inference [97].
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Several works as [80, 179] follow a Bayesian point of view for ODEs parameter
estimation. They assume that a known prior distribution on the unknown parameter
values is given and aim to compute their posterior distribution, that essentially describes
the uncertainty on parameters conditioned on a collection of observed data. In general,
obtaining exact values and formulas for posterior quantities as means and variances
is difficult. However, such quantities can be approximated generating random sample
values of the parameters from their posterior distributions and applying Monte Carlo
methods [97].

Sophisticated sampling schemes for sampling parameters have been developed. For
instance, when considering ODEs systems, parametric inference techniques based on
Monte CarloMarkov Chain (MCMC)[125] are widely used, they create aMarkov chain
such that its stationary distribution is the desired posterior distribution. In practice, it
is not easy to assess when a Markov chain has reached its stationary regime, that is
when to start sampling, then usually an approximation is made. Also particles-based
Sequential Monte Carlo (SMC) methods have been applied [63]. Unfortunately, if
the simulation is performed with only a finite number of steps or particles which is
always the case, formal guarantees of correctness are hard to achieve: this makes safety
verification very complicated.

MCMC/SMC techniques are very demanding from a computational point of view
and require an explicit expression of the likelihood. Likelihood is a function that
essentially quantifies how accurately the parameters explain observations, and it is not
always available. This has led to the development of approximate Bayesian compu-
tation (ABC) [117], that avoids computation of the likelihood function. However, it
shares the same difficulties as MCMC and SMC about formal guarantees and fails to
adequately model observations errors when applied to ODEs parameter estimation [5].

With the aim of overcoming these limitations in the context of ODEs parameter
estimation, a method to approximate the posterior distribution has been described in
[52]. It iteratively partitions the space of parameters into finitely many disjoint cells
and computes analytically interval bounds on the posterior likelihood for each cell, then
the cells with the highest probability are refined through iterations. Finally, likelihood
bounds are normalized to obtain bounds on posterior probabilities of each cell. This
computation is achieved by using an inexpensive reachability analysis approach that
relies on sensitivity analysis and numerical simulations.

1.6.2 Our contribution
We describe an alternative hybrid approach for ODEs parameter estimation that com-
bines methods based on Monte Carlo simulation, uncertain probability and Interval
Arithmetic (IA). It efficiently computes sharp estimates of posterior quantities, such as
Cumulative Distribution Functions (CDFs), and their expectations, equipped with for-
mal guarantees of accuracy. In particular, formal guarantees of accuracy are given in
the form of confidence intervals for the posterior CDF of the parameters and moments
thereof. They are established relying on an exponential tail inequality for the sum of
independent random variables: Hoeffding’s bound.

Our approach consists of two phases. The first phase is deterministic: after
collecting observations, the parameter search space is reduced by computing, via
interval analysis [100], a tight approximation of the set of feasible parameter values,
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that is those parameters values that can actually lead to the set of given observations,
for some noise value. The second phase computes confidence intervals for posterior
expectations of the parameters given the observations, and is based on a randomized
algorithm based on Monte Carlo simulations. Differently from [52], in our case the
Monte Carlo phase introduces a level of controlled aleatoric uncertainty: hence the
generated bounds are not certain, but come equippedwith confidence levels. Accepting
a controlled level of uncertainty allows us to achieve greater accuracy and greater
efficiency in estimation.

We have put our algorithm at work on a few problems of ODEs parameter esti-
mation from the literature. Our method compares very favourably to state-of-the-art
techniques, both in terms of accuracy and execution time. Our approach can be applied
not only to the estimation of parameters of ODEs, but to the more general case of a
model where the relation between observations and parameters is a function, such as
a Neural Network.

1.7 Inference, a more general view: Probabilistic Pro-
gramming

1.7.1 State of the art
Probabilistic Programming (PP) is a powerful programming paradigm used to formally
represent and reason with uncertainty. PP can also be applied to infer statistical con-
clusions from uncertain data and real-world observations. Basically, a probabilistic
program [85, 14] is an ordinary program with the additional possibility to sample from
known distributions, and to condition the values of variables based on external obser-
vations/data. The last feature is essential, as it enables the integration of information
from the external world into a program, and thus to exploit empirical knowledge to
update program variables. Although probabilistic programs typically consist of a few
lines of code, they are often hard to analyze [85].

A probabilistic program implicitly defines a probability distribution for its output
variables, called posterior because it is obtained taking into account the observed
data. In principle, PP can be applied to parameter inference in dynamical systems as
well. For instance, it is easy to write a probabilistic program that computes stepwise
the solution of a discretized parametric ODE, where the values of the parameters are
chosen according to predefined distributions. Moreover, noisy versions of the solution
might be observed at discrete time instants. Inference on the parameters can then be
performed by, roughly speaking, accepting only those computations of the probabilistic
program that yield computed solutions compatible with the observations. However,
compared to the approach outlined in Section 1.6, inference via PP can be much
more general and flexible. For example, observations might follow more complicated
patterns, like for example being performed at random; or one might perform inference
not only on the parameters, but also on sequences of traversed states that are not directly
observable, like in Hidden Markov Models [132].

In recent years, we have seen a great proliferation of PP languages, as well as tools
and techniques to perform inference based on them. The semantics of programming
languages can be described informally via natural languages, but it is very difficult to
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reason about the properties of programs only relying on an informal prose. A formal
mathematical description of a programming language is therefore highly desirable.
Most work [14, 174, 95, 35, 61, 60] on the semantics of PP follows the denotational
approach initiated by Kozen [111]. In [111], programs are interpreted as continuous
linear operators (functions) on a Banach space of distributions. A major result is that
the behaviour of a probabilistic program is completely determined by its behaviour
on inputs whose distribution is a point mass. A few works instead pursue a more
operational approach. For instance, in [45] Aditya et al. consider a big-step sampling
semantic equivalent to the denotational one, and, based on that, present a Monte
Carlo based sampling algorithm for a PP language. An operational approach is also
proposed in [99, 87]: in both works, only discrete-space Markov decision processes
are considered. Further references to PP can be found in [85].

In general, the use of denotational semantics with the aim of inference has practical
limitations, and existentmethods for inference in PP are often disconnected from formal
semantics. For instance, most practical implementations are based on sampling after a
finite number of steps: it is not easy to take correctly into account unbounded or even
infinite computations in these types of implementation. Moreover, severe performance
issues can arise.

1.7.2 Our contribution
We depart from the denotational tradition of PP and introduce an action-based prob-
abilistic programming language, together with a small-step operational semantics.
Informally speaking, we describe computations as (infinite) sequences of states, as
opposed to the denotational approach, based on functions obtained by sequentially
composing the effect of successive program statements.

The small-step semantics is formalized in terms of a Markov kernel and directly
leads to an exact sampling algorithm that can be efficiently SIMD-parallelized. It
describes how the individual steps of a computation take place: this brings benefits
both in terms of clarity of presentation and in terms of effective implementation. On
top of the operational semantics, an observational semantics is introduced: it is based
on a probability space of infinite sequences of states and is given in terms of expectation
of measurable functions, conditioned on non-failure. Along with the exact semantics
we prove an approximation theorem: it provides lower and upper bounds of the exact
semantics, based on the semantics of the program truncated at a chosen finite execution
length.

Preliminary experiments, conducted on a number of nontrivial probabilistic pro-
grams drawn from the literature using a TensorFlow-based implementation, show that
our approach compares favorably to State-of-the-art tools for probabilistic program-
ming and inference.



Chapter 2

Invariants and conservation
laws

2.1 Overview
In this chapter, we focus on the concept of invariant. In particular, we consider a
specific type of invariant: conservation laws, and we outline an algorithm to find all
the polynomial conservation laws up to a fixed degree for a given system of partial
differential equations, only relying on linear algebraic computations.

More formally, let Σ be a system of partial differential equations (PDEs) in n
independent variables. A conservation law ofΣ is vector ofn expressions, called fluxes,
whose divergence vanishes on the solutions of the system [140, Ch.4]. In the case of
ODEs (n = 1), this is the same as a first integral of the system. Conservation laws
often express physical principles, such as conservation of mass, energy, momentum
and so on, and as such are of fundamental importance to gain a qualitative insight
into the phenomenon being studied. Moreover, the existence of many conservation
laws points to complete integrability of Σ [2]. Conservation laws are also crucial in
applications, in particular numerical methods: knowledge of conservation laws of Σ
makes it possible to apply effective numerical schemes, including finite volume and
finite elements methods; see e.g., [116, Ch.12].

Methods to systematically search conservation laws have traditionally been linked
to the existence of symmetries, on account of a celebrated theorem by Emmy Noether
[140, Ch.4]. A variety of algorithms based on a direct approach, which does not
presuppose the existence of symmetries and is more widely applicable, have also been
developed: see [140, Ch.4] and e.g. [11, 183, 135, 93, 50] and references therein.
In the direct approach, one first finds multipliers, whose linear combinations with the
system’s equations yield divergence expressions vanishing on solutions, then inverts
the divergences to obtain the corresponding fluxes.

In this chapter, we put forward a new method to automatically find conservation
laws of polynomial form. The method can be applied to any polynomial PDE system,
independently of the existence of symmetries, and as such, it might be classified as
‘direct’ itself. Its distinctive features are:

(a) its completeness is given in terms of fluxes: differently frommost directmethods,
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the user directly specifies an ansatz (order and degree) of the searched polynomial
fluxes, rather than that of multipliers;

(b) computationally, it only relies on equational rewriting and linear algebraic oper-
ations — at least when it is applied to leading linear systems.

An additional benefit of this method is, in our opinion, its conceptual simplicity: it just
takes some elementary algebra to give a rather detailed description of its functioning.
This we do below.

Let Σ be a polynomial system of PDEs. Under a certain nondegeneracy condition,
the set of invariant polynomials of Σ up to a given differential order coincides with
the ideal generated by Σ, denoted

〈
Σ
〉
, in a sub-ring of the differential polynomials.

Now, a polynomial conservation law is a vector of polynomials, the fluxes, whose
divergence is an invariant, that is belongs to

〈
Σ
〉
. Equivalently, upon performing

polynomial division of such a divergence by a basis of
〈

Σ
〉
, the obtained remainder is

zero. Symbolically, we represent a set of polynomials as a formal linear combination of
monomials with unknown coefficients, or template; and a set of candidate conservation
laws as a single vector of user-specified flux templates. We then seek necessary and
sufficient conditions on the coefficients for the remainder of the resulting divergence to
vanish upon division by

〈
Σ
〉
. This results in a homogeneous linear algebraic system

for the unknown coefficients. When the solutions of this system are substituted back
into the original flux templates, all polynomial conservation laws fitting the specified
templates are obtained. In the case of PDEs whose leading term is linear, a basis of〈

Σ
〉
isΣ itself, under an appropriate monomial ordering; and taking the remainder of

a polynomial effectively corresponds to rewriting it into a normal form. This justifies
our claim that for leading linear systems, computationally the method requires no more
than equational rewriting and linear algebra. Additionally, trivial laws can be easily
filtered out from the output.

In this context, an important goal will be to identify easy to check syntactic condi-
tions on Σ that guarantee nondegeneracy, which is essential for completeness. We will
show that the Riquier’s format [150, 153], a generalization of Cauchy-Kovaleskvaya’s
one [140, Ch.4], does imply the considered notion of nondegeneracy. We will cover
the cases of both formal and real analytic solutions of PDEs.

On the negative side, it may be observed that the completeness of the algorithm
holds relative to polynomial fluxes only up to a specified degree. We will comment on
this limitation when we will compare our algorithm to the direct method.

Structure of the chapter The rest of the chapter is organized as follows. Background
on PDEs and their solutions is given in Section 2.2 . The method is then presented
in Section 2.3. A few experiments and a comparison with a state-of-the-art algorithm
based on the direct approach are discussed in Section 2.4. For most part of the chapter
we will be concerned with formal power series solutions of PDEs; the obtained results
carry over to real analytic solutions with very minor modifications, which are dealt
with in Section 2.5. Concluding remarks and further comparison with related work
are in Section 2.6. A few technical proofs have been confined to Appendix A.
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2.2 Preliminaries

We introduce some standard terminology and notation on PDEs and their solutions.
LetX = {x1, ...,xn} and U = {u1, ...,um} be disjoint, nonempty sets of independent
and dependent variables, respectively. We let t,x, y, ... range over X and u, v, ...,
possibly with superscripts ui, ..., range over U . Let X⊗, ranged over by τ , ξ, ... be
the set of monomials that can be formed from variables in X — that is, the free
commutative monoid generated by X — with ε denoting the identity monomial. For
τ = xk1

1 · · ·xknn , we let |τ | 4= k1 + · · ·+kn. We letD 4= {uτ : u ∈ U , τ ∈ X⊗} denote
the set of derivatives; here uε will be identified with u. We let R[X ∪ D], ranged over
by f , g, ..., p, q, ..., be the set of (differential) polynomials with coefficients in R and
indeterminates in X ∪ D. The order of a polynomial p is max{|τ | : uτ occurs in p}.
For example, f = xvzuxy + v2

y + u + 5x is a differential polynomial of degree 3 and
order 2.

A system of polynomial PDEs is a finite set Σ ⊆ R[X ∪ D]. The order of Σ
is the maximum order of polynomials in Σ. In what follows, we shall consider an
arbitrarily fixed, finite D ⊆ D that is a superset of the derivatives occurring in Σ and
let P 4= R[X ∪D]. The set P will act as our ‘universe’ of differential polynomials, in
the sense that we will be interested in finding conservation laws whose divergence (see
Section 2.3) lies inP . For example, in the case of the wave equation, withX = {x, y},
U = {u} and Σ = {uxx − uyy}, we might fix D = {u,ux,uy,uxy,uxx,uyy} if
we are interested in laws with fluxes built out of {u,ux,uy}. Elements of P are
multivariate polynomials in a finite number of indeterminates in the usual algebraic
sense: in particular, they can be evaluated at any point (x,uD) ∈ RX∪D ∼= Rk, with
k
4= |X ∪ D|, where we are implicitly fixing an arbitrary total order on X ∪ D.

Therefore, any subset P ⊆ P induces an algebraic variety V(P ) ⊆ Rk, defined as
V(P ) 4= {(x,uD) ∈ Rk : p(x,uD) = 0 for each p ∈ P}. In particular, as Σ ⊆ P , we
can consider V(Σ), the algebraic variety induced by Σ.

We will be mostly concerned with formal power series solutions of Σ — but see
Section 2.5 on analyticity. For a monomial τ = xk1

1 · · ·xknn and x0 = (x0
1, ...,x0

n) ∈
Rn, we let (x − x0)τ 4= (x1 − x0

1)k1 · · · (xn − x0
n)kn be a monomial in the terms

xi − x0
i . A formal power series centered at x0 ∈ Rn is a formal sum of monomials1

F = ∑
τ∈X⊗ cτ (x − x0)τ , with cτ ∈ R. The value of F at x0, denoted F (x0), is the

constant coefficient cε. Sum, product and partial derivative ∂F/∂xi (xi ∈ X , extension
to monomials denoted by ∂|τ |F/∂τ ) of formal power series are defined as usual and
satisfy the expected properties. LetU = (U1, ...,Um) be a tuple of formal power series
centered at x0. We let UD

4= (∂|τ |
∂τ
U i)uiτ∈D denote the tuple of formal power series

corresponding to the derivatives in D, and let UD(x0) be the tuple (∂|τ |
∂τ
U i(x0))uiτ∈D.

We say U is a formal solution of Σ centered at x0 if for each p ∈ Σ the formal power

1Rigorously, a formal power series centered at x0 is a function F : {x1− x0
1, ...,xn− x0

n}⊗ −→ R.
Accordingly, when writing polynomial expressions of such series, each xi ∈ X is to be interpreted as the
formal power series F = x0

i + 1 · (xi−x0
i ), that is: F (ε) = x0

i , F (xi−x0
i ) = 1 and F ((x−x0)τ ) = 0

for any τ 6= ε,xi.
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series p(x,UD(x)) centered at x0 is zero. The formal D-solution variety of Σ is

S(Σ) 4= {(x0,u0
D) ∈ V(Σ) : there is a formal solution U of Σ centered at x0

such that UD(x0) = u0
D } .

We say Σ is formally D-locally solvable if its algebraic and D-solution varieties
coincide, V(Σ) = S(Σ). In what follows, we shall omit the qualification “D-” if the
set D is clear from the context.

Remark 1 (on local solvability). Ignoring for the time being the distinction between
analytic and formal solutions, we see the above definition of local solvability is more
flexible, when compared to the usual one [140, Ch.2,Def.2.70] that requires D to be
the set of all derivatives up to the order of Σ. For instance, the following system of
order 2

Σ = {ux − v , vxx − uy}

is not locally solvable in the sense of [140, Ch.2,Def.2.70], simply because there are
2nd order differential consequences, like uxy−vy, that are not algebraic consequences.
However Σ isD-locally solvable for, say,D = {u, v,ux,uy, vxx}. Generally speaking,
our definition of D-local solvability appears to be a sensible extension of the usual
one, when considering systems that are not in Cauchy-Kovalevskaya form, but satisfy
more general forms, like Riquier’s format [150]. This point will be further discussed
in the next section.

2.3 The method
Our main object of interest is a notion invariant, a sort of logical consequence of Σ.

Definition 1 (invariant polynomials). We say p ∈ P is an invariant polynomial of Σ
if, for each x0 ∈ Rn, the systems Σ and Σ ∪ {p} have the same solutions centered at
x0. We let Inv(Σ) denote the set of polynomial invariants of Σ that are in P .

We will rely on a simple algebraic-geometric characterization of Inv(Σ). Let
us introduce the necessary terminology; see [57, Ch.1-2] for a more comprehensive
treatment. For anyW ⊆ Rk, we let I(W ) ⊆ P be the ideal of polynomials that vanish
on W , that is I(W ) 4= {p ∈ P : p(w) = 0 for each w ∈ W}. Moreover, for any
P ⊆ P , we let

〈
P
〉
⊆ P be the ideal generated by P . The ideal I(V(P )) is called

the real radical of P . In the following definition, we consider the real radical of Σ.

Definition 2 (D-nondegeneracy). We say Σ is D-nondegenerate if Σ is D-locally
solvable and

〈
Σ
〉

= I(V(Σ)).

Lemma 1.
〈

Σ
〉
⊆ Inv(Σ), with equality if Σ is D-nondegenerate.

Proof. First suppose p ∈
〈

Σ
〉
, that is p = ∑

j qjfj for some qj ∈ P and fj ∈ Σ. By
definition, any solution of Σ, however centered, makes each fj , hence p, identically
zero.
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Suppose now Σ is D-locally solvable and
〈

Σ
〉

= I(V(Σ)), and consider any
p ∈ Inv(Σ). Consider any (x0,u0

D) ∈ V(Σ) = S(Σ). By definition of local
solvability, there is a solution U of Σ centered at x0 such that UD(x0) = u0

D. Then
we have: p(x0,u0

D) = p(x0,UD(x0)) = p(x,UD(x))|x=x0 = 0, where the last equality
stems from p being an invariant. Since (x0,u0

D) ∈ V(Σ) is arbitrary, we have shown
that p ∈ I(V(Σ)) =

〈
Σ
〉
. 2

Consider now any Groebner basis ∆ of
〈

Σ
〉
. For each p ∈ P , we can then

consider the unique remainder of the polynomial division of p by ∆, that is

S∆ p
4= p mod ∆ .

In what follows, we shall write Sp, leaving ∆ implicit. By Lemma 1, Sp = 0 ensures
that p is an invariant. The converse as well can be stated if Σ is a nondegenerate. We
introduce below an important class of nondegenerate systems.

We recall that a ranking [153] of the derivatives is a total ordering on D such that,
for all u, v ∈ U , τ , ξ ∈ X⊗ and xi ∈ X:

1. uτ < uτxi;

2. uτ < vξ implies uτxi < vξxi .

Let us say Σ is leading linear if its elements are of the form uτ + f , where uτ > vξ
for each vξ occurring in f ; in this case, we let dom(Σ) be the set of such leading
derivatives uτ . In what follows, Dxip denotes the formal total derivative of p along
xi ∈ X: this is computed like the usual derivative of p along xi, just taking into
account that Dxiuτ = uτxi . As DxiDxjp = DxjDxip, the notation Dτp for τ ∈ X⊗ is
well defined. For k ≥ 0, let us denote the k-th prolongation of Σ and D as Σ(k) 4=
{Dτp : p ∈ Σ, |τ | ≤ k} and D(k) 4= {uξτ : uξ ∈ D and |τ | ≤ k}, respectively. A
leading linear Σ is passive if it implies all its integrability conditions, that is: whenever
uτ +f ∈ Σ and uξ + g ∈ Σ and τξ′ = ξτ ′ then, for some k, (Dξ′f −Dτ ′g) ∈

〈
Σ(k)

〉
.

In fact, for passivity it is sufficient to check the finitely many integrability conditions
with ξ′ = σ/τ and τ ′ = σ/ξ, where σ is the least common multiple of τ and ξ; see
[153, Cor.1]. A leading linear, passive system is also called a Riquier basis in [153]:
from now on we shall adopt this terminology2, with the further specification that any
two distinct elements in a Riquier basis must have distinct leading derivatives. This
implies no loss of expressiveness. For a leading linear system Σ, we can define the sets
of principal derivatives Pr(Σ) 4= {uτξ : uτ ∈ dom(Σ) and ξ ∈ X⊗}, and parametric
derivativesPa(Σ) 4= D\Pr(Σ). The following proposition ensuresD-nondegeneracy
for Riquier bases, whenever the principal derivatives occurring in Σ coincide with its
leading derivatives, as well as with the principal derivatives in D.

Proposition 1. Let Σ be a Riquier basis and assume D ∩ Pr(Σ) = dom(Σ). Then
Σ is D-nondegenerate. Moreover, Σ is a Groebner basis of I(V(Σ)) w.r.t. a suitable
monomial order.

2The coherent systems in [31] are an equivalent notion.
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Proof. We first show thatΣ isD-locally solvable. An initial data specification for Σ is
a function ρ : Pa(Σ)→ R. A solution of the initial value problem (Σ, ρ) at x0 ∈ Rn is
a solution U of Σ centered at x0 such that, for each uiτ ∈ Pa(Σ), ∂|τ |

∂τ
U i
τ (x0) = ρ(uiτ ).

The formal Riquier existence theorem [153, Th.2] ensures that for each x0 and ρ there
is a unique solution U of the problem (Σ, ρ).

Now, let (x0,u0
D) ∈ V(Σ). Below, we will denote the component of u0

D cor-
responding to uiτ ∈ D by u0,i

τ . Let us define ρ as follows: ρ(uiτ ) = u0,i
τ for each

uiτ ∈ D ∩ Pa(Σ), and arbitrarily for any other element of Pa(Σ). According to the
formal existence theorem, there is a solution U of (Σ, ρ). In particular, we have that for
each uiτ ∈ D ∩Pa(Σ), ∂|τ |

∂τ
U i
τ (x0) = ρ(uiτ ) = u0,i

τ . We now proceed to show the same
for each uiτ ∈ dom(Σ). We proceed by induction on the ranking of uiτ . Let uiτ +f ∈ Σ,
where f = f(x,uD′), for some D′ ⊆ D that only contains elements smaller than uiτ
in the ranking. In the base case, D′ only contains parametric derivatives. In any case,
we have

∂|τ |

∂τ
U i
τ (x0) = −f(x0,UD′(x0))

= −f(x0,u0
D′)

= u0,i
τ

where the first equality follows from U being a solution of Σ, the second one from
either the result on parametric derivatives above (base case) or the induction hypothesis
(inductive step), and the third one from (x0,u0

D) ∈ V(Σ) and uiτ + f ∈ Σ. Overall, we
have shown that u0

D = UD(x0), hence (x0,u0
D) ∈ S(Σ).

We now show that
〈

Σ
〉

= I(V(Σ)). First, we show that Σ is a Groebner basis
for

〈
Σ
〉
, once we consider the lexicographic monomial order on (X ∪D)⊗ induced

by the ranking < on D, augmented by the rules xi < xj < uτ for every i < j and
uτ ∈ D. To see this, take any 0 6= p ∈

〈
Σ
〉
, and assume by contradiction that the

leading monomial of p is not divisible by the leading derivative of any element in
Σ. By the chosen monomial order and the condition D ∩ Pr(Σ) = dom(Σ), p has
no occurrences of principal derivatives. Now partition D as D = D0 ∪ D1, where
D0 are parametric derivatives and D1 = dom(Σ) are principal. Consider any tuple
(x0,u0

D0) ∈ RX∪D0 . For each uτ ∈ dom(Σ), we define u0
τ ∈ R, by induction on the

ranking and using the same notation as above, as follows: u0
τ

4= −f(x0,u0
D′), where

uτ+f ∈ Σ. By construction, the tuple (x0,u0
D) = (x0,u0

D0 ,u0
D1) so defined is inV(Σ).

Hence, recalling that p ∈
〈

Σ
〉
⊆ I(V(Σ)), we have: 0 = p(x0,u0

D) = p(x0,u0
D0).

Since this holds for arbitrary (x0,u0
D0) and p ∈ R[X ∪D0], we have shown that p = 0,

contradicting the initial assumption.
We now show that

〈
Σ
〉

= I(V(Σ)). The inclusion
〈

Σ
〉
⊆ I(V(Σ)) is obvious,

so consider any f ∈ I(V(Σ)), and write f = f0 + p, where f0 ∈
〈

Σ
〉
and p =

f mod Σ, hence p ∈ R[X ∪ D0]. For arbitrary (x0,u0
D0), let us build (x0,u0

D) =
(x0,u0

D0 ,u0
D1) exactly as above. As (x0,u0

D) ∈ V(Σ), we have 0 = f(x0,u0
D) =

f0(x0,u0
D) + p(x0,u0

D) = p(x0,u0
D0). Since this holds for arbitrary (x0,u0

D0), we
deduce p = 0, hence f ∈

〈
Σ
〉
. 2

The above result implies that, for Riquier bases, provided the set of leading deriva-
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tives coincides with the set of principal derivatives occurring in Σ, D can be taken to
consist of all the derivatives occurring in Σ, plus an arbitrary finite set of parametric
derivatives.

Example 1. The system Σ in Remark 1 is a Riquier basis w.r.t., for instance, a graded
lexicographic ranking with u < v and x < y. In particular, no integrability conditions
arise. Take D as specified in the remark. As D ∩ Pr(Σ) = {ux, vxx} = dom(Σ),
Proposition 1 ensures that Σ is D-locally solvable.

It may also be the case that the condition D ∩ Pr(Σ) = dom(Σ) is not satisfied,
because there are principal derivatives in D that are not in dom(Σ), so one cannot
apply Proposition 1 directly to Σ. In this case, it is enough to expand Σ by adding the
corresponding equations. Formally, one applies the following lemma, possibly several
times, until a Σ is obtained that satisfies D ∩ Pr(Σ) = dom(Σ). The proof of the
lemma is an immediate consequence of the definition of Riquier basis and of invariant
polynomial.

Lemma 2. Let Σ be a Riquier basis, uτ ∈ Pr(Σ) \ dom(Σ) and uξ + f ∈ Σ with
τ = ξζ . Then Σ′ 4= Σ ∪ {Dζ(uξ + f)} is still a Riquier basis. If Dζ(uξ + f) ∈ P ,
Inv(Σ) = Inv(Σ′).

Let us now introduce conservation laws.

Definition 3 (conservation laws). A n-tuple of polynomials Φ = (p1, ..., pn) is a
(polynomial) conservation law for Σ if its divergence div Φ 4= ∑n

j=1 Dxjpj is an
invariant polynomial for Σ. The components pi in Φ are called fluxes.

For any finite Z ⊆ (X ∪D)⊗, let PZ be the set of polynomials that can be formed
from monomials in Z. We let CL(Σ,Z) ⊆ PnZ denote the set of conservation laws
with fluxes in PZ . A typical choice will be, Z = Y ≤d, for some Y ⊆ X ∪ D and
d ≥ 1, that is the monomials in Y ⊗ of degree ≤ d: this will give all the conservation
laws with fluxes of degree≤ d that can be built out Y . In what follows, we will refer to
Z as to the chosen ansatz. We shall assume that D is chosen large enough3 to ensure
that div Φ ∈ P whenever Φ ∈ PnZ . CL(Σ,Z) is clearly a finite-dimensional vector
space: our goal is to give a method to compute a basis for this space.

With this goal in mind, we introduce a way of representing succinctly sets of
polynomials by means of templates. Fix a set of s ≥ 1 distinct symbols, the parameters
a = {a1, ..., as}. A linear expression ` = ∑

j λjaj is linear combination those s
parameters with real coefficients λj ∈ R. A template is a polynomial expression
with linear expressions as coefficients, π = ∑h

j=1 `j · αj , for monomials α1, ...,αh ∈
(X ∪ D)⊗. We say π is complete for the ansatz Z if `j = aij are pairwise distinct
parameters, and Z = {α1, ...,αh}. For v = (v1, ..., vs) ∈ Rs, we let `[v] ∈ R and
π[v] ∈ P be the real value and the polynomial, respectively, obtained by replacing
each ai with vi, for i = 1, ..., s. For any A ⊆ Rs, we let π[A] = {π[v] : v ∈ A} ⊆ P .
For a set of linear expressions L = {`1, ..., `t}, we let span(L) 4= {v ∈ Rs : `[v] =
0 for each ` ∈ L} ⊆ Rs denote the vector space of parameter evaluations that annihilate
all expressions in L.

3Thismay imply expandingΣ via Lemma2 in order to apply Proposition 1 and ensure nondegeneracy.
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It is now convenient to regard both polynomials and templates as elements of a
larger polynomial ring, R[a ∪X ∪D]. Let ∆ be a Greobner basis of

〈
Σ
〉
in P w.r.t.

some monomial order. ∆ is still a Groebner basis in the larger polynomial ring, with
respect to any monomial on (a ∪ X ∪ D)⊗ that conservatively extends the original
one on (X ∪D)⊗ (see Appendix A.1 for additional details about this technical point).
Then we can conservatively extend the function S to templates

Sπ
4= π mod ∆ .

In the special case ofΣ = ∆ aRiquier basis, thismeans to rewriteπ applying repeatedly
the equations in Σ from left to right, treating the parameters ais as arbitrary constants,
until no leading derivative remains. The following lemma gives a simple substitution
property for templates; for a proof, see [29, Lemma 3].

Lemma 3. Let π be a template. Then Sπ is still a template. Moreover, for each v ∈ Rs,
S(π[v]) = (Sπ)[v].

We extend the total derivative operator Dxi to templates as expected, by setting
Dxi(

∑
j `jαj)

4= ∑
j `jDxiαj . Then, for a tuple of templates Π = (π1, ...,πn), we

let div Π 4= ∑n
i=1 Dxiπi denote its divergence. A C.L. template for Z is a tuple

Π = (π1, ...,πn) of complete templates for Z, such that the components πis are formed
from pairwise disjoint subsets of parameters in a.

Given a C.L. template Π, we are interested in those v ∈ Rs such that Π[v] 4=
(π1[v], ...,πn[v]) is a conservation law. That is, those v’s such that div (Π[v]) is an
invariant for Σ. That is, according to Lemma 1 and Lemma 3, those v’s such that
S(div Π[v]) = (S (div Π))[v] = 0. In other words, we are interested in the v’s that
annihilate all the linear expressions (coefficients) of S(div Π). This reasoning leads
to the following result. A detailed proof is reported in Appendix A.1.

Corollary 1 (completeness for CL). Let Π be a C.L. template for the ansatz Z. Let
L be the set of linear expressions (coefficients) of S(div Π) and V = span(L). Then
Π[V ] 4= {Π[v] : v ∈ V } ⊆ CL(Σ,Z), with equality if Σ is D-nondegenerate.

Note, from the above result, that once we have a basis B of V , then Π[B] is a
basis for Π[V ]. To sum up, our method conceptually consists of the following steps,
assuming a Grobner basis ∆ of

〈
Σ
〉
has been pre-computed. Given an ansatz Z:

1. using n disjoint sets of parameters, build a C.L. template forZ, Π = (π1, ...,πn);

2. compute the divergence template div Π and its normal form r = S(div Π);

3. extract from r its coefficients (linear expressions), L = {`1, ..., `h};

4. compute a basis B for V = span(L);

5. return Π[B], a basis of Π[V ].

Remark 2 (trivial, equivalent and independent laws). As an optional final step in
the above method, one might want to remove trivial conservation laws from Π[B].
Recall that a conservation law Φ = (p1, ..., pn) is trivial if it is a linear combination of
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trivial laws of the first kind (each flux pi in Φ is an invariant for Σ) and of the second
kind (div Φ is zero as a polynomial4). Two laws Φ1 and Φ2 are equivalent if their
difference Φ1 − Φ2 is a trivial law.

Note any law Φ = (p1, ..., pn) is equivalent to Φ̃ = (Sp1, ...,Spn), as Φ − Φ̃ ∈〈
Σ
〉n

is a trivial law of the first kind by Lemma 1. Therefore, without loss of
generality, that is up to equivalence, it is always possible to choose an ansatz Z such
that Sp = p for each p ∈ PZ . Syntactically, this means that no monomial in Z is
divisible by the leading monomial of any element in∆. For leading linear systems, this
amounts to making sure that no principal derivative occurs in Z. Now further assume
that Σ isD-nondegenerate. Then, by virtue of Lemma 1, the only trivial law of the first
kind in CL(Σ,Z) is (0, ..., 0) (n times). In this case, it is therefore sufficient to search
and remove from Π[B] trivial laws of the second kind, which is computationally easy.

An even less redundant representation of the space Π[V ] can be obtained by
requiring that the set of returned laws, say C ⊆ Π[V ], satisfies the following property
of independence up to triviality: if a linear combination of the laws in C, Ψ =∑
λΦ∈C λΦ ·Φ (λΦ ∈ R), is trivial, then for each Φ ∈ C, λΦ = 0. If Σ is nondegenerate

and the ansatz Z is chosen as specified above, again triviality of Ψ is equivalent to
div Ψ = 0 as a polynomial. Hence independence up to triviality of C is equivalent to
the usual linear independence of the set of divergences {div Φ : Φ ∈ C} in the vector
space of polynomials P . Therefore, given Π[B], computing a set C with the desired
independence property is a matter of applying familiar linear algebraic techniques.

We illustrate the above method with a simple example.

Example 2 (Wave equation). Let Σ consists of the wave equation uxx − uyy. We
can fix D = {u,ux,uy,uxy,uxx,uyy}. We consider the ansatz Z = Y ≤2 where
Y = {ux,uy}, and compute a basis for CL(Σ,Z). Σ is a Riquier basis w.r.t. any
ranking where uxx > uyy, and D ∩ Pr(Σ) = {uxx} = dom(Σ): hence Σ is D-
nondegenerate by Proposition 1. Now we have the following steps.

1. CL template:

Π = (π1, π2) where π1 = a1 + a2ux + a3uxuy + a4u
2
y + a5u

2
x + a6uy

π2 = a7 + a8ux + a9uxuy + a10u
2
y + a11u

2
x + a12uy .

2. Divergence template and its normal form:

div Π = 2a10uyuyy + a12uyy + a2uxx + a3uyuxx + 2a5uxuxx + a9uyyux+
uyuxy(2a4 + a9) + uxuxy(2a11 + a3) + uxy(a6 + a8)

S(div Π) =uyuyy(2a10 + a3) + uyuxy(2a4 + a9) + uyyux(2a5 + a9)+
+ uyy(a12 + a2) + uxuxy(2a11 + a3) + uxy(a6 + a8) .

3. Linear expressions in S(div Π):

L = {2a4 + a9, 2a10 + a3, 2a11 + a3, 2a5 + a9, a6 + a8, a12 + a2} .
4The general definition requires (div Φ)(x,UD(x)) to be identically 0 for any smooth function U .

In the polynomial case, this is equivalent to div Φ = 0.
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4. Basis in R12 for V = span(L):

B = {e1, e2 − e12, e3 −
1
2(e10 + e11), e7,−e6 + e8,−1

2(e4 + e5) + e9} .

5. Basis of Π[V ], with trivial laws TL removed:

Π[B] \ TL = {(−2uyux, u2
y + u2

x), (−u2
y/2− u2

x/2, uyux), (ux, −uy)} .

For instance, the second law above is usually interpreted as conservation of mechanical
(potential+kinetic) energy; see [140, Ch4]. As Σ is nondegenerate, Π[V ] = CL(Σ,Z).

In principle, the method can be applied ‘as is’ also to non leading-linear systems.
However, since Proposition 1 cannot be invoked, D-nondegeneracy hence complete-
ness (equality in Corollary 1) may not be guaranteed. Also, identification of trivial
laws may be somewhat more laborious.

Example 3. Consider the single PDE system Σ = {u2
y +u2

x− 1}, a special case of the
Eikonal equation. We can fix D = {u,ux,uy,uxy,uxx,uyy} and consider the ansatz
Z = Y ≤3, where Y = {u,ux,uy}. We fix a complete flux template Π = (π1, π2)
and apply the algorithm with Σ as a Groebner basis; to this purpose, we fix the
lexicographic monomial order induced by y > x, so that u2

y is the leading term of
u2
y + u2

x − 1. Proceeding like in the previous example, we obtain as a result a vector
space Π[V ] ⊆ CL(Σ,Z) (Corollary 1); or better, a concrete basis Π[B] of it. In order
to identify trivial lawsmore easily, we normalize the fluxes inΠ[B], that is, we consider
SΠ[B] 4= {(Sp,Sq) : (p, q) ∈ Π[B]}. Clearly, Π[B] and SΠ[B] are equivalent up to
triviality, in particular SΠ[B] is still a basis of Π[V ]. Removing zeros and trivial laws
of the second kind from SΠ[B], we are left with two laws

{ (−uyu2
x − 2uy , u3

x) , (−u3
x , −uyu2

x + uy) } .

We remark that Σ is not D-locally solvable.

2.4 Experiments
We present experimental results obtained from a proof-of-concept Python implemen-
tation5 of the algorithm described in Section 2.3. We shall refer to this implementation
of the algorithm as PolyCons.

We apply PolyCons to some classic PDEs drawn from mathematical physics and
presented, in equational form, in Table 2.1. Some of the original equations have been
transformed into lower order equivalent systems: this is beneficial for efficiency, but
not strictly necessary for our method to work. An exception is the sine-Gordon (s-G)
equation, whose original form is: utt−uxx+sin u = 0. In this case, the transformation
is necessary to remove the transcendent nonlinearity6 sin u. For a suitable choice of

5Code and examples available at https://github.com/luisacollodi-stud/
conservationLaws.git. Experiments run on a 2.5 GHz Intel Core i5 machine under Win-
dows.

6Strictly speaking, the resulting system is not equivalent to the original sine-Gordon equation, as we
have replaced sin u with a generic sinusoid v = A sin u+B cosu, for A,B arbitrary constants.

https://github.com/luisacollodi-stud/conservationLaws.git
https://github.com/luisacollodi-stud/conservationLaws.git
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Korteweg-de Vries (KdV) ut = −uux − uxxx

Drinfel’d-Sokolov-Wilson (DSW) ut = −3vvx
vt = −2uvx − uxv − 2vxxx

Boussinesq (Bou) ut = −vx
vt = −ux + 3uux + uxxx

sine-Gordon (s-G)

ut = −v
vt = −uxx − s
sx = cux
cx = −sux
st = cut
ct = −sut

Euler’s incompressible fluid (Eul)

ut = −(uux + vuy + wuz + px)
vt = −(uvx + vvy + wvz + py)
wt = −(uwx + vwy + wwz + pz)
ux = −(vy + wz)

Table 2.1: PDEs considered in the experiments.

a ranking on D, each of the considered systems is a Riquier basis where all occurring
principal derivatives are also leading. Hence Proposition 1, possibly after expansion
of Σ via Lemma 2, implies D-nondegeneracy, for appropriate choices of D. For each
system, the leading derivatives are those on the left-hand side of the equalities. In
particular, for the sine-Gordon equation we consider the graded lexicographic order
on D induced by x < t and u < c < s, in which derivatives are first graded by total
degree and then lexicographically:

u < c < s < ux < ut < cx < ct < sx < st < · · ·

For Euler equations, the (plain or graded) lexicographic order induced by u > v >
w > p and t > x > y > z suffices. For the remaining three systems, we consider the
following total order on D:

v < vx < vxx < · · · < u < ux < uxx < · · ·
< vt < vtx < vtxx < · · · < ut < utx < utxx < · · ·
< vtt < vttx < vttxx < · · · < utt < uttx < uttxx < · · ·

This is equivalent to view each derivative ωτ , with ω ∈ {u, v} and τ ∈ {t,x}⊗, as a
monomial ωτ and then to consider the lexicographic order induced by t > u > v > x
on {u, v, t,x}⊗. This is easily checked to be a ranking.

To frame our experiments in the general context of conservation laws methods, we
also provide a comparison with the results obtained on the same examples by applying
the direct approach [140, Ch.4]. Generally speaking, methods that follow this approach
comprise the following two steps: (1) once a set of indeterminates — independent
and differential variables — has been fixed, find all multipliers, that is functions
depending on those indeterminates, which, when linearly combined with the equations
of the system, yield divergence expressions vanishing on its solutions; (2) invert those
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divergence expressions to find the corresponding flows. Step (1) is carried out by first
applying the variational derivative (a.k.a Euler) operator, which gives conditions on
the searched multipliers in terms of linear PDEs, and then solving the resulting PDEs.
Step (2) typically relies on homotopy operators, which reduce the inversion problem
to computing some 1-dimensional integral. See e.g. [140, 11, 93, 50] for details.
Here, we have chosen GeM [50], a state-of-art algorithm also implemented in a Maple
package, as a representative of methods based on the direct approach.

Both for GeM and PolyCons the returned laws depend, of course, on the initially
chosen set of indeterminates, say Y . This set is used in very different ways by the two
algorithms, though: it serves to build multipliers in GeM, and fluxes in PolyCons.
Moreover, in the case of PolyCons, one has also to specify a maximum degree
of monomials. These differences complicate a direct comparison between the two
methods. We prefer to divide the experiments, and the ensuing comparisons, into two
parts, depending on whether the same or different sets of indeterminates are used with
the two considered algorithms:

1. always use the same set of indeterminates Y with GeM and PolyCons;

2. when Y is used with PolyCons, use Y ∪ Y ′ with GeM, where Y ′ is obtained
from the first derivatives of the indeterminates in Y .

The rationale behind the second form of comparison is the following: if a differential
indeterminate occurs in the fluxes, it is likely that some of its first derivatives will
occur in the resulting divergence expression, hence in its multipliers. This way, the
two algorithms will hopefully be compared on a more equal footing.

2.4.1 Using the same set of indeterminates
For each experiment, we fix a finite set of indeterminates Y ⊆ X ∪ Pa(Σ) and use
Y as an ansatz for GeM, and each of Z = Y ≤d, for d = 2, 3, 4, as possible ansätze
for PolyCons. The results of these experiments are reported in Table 2.2. In the case
of PolyCons, the returned sets of laws have been checked to be independent up to
triviality, in the sense of Remark 2. In addition to the execution time t and to the overall
number n of independent laws found, the table also displays the number n∗ of extra
laws Φ returned by the considered algorithm but not by the other. Here, Φ must be a
genuinely new law, that is we require that: (a) Φ is not equivalent, up to triviality, to a
linear combination of the laws returned by the other algorithm; and (b) that this holds
even after S-normalization of the fluxes, that is rewriting Φ to eliminate the principal
derivatives.

We see that n∗ for PolyCons is generally quite large, with a maximum value of
101. On the contrary, n∗ for GeM never exceeds 1. The only reason for a polynomial
law not to be found by PolyCons is that one of its fluxes either has a degree higher than
d or contains an indeterminate not in Y . For example, in the case of the Boussinesq
equation with Y = {u,ux,uxx, v, vx} and d = 3, the only law returned by GeM and
not by PolyCons is:(

−u
3

2 + u2

2 −
1
2uuxx + v2

2 , −3
2u

2v + u(2v + utx)
2 − vuxx −

1
2uxut

)
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which contains two principal derivatives not in the chosen Y , that is ut and utx. One
can eliminate principal derivatives by normalization, that is by applying the function
S(·) to both fluxes, thus getting the equivalent law:(

−u
3

2 + u2

2 −
1
2uuxx + v2

2 , −3
2u

2v + 1
2u(2v − vxx) + uxvx

2 − uxxv
)

.

But this law is not among those returned by PolyCons either, nor is a linear combina-
tion of them. In fact, it contains vxx, a parametric derivative which is not in the fixed set
Y . A similar case occurs for the sine-Gordon equation. In the case of the Korteweg-de
Vries (KdV) equation, the only law returned byGeM and not by PolyCons has degree
5, higher than the maximum d = 4 considered for PolyCons.

As an example of law found by PolyCons and not by GeM, consider the case of
the KdV equation and Y = {t,x,u,ux,uxx,uxxx,uxxxx}. With d = 4, exactly 23 extra
laws are found, including for example(

u3 − 3uuxx − 6u2
x , 3

4u
4 − 12uu2

x − 3uuxxxx − 9uxuxxx + 3u2
xx

)
.

For another example, consider the Boussinesq equation with Y =
{t,x,u,ux,uxx,uxxx,uxxxx, v, vx, vxx} and d = 4. One of the 101 laws found by
PolyCons and not by GeM is(

u4
x + 3uu2

xuxx , 3uuxvxx + u3
xvx

)
.

Euler’s equations (Eul) govern the flow of an inviscid, incompressible fluid in three
spatial dimensions x, y, z and time t: here, u = (u, v,w) is the fluid’s velocity vector
and p is its pressure. With Y = {u, v,w, p}, among the laws found by both GeM and
PolyCons— in the latter case already with d = 3 —we have(
u2 + v2 + w2, 2pu+ u3 + uv2 + uw2, 2pv + u2v + v3 + vw2, 2pw + u2w + v2w + w3

)
.

This is the conservation of kinetic energy, more commonly expressed in divergence
form, vectorially:

∂

∂t

(1
2 |u|

2
)

+∇
(1

2 |u|
2u + pu

)
= 0

where ∇· and | · | are the gradient and 2-norm of a vector, respectively.
Overall, execution times grow as expected with the cardinality of Y and, in the

case of PolyCons, also with the template degree d. Execution times of PolyCons
are generally higher than GeM’s. This is compensated by the large number of extra
laws n∗ found by PolyCons. The large values of n∗ also suggest that a more fair
comparison between GeM and PolyCons should take into account the different roles
played by the indeterminates set Y in the two approaches. This is explored in the next
subsection.

2.4.2 Using different sets of indeterminates
Given a set of indeterminates Y for PolyCons, we will let the ansatz YGeM for GeM
consist of Y plus all the first derivatives of the indeterminates in Y , normalized.
Explicitly

YGeM
4= Y ∪ {uτ : uτ occurs in S(vξxi), for some vξ ∈ Y , xi ∈ X} .
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The results of the new experiments are reported in Table 2.3. The comparison gives
now more equilibrate results in terms of execution times, which are comparable. Yet,
PolyCons still consistently finds more conservation laws thanGeM, althoughn∗ never
exceeds 11 now. In each case, there is precisely one law returned by GeM and not by
PolyCons: for KdV this is a degree 5 law, in the other four cases the fluxes found by
GeM, even after normalization, contain some derivative not belonging to Y .

Overall, the above comparison indicates that, when confining to polynomial laws,
GeM and PolyCons somehow complement with each other. In principle, GeM finds
all conservation laws with multipliers built out of a given ansatz of indeterminates.
PolyCons finds all conservation laws with fluxes built out of a given ansatz of indeter-
minates, up to a given degree. The completeness result of PolyCons is seemingly less
strong, because of the upper bound on the degree, but more direct, because expressed
in terms of fluxes. More generally, it is unclear how the completeness of the direct
approach in terms of multipliers translates into completeness in terms of fluxes. In
other words, it is unclear what is a finite ansatz for multipliers, yielding all laws with
polynomial fluxes built out of a given Y . Our attempt with YGeM falls short of achieving
this goal, as seen from the nonzero values of n∗ for PolyCons. Note that, at least at an
initial stage of exploration of a PDE system, one might want to reason more naturally
in terms of fluxes, rather than in terms of multipliers. In this respect, PolyCons’s
higher value of n∗ points at least to a practical advantage over the multiplier-based
direct approach.

A profiling of the code of PolyCons shows that the most time-consuming phase
of its execution is by far the application of the substitution that solves the linear system
to the original flux templates Π (step 4). This suggests that there is much room for
improvement, by devising data structures for polynomials that support efficient linear
substitution operations.

2.5 Analyticity
The definitions, results and algorithm of sections 2.2 and 2.3 carry over to real analytic
solutions of PDEs: essentially, all we have to do is to replace the word “formal” with
the word “analytic” throughout the sections. The only difference is in Proposition
1, where we need to strengthen the conditions on Σ to ensure existence of analytic
solutions of the involved initial value problems. To this purpose, we shall rely on
Riquier’s analyticity theorem. We introduce the necessary definitions and the analytic
counterpart of Proposition 1 below.

A ranking > over D is weakly orderly if whenever |τ | > |ξ| then uτ > uξ for
each u; it is a Riquier ranking if whenever uτ > uξ for some u then vτ > vξ for all
v. A passive orthonomic system is a Riquier basis with the following two additional
properties: (a) for each element uτ + f ∈ Σ (uτ leading), f does not contain principal
derivatives; (b) whenever uτ and uξ are distinct leading derivatives, neither τ ≤ ξ
nor ξ ≤ τ hold true. The following is the analytic counterpart of Proposition 1; the
straightforward proof is reported in Appendix A.2.

Proposition 2 (analytic D-nondegeneracy). Let Σ be passive orthonomic w.r.t. a
ranking which is Riquier and weakly orderly. AssumeD ∩Pr(Σ) = dom(Σ). Then Σ
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is analytically D-nondegenerate. Moreover, Σ is a Groebner basis of I(V(Σ)) w.r.t.
a suitable monomial order.

All the examples considered in the previous section are seen to be passive ortho-
nomic for some suitable ranking which is Riquier and weakly orderly. More precisely,
for the sine-Gordon and Euler systems, one considers the same graded lexicographic
rankings introduced in the previous section. On the contrary, the already introduced
ranking for the KdV, DSW and Boussinesq fails to be weakly orderly: one can instead
consider the graded lexicographic ranking induced by u > v and t > x. Obviously, a
change in the ranking also leads to a change in the leading derivatives of these systems.

Note that, for a system that is both formally and analytically D-nondegenerate,
the sets of formal and analytic invariant polynomials in the ring P coincide with〈

Σ
〉
(Lemma 1). Hence the set Π[V ] = CL(Σ,Z) (Corollary 1), considered in a

formal or analytic sense, is just the same. This gives one some freedom in the choice
of the ranking when it comes to actually computing Π[V ]. Of course, the concrete
representation of Π[V ], that is the the basis Π[B] concretely returned by the algorithm,
does depend on the chosen ranking. Moreover, identifying and filtering equivalent and
trivial laws out from Π[B] may be non obvious, in case principal derivatives w.r.t. the
chosen ranking occur in Z (see Remark 2).

2.6 Conclusion
We have put forward a method to compute PDE polynomial conservation laws. Un-
der a certain nondegeneracy condition, the method is complete, relatively to a user
specified polynomial template for fluxes. Computationally, the proposed method is
based entirely on equational rewriting and linear algebraic operations. This should
be contrasted with the direct approach, that heavily relies on variational tools (Euler
operator), coupled with linear PDE solving and and symbolic integration (homotopy).
The simplicity of our method’s underlying principles is, we believe, an additional
benefit in terms of the audience that can be reached.

In Section 2.4, we have discussed at length the differences between our work and the
direct approach. Somewhat halfway between our method and the direct approach, one
might place the work of W. Hereman and collaborators based on scaling symmetries
[94, 144]. Like in our case, their starting point is a polynomial template. In their
case, though, the template represents a candidate density, that is a flux corresponding
to time. Moreover, only monomials invariant under the same scaling symmetry of the
PDE are involved in the template. Taking the time total derivative of the candidate
density, they seek conditions on the unknown coefficients for the resulting expression
to be a (spatial) divergence: this is done by equating its variational derivative to zero
and forming a linear system for the unknown coefficients. The solution of the system
is then substituted into the spatial divergence expression, and homotopy operators are
used to recover the spatial fluxes. The methods has limitations, in that only applies to
evolution equations and requires the existence of scaling symmetries.
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Σ Indeterminates Y GeM PolyCons

t(s) n n∗ d = 2 d = 3 d = 4

t(s) n n∗ t(s) n n∗ t(s) n n∗

KdV
{u,ux,uxx,uxxx} 1.8 3 1 0.4 2 1 1.5 4 2 3.9 6 4
{t,x,u,ux,uxx,uxxx} 3.7 5 1 0.7 2 1 3.4 6 4 17.6 14 10
{t,x,u,ux,uxx,
uxxx,uxxxx}

4.1 7 1 1.1 3 2 6.9 11 9 40.1 29 23

DSW
{u,ux, v, vx, vxx} 2.7 2 0 0.7 2 1 2.7 4 2 8.4 5 3
{t,x,u,ux, v,
vx, vxx, vxxx}

3.3 3 0 1.5 3 2 12.3 11 9 95.0 29 26

{t,x,u,ux,uxx, v, vx,
vxx, vxxx, vxxxx}

18.1 4 0 2.9 5 4 33.1 24 21 458.2 78 74

Bou
{u,ux,uxx, v, vx} 3.3 4 1 0.6 4 2 2.6 7 3 7.8 8 5
{t,x,u,ux,uxx,
uxxx, v, vx}

3.7 7 1 1.4 7 5 10.6 20 16 81.6 40 34

{t,x,u,ux,uxx,uxxx,
uxxxx, v, vx, vxx}

20.7 10 1 2.8 13 11 32.4 43 36 441.7 110 101

s-G
{u,ux, v, c} 3.9 2 0 0.4 5 5 1.3 8 8 3.4 12 10
{u,ux,uxx, v, vx, c} 4.7 4 1 1.1 8 8 6.4 14 14 20.7 24 21
{t,x,u,ux,uxx, v, vx, c} 9.0 4 1 1.9 12 12 17.4 32 32 89.2 69 66

Eul {u, v,w, p} 2.1 5 0 0.04 4 0 2.8 5 0 8.7 5 0

Table 2.2: Comparison between GeM and PolyCons using the same set of indeter-
minates Y . Legenda: t = execution time in seconds, n = number of independent laws
found, n∗ = number of independent laws found by one algorithm but not by the other
(see text), d = degree of the complete polynomial template for PolyCons.
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Σ
GeM PolyCons

Indet. YGeM t(s) n n∗ Indet. Y d = 2 d = 3 d = 4

t(s) n n∗ t(s) n n∗ t(s) n n∗

KdV {u,ux,uxx,
uxxx,uxxxx}

2.6 3 1 {u,ux,
uxx,uxxx}

0.5 2 1 1.3 4 2 3.1 6 4

DSW {u,ux,uxx, v, vx,
vxx, vxxx, vxxxx}

12.3 3 1 {u,ux, v, vx,
vxx, vxxx}

1.0 3 2 5.3 7 5 24.0 12 10

Bous {u,ux,uxx,uxxx,
uxxxx, v, vx, vxx}

13.0 4 1 {u,ux,uxx,
uxxx, v, vx}

0.8 5 3 4.3 10 7 19.5 14 11

s-G {u,ux,uxx, v, vx, c} 4.0 4 1 {u,ux, v, c} 0.2 5 5 1.1 8 8 3.2 12 11

Eul
{u, v,w, p,
uy,uz, vx, vy, vz,wx,
wy,wz, pt, px, py, pz}

3.5 6 1 {u, v,w, p} 0.04 4 0 2.8 5 0 8.7 5 0

Table 2.3: Comparison between GeM and PolyCons with different indeterminates, Y
and YGeM. Legenda: see Table 2.2.
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Chapter 3

Linearization and reachability

3.1 Overview
The analysis of systems of nonlinear ordinary differential equations poses formidable
challenges to theoreticians and practitioners. Among the great variety of existing
techniques, many concentrate on specific properties, for instance stability (e.g. via
Lyapunov functions [104, Ch.4]) and safety (e.g. via barrier certificates [146, 106, 86]).
Other techniques focus on computing detailed, effective descriptions of the set of
reachable states over a given time horizon, possibly taking into account uncertainties
on the initial states, see e.g. [176, 54, 46, 47, 8, 9] and references therein. These
descriptions, variously called reachsets, flowpipes etc., are typically obtained in a
piecewise fashion; that is, by sewing together local approximations over different
regions of the state space and/or time. Here, we are interested in: (a) conditions and
methods by which a single linear approximation of a system can be computed that can
be accurate also non locally; (b) understanding if such approximations can be leveraged
in reachability analysis.

Given a nonlinear system of odes in the state variables x = (x1, ...,xn)T

ẋ = f(x1, ...,xn) (3.1)

(see Section 3.2 for precise definitions), approximation can take place either in space,
like when linearizing the system’s equations around a point x = x0; or in time, like
when Taylor expanding the ode’s solution around a time t = t0. With traditional
methods, the resulting description will typically exhibit only a limited, local accuracy:
the quality of the approximation will tend to get very bad as one gets away from x = x0
and/or t = t0.

Our goal is to devise approximations of nonlinear systems that can be accurate also
non-locally. In particular, under suitable assumptions, accuracy should remain good
over a long, possibly infinite time horizon. In our method, a crucial step in achieving
this goal is the computation of a ‘small’, hence computationally tractable, linear ode
system that approximates (3.1). In perspective, this linear system might replace the
original system not only for the purpose of global reachability analysis, but also for
tasks such as runtime verification [129, 161].

The proposed technique is related to Carleman embedding [18, 110], which is used
to transform a given nonlinear system like (3.1) into an infinite linear system (Section
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3.3). For the purpose of effective computation, this infinite system is truncated at a
finite cut off, obtaining a linear system

ż = Az (3.2)

of dimensionM , typically withM � n. The z variables represent the (approximate)
evolution of certain functions of the original state variables x, say z = α(x) =
(α1(x), ...,αM(x))T . The elements of α are chosen in such a way that an observable
of interest of the state x, say g(x), can be expressed as a linear combination of them.
In typical cases, the αj’s will be monomial functions and g a linear combination of
them. One is interested in the observable dynamics g(t) := g(x(t)).

In order to achieve dimension reduction, we blend Carleman embedding with
Krylov orthogonal projection techniques [160] (Section 3.4). Basically, working in
the z-coordinate space, we reduce the system (3.2) via projection of the matrix A onto
an appropriate subspace of dimension m � M , thus obtaining a reduced linear ode
system of dimension m. From the reduced system, approximations x̂(t) of the exact
solutions of the original system (3.1) can be readily obtained. Composing the original
observable g and the approximate solution x̂(t) yields ĝ(t), which we call reduced
observable dynamics. Distinctive features of the proposed approximation scheme are
the following.

(a) The equations of the reduced linear ode system, while depending on the given
observable function g, are independent of the initial state. In fact, the error
between the exact and reduced observable dynamics is guaranteed to be O(tm)
near t = 0 for any given initial condition. Moreover, the reduced linear system
can be computed without having to store the whole matrixA, which can be quite
large.

(b) Under suitable stability conditions, concrete and sharp error bounds can be given
over finite time horizons (Section 3.5). In a special case, even an infinite time
horizon can be considered.

Our work is also related to the Koopman approach [124], where the system’s dy-
namics is lifted from the state space X to a higher dimensional space of observables,
smooth functions X → R. The advantage of doing so is that the dynamics becomes
linear in the space of observables, although the dimension of this space is infinite. Un-
der suitable conditions, one can decompose the description of the system’s dynamics
in the observable space as a (in general, infinite) linear combination of eigenfunctions
(Koopman spectral decomposition), thus obtaining important qualitative and quanti-
tative insight into the system. We study the formal relationhip between our approach
and Koopman’s (Section 3.6), and prove that, under a rather natural assumption, our
reduced observable dynamics ĝ(t) coincides with a reduced Koopman spectral decom-
position, ĝK(t).

Next, we leverage the above discussed features (a) and (b) of our approach in
an algorithm to compute overapproximations of reachsets of the original nonlinear
system (3.1), at specified times over a finite time horizon (Section 3.7). The resulting
algorithm ckr (forCarleman-KrylovReachability)works in the general, not necessarily
stable case. The basic idea is to perform advection of the vertices of an initial
convex set (polytope), relying on the reduced, linearized system rather than on (3.1).
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Similarly to other proposals [54, 128, 184], compensation of the errors resulting
from nonlinearities is reduced to an optimization problem. Experiments1 conducted
with a proof-of-concept implementation of both the approximation scheme and the
reachability algorithm have given encouraging results, also in comparison to recently
proposed approaches based on Carleman linearization (Section 3.8). Concerning
reachsets, we offer a comparison with state-of-the art reachability tools, on a few
examples drawn from the literature. A few concluding remarks are reported in the
final section (Section 3.9).

To sum up, our main contributions are the following:

1. Integration of Carleman linearization and Krylov dimension reduction into a
technique to compute a reduced observable dynamics.

2. For the reduced observable dynamics, error bounds that are practically less
conservative than those obtained in other approaches based on Carleman lin-
earization.

3. Application of the reduced observable dynamics to the design of ckr, a general
purpose reachability algorithm with good accuracy.

4. Aproof that the reduced observable dynamics coincideswith a reducedKoopman
spectral decomposition.

Related work There exists a vast literature on the linearization of nonlinear systems.
In particular, techniques based on Carleman embedding [18, 110] and the Koopman
approach [124] have recently received a renewed attention. Most related to our work
and motivations, Jungers and Tabuada [103] have recently proposed a technique for
global approximation of nonlinear odes by linear odes, based on polyflows. These
are systems that are exactly linearizable via a change of variables. The only systems
admitting exact polyflow solutions are those where the set of all Lie derivatives of
the state variables w.r.t. the vector field f form a finite-dimensional vector space:
hence they can fundamentally be regarded as linear systems in a higher dimensional
space. The technique in [103] is based on building polyflows that approximate the
original system, using as a basis the Lie derivatives up to some order N ; the resulting
system plays a role somewhat similar to the truncated Carleman embedding (3.2). As
N → +∞, the approximation of [103] becomes exact in the interval of convergence
of the Taylor expansion of the solution for any given x0. Note that this is an asymptotic
result that does not easily yield concrete bounds for a fixed N . On the contrary,
our results provide concrete error bounds for any fixed m and finite time horizon —
and also for an infinite time horizon under suitable stability assumptions. Systems
that are exactly linearizable via polynomial changes of variables are the subject of
[163, 167, 28]. In [28] we have considered Carleman embedding and Krylov-based
approximations, essentially from a local point of view. Here, we provide novel analyses
of both local and global errors, and leverage them in ckr, a new reachability algorithm.

General error bounds for the truncated Carleman linearization have been recently
considered in [10, 72]. The time interval of validity of these bounds is quite small,

1The datasets analysed during the current study are available in the Github repository https:
//github.com/Luisa-unifi/CKR.

https://github.com/Luisa-unifi/CKR
https://github.com/Luisa-unifi/CKR
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contrary to ours; moreover, in practice they appear to be significantlymore conservative
than ours. This is further discussed in Section 3.8, also based on experimental evidence.
In [73], an efficient reachability analysis algorithm relying on Carleman linearization
is presented, limited to the class of weakly nonlinear, dissipative systems. We do
not have such restrictions, but it is well possible that the approach in [73] is more
effective than ours limited to the mentioned class of systems. Dimension reduction is
not considered in any of [72, 10, 73].

As mentioned earlier, our work is also related to the Koopman approach [124].
In this framework, global analysis techniques have recently emerged, see in particular
[123]. Our method too is centered on a basis of observable functions, the aforemen-
tioned α, but our goal in the present work is quite specific, with an emphasis on finite
dimensionality, error bounds that are valid over a prescribed time horizon and reach-
ability. The formal relationship between our approach and Koopman’s is discussed in
detail in Section 3.6.

There is also a vast literature onmodel reduction techniques. A reduction technique
particularly close to ours is the one described in [38]. It is based on approximate
differential equivalence and has been successfully compared with CORA. Essentially,
a partition of the variables set of the original model is generated and each variable of
the reduced model is associated with an ODE giving the dynamics of the sum of the
variables in a partition block. A threshold ε > 0 is also considered in the partition
process in order to capture parameter uncertainty and error tolerances, this leads to
approximation error. Similarly to our method, the approach of [38] applies to non
linear ODEs and the error is bounded formally in terms of over-approximations of the
reachable set. However, the reducedmodel they get is non linear and relies on a different
theoretical basis. In addition, differently from our case, they also admit sources of
uncertainty about the parameters or related to finite-precision measurements, and thus,
the corresponding error is caused by the model uncertainty and not specifically by the
reduction process.

In the field of tools for continuous and hybrid systems, like Flow∗ [47] and cora
[8], a mix of approximations techniques are employed [120, 46, 47, 8, 7, 9]. In
particular, Flow∗ [46, 47] is based on Taylor models: Picard iteration is used to
obtain a polynomial of given degree that approximates the exact solution over time
with respect to uncertain initial states. cora relies on a mix of techniques, including
linearization of the nonlinear ode equations at various points in the state space [7, 9].
Here we are primarily interested in approximations that are accurate for as long as
possible, and in connecting them to reachability analysis. As argued empirically in
Section 3.8, our approach brings significant benefits in terms of accuracy.

Structure of the chapter The rest of the chapter is organized as follows. Section 3.2
introduces some basic definitions, such as nonlinear system and Lie derivative. Section
3.3 presents Carleman linearization and its truncation. In Section 3.4 a dimension
reduction method based on Krylov spaces is put forward, and results to bound the
resulting local error are given. Section 3.5 studies the global error qualitatively, both
in the presence and in the absence of stability. Section 3.6 establishes a formal relation
of our approach with the Koopman approximation framework. Section 3.7 presents
ckr, a reachability algorithm based on the results in sections 3.3 and 3.4. Section 3.8
is entirely devoted to illustrate some experimental results. A few concluding remarks
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are drawn in Section 3.9. For the sake of readability, computational details and proofs
have been confined to a separate appendix (Appendix B).

3.2 Preliminaries
For x = (x1, ...,xn)T a vector of state variables, we consider a system of odes

ẋ = f(x) (3.3)

where f = (f1, ..., fn)T is a vector field of locally Lipschitz analytic functions defined
on some open subset Ω ⊆ Rn. For x0 ∈ Ω, we let x(t;x0) be the unique solution of the
ode system with the initial condition x(0) = x0: the unique solution exists and is real
analytic in an open interval containing the origin t = 0 (Picard-Lindelöf theorem).

For a real analytic function g defined on some open subset of Rn that includes the
trajectories x(t;x0) for x0 ∈ Ω, we will be interested in studying the observable of the
system (3.3) via g, that is the function g ◦ x(t;x0).

Recall that Lf (g) := 〈∇g, f〉 = ∑n
j=1

∂g
∂xj
· fj is the Lie derivative of g (w.r.t. f ),

andL(k)
f (g) is the k-th Lie derivative, defined inductively byL(k+1)

f (g) := Lf (L(k)
f (g)).

We shall omit the subscript f whenever it is understood from the context.

3.3 Carleman linearization
In this section, we introduce a method of linearization of the system (3.3) which is
strongly related to Carleman embedding [110]. Generally speaking, one can apply
the following method to g(x(t;x0)), for any suitable observable function g, so we will
describe the method in terms of such a generic g. As we will see, for the purposes of
building approximate solutions, it will be sufficient to apply the results to each of the
n identity functions g = xi, for i = 1, ...,n in turn.

Let us fix a set A = {α1,α2, ...} of functions αi : Rn → R. For instance A
might be all monomial functions. We assume that, over its domain of definition, the
observable function g can be represented in a unique way as a linear combination of
functions from A up to a cutoffM > 0. In other words, we assume there are unique
v = (λ1, ...,λM)T ∈ RM and basis vector α := (α1, ...,αM)T such that

g =
M∑
i=1

λiαi = vTα . (3.4)

Otherwise, all we require from the functions in A is that they are analytic2, and that
the Lie derivative of each αi can in turn be expressed as a unique linear combination of
elements fromA. That is, for each i ≥ 1, there is a unique sequence of real coefficients
aij (j ≥ 1) such that

L(αi) =
∑
j≥1

aijαj . (3.5)

2This can be weakened to analyticity in some open set containing all the trajectories x(t;x0) for
x0 ∈ Ω.
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For the sake of simplicity, we shall assume that, for each i, only finitely many coeffi-
cients aij here are nonzero; this assumption is true e.g. for g a polynomial andA equal
to the set of all monomials. We let A denote the M ×M matrix of the coefficients
aij for 1 ≤ i, j ≤ M , and B be the M × k matrix of possibly nonzero elements
bi,j = ai,M+j; that is, k is chosen large enough to ensure that, for 1 ≤ i ≤M , we have
aij = 0 for each j > M + k. We let ψ 4= (αM+1, ...,αM+k)T .

For any fixed initial condition x0 ∈ Ω of the original system (3.3), we can form
the linear system of odes and the initial condition described below. Note that for
each fixed x0 ∈ Ω, ψ(x(t;x0)) : I −→ Rk is a real analytic function of t defined
in an interval I containing the origin. This function will in general not be explicitly
available, as it depends on the solution x(t;x0). The Carleman linearization (or
embedding) of (3.3) is given by the following linear, non-autonomous system in the
variables z = (z1, ..., zM)T and initial condition

ż = Az +Bψ(x(t;x0)) (3.6)

z(0) = α(x0) =: z0 . (3.7)

The following result is an almost immediate consequence of the existence and unique-
ness of the solution of odes (Picard-Lindelöf). For a detailed proof, see [28, Th.3].

Theorem 1 (Carleman linearization). Let x0 ∈ Ω. Then α(x(t;x0)) is the unique
solution of the system (3.6) with z(0) as in (3.7).

Note that we cannot explicitly build the system (3.6), as the function ψ(x(t;x0)) is
in general not available – even whenψ andB are available. In the next section, this will
lead us to consider an approximation where we neglect the “remainder” ψ(x(t;x0)),
the truncated Carleman linearization of dimensionM

ż = Az z(0) = z0(= α(x0)) . (3.8)

We illustrate the truncated Carleman linearization with the following example, an
instance of the Van der Pol oscillator (VdP, see [178]). This system is used as a
benchmark in a number of papers on reachability for nonlinear odes.

Example 4. Consider the system ẋ = f where f := (x2,−x1 + x2(1 − x2
1))T . We

fix as A the set of all monomial functions, and α = (x1,x2,x2
1x2)T , hence M = 3

is the dimension. It is immediate to check that A =
[ 0 1 0
−1 1 −1

0 0 1

]
. Therefore, letting

z = (z1, z2, z3)T , for each x0 ∈ R2, the truncated Carleman linearization of dimension
3 is: ż = Az with z(0) = α(x0).

In cases arising in applications, the matrix A can in practice be too large to
be explicitly generated. Thus (3.8) will be the starting point to build an further
approximation and reduction, as detailed in the next section.

3.4 Dimension reduction via Krylov projection
We discuss to reduce the dimension of (3.8) while keeping certain, still local, accuracy
guarantees. The discussion in this section expands that in [28, Sect.4]. The basic
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idea is to reduce the dimension of the problem by projecting A onto an appropriate
subspace of RM of dimension m � M . The differential equations of the reduced
linear system will depend on g, but not on the initial state x0. The method is amenable
to an “on the fly” implementation, in the following sense: it only requires building
the Lie derivatives of g until a prescribed order m. In detail, the order m coincides
with the dimension of the obtained linear system of odes and give rise to approximate
solutions of (3.3) that are locally accurate. The behaviour of the global error will be
discussed in Section 3.5.

Recall that our goal is to approximate a target function g(x(t;x0)). For the sake of
notation, we will adopt the following abbreviation for this function:

g(t;x0) := g(x(t;x0)) . (3.9)

Fix m ≥ 1 and order the elements in A in such a way the the first M functions,
α = (α1, ...,αM)T are those appearing in the (unique) decompositions of the Lie
derivatives of g from 0 through m − 1: that is, for each j = 0, ...,m − 1 there is
a (unique) vector uj ∈ RM such that L(j)(g) = uTj α; here u0 = v. We assume
without loss of generality that m ≤ M (typically, m � M ). From (3.5) and from
the definitions of the matrices A, B and of the functions α and ψ, it follows that,
componentwise

L(α) = Aα +Bψ . (3.10)

From the definition (3.4) of g and the linearity of L(·), it follows that L(g) = vTAα+
vTBψ. From the assumed uniqueness of the decomposition of Lie derivatives in A,
we have that vTA = uT1 and vTB = 0 hence

L(g) = vTAα .

Taking the Lie derivative of the above equation, we have L(2)(g) = vTA(Aα+Bψ) =
vTA2α+ vTABψ, where vTAB = 0 again as a consequence of the uniqueness of the
decomposition of L(2)(g) in A. Proceeding similarly for the subsequent derivatives,
that is iterating (3.10) and exploiting the linearity of L(·) and the uniqueness of the
decomposition of L(j)(g) in A, for 0 ≤ j ≤ m − 1, we arrive at the following
conclusions.

vTAjα = L(j)(g) (0 ≤ j ≤ m− 1) (3.11)

vTAj−1B = 0 (1 ≤ j ≤ m− 1) . (3.12)

Now, we consider them-dimensional Krylov space3 generated by v and AT , that is the
subspace of RM

Km := span{v,ATv, (AT )2v, ..., (AT )m−1v} . (3.13)

Comparing (3.13) and (3.11), we see that Km is the subspace of RM spanned by the
(column) vectors of the coefficients of the Lie derivatives of g from 0 throughm− 1.
Here we assume without loss of generality that v 6= 0 and that Km has dimension
m — that is, m is small enough that the m vectors listed on the right-hand side of
(3.13) are linearly independent. Let V = [v1| · · · |vm] be an orthonormal basis of

3For an introduction to Krylov spaces, see e.g. [160].
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Km, represented as a M ×m matrix (see at the end of the section for computational
considerations). Now consider the projection ofAT ontoKm and represent it w.r.t. the
basis V , in other words we consider them×m matrix

Hm := V TATV . (3.14)

Given a vector ofm distinct state variables y = (y1, ..., ym)T , we let the reduced linear
system derived from (3.6) and the corresponding initial condition, derived from (3.7),
be defined as:

ẏ = HT
my (3.15)

y(0) = V T z0 =: y0 .

Note that the reduced equations (3.15) do not depend on x0 ∈ Ω. Informally speak-
ing, the solution y(t; y0) of the reduced system describes the evolution of the vector
α(x(t;x0)), projected onto the subspace Km, in the coordinates of the basis V . Re-
calling that v ∈ RM is the vector of the coefficients of g with respect to α, as in (3.4),
it is then natural to consider the following approximation of g(t;x0).

Definition 4 (reduced observable dynamics). For each x0 ∈ Ω and y0 = V Tx0, we
define the function:

ĝ(t;x0) := vTV y(t; y0) . (3.16)

In fact, we will see that v1 = v/||v||2, while v is orthogonal to vj for j > 1. Hence
(3.16) can be simplified to

ĝ(t;x0) = ||v||2 y1(t; y0) . (3.17)

In order to study the quality of this approximation, we introduce the error function
relative to g

εg(t;x0) := g(t;x0)− ĝ(t;x0) . (3.18)

The following result confirms that this error is small near t = 0. Indeed, the Taylor
expansions of ĝ(t;x0) and g(t;x0) up to order m− 1 coincide: this is a consequence
of the fact that the coordinates (in α) of the Lie derivatives of g from 0 tom− 1 span
Km.

Theorem 2. For each x0 ∈ Ω, the function εg(t;x0) is O(tm) around t = 0.

Proof. Fix any 0 ≤ j ≤ m − 1. Note that dj

dtj
g(t;x0)|t=0 = L(j)(g)|x=x0 =

αT (x0)ATjv, where in the last step we have applied (3.11). On the other hand,
from the definition of ĝ(t;x0) = vTV y(t; y0) and (3.15), we have: dj

dtj
ĝ(t;x0)|t=0 =

vTV HTj
m V Tα(x0) = αT (x0)V Hj

mV
Tv = α(x0)TV V TATjV V Tv, where in the last

step we have applied the definition (3.14) of Hm, and the fact that V TV = I . Now,
V V Tv = v, because v ∈ Km, and V V TATjv = ATjv, again because ATjv ∈ Km.
Therefore dj

dtj
ĝ(t;x0)|t=0 = α(x0)TV V TATjV V Tv = αT (x0)ATjv = dj

dtj
g(t;x0)|t=0.

This proves that the Taylor coefficients of εg(t;x0) from 0 throughm− 1 are zero. 2

Explicit local bounds of the error function can be obtained from the Tay-
lor theorem with remainder in Lagrange form, assuming we can construct val-
idated enclosures S and E of x(t;x0) and y(t; y0), respectively — which for
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Figure 3.1: For Example 5, left: g(t;x0) and ĝ(t;x0) 5; right: |h(τ ;x0)| and bound (3.23).

small t is possible by standard techniques, see e.g. [136] and references therein.
We state the result in a form suitable for application to reachability analy-
sis, where an initial set X0 is explicitly considered. Below, we let ρX0 :=
infx0∈X0{ρ : ρ is the radius of convergence of the Taylor series of εg(t;x0) from t = 0}.

Corollary 2. Consider a setX0 ⊆ Ω. Fix t s.t. ρX0 > t > 0 and compact sets S ⊆ Rn
and E ⊆ Rm such that X0 ⊆ S, V TX0 ⊆ E and for each (τ ,x0) ∈ [0, t] × X0 we
have x(τ ;x0) ∈ S and y(τ ; y0) ∈ E, where y0 = V Tα(x0). Define

γ−(t;S,E) := tm

m!
(

min
x∈S
L(m)(g)(x)−max

y∈E
vTV (HT

m)my
)

(3.19)

γ+(t;S,E) := tm

m!
(

max
x∈S
L(m)(g)(x)−min

y∈E
vTV (HT

m)my
)

. (3.20)

Then for each x0 ∈ X0 and τ ∈ [0, t], γ−(t;S,E) ≤ εg(τ ;x0) ≤ γ+(t;S,E).

Proof. Corollary 2 For each x0 ∈ X , we have εg(t;x0) = g(t;x0) − ĝ(t;x0) and
the Taylor series of g(t;x0) and ĝ(t;x0) coincide up to and including order m − 1
(Theorem 2). Hence, for any t in the interval of convergence of this series, εg(t;x0)
equals the difference of the Lagrange remainders of g(t;x0) and of ĝ(t;x0), say Lm
and L̂m. In other words, for each ρX0 > t > 0, there are t∗1, t∗2 ∈ (0, t) s.t.

εg(t;x0) = Lm(t; t∗1)− L̂m(t; t∗2)

= tm

m!g
(m)(t∗1;x0)− tm

m! ĝ
(m)(t∗2; y0)

= tm

m!L
(m)(g)(x(t∗1;x0))− tm

m!v
TV (HT

m)my(t∗2; y0) (3.21)

where the last equality follows from: (a) dm

dtm
g(x(t;x0))|t=t∗1 = L(m)(g)(x(t∗1;x0)); and

(b) differentiatingm times the function ĝ(t;x0) = vTV y(t; y0) by applying (3.15), that
is ẏ = HT

my. By assumption, x(t∗1;x0) ∈ S and y(t∗2; y0) ∈ E. Hence, by replacing
in (3.21) these two expressions with generic x ∈ S and y ∈ E, and then taking the
maxx∈S and theminy∈E , we obtain the inequality εg(t;x0) ≤ γ+(· · · ) in the statement.
The other inequality is obtained similarly. 2

There exists a well-known algorithm for the efficient, “on the fly” construction of
the matrices V ,B,Hm, the Arnoldi iteration [160] (see Appendix B).

Example 5. Let us consider again the VdP system in Example 4 and let us build the
reduced linear system (3.15) form = 2 and g = x1. The choice of α = (x1,x2,x2

1x2)T
guarantees that g and L(g) = L(m−1)(g) are both representable w.r.t. α, as required:
in particular, g = αTv1 and L(g) = αTv2 with v = v1 := (1, 0, 0)T and v2 :=
(0, 1, 0)T . Thus Km = span{v1, v2} has V := [ 1 0 0

0 1 0 ]T has a basis, and this is



58

already orthonormal. We define H = V TATV = [ 0 −1
1 0 ], where A is the same as

in Example 4. Writing x0 = x = (x1,x2)T for a generic initial state, we have
ĝ(t;x) = vTV y(t; y0) = y1(t; y0), where y(t; y0) is the solution4 of (3.15) with initial
condition y0 := V Tα(x) = (x1,x2)T . For x0 = (0.1, 0.1)T , we plot the exact x1(t;x0)
(dashed) and approximate ĝ(t;x0) (solid) solutions for t ∈ [0, 5] in Fig. 3.1, left.

3.5 Behaviour of the global error
We study, mostly from a qualitative point of view, the behaviour of the error function εg.
In what follows, we will assume the orthonormal basis V = [v1| · · · |vm] of the Krylov
spaceKm is generated via the Arnoldi Algorithm. This means that the vectors vj are an
orthonormalized version of the vectors (AT )jv in (3.13), inductively built as follows:
v1 := v/||v||2 and vj := wj/||wj||2 for j = 2, ...,m, wherewj := ATvj−1−

∑j−1
k=1 µkvk

with µk := 〈ATvj−1, vk〉. We will let rm denote the projection of ATvm onto K⊥m, the
orthogonal complement ofKm. Explicitly: rm := ATvm−V V TATvm. We define the
remainder function h : Rn → R as follows for x ∈ Rn:

h(x) := vTmBψ(x) + rTmα(x) . (3.22)

We have seen that ĝ(t;x) represents faithfully g(t;x) up to order m − 1 (Theorem
2). Informally speaking, the remainder function h has two error terms, corresponding
to whatever of the m-th derivative of g(t;x) cannot be represented: either because
it involves elements ψ of A outside α (term vTmBψ(x)), or because it falls outside
Km (term rTmα(x)). One’s hope here is that |h(x)| is small when computed along
the trajectories of x(t;x0), for x0 in the initial set. The following theorem provides a
general error bound in terms of h(x). We say that a real square matrix is stable if all
its eigenvalues have a nonnegative real part, and every purely imaginary eigenvalue,
if any, has geometric multiplicity equal to the algebraic one (or, equivalently, in the
Jordan decomposition of the matrix, the block corresponding to any such eigenvalue
has order 1; cf. e.g. the proof of [104, Th.4.5]).

Theorem 3 (global error bound). For any t > 0 such that x(τ ;x0) is defined for
τ ∈ [0, t]:

|εg(t;x0)| ≤ ||v||2
∫ t

0
|h(x(τ ;x0))| · |(e(t−τ)HT

m)1,m| dτ . (3.23)

If additionally Hm is stable then there is a constant D > 0 independent of t such that

|εg(t;x0)| ≤ ||v||2D
∫ t

0
|h(x(τ ;x0))| dτ . (3.24)

Qualitatively speaking, (3.24) says that, for a stableHm, the behaviour of the global
error is determined by |h(x(τ ;x0))|: if this function decays fast enough to be integrable
over [0, +∞), then εg(t;x0) will be globally bounded. In Appendix B, we also report
a special case of this situation that can be characterized analytically (Corollary B.2.1).

If Hm is not stable, (3.23) still applies. In this case, the norm of the matrix
exponential e(t−τ)HT

m will eventually dominate, making the bound useless for large t.

4An explicit expression for y1 is: y1(t; y0) = −1/3 et/2(
√

3(x1 − 2x2) sin( 1
2 t
√

3) −
3x1 cos( 1

2 t
√

3)).
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Yet, there may be a time horizon within which |h(x(τ ;x0))| and/or the exponential
are small enough to make the bound (3.23) useful. This will be typically the case
if x(t;x0) hence |h(x(τ ;x0))| are bounded, for instance in systems that exhibit a
limit-cycle behaviour, like VdP. For Example 5, we plot |h(x(t;x0))| (solid) and the
right-hand side of (3.23) (dashed) for t ∈ [0, 5] in Fig. 3.1, right.

These considerations prompt for use of the approximation ĝ(t;x0) inside a scheme
for reachability analysis. As for error control, the evaluation of the upper bounds (3.23)
and (3.24) requires knowledge of the solution x(t;x0), or at least of a bound on its
norm on an interval of interest, which are in general not available. However, useful
bounds can be obtained from enclosures of the solution taken at successive, small time
intervals. This will be developed in Section 3.7. As an interlude, in the next section
we clarify the relation of the present approach with Koopman’s.

3.6 Relation with the Koopman approach
There is a rich and deep theory on the Koopman approach, a recent survey of which
can be found in the book [124]. Our aim here is merely to establish a precise formal
relationship between our approach and Koopman’s. The bottom line is that, under
certain conditions, our reduced observable dynamics (Definition 4) coincides with a
reduced form of Koopman spectral decomposition (cf. Proposition 4). In the rest of
the section, by x(t;x0) we denote the unique solution of the ode system (3.3) with
initial condition x(0) = x0 ∈ Ω. For simplicity, we further assume that Ω is invariant
for the flow of the ode, that is, for each x0 ∈ Ω we have x(t;x0) ∈ Ω for each t in the
interval of definition of the solution.

3.6.1 Koopman spectral decomposition
In this subsection, we review the Koopman spectral decomposition. We mostly follow
the treatment in [124, Ch.1]. A Koopman eigenfunction of the eigenvalue λ ∈ C of
(3.3) is an analytic function φ : Ω → C such that φ(x(t;x0)) = eλtφ(x0) for each
x0 ∈ Ω and each t in the interval of definition of x(t;x0). In terms of Lie derivatives,
φ satisfies

L(φ) =
n∑
j=1

∂φ

∂xj
· fj = λφ . (3.25)

Solving (3.25) for λ and φ one can find pairs of (eigenvalue, eigenfunction). Note that
for n > 1 (3.25) is a partial differential equation in φ.

Example 6. Consider the one variable (n = 1) ode ẋ1 = −x1 − x3
1. Equation (3.25)

is a ode in φ with a parameter λ, that is:
(

d
dx1
φ (x1)

)
(−x1

3 − x) = λφ (x). For any
λ 6= 0, this has the solution (up to a constant factor): φλ(x1) = (x1

2 + 1)λ/2 x1
−λ.

In general, Koopman eigenvalues and eigenfunctions are not easy to find, and there
may be infinitely many of them — in fact, Koopman eigenvalues can even form dense
sets. At any rate, let g : Ω → C be an observable of interest; this is the same as the
function g considered in Section 3.3, but here we do allow g to take on complex values.
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Ideally, one is interested in finding a Koopman mode expansion of g, if it exists, in
the following sense: for a countable set of eigenfunctions {φj}∞j=0 and corresponding
eigenvalues {λj}∞j=0, we have on Ω

g =
∑
i≥0

νiφi . (3.26)

The coefficients νj ∈ C are called Koopman modes of g. On the right-hand side of
(3.26) we take the convergence of the series to be uniform on Ω. Note that, once a
Koopman mode expansion of g is known, one obtains a complete characterization of
the dynamics of the observable g. Indeed, from (3.26), for every x0 ∈ Ω and t in the
interval of definition of x(t;x0)

g(x(t;x0)) =
∑
i≥0

νie
λitφi(x0) . (3.27)

We refer to this as Koopman spectral decomposition of g (w.r.t. f ).

3.6.2 Approximate Koopman decomposition
In practice, the Koopman spectral decomposition, even when it exists, is hard to
compute due to its infinite dimensional nature. It is therefore natural to resort to finite-
dimensional approximations. We start from the truncated Carleman linearization (3.8)
introduced in Section 3.3. Taking the Lie derivative ofα componentwise, we have seen
in (3.10) that L(α) = Aα + Bβ; or, taking the transpose, L(αT ) = αTAT + βTBT .
Abbreviating L := AT , for each function h = uTα = αTu (u ∈ CM ), we have the
following expression for the Lie derivative of h

L(h) = αTLu+ βTBTu . (3.28)

In particular, for any eigenvalue λ of the matrix L (hence of A) and corresponding
right eigenvector u, letting φ := αTu we have: L(φ) = αTLu + βTBTu = λαTu +
βTBTu = λφ + βTBTu. One’s hope here is that ||βTBTu|| ≈ 0, so that one could
write

L(φ) ≈ λφ

and have (3.25) approximately satisfied. With this motivation, we proceed as follows.
Let us say that an eigenvalue is non-defective if its geometric and algebraic multiplicity
coincide. Let λ1, ...,λm ∈ C be the list of nondefective eigenvalues of L (hence of
A), where each eigenvalue is repeated a number of times equal to its multiplicity. We
assume m ≥ 1. Also, let u1, ...,um and wT1 , ...,wTm be corresponding right and left
eigenvectors, respectively: thanks to non-defectiveness, without loss of generality we
can assume that wTi uj = δij (Kronecker’s delta). Note that these eigenvectors have, in
general, complex components. Let U , resp. W , be theM ×mmatrix that has the ui’s,
resp. wi’s, as columns: thenW TU = Im, them×m identity matrix. Let φ̃i := αTui
(1 ≤ i ≤ m) denote the approximate Koopman eigenfunctions corresponding to them
right eigenvectors. Now, instead of (3.26), we equate g to an approximate Koopman
mode expansion

g =
m∑
i=1

ν̃iφ̃i (3.29)
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where the approximate Koopman modes ν̃i ∈ C can be determined as follows. From
(3.29), αTv = g = ∑m

i=1 ν̃iα
Tui. Therefore letting ν̃ := (ν̃1, ..., ν̃m)T , we have that

(3.29) is equivalent to αTUν̃ = αTv. A sufficient condition on ν̃ for this to hold
is that Uν̃ = v (this is also necessary if every function can be expressed in at most
one way w.r.t. the sequence A). Left-multiplying this equality by W T , we have
W TUν̃ = ν̃ = W Tv. Hence, we can define the vector of approximate Koopman
modes as

ν̃ := W Tv . (3.30)

Finally, in analogy with (3.27), we can define the approximate spectral decomposition
of g as follows.

Definition 5 (approximate Koopman spectral decomposition). With the above no-
tation, we let the approximate Koopman decomposition w.r.t. A be:

gK(t;x0) :=
m∑
i=1

ν̃ie
λitφ̃i(x0) . (3.31)

The following proposition relates the approximate Koopman spectral decomposi-
tion to the truncated Carleman linearization (3.8) introduced in Section 3.3. Its proof is
easy and mainly consists of matrix manipulations. In the statement of the proposition,
we also consider complex solutions z(t) = a(t) + ιb(t) of the linear ode systems
ż = Az, with A a real matrix: this must be interpreted in the sense that both a(t) and
b(t) are real solutions of the given ode system. A complex solution z(t) is real — that
is, its imaginary b(t) part is identically zero — if and only if the initial condition z(0)
is real; see [51, Ch.2,Sect.1.4].

Proposition 3 (Koopman vs Carleman). Let z(t; z0) be the unique solution of the
linear ode system ż = Az (truncated Carleman linearization) with initial condition
z0 = WUTα(x0) ∈ CM . Then

gK(t;x0) = vT z(t; z0) . (3.32)

In particular, if A is diagonalisable then z0 = α(x0).

When z0 = α(x0), we have the approximation α(x(t;x0)) ≈ z(t; z0) (truncated
Carleman linearization): then, in the diagonalisable case, the previous proposition
yields the approximation5 gK(t;x0) ≈ g(x(t;x0)). This suggests that one could
take gK(t;x0) := vT z(t; z0) as a more direct and general definition of approximate
Koopman decomposition.

3.6.3 Dimension reduction of approximate Koopman decomposi-
tion

More often than not, the size of A will be so large to make the effective computation
of its eigenvalues and eigenvectors unfeasible. So whether we consider (3.31) or

5Under suitable conditions, concrete error bounds for this approximation can be given in a style
similar to [124, Ch.2.4.2].
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(3.32) — as seen, the two are equivalent at least in the diagonalisable case — the
approximate Koopman spectral expansion of g can be difficult to compute as outlined
in the preceding section.

Just as in done in Section 3.4, one way to try to circumvent this difficulty is to
project L(= AT ) onto an appropriate subspace K of RM of dimension m � M , and
work within the coordinate space ofK. It is well known that, depending on the choice
of K, the eigen-values and vectors of the projected matrix will often be excellent
approximations of (a subset of) the original eigen-values and vectors. This is the case,
for example, when K = Km, the Krylov subspace generated by L and v; but we need
not assume this in the description given below.

From Section 3.4, recall that we let V = [v1| · · · |vm] ∈ RM×m be a matrix whose
columns form an orthonormal basis of K in RM , and let H := Hm = V TLV be
the projection of L onto K; note that H is a m × m real matrix. Here we assume
for simplicity that H is diagonalisable: this is often the case in practice, even if A is
not. We let λ̂1, ..., λ̂m be a list of the eigenvalues of H , each repeated according to its
multiplicity. Let Û = [û1| · · · |ûm] ∈ Cm×m (resp. Ŵ T = [ŵ1| · · · |ŵm]T ∈ Cm×m)
be a matrix whose columns (resp. rows) form a basis of right (resp. left) eigenvectors
of H . We can assume without loss of generality that Ŵ T Û = Im. Now we will use
V Û and (V Ŵ )T = Ŵ TV T as approximations of the right- and left-eigenvectors of L,
respectively. With this in mind, we can define the reduced versions of:
(a) the approximate Koopman eigenfunctions as φ̂i := αTV ûi, hence φ̂ := ÛTV Tα;

(b) the approximate Koopman modes, as ν̂ := (V Ŵ )Tv.
Note that ŵTi ûj = (V ûi)T (V ûj), as the columns of V form an orthonormal basis.
So, in analogy with (3.27) and (3.31), the reduced, approximate Koopman spectral
decompositions is defined as:

ĝK(t;x0) :=
m∑
i=1

ν̂ie
λ̂itφ̂i(x0) . (3.33)

On the other hand, recall from Definition 4 that the reduced observable dynamics of g
is

ĝ(t;x0) := vTV y(t; y0) (3.34)

where y(t; y0) is the solution of them×m linear homogeneous system ẏ = HTy with
initial condition y(0) = y0 := V Tα(x0). The next proposition says that the reduced
Koopman spectral decomposition coincides with our reduced observable dynamics, in
case H is diagonalisable.
Proposition 4. Suppose H is diagonalisable. Then ĝK(t;x0) = ĝ(t;x0).

We conclude with some remarks. The above result has been proven under the
assumption that H is diagonalisable. On the other hand, the definition of reduced
observable dynamics ĝ(t;x0) in (3.34) makes sense and is natural in the general case.
Informally speaking, the system ẏ = HTy is just the orthogonal projection of the
system ż = LT z = Az onto the subspace K. Since z(t; z0) ≈ α(x(t;x0)), and
z ≈ V y, we have vTV y(t; y0) ≈ vTα(x(t;x0)) = g(x(t;x0)), which is the exact
dynamics. Moreover, whenK = Km (Krylov space) as discussed in Section 3.4 there
is a way to compute ĝ(t;x0) on the fly via the Arnoldi algorithm, see also Appendix
B.1. Additionally, ĝ(t;x0) is also locally accurate in the sense of Theorem 3.
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Figure 3.2: Advection and inflation of a polytope.

3.7 Application to reachability analysis
We will apply the linearization scheme outlined in sections 3.3 and 3.4 to compute an
approximation x̂(t;x0) of the flow x(t;x0), and then use it to compute an overapprox-
imation of the reachable set of the nonlinear system (3.1) at fixed times: t1, t2, .... This
goal will be achieved by applying the scheme of Section 3.3 to each of the observable
functions g = xi, for i = 1, ...,n in turn. Using the notation in that section, for each
i = 1, ...,n, let v(i) the coefficient vector of xi in the chosen basis α, that is xi = v(i)Tα,
and V (i),H(i)

m the corresponding basis and reduced matrix. We define the approximate
flow by x̂(t;x0) := (x̂1(t;x0), ..., x̂n(t;x0))T , where, as an instance of (3.17), we have

x̂i(t;x0) := ||v(i)||2 y(i)
1 (t; y0) (i = 1, ...,n) (3.35)

with y(i)(t; y0) the solution of the linear initial value problem (3.15) for g = xi.
Moreover, we will also consider the general case where we are given an initial set X0
rather than an individual initial state x0.

The proposed reachability method is inspired by theCheckMate algorithm in [54].
For the sake of simplicity, we will represent the initial setX0 as well as the successive
reachsets R1,R2, ... as convex polytopes6 (see below). Let 0 = t0, t1, · · · , tN = t
be time points, with ∆k := tk − tk−1 > 0 for k ≥ 1. The basic idea is to use
(approximations of) the advection maps

x0 7→ x(tk;x0) (k = 1, 2, ...)

to propagate the initial polytope’s vertices {u1, ...,up} to successive time points tk.
At the k-th stage, the polytope resulting from the advected vertices is suitably inflated
to compensate for nonlinearities and approximation errors, thus obtaining the actual
polytopeRk that over-approximates the reachable set at time tk; cf. Fig. 3.2. The main
difference between [54] and us is that, while they approximate the advection maps via
numerical integration of the original system (3.3), we adopt the maps x0 7→ x̂(tk;x0).
Theorem 3 suggests that x̂(tk;x0) is a good approximation of x(tk;x0), but does not
provide a direct way of bounding the resulting error. Instead, we will keep track of the
approximation error via Corollary 2.

Concerning the computation of the approximate advection maps, we recall that,
as a solution of the linear system (3.15), each component in (3.35) can be written

6The method can be extended without much difficulty to more sophisticated and scalable types of
sets, like zonotopes.
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explicitly as:

x̂i(t;x0) = ||v(i)||2
(
etH

(i)T
m

1

)
V (i)Tα(x0) (i = 1, ...,n) (3.36)

where e(··· )
1 denotes the first row of the exponential matrix. As a function of x0, each

x̂i(tk;x0) is a linear combination of the components of the basis α(x0). For instance,
it is a polynomial in x0 if the elements of the basis are monomials.

In more detail, given p vectors (vertices) u1, ...,up ∈ Rn, we assume thatX0 is the
convex hull generated by those vertices, X0 = ch(u1, ...,up) := {∑p

i=1 λiui : λi ≥
0 and

∑p
i=1 λi = 1}. It is easy to compute the polytope generated by the advected

vertices at time tk, given by Pk := ch(x̂(tk;u1), ..., x̂(tk;up)). We let the matrix-vector
pair (Ck, bk) denote a halfspace representation of Pk, that is Pk = {x ∈ Rn : Ckx ≤
bk}. In fact, below we will only make use of the matrix Ck; we assume without loss
of generality the rows of this matrix, say cT1 , · · · , cT`k , are unitary, ||cj||2 = 1. With
the notation used in Corollary 2, we let γ−(i), γ+(i) denote the bounds in (3.19), (3.20)
applied to g = xi, for i = 1, ...,n. In Definition 6 below, for k ≥ 1 we shall adopt the
abbreviations

γ
(i)
k := max{|γ−(i)(∆k;Sk,E(i)

k )|, |γ+(i)(∆k;Sk,E(i)
k )|} (3.37)

for given compact sets Sk ⊇ {x(τ ; ξ) : (τ , ξ) ∈ [0, ∆k]×Rk−1} and E(i)
k ⊇ {y(τ ; ζ) :

(τ , ζ) ∈ [0, ∆k] × V (i)TRk−1}. We let γk := (γ(1)
k , ..., γ(n)

k )T , with γ0 := (0, ..., 0)T .
For any nonnegative vector ζ ∈ Rn, we will let [−ζ, ζ] denote the hyper-rectangle
[−ζ1, ζ1]× · · · × [−ζn, ζn] ⊆ Rn. Below, we assume ∆k < ρRk−1 for each k ≥ 1.

Definition 6 (reachsetsRk). With the notation introduced above, for k = 0, 1, 2, ... we
define the sequence of vectors ηk = (η(1)

k , ..., η(`k)
k )T ∈ R`k and of polytopes Rk ⊆ Rn,

as follows. η0 := 0, R0 := X0 and, for k ≥ 1, inductively:

η
(j)
k := max

ξ∈Rk−1
δ∈[−γk,γk]

cTj (x̂(∆k; ξ) + δ) (j = 1, ..., `k) (3.38)

Rk := {x ∈ Rn : Ckx ≤ ηk} . (3.39)

We note the following important facts about the above definition. (1) Computing ηk
requires γk, whose computation in turn only requires enclosures Sk and Ek for ‘small’
flows x(τ ; ξ) and y(τ ; ζ), for τ ∈ [0, ∆k] (cf. Corollary 2). (2) In the definition of Rk,
one actually modifies a polytope Pk obtained by directly advecting the initial X0 (sort
of ‘long’ advection), not the preceding set Rk−1.

The correctness of the method is expressed by the following lemma, which also
gives additional guarantees about the enclosure sets7 Sk.

Lemma 4 (correctness of Rk). For each k = 0, 1, ...,N and x0 ∈ X0, we have
x(tk;x0) ∈ Rk. Consequently, Sk ⊇ {x(τ ;x0) : (τ ,x0) ∈ [tk−1, tk] ×X0} for each
k ≥ 1.

7These are useful in case one wants a flowpipe encapsulating the flow x(t;x0) for all t’s in a given
interval, not only at specified time points tk’s.
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Proof. Let x0 ∈ X0. Note that the second part of the statement follows from the first
part (x(tk;x0) ∈ Rk for k ≥ 0), the additivity of the flow of odes and the definition of
Sk. Indeed, given k ≥ 1 and τ ∈ [tk−1, tk], say tk−1 + τ ′ with 0 ≤ τ ′ ≤ ∆k, we have:
x(τ ;x0) = x(τ ′; ξ) where ξ = x(tk−1;x0) ∈ Rk−1, but x(τ ′; ξ) ∈ Sk by definition of
Sk.

We proceed by induction on k to prove that x(tk;x0) ∈ Rk for each k ≥ 0. The
base case k = 0 is trivial, so assume k ≥ 1. By the additivity property of the
flow of odes, we have that x(tk;x0) = x(∆k; ξ) where ξ = x(tk−1;x0) ∈ Rk−1,
by induction hypothesis. By Corollary 2 and the definition of γk, it follows that
|xi(tk;x0) − x̂i(∆k; ξ)| = |xi(∆k; ξ) − x̂i(∆k; ξ)| ≤ γ

(i)
k for i = 1, ...,n. Hence

x(tk;x0) = x(∆k; ξ) = x̂(∆k; ξ) + δ for some vector δ ∈ [−γk, γk]. Then for each
row cTj of the matrix Ak, we have

cTj x(tk;x0) = cTj (x̂(∆k; ξ) + δ) ≤ η
(j)
k (3.40)

by definition of η(j)
k . Since this holds for each j = 1, ..., `k, we have the wanted

x(tk;x0) ∈ Rk. 2

The overall workflow of the method is summarized in Algorithm 1, which we
christen ckr, forCarleman-Krylov Reachability. The timesteps∆k, for k = 1, 2, ...,N ,
are such that ∆k = tk − tk−1 and tN = T , the time horizon, which is assumed to be
in the interval of definition of x(t;x0) for each x0 ∈ X0. In an actual implementation,
the timesteps might be chosen adaptively. In the pseudo-code, we use the abbreviation
hs(P ) to denote a halfspace representation (C, b) of a polytope P .

Example 7. Let us reconsider the VdP system of Example 5. We fix m = 2, X0 =
[0.1, 0.2] × [0.1, 0.2], T = ∆ = 0.1 and a basis α of monomials. The approximate
advection functions x̂1 and x̂2 are computed in the cycle 2–6 of Algorithm 1: we have
already detailed the computation of x̂1 in Example 5; one proceeds similarly for x̂2.
Overall, writing x0 = x = (x1,x2)T , one obtains x̂(∆;x) := (x̂1(∆;x), x̂2(∆;x))T
where for ∆ = 0.1:

x̂1(∆;x) = 0.99 · x1 + 0.10 · x2 x̂2(∆;x) = −0.10 · x2
1 · x2 − 0.10 · x1 + 1.09 · x2 .

Let us see how the first (and only, for this example) reachset R1 is computed. The
four vertices U = {u1,u2,u3,u4} of X0 are advected at time T obtaining U1 =
{u′1,u′2,u′3,u′4} := {x̂(∆;u1), x̂(∆;u2), x̂(∆;u3), x̂(∆;u4)}. For instance, for u1 =
(0.10, 0.10)T , one has u′1 = x̂(∆;u1) = (0.20, 0.08)T . For the convex hull of U1, a
halfspace representation (C1, b1) is computed (step 10); to compensate for errors, vector
b1 is replaced by a slightly larger (componentwise) η1, computed via optimization (step
14), giving rise to the representationR1 = (C1, η1) returned as output. More precisely:
C1 =

[
−0.11074 −0.99546 0.99544 0.11392
−0.99385 0.09513 −0.09541 0.99349

]T
, b1 = (−0.11067,−0.10006, 0.20011, 0.22134)T and η1 =

(−0.11065,−0.10002, 0.20015, 0.22142)T .

Remark 3 (computational considerations). Concerning Algorithm 1, a few consid-
erations are in order.

1. The computation of the enclosures Sk,E(i)
k in steps 11 and 12 can be achieved

using any library available to this purpose. We rely on cora [8] in our imple-
mentation.
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Algorithm 1 ckr
Input: f = (f1, ..., fn), vector field in the variables x = (x1, ...,xn); U ⊆fin Rn s.t.
X0 = ch(U);m ≥ 1, order of approximation; T ≥ 0, time horizon; (∆k)Nk=1, timesteps.
Output: RL, a list of reachsets.

1: α := vector of elements of A to repr. each of L(j)
f (xi) (0 ≤ j ≤ m− 1, 1 ≤ i ≤ n)

2: for i = 1, ...,n do
3: v(i) := vector of coefficients of xi w.r.t. α
4: V (i),H(i)

m := Arnoldi(f , v(i),α,m) . relies on u 7→ ATu

5: x̂i := (t,x) 7→ ||v(i)||2 (etH
(i)T
m

1 )V (i)Tα(x) . Cf. (3.36). For t = tk is an adv. map
6: end for
7: R0 := hs(ch(U))
8: RL := [R0]
9: for k = 1, 2, ...,N do
10: (Ck, bk) := hs(ch(x̂(tk,U))) . k-th advected polytope
11: Sk := enclosure(f , ∆k,Rk−1)
12: E

(i)
k := enclosure((H(i)

m )T , ∆k, (V (i))TRk−1) (1 ≤ i ≤ n)
13: γk := apply (3.37) to ∆k, Sk, E

(i)
k (1 ≤ i ≤ n)

14: ηk := apply (3.38) to Rk−1, γk,Ak
15: Rk := (Ck, ηk) . k-th reachset
16: append(RL,Rk)
17: end for
18: return RL

2. Solving the non-convex optimization problem (3.38) at step 14 is arguably the
most demanding aspect of the algorithm, especially if one is interested in building
a certified implementation. In the case of a polynomial vector field and basis,
certified upper bounds can be obtained via Sum-Of-Squares (SOS) programming
[148], which preserves correctness. In our current implementation, we rely on
a general purpose global (non-convex) optimization procedure. We leave for
future work the exploration of SOS techniques.

3. On the other hand, the optimization problems in steps 21 (Ck) and 23 (ρk) are
unproblematic: for a polynomial basis, an upper bound on Ck can be effectively
computed via interval arithmetic, while ρk can be obtained by a few projections
on the cj’s.

4. Numerical computation of the exponential matrix e(tk−τ)HT
m in step 5 is not

problematic, given thatm is typically quite small. In a certified implementation,
one might compute the exponential via interval arithmetic [81].

3.8 Experiments
In this section, we present some experimental results obtained by applying the approx-
imation scheme and method in the preceding sections8. The section is divided into

8Code and examples available at https://github.com/Luisa-unifi/CKR.

https://github.com/Luisa-unifi/CKR
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Figure 3.3: Individual trajectories starting from x0 = (0.485, 0.2)T in the time interval [0, 1]
for systems (3.41)(a) (left) and (3.41)(b) (right), computed as follows: (i) x(t;x0), the exact
solution computed numerically (yellow); (ii) x̂(t;x0), our approximate solution (3.36) (black);
(iii) xT (t;x0) with xT ,i(t;x0) :=

∑m−1
j=0 L(j)(xi)|x=x0

tj

j! , the Taylor expansion of orderm−1
of the solution from t = 0 (blue), limited to t = 0.2 for system (3.41)(a); (iv) xL(t;x0), the
solution of the linearized system ẋ = f(x0) + J|x=x0 · (x − x0), where J is the Jacobian of
f(x) in (3.3) (green).

three parts. First, we compare graphically different approximation methods, including
ours, on two examples drawn from the literature, and on a more substantial example
drawn from System Biology. Next, we compare our approximation method and our
error bound with those proposed in [72, 10]. Finally, we illustrate the result of ap-
plying a proof-of-concept Python implementation of Algorithm 1, ckr. In particular,
we compare ckr with two state-of-the-art tools for reachability analysis, cora [8] and
Flow∗ [47] on some examples drawn from the literature. In all the examples, for our
method we consider a basis of monomial functions.

3.8.1 Graphical comparisons
We analyze the following two nonlinear systems.

(a)
{
ẋ1 = 4x2(x1 +

√
3)

ẋ2 = −4(x1 +
√

3)2 − 4(x2 + 1)2 + 16 (b)
{
ẋ1 = x1(1.5− x2)
ẋ2 = −x2(3− x1) .

(3.41)
System (3.41)(a) is taken from [28], while system (3.41)(b) is an instance of Lotka-
Volterra in 2D. System (3.41)(a) has the origin as a stable equilibrium point, while
(3.41)(b) is not stable at the origin. For a time horizon of T = 1, we show in Fig.
3.3 trajectories of exact and approximate solutions, computed with various methods,
including ours, as explained in the caption. Our approximation (black curve) is very
close the exact solution (yellow curve).

We consider also a more substantial example drawn from System Biology, the
Laub-Loomis model, whose description we report from [48].

(LL)


ẋ1 = 1.4x3 − 0.9x1

ẋ2 = 2.5x5 − 1.5x2

ẋ3 = 0.6x7 − 0.8x3x2

ẋ4 = 2− 1.3x4x3

ẋ5 = 0.7x1 − x4x5

ẋ6 = 0.3x1 − 3.1x6

ẋ7 = 1.8x6 − 1.5x7x2
(3.42)

Like in the previous example, we make a graphical comparison of the exact solution,
computed numerically, with approximate solutions obtained with various methods,
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including ours. We fix the initial condition to x0 = (1.2, 1.05, 1.5, 2.4, 1.0, 0.1, 0.45)T
and the time horizon to T = 1. The plots in Fig. 3.4 show that x̂(t;x0) is quite accurate
w.r.t. to the exact solution.

Figure 3.4: Exact and approximate solutions for LL over a time horizon of T = 1. The
color code is the same as in Fig. 3.3: yellow/exact, black/our approximation , blue/Taylor,
green/linearization with jacobian. Different values ofm in {4, 5, 6} are considered, depending
on xi. For layout reasons, the plot of x7 is reported in a separate figure in Appendix B.3.

3.8.2 Comparison with [72] and [10]
The works [72] and [10] consider error bounds for the truncated Carleman approxi-
mation error, and show convergence as the truncation order N goes to infinity. We
do not consider asymptotic convergence in N , but rather concrete error bounds on a
time interval of interest, for any fixed approximation order m (a different parameter).
Confining the comparison to error bounds on a time interval, we note the following.

a) the main bound in [72, Th.4.3] is valid up to a time T ∗ that depends on the initial
condition;

b) the bounds in [10, Th.6.1] (cf. e.g. their eq. (6.28)) are valid up to a time τ ∗
that depends on the truncation order N .

These results can be compared with our Theorem 3, in particular (3.23), which applies
to the system obtained by the combined Carleman+Krylov reduction. We do not have
restrictions on the time interval width, although we do need an a priori bound on the
norm of the solution on the time interval of interest (in order to bound the polynomial
h(x)). As detailed below, we do not regard the latter as a practically significant
limitation, at least in the comparison with [72, 10]. Moreover, our bounds appear
to be in practice significantly less conservative than those in [72, 10], at least on the
challenging VdP example.

The time widths in [72, 10], resp. T ∗ and τ ∗, will typically be rather small.
As an example, for the VdP system, [72, Sect.4.4] reports T ∗ = 0.58, while [10,
Sect.8.1] reports τ ∗ = 0.2. For such short time intervals, rough but validated compact
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Figure 3.5: Graphical comparisonwith [72] on theVdP example. Left: approximated solution
and error envelopes for x2(t;x0) from [72]. Center: on the same scale, our approximation
and error bounds. Right: close up of our plot. See the main text for details.

enclosures S of the exact solution x(t;x0) are easy to compute relying on classical
techniques such as those reported in [136]. As an example, for the VdP system and
initial condition x0 = (0, 0.5) considered in [72, Sect.4.4], using the CORA library
one quickly finds an enclosing rectangle S = [−0.028, 0.344] × [0.458, 0.647]. Once
such an enclosure of x(t;x0) for the target time interval is available, it is possible
to bound the factor |h(x(τ))| in our eq. (3.23), and compare the resulting bound to
that of [72]. We report in Fig. 3.5 a graphical comparison for the VdP instance of
[72, Sect.4.4]. On the left, we report from [72, Fig.1] a plot of the ‘envelopes’ of the
exact solution (x2 component) obtained using the truncated Carleman approximation
and their error bounds; the exact solution is the dashed black line in the middle. On
the center of the figure, we report on the same scale a plot of the envelopes obtained
using our reduced order approximation ĝ(t;x0) (g = x2) and our error bound (3.23),
considering two different values of our parameter m; we see that our envelopes are
extremely tight around the exact solution (black, dashed). A close up of this plot is
reported on the right of the figure. A similar comparison can be carried out with
the example in [10, Sect.8.1], in particular with their error bounds reported in [10,
Fig.2]. For instance, considering the initial condition x0 = (

√
2,
√

2), which lies in
the rectangle they consider, already for m = 4 our bound (3.23) yields a maximum
error of 0.00585 at t = τ ∗, which appears to be well below the minimum error yielded
by their bound, over all the considered values of N ([10, Fig.2], solid red line). This
case can be easily extended to a more systematic comparison.

3.8.3 Reachsets: comparison with Flow∗ and cora

Flow∗ [47] and cora [8] are state-of-the-art tools for reachability analysis; they are
quite effective at building (over-approximations of) reachsets. The purpose of the
following comparison is showing that building reachsets around our the approximate
solutions x̂(t;x0), as we do in ckr, can be beneficial for accuracy. We compare
the reachsets Rk produced by ckr with those produced by Flow∗ and cora on three
examples, one stable and two unstable. Specifically, we consider: (1) the system in
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Sys TH

Termination Accuracy (average area) Execution time

Flow∗ CORA CKR Flow∗ CORA CKR Flow∗ CORA CKR

m=4 m=8 m=10 all m all m m=4 m=8 m=10 all m m=4/5 m=4 m=8 m=10 m=4 m=4/5

(3.41)b

1 1 1 1 1 1 0.02 0.02 0.02 0.01 0.01 0.12 1.45 3.90 0.17 13.31

3 3 3 3 2.2∗ 3 22.75 6.20 6.18 1.27∗ 2.82 0.98 4.67 14.94 0.47∗ 50.31

5 2.7∗ 5 5 2.2∗ 5 99.67∗ 4.37 4.35 1.27∗ 1.57 2.74∗ 8.55 25.24 0.49∗ 94.79

(3.43)

1 1 1 1 0.6∗ 1 5.16 3.34 3.33 5.34∗ 0.95 0.38 6.92 23.06 4.28∗ 14.27

3 1.3∗ 1.5∗ 1.5∗ 0.6∗ 3 8.37∗ 6.81∗ 6.10∗ 5.34∗ 0.72 5.04∗ 21.90∗ 67.76∗ 4.18∗ 37.96

5 1.3∗ 1.5∗ 1.5∗ 0.6∗ 5 8.37∗ 6.81∗ 6.10∗ 5.34∗ 0.62 4.94∗ 19.84∗ 76.48∗ 5.08∗ 64.42

VdP

1 1 1 1 1 1 0.37 0.37 0.37 0.15 0.12 0.13 1.71 5.03 2.02 13.72

3 3 3 3 3 3 0.16 0.15 0.15 0.09 0.05 0.42 5.05 15.42 5.13 37.05

5 5 5 5 5 5 0.15 0.13 0.13 0.18 0.07 0.77 8.54 24.93 10.36 65.66

Table 3.1: Comparison of Flow∗, cora and ckr on: system (3.41)(b)withX0 = [0.40, 0.52]×
[0.18, 0.27]; system (3.43) with X0 = [−0.5, 0.3] × [−0.7, 0.8]; the VdP system of Example
5 with X0 = [1.00, 1.50] × [2.00, 2.45]. Legenda: Sys = system’s equation reference, TH =
time horizon, Termination = time at which the algorithm stops, either by natural termination
or by breakdown (marked with ∗), Accuracy = average area of reachsets, m = approximation
order (see Appendix B.3 for further details).In each row, the best achieved results are marked
in boldface.

(3.41)(b) (unstable); (2) a new system (stable) defined by:

ẋ1 = −x3
1 + x2 ẋ2 = −x3

1 − x3
2 . (3.43)

and finally, (3) the VdP system introduced in Example 5 (unstable). VdP also exhibits
a limit cycle behaviour. We also stress-test the capabilities of the algorithms in terms
of initial sets by considering relatively large X0’s.

We measure the quality of the results as the average area of the reachsets in cor-
respondence of the timesteps returned by each algorithm, until natural or premature
termination: 1

N

∑N
k=1 a(Pk), where a(Pk) denotes the area of the polygon Pk corre-

sponding to the reachset at time tk (Pk = Rk for ckr). We report the obtained results
in Table 3.1, together with the time at which the different algorithms stop, possibly
due to an explosion of the overapproximation (breakdown time). For the sake of
completeness, we also report a column with execution times9.

As far as accuracy is concerned, in all cases the sets produced by ckr are tighter than
those produced by the other two, often significantly so. Concerning termination, ckr
is the only algorithm to complete its execution over the whole time horizon in all the

9It should be noted, though, that it makes little sense to compare a proof-of-concept implementation
with highly optimized tools in this respect. At any rate, all execution times are below 100 seconds.
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Figure 3.6: Reachsets computed with cora (left), Flow∗ (center) and ckr (right). Top row:
system (3.41)(b), Central row: system (3.43), Bottom row: VdP. In all cases, T = 5. See
text for details onm,X0.

considered cases. The difference among the results produced by the three algorithms
can be appreciated also graphically from a few plots of the computed reachsets, see
Fig. 3.6. Additional details on these experiments are reported in Appendix B.3.

3.9 Conclusion
We have presented an approach to effectively compute, given a nonlinear ode system,
a linear system which is at the same time small and useful to produce globally accurate
approximate solutions, under suitable conditions. We have argued that the method can
also bring some benefit to classical reachability analysis in terms of accuracy.

As for future work, it would be interesting to further explore the scalability of the
ckr algorithm. Application to Runtime Verification and Model Predictive Control
also deserves further attention.
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Chapter 4

SDEs, a (co)algebraic approach

4.1 Overview
In this chapter we investigate a connection among polynomials, differential equations
and streams, i.e., infinite sequences of elements from a set [155]. At a very informal
level, this connection can be expressed by the following correspondences: polynomials
= syntax; differential equations = operational semantics; streams = abstract (denota-
tional) semantics. There are two important motivations behind this standpoint. (1)
Diverse notions of product (convolution, shuffle,...) arise in streams, in relation to
different models – discrete computations, combinatorial sequences, analytic functions,
and more [17, 155]. There is also a close analogy between several forms of products
and forms of parallelism arising in concurrency. Our aim is to uniformly accom-
modate such diverse notions, by automatically deriving an operational semantics for
polynomials that is adequate for a given generic stream product. (2) Once adequate
polynomial syntax and operational semantics have been obtained, one can apply power-
ful techniques both from algebraic geometry (Groebner bases [57]) and from coalgebra
(coinduction [155]) for reasoning on streams. This includes devising algorithms for
deciding stream equivalence. Again, one would like to do so in a uniform fashion w.r.t.
an underlying notion of stream product.

Technically, achieving these goals amounts to defining a fully abstract semantics
from polynomials to streams, which is essential for algebraic-geometric reasoning on
streams. Moreover, one wants the resulting construction to be as much as parametric
as possible with respect to the underlying notion of stream product.

As hinted above, we will pursue these goals by relying on tools from algebra and
coalgebra. Indeed, it is well-known that, when polynomial coefficients and stream
elements are drawn from a field K, both polynomials and streams form commutative
K-algebras, i.e., ringswith an additional vector space structure overK. Note that, while
this algebra structure is fixed for polynomials, it varies with the underlying product
for streams. On the other hand, streams also possess a coalgebraic structure, arising
from the operation of stream derivative. On the side of polynomials, it is also natural
to interpret a differential equation ẋi = pi as a transition xi → pi: thus one expects a
transition structure, hence a coalgebra, over polynomials as well. How to appropriately
extend transitions from individual variables xi to monomials and polynomials, though,
nontrivially depends on the notion of stream product one wants to model.
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Our first result is that the above outlined goals can be achieved for the class of
(F ,G)-products on streams, where, basically, the derivative of a product of two streams
can be expressed as a polynomial of the streams themselves and their derivatives. As
an example, convolution, shuffle, Hadamard and infiltration products (see e.g. [17])
all fall in this class. One can then define a coalgebra structure on polynomials,
depending on the given (F ,G)-product and differential equations, such that the unique
morphism from this coalgebra to the coalgebra of streams is also a commutative K-
algebra homomorphism. And vice versa: every homomorphism that satisfies the given
differential equations is the unique morphism. Thus, full abstraction is achieved.

A major application of this result is an algorithm based on an algebraic-geometric
procedure for deciding stream equivalence, i.e. if two polynomials denote the same
stream. This procedure is then smoothly extended to an algorithm to find, for instance,
all valid polynomial identities up to a given degree. These algorithms are illustrated
on specific (F ,G)-products (convolution, shuffle), by automatically finding nontrivial
valid polynomial equations, for a few examples of SDEs. Note that algebraically
solving such equations in the ring of streams [155, 157] leads in turn to closed forms
for generating functions of sequences [71, 173].

Moreover, we add another tool to the streamcalculus: an Implicit FunctionTheorem
(IFT) for systems of stream polynomial equations. Indeed, while SDEs represent a
powerful computational device, depending on the problem at hand streams may be
more naturally expressed in an algebraic fashion, that is as the (unique) solution of
systems of polynomial equations. In analogy with the classical IFT from calculus
[152, 112, 168], our main result provides sufficient syntactic conditions under which
a system of polynomial equations has a unique stream solution. The theorem also
provides an equivalent system of SDEs, that is useful to actually compute the stream
solution. A crucial step toward proving the result is devising a stream version of
the chain rule from calculus, whereby one can express the derivative of a function
FFF(x, y1(x), ..., yn(x)) w.r.t. x in terms of the partial derivatives of FFF w.r.t. yi and the
ordinary derivative of the yi w.r.t. x.

To sum up, we make the following two main contributions. (1) A unifying treat-
ment of stream products, implying that, under reasonable assumptions, coalgebra
morphisms from polynomials to streams are also commutative K-algebra homomor-
phisms (full abstraction) – and vice versa. (2) Algorithms for deciding polynomial
stream equivalence and finding valid stream polynomial identities, that rely on the
full abstraction result. (3) An Implicit Function Theorem (IFT) for systems of stream
polynomial equations. The rest of the chapter is organized as follows. In Section 4.2
we introduce the necessary background on polynomials, differential equations, streams
and coalgebras. Section 4.3 contains our main result, the coincidence of coalgebra
morphisms and algebra homomorphisms, under certain conditions on the underlying
stream product. As a major application of this result, we present in Section 4.4 an
algorithm for deciding stream equality. This is expanded in Section 4.5, where we
present a method to find all valid polynomial identities that fit a given template. This
result is related to existing algorithms for linear weighted automata/expressions. In
Section 4.6, in the setting of the stream calculus and of polynomial equations, we
obtain a version of the IFT whose form resembles closely the classical one (Theorem
8). In Section 4.7, beyond the formal similarity, we discuss the precise mathematical
relation of the stream IFT with the classical IFT (Theorem 9). As an extended example
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of application of the stream IFT, in Section 4.8 we apply the result to the problem of
enumerating three-colored trees [71, Sect.4,Example 14], a typical class of combina-
torial objects that are most naturally described by algebraic equations. In Section 4.9
we discuss the computational aspects of the stream IFT. Section 4.10 briefly draws
some concluding remarks and discusses potential directions for future work. For ease
of reading, the proofs of some intermediate technical results have been confined to a
separate appendix, Appendix C.

Related work Rutten’s stream calculus [155, 157], a coinductive approach to the
analysis of infinite sequences (streams), is a major source of inspiration for our work.
[155] studies streams, automata, languages and formal power series in terms of coal-
gebra morphisms and bisimulation. In close analogy with classical analysis, [157]
presents coinductive definitions and proofs for a calculus of behavioural differential
equations, also called stream differential equations (SDEs) in later works. A num-
ber of applications to difference equations, analytical differential equations, continued
fractions and problems from combinatorics, are presented. Convolution and shuffle
products play a central role in the stream calculus; a duality between them, mediated
by a variation of Laplace transform, exists [156].

A coinductive treatment of analytic functions and Laplace transform is also pre-
sented by Escardo and Pavlovic [141]. Basold et al. [17] enrich the stream calculus
with two types of products, Hadamard and infiltration, and exhibit a duality between
the two, mediated by a so-called Newton transform. Although these works form a
conceptual prerequisite of our study, they do not offer a unifying treatment of the exist-
ing disparate notions of stream product, nor any algorithmic treatment of the induced
stream equivalences.

Boreale [30] and Bonchi et al. [21] consider an operational approach to streams
and convolution product based on weighted automata, which basically correspond
to linear SDEs and expressions. They offer an equivalence checking algorithm for
such automata and the recognized streams, based on a linear-algebraic construction;
however, the polynomial case is not addressed. Related to this is the work of Bonchi
et al. [16], where algorithms for equality of streams specified by linear SDEs, are
presented. Our results here generalize these algorithms, as we can also work with
polynomial SDEs. This will be made precise and discussed in the final part of Section
4.5.

We also mention [27, 29], that adopt a coinductive approach to reason on polyno-
mial odes. The ring of multivariate polynomials is employed as a syntax, with Lie
derivatives inducing a transition structure. An algebraic-geometric algorithm to decide
polynomial equivalence is presented. This algorithm as well has inspired our decision
method: in particular, as Lie derivatives are precisely the transition structure induced
in our framework by the shuffle product, the decision algorithms of [27, 29] are in
essence special cases of our algorithms in Section 4.4 and Section 4.5. Furthermore,
[31, 32] extend the framework of [27, 29] to polynomial partial differential equations,
which pose significant additional challenges.

Somewhat related to ours is the work of Winter on coalgebra and polynomial
systems: see e.g. [182, Ch.3]. Importantly, Winter considers polynomials in non-
commuting variables: under suitable assumptions, this makes his systems of equations
isomorphic to certain context-free grammars; see also [113]. The use of noncom-
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muting variables sets Winter’s treatment in mathematical realm that is totally different
from the one considered here. In particular, the algebraic geometric concepts we rely
on here, like ideals and Groebner bases, are not applicable in Winter’s framework.

In enumerative combinatorics [71, 173], formal power series defined via polyno-
mial equations are named algebraic series. [71, Sect.4] discusses several aspects of
algebraic series, including several methods of reduction, involving the theory of re-
sultants and Groebner bases. We compare our approach to algebraic series in Section
4.6, Remark 11.

More closely related to ours is the work of Hansen, Kupke and Rutten [89]. There
the authors prove that, when the SDEs defining given operations on streams obey a
GSOS syntactic format, the final coalgebra morphism is also a homomorphism from
the free term algebra to the algebra (w.r.t. the given operations) of streams [89, Sect.8].
It is interesting to note that our notion of (F ,G)-product falls in the abstract GSOS
format. However, we work with the algebra of polynomials, which besides being a
commutative ring and vector space overK, possesses additional structure arising from
monomials. All this structure is essential for algebraic-geometric reasoning, and sets
our approach apart from those based on term algebras: for one thing, in term algebras
there is no obvious analog of Hilbert’s basis theorem, a result deeply related to the well-
ordering of monomials (cf. Dickson’s lemma, [57, Ch.2]), and a crucial ingredient
in our decision algorithm. One might consider more complicated GSOS frameworks
enriched with equational theories: indeed, an abstract version of the GSOS format has
also been discussed in the framework of bialgebras [89, Sect.9] and distributive laws
[25]. Bialgebras require a substantial background in category theory, which we have
preferred to avoid here so as to keep our approach as elementary and accessible as
possible. A more technical discussion on this point is deferred to Section 4.3, Remark
6.

4.2 Preliminaries

4.2.1 Polynomials and differential equations
Let us fix a finite, non empty set of symbols or variables X = {x1, . . . ,xn} and
a distinct variable x /∈ X . Informally, x will act as the independent variable, while
x1, ...,xn will act as dependent variables, or functions, defined by differential equations
(see below). Notationally, we write X to denote {x} ∪ X . We fix a generic field K
of characteristic 0; K = R and K = C are typical choices. We let P 4= K[X ], ranged
over by p, q, ..., be the set of polynomials with coefficients in K and indeterminates
in X . We letM, ranged over by m,m′, ..., be the set of monomials, that is the free
commutative monoid generated byX . As usual, we shall denote polynomials as formal
finite sums of distinct monomials with nonzero coefficients in K: p = ∑

i∈I rimi, for
ri ∈ K and mi ∈ M. By slight abuse of notation, we shall write the zero polynomial
and the empty monomial as 0 and 1, respectively. Over P , one can define the usual
operations of sum p + q and product p · q, with 0 and 1 as identities, and enjoying
commutativity, associativity and distributivity, which make P a ring; multiplication
of p ∈ P by a scalar r ∈ K, denoted rp, is also defined and makes (P , +, 0) a vector
space over K. Therefore, (P , +, ·, 0, 1π) forms a commutative K-algebra.
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We shall also fix a set D = {ẋ1 = p1, ..., ẋn = pn} of differential equations,
one for each xi ∈ X , where the pi’s belong to P and are called drifts. An initial
condition for D is a vector ρ = (r1, ..., rn) ∈ Kn. The pair (D, ρ) forms an initial
value problem. Informally, each xi ∈ X represents a placeholder for a function whose
derivative is given by pi, and whose value at the origin is xi(0) = ri. This terminology
is borrowed from the theory of differential equations. However, note that, depending
on the semantics of polynomial product one adopts (see next section), D can be given
diverse interpretations, including stream differential equations (SDE, for convolution,
see next subsection) in the sense of Rutten [155], and of course odes (for shuffle). In
the literature on bialgebras and distributive laws, initial value problems are sometimes
referred to as coequations [58].

Notationally, it will be sometimes convenient to regard D and ρ as functions
D : X → P and ρ : X → K, respectively, such that D(xi) = pi and ρ(xi) = ri.
It is also convenient to extend D and ρ to x by letting D(x) = 1 and ρ(x) = 0;
note that, seen as an initial value problem, the last two equations define the identity
function. Finally, we let x0 denote x and, when using D and ρ as functions, use xi as
a metavariable on X : this makes D(xi) and ρ(xi) well defined for 0 ≤ i ≤ n.

4.2.2 Streams
We quickly review some basic notions taken from [155]. We let Σ〈K〉 4= Kω, ranged
over by σ, τ , ..., denote the set of streams, that is infinite sequences of elements from
K: σ = (r0, r1, r2, ...) with ri ∈ K. Often K is understood from the context and
we shall simply write Σ rather than Σ〈K〉. When convenient, we shall explicitly
consider a stream σ as a function from N to K and, e.g., write σ(i) to denote the i-th
element of σ. By slightly overloading the notation, and when the context is sufficient
to disambiguate, the stream (r, 0, 0, ...) (r ∈ K) will be simply denoted by r, while
the stream (0, 1, 0, 0, ...) will be denoted by X; see [155] for motivations behind these
notations. Furthermore, a stream made up of all the same element r ∈ K will be
denoted as r = (r, r, ...). One defines the sum of two streams σ and τ as the stream
σ + τ defined by: (σ + τ)(i) 4= σ(i) + τ(i) for each i ≥ 0, where the + on the right-
hand side denotes the sum inK. Sum enjoys the usual commutativity and associativity
properties, and has the stream 0 = (0, 0, ...) as an identity.

Various forms of stream products, generically denoted by π and with identity 1π,
can also be considered – this is indeed a central theme of our work. In particular,
the convolution product (written ×) and the shuffle product (written ⊗) are defined as
follows, for any i ≥ 0:

(σ×τ)(i) 4=
∑

0≤j≤i
σ(j)·τ(i−j) (σ⊗τ)(i) 4=

∑
0≤j≤i

(
i

j

)
σ(j)·τ(i−j), (4.1)

where operations on the right-hand side are carried out in K.1 Both products are
commutative, associative, have 1 = (1, 0, 0, ...) as an identity, and distribute over +;
multiplication of σ = (r0, r1, ...) by a scalar r ∈ K, denoted rσ = (r r0, r r1, ...), is

1The above operations enjoy alternative, easier to handle formulations based on stream differential
equations – see next subsection; there, a crucial notion will be the derivative of a stream σ, that is the
stream σ′ obtained from σ by removing its first element.
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also defined and makes (Σ, +, 0) a vector space over K. Therefore, (Σ, +,π, 0, 1)
forms a commutative K-algebra for both products. Let us record the following useful
properties for future use: X × σ = (0, r0, r1, ...) and r π σ = (r r0, r r1, ...), where
r ∈ K and π ∈ {×,⊗}. In view of the second equation above, r π σ coincides with
rσ. The first equation above leads to the so called fundamental theorem of the stream
calculus, whereby for each σ ∈ Σ

σ = σ(0) +X × σ′ . (4.2)

Less commonly found forms of products, like Hadamard and Infiltration products,
will be introduced in the next subsection; equations similar to (4.2) exist also for such
products [17, 89].

4.2.3 Coalgebras, SDEs and bisimulation
We quickly review some basic definitions and results about coalgebras and bisim-
ulation; see e.g. [155] for a comprehensive treatment. A (stream) coalgebra with
outputs inK is a Moore automaton C = (S, δ, o), where S is a nonempty set of states,
δ : S → S is the transition function, and o : S → K is the output function. A
bisimulation on C is a binary relation R ⊆ S×S such that, whenever (s, t) ∈ R, then
o(s) = o(t) and (δ(s), δ(t)) ∈ R. As usual, there always exists a largest bisimulation
onC, denoted∼: it is the union of all bisimulations and it is an equivalence relation on
S. Given two coalgebrasC1 andC2, a coalgebra morphism between them is a function
µ : S1 → S2 from the states of C1 to the states of C2 that preserves transitions and
outputs, that is (with obvious notation): µ(δ1(s)) = δ2(µ(s)) and o1(s) = o2(µ(s)), for
each s ∈ S1. Coalgebra morphisms preserve bisimilarity, in the sense that s ∼ t in C1
if and only if µ(s) ∼ µ(t) in C2. A coalgebra C0 is final in the class of coalgebras with
outputs in K if, from every coalgebra C in this class, there exists a unique morphism
µ from C to C0. In this case, ∼ in C0 coincides with equality, and the following
coinduction principle holds: for every C and s ∼ t in C, it holds that µ(s) = µ(t) in
C0.

The set of streams Σ can be naturally given a stream coalgebra structure
(Σ, (·)′, o(·)), as follows. The output of a stream σ = (r0, r1, . . .) is o(σ) 4= r0

and its derivative is σ′ 4= (r1, r2, ...), that is σ′ is obtained from σ by removing its first
element, that constitutes the output of σ. In fact, this makes Σ final in the class of all
coalgebras with outputs inK [155]. This also implies that one can prove equality of two
streams by exhibiting an appropriate bisimulation relation relating them (coinduction).

It is sometimes convenient to consider an enhanced form of bisimulation on Σ that
relies on the notion of linear closure.2 Given a relation R ⊆ Σ× Σ, its linear closure
R̂ is the set of pairs of the form (∑n

i=1 riσi , ∑n
i=1 riτi), where n ∈ N, (σi, τi) ∈ R and

ri ∈ K, for every i ∈ {1, . . . ,n}. We say that R is a bisimulation up to linearity if, for
every (σ, τ) ∈ R, it holds that o(σ) = o(τ) and (σ′, τ ′) ∈ R̂. If R is a bisimulation
up to linearity, then R̂ is a bisimulation [155]; since by definition R ⊆ R̂, this implies
that R ⊆ ∼, the bisimilarity on streams, which coincides with equality.

2More general notions that we could have used here are contextual closure (see [17, Thm. 2.4]) and
works on distributive laws for bialgebras [22]. However, the simpler notion of linear closure suffices for
our purposes here.
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A stream differential equation (SDE) in the unknown σ is a pair of equations of the
form σ(0) = r and σ′ = φ, for r ∈ K and a stream expression φ (that can depend on
σ or its components, or even on σ′ itself). Under certain conditions on φ [89, 155], it
can be proven that there is a unique stream σ satisfying the above SDE. In this thesis,
we shall focus on the case where φ is represented by a polynomial expression – this
will be formalized in the next section. More formally, let σσσ = (σ1, ...,σn) a n-tuple
of streams and p(X,σσσ) the result of substituting the variables x and yyy in p with the
streams X and σσσ, respectively.

Definition 7 (SDE [155]). Given a tuple of polynomials (p1, ..., pn) ∈ Pn and
rrr0 = (r1, ..., rn) ∈ Kn, the corresponding system of (polynomial) stream differen-
tial equations (SDEs) D and initial conditions are written as follows

D = {y′1 = p1, ..., y′n = pn} ρ = {y1(0) = r1, ..., yn(0) = rn} . (4.3)

The pair (D, ρ) is also said to form a (polynomial) SDE initial value problem for the
variables yyy. A solution of (4.3) is a tuple of streams σσσ = (σ1, ...,σn) ∈ Σn such that
σ′i = pi(X,σσσ) and σi(0) = ri for i = 1, ...,n.

A natural generalization of the above definition are systems of rational SDEs,
where the right-hand side of each equation is a fraction of polynomials. Systems of
rational SDEs have indeed the same expressive power as polynomial ones: a version
of this (well-known) result will be explicitly formulated in Section 4.6 (see Lemma 8).

For a proof of the following theorem (in a more general context), see e.g. [89, 26].

Remark 4 (stream coefficients computation). We record for future use that a SDE
initial value problem (D, ρ) like (4.3) implies a recurrence relation, hence an algorithm,
to compute the coefficients of the solution streams σi. Indeed, denote by σ:k the stream
that coincides with σ when restricted to {0, ..., k} and is 0 elsewhere. This notation is
extended to a tuple σσσ componentwise. Then we have, for each i = 1, ...,n and k ≥ 0:

σi(0) = yi(0) (4.4)

σi(k + 1) = σ′i(k) = pi(X,σσσ)(k) = pi(X,σσσ:k)(k) (4.5)

where the last step follows from the fact that the k-th coefficient of pi(X,σσσ) only
depends on the first k coefficients of σσσ. In the literature, this is referred to as causality
(see [89, 105, 145], just to cite a few).

As an example, consider

y′ = y2 y(0) = 1

forwhichwe get the recurrence: σ(0) = 1 andσ(k+1) = σ2(k) = ∑k
j=0 σ(j)·σ(k−j).

From the computational point of view this is far from optimal. Indeed, in the case of
a single polynomial equation (n = 1) like this one, a linear (in y) recurrence relation
for generating the Taylor coefficients of the solution can always be efficiently built;
see [71, 173]. In the case of n > 1 equations, the situation is more complicated. We
defer to Section 4.9 further considerations on the computation of stream coefficients,
including details on an effective implementation of (4.5).
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For the time being, we observe that the product operations defined in the preceding
subsection enjoy a formulation in terms of SDEs. In particular (see [17, 89, 155]), for
given σ and τ , their convolution and shuffle products are the unique streams satisfying
the following SDEs (recall that, as a stream, x denotes (0, 1, 0, 0, ...)):

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = σ′ × τ + σ × τ ′ − x× σ′ × τ ′ (4.6)

(σ ⊗ τ)(0) = σ(0) · τ(0) (σ ⊗ τ)′ = σ′ ⊗ τ + σ ⊗ τ ′ . (4.7)

From the last equation, note the analogy between shuffle and interleaving of languages.
Moreover, the derivative of convolution product is usually defined as

(σ × τ)′ = σ′ × τ + σ(0)× τ ′ .

We shall generally prefer formula (4.6) because it is symmetric. The multiplicative
inverse of a stream σ w.r.t. × and ⊗ exists under the condition that σ(0) 6= 0. In the
case of convolution product, the inverse is denoted by σ−1 and satisfies the following
SDE and initial condition:

(σ−1)′ = −σ(0)−1σ′ × σ−1 (σ−1)(0) = σ(0)−1 . (4.8)

Two additional examples of stream products are introduced below; see [17] for the
underlying motivations. The Hadamard product � and the infiltration product ↑ can
be defined by the following two SDEs.

(σ � τ)(0) = σ(0)τ(0) (σ � τ)′ = σ′ � τ ′ (4.9)

(σ ↑ τ)(0) = σ(0)τ(0) (σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ ′) + (σ′ ↑ τ ′) . (4.10)

Hadamard product� is reminiscent of synchronization in concurrency theory and has
1 4= (1, 1, 1, ...) as an identity; it is just the componentwise product of two streams,
i.e. (σ � τ)(i) = σ(i)τ(i), for every i ≥ 0. Infiltration product ↑ is again reminiscent
of a notion in concurrency theory, namely the fully synchronized interleaving; it has
1 = (1, 0, 0, ...) as an identity.

4.3 (Co)algebraic semantics of polynomials and differ-
ential equations

The main result of this section is that, once fixed an initial value problem (D, ρ), for
every product π (with identity 1π) defined on streams and satisfying certain syntactic
conditions, one can build a coalgebra over polynomials such that the correspondingfinal
morphism into Σ is also a commutative K-algebra homomorphism from (P , +, ·, 0, 1)
to (Σ, +,π, 0, 1π). In essence, the polynomial syntax and operational semantics reflects
exactly the algebraic and coalgebraic properties of the considered π on streams.

To make polynomials a coalgebra, we need to define the output o : P → K and
transition δ : P → P functions. The definition of o(·) is straightforward and only
depends on the given initial conditions ρ: we let o 4= oρ be the homomorphic extension
of ρ, seen as a function defined over X , to P . Equivalently, seeing ρ as a point in
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Kn+1, we let oρ(p)
4= p(ρ), that is the polynomial p evaluated at the point ρ. It can be

easily checked that oρ(1) = 1.
The definition of δ, on the other hand, depends on π and is not straightforward.

We will confine ourselves to products π satisfying SDEs of the form: (σ π τ)′ =
F (σ, τ , ...), for a given polynomial function F . Then, we will require that δ on
polynomials mimics this equation. For instance, in the case of shuffle product, we
expect that δ(pq) = pδ(q) + qδ(p). Therefore, our first step is to precisely define
the class of products on streams that satisfy a polynomial SDE. To this purpose, in
what follows we shall consider polynomials G(y1) ∈ K[y1] and F (x, y1, ..., y4) ∈
K[x, y1, y2, y3, y4]. These can be identified with polynomial functions on streams: we
shall write G(σ1), F (x,σ1, ...,σ4) for the evaluation of G,F in (Σ, +,π, 0, 1π) with
specific streams x = (0, 1, 0, ...) and σ1, ...,σ4.

Definition 8 ((F ,G)-product on streams). Let (Σ, +,π, 0, 1π) be a commutative K-
algebra, F ∈ K[x, y1, y2, y3, y4] and G ∈ K[y1]. We say that π is a (F ,G)-product if,
for each σ, τ ∈ Σ, the following equations are satisfied:

1. (σ π τ)(0) = σ(0)τ(0) and (σ π τ)′ = F (x,σ,σ′, τ , τ ′);

2. 1π(0) = 1 and 1′π = G(1π) .

Remark 5. Notice that 1π(0) = 1 in Definition 8(2) is a necessary condition, that
follows from Definition 8(1). Indeed, let 1π(0) = r ∈ K. Since 1π is the identity of π,
for every σ we must have σ π 1π = σ, hence (σ π 1π)(0) = σ(0). On the other hand,
by Definition 8(1), (σ π 1π)(0) = σ(0) 1π(0) = σ(0) r. As σ is arbitrary, we can take
σ(0) 6= 0 and multiply σ(0) r = σ(0) by σ(0)−1; this gives r = 1. However, we prefer
to keep 1π(0) = 1 explicit in the definition, for the sake of clarity. As an aside, we note
that (F ,G)-products fall in the GSOS format of [89]: this ensures that, for any given
(F ,G), conditions (1) and (2) in Definition 8 univocally define a binary operation π
on streams. However, this does not immediately entail that π enjoys the commutative
ring axioms for product, a fact that we assume from the outset so as to ensure that Σ
forms a commutative K-algebra. We will return to this point in Remark 6 in Section
4.3.

Example 8. For the products introduced in Section 4.2, the pairs of polynomials (F ,G)
are defined as follows:

• F× = y2y3 +y1y4−xy2y4. Note that F× = y2y3 + (y1−xy2)y4, where y1−xy2
corresponds to σ − x × σ′ = σ(0); this gives the asymmetric definition of
convolution.

• F⊗ = y2y3 + y1y4.

• F� = y2y4.

• F↑ = y2y3 + y1y4 + y2y4.

The identity stream for convolution, shuffle and infiltration is defined by 1π(0) = 1
and 1′π = 0, i.e., in these cases the polynomial G is 0. For the Hadamard product, the
identity is given by 1π(0) = 1 and 1′π = 1π, i.e., the polynomial G in this case is y1.
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Given a (F ,G)-product π on streams, δ is defined in a straightforward manner on
monomials, then extended to polynomials by linearity. Below, we assume a total order
on variables x0 < x1 < · · · < xn and, for any monomial m 6= 1, let min(m) denote
the smallest variable occurring inm w.r.t. such a total order3.
Notation. In what follows, the definition of derivative δ (Definition 9) and of

coalgebra morphism µ (Theorem 4) depend not only on π, but also on a given initial
value problem (D, ρ). To avoid excessive notational burden, wewill assume that (D, ρ)
is fixed once and for all, and omit the dependence on it from the notation, writing e.g.
δπ in place of δπ,(D,ρ), and so on.

Definition 9 (transition function δπ). Let π be a (F ,G)-product on streams. Given
an initial value problem (D, ρ), we define δπ : P → P by induction on the size of
p ∈ P as follows:

δπ(1) = G(1) (4.11)

δπ(xi) = D(xi) (4.12)

δπ(xim) = F (x,xi, δπ(xi),m, δπ(m)) form 6= 1 and xi = min(xim)
(4.13)

δπ

(∑
i∈I

rimi

)
=
∑
i∈I

ri δπ(mi) . (4.14)

The formal similarity between the definition given above and the construction in [89,
Prop.5.4] is noteworthy. Expressed in the language of monads, an important difference
is that the monad V of vector spaces in [89] should be replaced here with the monad
P of commutative multivariate polynomials; we will return to this point in Remark 6.

Example 9. Returning to the products defined in Section 4.2, we have:

δπ(1) =
{

0 for π ∈ {×,⊗, ↑} (convolution, shuffle, infiltration)
1 for π = � (Hadamard)

δπ(xim) =


D(xi) ·m+ xi · δπ(m)− x · D(xi) · δπ(m) for π = × (convolution)
D(xi) ·m+ xi · δπ(m) for π = ⊗ (shuffle)
D(xi) · δπ(m) for π = � (Hadamard)
D(xi) ·m+ xi · δπ(m) +D(xi) · δπ(m) for π = ↑ (infiltration) .

We must now impose certain additional sanity conditions on F to ensure that the
final coalgebra morphism induced by δπ, as just defined, is also an algebra homomor-
phism. In the rest of this chapter, we will make use of the following abbreviation

Fπ[p; q] 4= F (x, p, δπ(p), q, δπ(q)).

The necessity of the following conditions is self-evident, if one thinks of Fπ[p; q] as
δπ(p · q) (see Lemma 5 below).

3In Definition 9, we are in effect totally ordering monomials by graded lexicographic order (grlex,
see [57, Ch.1]), and then proceeding by induction on this order.
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Definition 10 (well-behavedness). Let π be a (F ,G)-product on streams. We say
that π is well-behaved if, for each initial value problem (D, ρ), the following equalities
hold, for every p, q ∈ P ,m1,m2,mi ∈M, xi ∈ X and ri ∈ K:

Fπ[1; q] = δπ(q) (4.15)

Fπ[xim1;m2] = Fπ[m1;xim2] (4.16)

Fπ

[∑
i∈I

rimi ; q
]

=
∑
i∈I

ri Fπ[mi; q] (4.17)

Fπ[p; q] = Fπ[q; p] . (4.18)

All products defined in Section 4.2 are well-behaved: the proof of this fact, which
is not entirely trivial, is reported in Appendix C (see Proposition C.1.1).

We are now ready to prove the main result of this section, i.e. that µπ is a
commutative K-algebra homomorphism. Intuitively, its proof consists in showing
that µπ preserves all the operations in P , by exhibiting in each case an appropriate
bisimulation relation in Σ × Σ and then applying coinduction. As expected, the
most crucial case is product, where one shows that the relation consisting of all pairs
(µπ(p1 · . . . · pk) , µπ(p1) π . . . π µπ(pk)) (for k > 0) is a bisimulation up to linearity.
In this case, Lemma 5 below is used to prove that µπ preserves transitions: indeed,
it connects morphism to homomorphism properties induced by π. The proof is in
Appendix C.

Lemma 5. Let π be a well-behaved (F ,G)-product. Then, for every p, q ∈ P , it holds
that δπ(p · q) = Fπ[p; q].

In the next proof and in the rest of this section, we will use the following notation.
Given a polynomial substitution (i.e., a map from variables to polynomials) ζ , and
a monomial m = xi1 · · ·xik , we let mζ denote the polynomial ζ(xi1) · . . . · ζ(xik).
Similarly, given a stream substitution (i.e., a map from variables to streams) ξ, we let
mξ denote the stream ξ(xi1) π · · · π ξ(xik).

Theorem 4. Let π be a well-behaved (F ,G)-product. Then the (unique) coalgebra
morphismµπ from (P , δπ, oρ) to (Σ, (·)′, o) is a commutativeK-algebra homomorphism
from (P , +, · , 0, 1) to (Σ, +,π, 0, 1π).

Proof.We prove that µ = µπ preserves the ring operations and their identities, as well
as multiplication by a scalar.

1. µ(r1p+ r2q) = r1µ(p) + r2µ(q). We prove that

R = {(µ(r1p+ r2q) , r1µ(p) + r2µ(q)) : p, q ∈ P , r1, r2 ∈ K}

is a bisimulation. Pick up any (µ(r1p + r2q) , r1µ(p) + r2µ(q)) ∈ R, we need
to prove two conditions.

(a) µ(r1p+ r2q)(0) = (r1µ(p) + r2µ(q))(0): since µ is a coalgebra morphism
and by definitions, µ(r1p+r2q)(0) = oρ(r1p+r2q) = r1 oρ(p)+r2 oρ(q) =
r1µ(p)(0) + r2µ(q)(0) = (r1µ(p) + r2µ(q))(0).
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(b) µ(r1p + r2q)′ = (r1µ(p) + r2µ(q))′: since µ is a coalgebra morphism, by
(4.14) and by definitions, µ(r1p+r2q)′ = µ(δπ(r1p+r2q)) = µ(r1δπ(p)+
r2δπ(q)), whereas by definition and by the fact that µ is a coalgebra mor-
phism, (r1µ(p)+r2µ(q))′ = r1µ(p)′+r2µ(q)′ = r1µ(δπ(p))+r2µ(δπ(q)).
This suffices to conclude, since (µ(r1δπ(p) + r2δπ(q)) , r1µ(δπ(p)) +
r2µ(δπ(q))) ∈ R.

2. Concerning the identity of sum, by part 1 we have that µ(0) = µ(p − p) =
µ(p)− µ(p) = 0.

3. µ(1) = 1π. It suffices to prove that

R = { (µ(1) , 1π) }

is a bisimulation up to linearity. To this aim, we need to check two conditions.

(a) µ(1)(0) = 1π(0). Since µ is a coalgebra morphism, by definition of 1, and
by Def. 8(2), we have that µ(1)(0) = oρ(1) = 1 = 1π(0).

(b) µ(1)′ = 1′π. SinceG is a polynomial in the variable y1 (i.e. G = ∑
i∈I rimi,

where themi’s are monomials in y1), we have that

µ(1)′ = µ(δπ(1)) µ is a coalgebra morphism

= µ(G(1)) by (4.14) and (4.12)

= ∑
i∈I ri µ(miζ) point 1 of this proof

= ∑
i∈I ri µ(1)

where ζ is the substitution that maps y1 to 1, hence all monomialsmi eval-
uated under ζ yield 1, which justifies the last step above. By Definition 8(2)
and definition ofG, we have that 1′π = G(1π) = ∑

i∈I ri (miξ) = ∑
i∈I ri 1π

where ξ is the substitution that maps y1 to 1π, hence all monomialsmi eval-
uated under ξ yield 1π. This suffices to conclude up to linearity.

4. µ(p · q) = µ(p) π µ(q). To prove this fact, let us consider the relation

R = {(µ(p1 · . . . · pk) , µ(p1)π . . . π µ(pk)) : pi ∈ P , k > 0 }

and prove that it is a bisimulation up to linearity. Let us consider any (σ, τ) =
(µ(p1 · . . . ·pk) , µ(p1) π . . . π µ(pk)) ∈ R. We will prove that (a) o(σ) = σ(0) =
τ(0) = o(τ) and (b) (σ′, τ ′) ∈ R̂ (the linear closure of R). The case k = 1 is
trivial, so assume k > 1. Let q = p2 · . . . · pk. We check conditions (a) and (b)
defined above.

(a) µ(p1 · q)(0) = (µ(p1) π µ(q))(0):

µ(p1 · q)(0) = oρ(p1 · q) since µ is a coalgebra morphism

= oρ(p1)oρ(q) by def. of oρ(·)

= µ(p1)(0)µ(q)(0) since µ is a coalgebra morphism

= (µ(p1)π µ(q))(0) by Definition 8(1).
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(b) µ(p1 · q)′ R̂ (µ(p1) π µ(q))′: By assumption F is a polynomial in the
variables x, y1, . . . , y4, i.e. F = ∑

i∈I rimi, where ri ∈ K and the mi’s
are monomials in these variables. Let ζ : {x, y1, . . . , y4} → P and ξ :
{x, y1, . . . , y4} → Σ be the substitutions defined as follows.

ζ : x 7→ x ξ : x 7→ µ(x)
y1 7→ p1 y1 7→ µ(p1)
y2 7→ δπ(p1) y2 7→ µ(δπ(p1))
y3 7→ q y3 7→ µ(q)
y4 7→ δπ(q) y4 7→ µ(δπ(q)) .

Then we have

µ(p1 · q)′ = µ(δπ(p1 · q)) µ is a coalgebra morphism

= µ(Fπ[p1; q]) Lemma 5

= µ (∑i∈I ri (miζ)) def. of F [ · ; · ]

= ∑
i∈I ri µ(miζ) part 1 of this proof

and

(µ(p1)π µ(q))′ = F (µ(p1),µ(p1)′,µ(q),µ(q)′) Def. 8(1)

= F (µ(p1),µ(δπ(p1)),µ(q),µ(δπ(q))) µ coalgebra morphism

=
∑
i∈I ri (miξ) def. of F .

Now, by definition, (µ(miζ) , miξ) ∈ R for every i ∈ I . Thus, we
conclude up to linearity.

2

To conclude the section, we also present a sort of converse of the previous theorem.
That is, µπ is the only commutative K-algebra homomorphism that respects the initial
value problem, i.e. that satisfies µπ(xi)′ = µπ(D(xi)) and µπ(xi)(0) = ρ(xi). This
is an immediate corollary of the following result (proof in Appendix C) and of the
uniqueness of the final coalgebra morphism.

Proposition 5. Let π be a well-behaved (F ,G)-product and ν be a commutative K-
algebra homomorphism from (P , +, · , 0, 1) to (Σ, +,π, 0, 1π) that respects (D, ρ).
Then, ν is a coalgebra morphism from (P , δπ, oρ) to (Σ, (·)′, o).

Remark 6 (relations with abstract GSOS and bialgebras). Polynomial syntax and
operational semantics might also be described in terms of distributive laws and bial-
gebras, thus allowing one to leverage known results in this field [25, 89]. Below, we
outline this possibility; in doing so, we shall assume a basic knowledge of the language
of category theory.

With bialgebras, the algebraic and coalgebraic structures are combined together,
and their interaction is modeled via a distributive law. Specifically, a monad is used to
describe the (possibly non free) syntax. A distributive law is a natural transformation
that is compatible with the monadic and coalgebraic structure. In the case that interests
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us, the set of commutative, multivariate polynomials can be modelled as a monad on
the category Set (of sets and functions), defined by letting P be the set of polynomial
terms over X quotiented by the congruence generated by the axioms of commutative
K-algebras. The Eilenberg-Moore algebras forP are then the commutativeK-algebras.
As already noted, the conditions in the definition of (F ,G)-product ensure that the
product operation and its identity are defined and fall in the abstract GSOS format.
The results in [25] imply then the existence of a distributive law λ of the polynomial
terms monad over the (copointed) stream functor defining the coalgebraic structure.

We conjecture4 that, in this framework, our Theorem 4— that the coalgebra struc-
ture on P is such that the final coalgebra morphism is aK-algebra homomorphism for
every well behaved (F ,G)-product — should follow from Proposition 3 and Theorem
1 in [25], provided one can show that, for a generic (F ,G)-product, the corresponding
distributive law λ preserves theK-algebra axioms. In fact, we have checked some of the
K-algebra axioms for the distributive laws induced by the SDEs of specific products,
viz. convolution and shuffle. Extending this to the general case of a (F ,G)-product
would presumably involve proving that well-behavedness (our Definition 10) implies
preservation of the K-algebra axioms. This extension appears nontrivial; we leave a
thorough exploration of this connection for future work.

4.4 Deciding stream equality
One benefit of a polynomial syntax is the possibility of applying techniques from
algebraic geometry to reason about stream equality. We will devise an algorithm
for checking whether two given polynomials are semantically equivalent, that is, are
mapped to the same stream under µπ.

4.4.1 The algorithm
First of all, by linearity of µπ(·), we have that µπ(p) = µπ(q) if and only if µπ(p) −
µπ(q) = µπ(p−q) = 0. Therefore, checking semantic equivalence of two polynomials
reduces to the problem of checking if a polynomial is equivalent (bisimilar) to 0. Before
introducing the actual algorithm for checking this, we quickly recall a few notions from
algebraic geometry; see [57, Ch.1–4] for a comprehensive treatment.

Definition 11 (Ideal). A set of polynomials I ⊆ P is an ideal if 0 ∈ I and, for all
p1, p2 ∈ I and q ∈ P , it holds that p1 + p2 ∈ I and q · p1 ∈ I . Given a set of
polynomials S, the ideal generated by S is

〈S 〉 4=


k∑
j=1

qj · pj : k ≥ 0 ∧ ∀j ≤ k.(qj ∈ P ∧ pj ∈ S)

 .

By the previous definition, we have that 〈 ∅ 〉 4= {0}. Trivially, I = 〈S 〉 is the
smallest ideal containing S, and S is called a set of generators for I . It is well-known
that every ideal I admits a finite set S of generators (Hilbert’s basis theorem). By
virtue of this result, any infinite ascending chain of ideals, I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ P ,

4We thank one of the reviewers for pointing out this connection.
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Algorithm 2 Checking equivalence to zero
Input: p ∈ P , an initial value problem (D, ρ), a well-behaved (F ,G)-product π
Output: YES (µπ(p) = 0) or NO (µπ(p) 6= 0)
1: for all k ≥ 0 do
2: if oρ(p(k)) 6= 0 then return NO
3: if p(k) ∈ 〈 {p(0), . . . , p(k−1)} 〉 then return YES
4: end for

stabilizes in a finite number of steps: that is, there is k ≥ 0 s.t. Ik+j = Ik for each
j ≥ 0 (Ascending Chain Condition, ACC). A key result due to Buchberger [57] is that,
given a finite S ⊆ P , it is possible to decide whether p ∈ I = 〈S 〉, for any polynomial
p. As a consequence, also ideal inclusion I1 ⊆ I2 is decidable, given finite sets of
generators for I1, I2.

Remark 7. These facts are consequences of the existence of a set of generatorsB for I ,
called Groebner basis, with a special property (see [57, Chpt.2–§6–Cor.2] ): p ∈ I if
and only if p mod B = 0, where ‘p mod B’ denotes the remainder of the multivariate
polynomial division of p by B. Indeed, by [57, Chpt.2–§3–Thm.3], we can define the
notion of multivariate polynomial division by a set of polynomials and, when such a set
is a Groebner basis [57, Chpt.2–§5–Def.5], we know by [57, Chpt.2–§6–Prop.1] that
the remainder of the division, denoted by p mod B, is unique (though the quotient is
not). There exist algorithms to build Groebner bases which, despite their exponential
worst-case complexity, turn out to be effective in many practical cases [57, Ch.4].

In what follows, we fix a well-behaved (F ,G)-product π, and let δπ and µπ denote
the associated transition function and coalgebra morphism. Moreover, we denote by
p(j) the j-th derivative of p, i.e. p(0) 4= p and p(j+1) 4= δπ(p(j)). The actual decision
procedure is presented as Algorithm 2. This algorithm characterizes the kernel of the
morphism µπ, that is ker(µπ) := {p ∈ P : µπ(p) = 0}. Informally speaking, to prove
that µπ(p) = 0, one might check if oρ(p(j)) = 0 for every j, which is of course non
effective. But due to ACC, at some point p(j) ∈ 〈 {p(0), . . . , p(j−1)} 〉, which implies
that the condition oρ(p(j)) = 0 holds for all j’s.

Formally, the correctness of this algorithm can be proven under an additional mild
condition on F : we require that F ∈ 〈 {y3, y4} 〉 seen as an ideal in K[x, y1, ..., y4].
Explicitly, F = h1y3 + h2y4 for some h1,h2 ∈ K[x, y1, ..., y4]. The polynomials
F for the products in Section 4.2 all satisfy this condition: for example, F× =
y2y3 + (y1 − xy2)y4.

Theorem 5. Let π be a well-behaved (F ,G)-product, with F ∈ 〈 {y3, y4} 〉. Then,
Algorithm 2 with input p, (D, ρ) and π terminates and it returns YES if and only if
µπ(p) = 0.

Proof. Non termination for some input polynomial p would imply that, for all k ≥ 0,
p(k+1) 6∈ Ik

4= 〈 {p(0), . . . , p(k)} 〉. This in turn would imply an ever ascending chain of
ideals I0  I1  · · · , contradicting ACC.

If the algorithm returns NO, then for some k we must have (recall that σ(k) stands
for the k-th stream derivative of σ): oρ(p(k)) = o(µπ(p)(k)) = (µπ(p)(k))(0) 6= 0, thus
µπ(p) 6= 0.
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Assume now that the algorithm returns YES. Then there exists k ≥ 0 such that
oρ(p(j)) = 0, for every 0 ≤ j ≤ k, and p(k) ∈ 〈 {p(0), . . . , p(k−1)} 〉. Excluding the
trivial case p = 0, we can assume k ≥ 1. If we prove that p(k+j) ∈ 〈 {p(0), . . . , p(k−1)} 〉
for every j ≥ 0, the claim follows: indeed, by p(k+j) = ∑k−1

i=0 qi · p(i), for some
qi ∈ P , and by oρ(p(i)) = 0 for every 0 ≤ i ≤ k − 1, it also follows (µπ(p))(j) =
(µπ(p))(j)(0) = oρ(p(k+j)) = 0. Now the proof that p(k+j) ∈ 〈 {p(0), . . . , p(k−1)} 〉 is
by induction on j. The base case (j = 0) holds by assumption. For the induction step,
let us consider p(k+j+1). By definition, p(k+j+1) = δπ(p(k+j)); by induction p(k+j) =∑k−1
i=0 qi ·p(i), for some qi ∈ P . By (4.14) and Lemma 5, p(k+j+1) = ∑k−1

i=0 δπ(qi ·p(i)) =∑k−1
i=0 Fπ[qi; p(i)]. By hypothesis F ∈ 〈 {y3, y4} 〉, hence Fπ[qi; p(i)] ∈ 〈 {p(i), p(i+1)} 〉,

for every i, therefore Fπ[qi; p(i)] ∈ 〈 {p(0), . . . , p(k−1)} 〉, as by hypothesis p(k) ∈
〈 {p(0), . . . , p(k−1)} 〉. This suffices to conclude. 2

We first illustrate the algorithm with a simple, linear example.

Example 10 (Fibonacci numbers). Consider the initial value problem (D, ρ) given
by the following equations.{

ẋ1 = x2

ẋ2 = x1 + x2

{
ρ(x1) = 0
ρ(x2) = 1 . (4.19)

Let us consider here the convolution product ×. It is easily checked that x1 defines
the Fibonacci numbers: µ×(x1) = (0, 1, 1, 2, 3, 5, 8, 13, . . .). We want to prove the
following equation:

µ×(x1 · (1− x− x2)) = µ×(x) . (4.20)

Equivalently, using Algorithm 2, we check that µ×(x1 · (1 − x − x2) − x) = 0. Let
p(x,x1) 4= x1 · (1 − x − x2) − x. Then, an execution of Algorithm 2 consists of the
following steps.

• (k = 0): ρ(p) = p(0, 1) = 0 and p(0) = p(x,x1) /∈ 〈 ∅ 〉 = {0}.

• (k = 1): p(1) = x2·(1−x−x2)−x1·(1+x)+x·x2·(1+x)−1 = x2−x1−x1x−1.
Hence, ρ(p(1)) = 1− 1 = 0 and p(1) 6∈ 〈 p 〉.

• (k = 2): p(2) = x1 + x2 − x2 − (x2x+ x1 − xx2) = 0. Hence, ρ(p(2)) = 0 and
trivially p(2) ∈ 〈 p, p(1) 〉.

We conclude that µ×(p) = 0.

The algorithm in [27] for polynomial odes can be seen as a special case of the
algorithm presented here, obtained by letting π = ⊗, the shuffle product. Indeed, it
is not difficult to see that δ⊗ coincides with the Lie derivative, on which the algorithm
in [27] is based. Technically, the key step to obtain the present generalization is
enucleating a sufficient condition under which, as soon as Ii = Ii+1, the ideals chain
gets stable: this is the syntactic requirement that the derivative of the product is in the
ideal generated by the arguments, F ∈ 〈 {y3, y4} 〉. Let us now discuss a nonlinear
example based on shuffle product.
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Example 11 (double factorial of odd numbers). Consider the initial value problem
(D, ρ) given by the following equation:

ẋ1 = x3
1 ρ(x1) = 1 . (4.21)

Let us consider here the shuffle product ⊗. It is easily checked that µ⊗(x1) =
(1, 1, 3, 15, 105, 945, 10395, 135135, . . .), the sequence of double factorials of odd
numbers (sequence A001147 in [139]). We want to check the following equation

µ⊗

(
x2

1

(
x− 1

2

)
+ 1

2

)
= 0 (4.22)

using Algorithm 2. Let q(x,x1) 4= x2
1(x − 1

2) + 1
2 . An execution of Algorithm 2

consists of the following steps.

• (k = 0): ρ(q) = q(0, 1) = 0 and q(0) = q(x,x1) /∈ 〈 ∅ 〉 = {0}.

• (k = 1): q(1) = 2x4
1x− x4

1 + x2
1 = 2x2

1q, hence q(1) ∈ 〈 q 〉.

We conclude that µ⊗(q) = 0. As δ⊗ represents the Lie derivative of polynomials, the
equality µ⊗(q) = 0 can also be interpreted in terms of odes: the unique solution x1(x)
of the initial value problem (4.22) satisfies the invariant q(x,x1(x)) = 0 for all x’s in
the interval of definition of the solution. In turn, this allows to compute algebraically
the solution x1(x) =

√
1

1−2x . See [27, 29] for additional details in the case of odes.

Remark 8. We can define the generating function associated to Fibonacci numbers,
that is the function g(z) whose Taylor series expansion from z = 0 is∑j≥0 fjz

j , where
fj are the Fibonacci numbers. For z in the radius of convergence of this series, we
have

g(z) = z

1− z − z2 . (4.23)

From [17] it is known that the convolution product inverse of a given stream σ exists
whenever σ(0) 6= 0. From (4.20) we obtain

µ×(x1) = µ×(x)× (µ×(1− x− x2))−1 = µ×(x)
1− µ×(x)− µ×(x)2

where we use the usual notation σ
τ
to denote σ × τ−1. This equation for µ×(x1) is

structurally identical to (4.23): this is of course no coincidence, as algebraic identities
on streams correspond exactly to algebraic identities on generating functions. Similarly,
the equivalence µ⊗(p) = 0 obtained for the double factorial equations yields the
exponential generating function for A001147 when solved algebraically for x1, that,
as seen in Example 11 above, is g(z) =

√
1

1−2z . For additional details on generating
functions and algebraic series, see [26].

Remark 9 (complexity). The exact theoretical complexity of Algorithm 2 is difficult
to characterize, as it also depends on the specific (F ,G)-product π that is considered.
One can try at least to work out some very conservative bounds. Let us denote by
d the sum of the degree of the input polynomial p and of the maximal degree of
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polynomials in D, and by n the number of variables. Assume that the algorithm stops
at iteration i + 1, where i is the least integer such that p(i+1) ∈ 〈{p(0), ..., p(i)}〉. We
note that: (a) each iteration of the main loop involves the computation of a Groebner
basis, for which known algorithms have an exponential worst case time complexity
upper bounded approximately by O(D2n), where D is the maximum degree in the
input polynomial set (see [57]); (b) the maximum degree D of the derivatives p(k)’s,
for 0 ≤ k ≤ i, depends on the actual (F ,G)-product that is considered. For instance,
in the case π = ⊗, it is not difficult to see thatD ≤ i · d, which gives a worst case time
complexity of approximately O(i2N+1d2N ). The number of steps i before stabilization
also depends on the actual (F ,G)-product. As an example, in the case of shuffle
product (Lie derivative), according to a result in [138], the number of steps i before
stabilization of an ascending chain of ideals generated by successive Lie derivatives is
upper bounded by dNO(N2) . One should stress that these are very conservative bounds,
and that the algorithms works reasonably well in many practical cases.

4.4.2 A fixed-point theoretic perspective

To set our algorithm in a more general coalgebraic perspective, it is useful to relate
it to a characterization of the kernel’s morphism in terms of fixed points. Given any
coalgebra with outputs in K, say C = (S, δ, o), consider the function Φ : 2S → 2S
defined below, for any I ⊆ S:

Φ(I) := {s ∈ S : o(s) = 0 ∧ δ(s) ∈ I} . (4.24)

We say that I is a post-fixed point of Φ if I ⊆ Φ(I) and a fixed point if this inclusion
holds with equality. Let us denote by gfp(Φ) the greatest fixed point of Φ. An easy ap-
plication of the Kanster-Tarski fixed point theorem and of the monotonicity of Φ shows
that the unique coalgebra morphism µ from C to the final coalgebra of streams can be
characterized as ker(µ) = gfp(Φ) = ⋃{I : I is a post-fixed point of Φ}. In terms of
the function Φ induced by the polynomials coalgebra C = (P , δπ, oρ), Algorithm 2, in
case of a YES answer, builds precisely a post-fixed point I = 〈{p(0), ..., p(k−1)}〉: the
minimal post-fixed point that is an ideal and contains the input polynomial p. In general,
however, I 6= gfp(Φ). This leaves open the problem of actually computing gfp(Φ),
that is ker(µπ), which can be regarded as the main object of interest here. The theory of
fixed points ensures that gfp(Φ) can be iteratively obtained as gfp(Φ) = ⋂

j≥0 Φ(j)(P)
where, inductively, Φ(0)(P) := S and Φ(j+1)(P) := Φ(Φ(j)(P)). While the resulting
procedure is formally correct, it is far from clear how to make it effective.

In the next section, we will introduce a generalization of Algorithm 2 that actually
allows one to find all polynomials in ker(µπ) up to a prescribed degree. We shall adopt a
hybrid approach: we will start from a set of polynomials of bounded degree, that can be
effectively described via a template; then refine this set, similarly to the construction of
gfp(Φ) described above. However, since applying δπ can actually increase the degree
of a polynomial, hence leading outside the initial set, at each iteration we shall also
need to add polynomials to the current set. Establishing termination of the resulting
procedure, as we shall see, is nontrivial.
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4.5 Finding polynomial identities
In the previous section we have described an algorithm to check whether two given
polynomials have the same denotation — hence, are semantically equivalent. Now we
generalize this algorithm and give a method to find all valid polynomial equations of
a given form. This can be used, for instance, to find all polynomial equalities up to
a given degree. To this aim, we use polynomial templates [164], a way to compactly
specify sets of polynomials. We note that the template-based algorithm presented in
[27] is a special instance of the present one, that can be obtained by letting π = ⊗.

Fix a tuple of h ≥ 1 distinct parameters, say a = (a1, ..., ah), disjoint from X .
Let Lin(a), ranged over by `, be the set of linear expressions with coefficients in K
and variables in a; e.g., by taking K = R, we have that ` = 5a1 + 1

2a2 − 3a3 is one
such expression5.A template is an element of the set Lin(a)[X ], that is, a polynomial
with linear expressions as coefficients; we let Θ range over templates. For example,
the following is a template:

Θ = (5a1 + 3a3)xx2
1 + (7a1 −

1
2a2 + 2a3)xx2 + (a2) . (4.25)

Given r = (r1, ..., rh) ∈ Kh, we will let `[r] denote the element of K resulting from
the evaluation of the expression obtained by replacing each ai with ri in `; we let
Θ[r] ∈ K[X ] denote the polynomial obtained by replacing each ` with `[r] in Θ. For
example, by taking Θ as in (4.25), we have that Θ[(1, 2, 1)] = 8xx2

1 + 8xx2 + 2. Given
a set R ⊆ Kh, we let Θ[R] denote the set {Θ[r] : r ∈ R} ⊆ K[X ].

The (formal) derivative of a template is defined as expected, once linear expressions
are treated as constants; note that δπ(Θ) is still a template. Because of (4.14), for each
Θ and r, one has δπ(Θ[r]) = δπ(Θ)[r]; this holds in general for the j-th derivative (for
every j ≥ 0):

δ(j)
π (Θ[r]) = δ(j)

π (Θ)[r] . (4.26)

To make notation lighter, when π is clear from the context, we shall write δ(j)
π (Θ) as

Θ(j).
We now present an algorithm that, given a template Θ with h parameters, finds

all instances p of Θ such that µπ(p) = 0. More precisely, given a template Θ, the
algorithm computes the intersection of Θ[Kh] with the kernel of µπ

ZΘ 4= Θ[Kh] ∩ ker(µπ) . (4.27)

Equivalently, Z = {p ∈ Θ[Kh] : ∀j ≥ 0, oρ(p(j)) = 0}, i.e. Z is the subset of the
instances of Θ whose derivatives of any order vanish, when evaluated at the initial
conditions ρ. In order to compute ZΘ, we shall rely on a a special kind of ideals,
namely invariants, that are defined by relying on the following notation: given P ⊆ P ,
we denote with δπ(P ) the set {δπ(p) : p ∈ P}.

5Differently from [164], we do not allow linear expressions with a constant term, such as 2 + 5a1 +
1
2a2−3a3. This minor syntactic restriction does not practically affect the expressiveness of the resulting
polynomial templates and simplifies the subsequent treatment.
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Algorithm 3 Finding all valid equalities of a given form
Input: Θ∈Lin(a)[X ], an initial value problem (D, ρ), a well-behaved (F ,G)-product

π

Output: (R, I) s.t. Θ[R] = ZΘ and I is the smallest invariant that includes Θ[R]
1: R0

4= {r ∈ Kh : oρ(Θ[r]) = 0}
2: I0

4= 〈Θ[R0] 〉
3: for all i ≥ 1 do
4: Ri

4= {r ∈ Kh : ∀j ≤ i. oρ(Θ(j)[r]) = 0}
5: Ii

4= 〈⋃j≤i Θ(j)[Ri] 〉
6: if Ri = Ri−1 ∧ Ii = Ii−1 then return (Ri−1, Ii−1)
7: end if
8: end for

Definition 12 (Invariant). Givan an initial value problem (D, ρ), an ideal I is a
(D, ρ)-invariant (or simply invariant, if the initial value is understood) if oρ(p) = 0,
for each p ∈ I , and δπ(I) ⊆ I .

The algorithm we are going to present returns a pair (R, I), where R ⊆ Kh

is such that Θ[R] = ZΘ and I is the smallest invariant that includes Θ[R]. We
calculate these two sets by building two chains: a descending chain of vector spaces
and an (eventually) ascending chain of ideals. A pseudo-code description6 of this
procedure is presented as Algorithm 3. Note that each set Ri is actually a vector
space in Kh: this is a consequence of the fact that, for each linear expression `, the set
V` := {r ∈ Kh : `[r] = 0} is in turn a vector space, and that Ri can equivalently be
described as follows, where Θ(ρ) denotes the polynomial obtained by replacing each
xi ∈ X with ρ(xi):

Ri =
⋂
{V` : ` occurs as a coefficient in one of Θ(ρ), ..., Θ(i)(ρ)} .

The ideal chain is used to detect the stabilization of the sequence. In fact, in the
sequence of vector spaces, Ri+1 = Ri does not imply that Ri+k = Ri for each k ≥ 1;
see Example 12 for an illustration of this phenomenon. For this reason, the algorithm
returns the pair (Rm, Im), where m is the least integer such that Rm+1 = Rm and
Im+1 = Im.

The correctness of Algorithm 3 is proven under the same mild condition on F
as we assumed for proving correctness of Algorithm 2. We give with a preliminary
lemma stating that the algorithm terminates, and that this happens exactly when the
two chains stabilize.

Lemma 6. Consider a template Θ and a well-behaved (F ,G)-product π such that
F ∈ 〈 {y3, y4} 〉. Then Algorithm 3 terminates. Furthermore, let (Ri, Ii) be the pair
of sets returned by the algorithm; then, Ri = Ri+k and Ii = Ii+k, for every k ≥ 1.

Proof. We first prove that there exists an i such thatRi+1 = Ri and Ii+1 = Ii. Indeed,
R0 ⊇ R1 ⊇ · · · forms an infinite descending chain of finite-dimensional vector spaces,

6A proof-of-concept implementation of Algorithm 3 is available. Python code, instructions and
examples available from https://github.com/Luisa-unifi/streams.
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which must stabilize in finitely many steps; hence, we can consider the least i′ such
that Ri′ = Ri′+k for each k ≥ 1. Then, Ii′ ⊆ Ii′+1 ⊆ · · · forms an infinite ascending
chain of ideals, which must stabilize at some i ≥ i′.

Then, let (Ri, Ii) be the sets returned by the algorithm; the proof is by induction
on k. The base case holds by line 6 of the algorithm. For the inductive case, we
assume that Ri = · · · = Ri+k and Ii = · · · = Ii+k, and we prove that Ri = Ri+k+1
and Ii = Ii+k+1. To this aim, we first show that

Θ(i+k+1)[r] ∈ Ii for each r ∈ Ri . (4.28)

Indeed, by induction hypothesis and definition of Ii+k, we have that Θ(i+k)[Ri] =
Θ(i+k)[Ri+k] ⊆ Ii+k = Ii; hence, for any r ∈ Ri, we have that Θ(i+k)[r] = ∑

t qt ·
Θ(jt)[rt], with 0 ≤ jt ≤ i and rt ∈ Ri. By (4.26), (4.14) and Lemma 5, we have that

Θ(i+k+1)[r] = δπ(Θ(i+k)[r]) =
∑
t

Fπ[qt; Θ(jt)[rt]] .

Since F ∈ 〈 {y3, y4} 〉, we have that Fπ[qt; Θ(jt)[rt]] ∈ 〈 {Θ(jt)[rt], Θ(jt+1)[rt]} 〉, for
each t; since ideals are closed under sum, Θ(i+k+1)[r] ∈ 〈⋃t{Θ(jt)[rt], Θ(jt+1)[rt]} 〉.
This proves (4.28) since, for each t, we have that Θ(jt)[rt], Θ(jt+1)[rt] ∈ Ii+1 = Ii (by
definition of Ii+1 and induction).

Let us now come to the proof of the inductive step:

Ri = Ri+k+1: To see this, observe that, for each r ∈ Ri+k(= Ri), it follows from (4.28)
that Θ(i+k+1)[r] = ∑

t qt ·Θ(jt)[rt], with 0 ≤ jt ≤ i and rt ∈ Ri. By construction
of Ri, we have that oρ(Θ(i+k+1)[r]) = 0, which shows that r ∈ Ri+k+1. This
proves thatRi+k ⊆ Ri+k+1; the reverse inclusion is by construction and, together
with the inductive hypothesis, allows us to conclude.

Ii = Ii+k+1: By the previous point, definition of Ii+k, inductive hypothesis and (4.28),
we have that

Ii+k+1 = 〈
i+k⋃
j=0

Θ(j)[Ri+k] ∪ Θ(i+k+1)[Ri+k] 〉

= 〈 Ii+k ∪ Θ(i+k+1)[Ri+k] 〉
= 〈 Ii ∪ Θ(i+k+1)[Ri] 〉
= 〈 Ii 〉
= Ii .

2

Theorem 6 (correctness and relative completeness). Consider a template Θ and a
well-behaved (F ,G)-product π such that F ∈ 〈 {y3, y4} 〉. Let (Ri, Ii) be the pair of
sets returned by Algorithm 3. Then:

(a) Θ[Ri] = ZΘ;

(b) Ii is the smallest invariant containing Θ[Ri].
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Proof. Concerning part (a), we first note that each Θ[r] ∈ ZΘ is such that
oρ(Θ[r](j)) = oρ(Θ(j)[r]) = 0, for each j ≥ 0; this, by definition, implies r ∈ Rj , for
each j ≥ 0, and so r ∈ Ri. Conversely, if r ∈ Ri = Ri+1 = Ri+2 = · · · (here we are
using Lemma 6), then, by definition, oρ(Θ[r](j)) = oρ(Θ(j)[r]) = 0, for each j ≥ 0,
which implies that Θ[r] ∈ ZΘ. Note that, in proving both inclusions, we used (4.26).

Concerning part (b), we prove that: (1) Ii is an invariant, (2) Ii ⊇ ZΘ, and (3)
every invariant I that contains ZΘ also contains Ii.

1. For each r ∈ Ri and j ∈ {0, ..., i−1}, we have that δπ(Θ(j)[r]) = Θ(j+1)[r] ∈ Ii,
while for j = i, we have that δπ(Θ(i)[r]) = Θ(i+1)[r] ∈ Ii+1 = Ii, since
r ∈ Ri = Ri+1 (in both cases we used (4.26)).

2. Because of part (a), we have that Ii ⊇ Θ[Ri] = ZΘ.

3. Let I ⊇ ZΘ be an invariant. We show by induction on j that Θ(j)[r] ∈ I , for
each r ∈ Ri; this implies the claim. By part (a), Θ(0)[r] = Θ[r] ∈ ZΘ, as
Θ[Ri] ⊆ ZΘ. Assuming now that Θ(j)[r] ∈ I , by invariance of I , we have that
Θ(j+1)[r] = δπ(Θ(j)[r]) ∈ I (again, here we used (4.26)).

2

Concerning complexity, similar considerations to those for the base algorithm
apply, see Remark 9. In particular, step 4 of Algorithm 3 can be carried out via simple
linear algebraic manipulations, leaving the cost of the Groebner basis computation at
step 5 as the asymptotically dominant one. A slight optimization is to perform step 5
only when the condition Ri+1 = Ri is true.

Example 12. Let us consider the initial value problem given by:

ẋ1 = x2
1 ρ(x1) = 1 . (4.29)

Let π = × and Θ be the complete template of degree 3 involving x and x1:

Θ = a0 ·x3+a1 ·x2 ·x1+a2 ·x2+a3 ·x·x2
1+a4 ·x·x1+a5 ·x+a6 ·x3

1+a7 ·x2
1+a8 ·x1+a9 .

We run Algorithm 3 with Θ.

• At iteration i = 0, Θ(0) = Θ; so, for every r ∈ R9, we have that oρ(Θ(0)[r]) = 0
if and only if r ∈ R0 := {r ∈ R9 : r9 = −r7 − r8 − r6}; I0 is then built as the
ideal generated by all the instances of the polynomial Θ(0)[r] for r ∈ R0, that is
I0 = 〈Θ(0)[R0] 〉. In practice, instead of considering the entireR0, it is sufficient
to consider a basis of it.

• For i = 1, we have that oρ(Θ(1)[r]) = 0 for all r ∈ R0; thus, R1 := R0. So, the
vector space equality has been detected, but ideal equality does not hold: in fact,
Θ(1)[R1] 6⊆ I0 and, hence, I1 = 〈Θ(0)[R1] ∪Θ(1)[R1] 〉 6= I0. The ideal chain is
not yet stabilized and the algorithm goes on with a new iteration of the for loop.

• For i = 2, we obtain R2 := {r ∈ R9 : r1 = r7/3 − 2r5/3 − r3/3 − r4/3 +
r6/3, r9 = −r7 − r8 − r6}, which does not coincide with R1. This shows that
R1 = R0 does not imply that R1 = Rk for each k > 1: for this reason we use
the chain of ideals to detect convergence of the sequence of vector spaces.
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• The for loop goes on until the tenth iteration (i = 10), where R10 = R9 := {r ∈
R9 : r0 = 0, r1 = 0, r2 = 0, r4 = 0, r5 = 0, r6 = 0, r7 = 0, r8 = −r3, r9 =
−r8}. Hence, also in this case the vector space equality has been detected, but
now Θ(10)[R10] ⊆ I9. Consequently, I10 = 〈⋃j≤10 Θ(j)[Ri] 〉 = I9; thus, the
algorithm terminates returning (R10, I10).

We conclude that all valid polynomial identities that fit Θ are of the form a3 · x2
1 ·

x − a3 · x1 + a3 = 0, for any choice of the parameter a3 ∈ R. In particular, letting
a3 = 1, we deduce that any stream solution σ of the initial value problem (4.29)
satisfies σ2 · x− σ+ 1 = 0. This equation can be solved algebraically for σ in the ring
of streams with the convolution product [155, 157], yielding:

σ = 1−
√

1− 4x
2x .

This is the generating function of the Catalan numbers, the sequence of A000108 in
[139]:

σ = (1, 1, 2, 5, 14, 42, 132, ...) .

Again, we refer the reader to [26] for a detailed discussion on the relations with
generating functions.

In the final part of this section, we discuss the important special case of linear
SDEs. Let A ⊆ P be the subset of polynomials of degree ≤ 1, in other words, affine
expressions of the form p = ∑n

i=0 rixi+rn+1, with ri ∈ K. Assume in the given initial
value problem (D, ρ) all the expressions in D are linear7, that is of the form

∑n
i=0 rixi

with ri ∈ K: we call this a linear initial value problem. The restriction of the function
δπ to A only depends on the polynomial G, not on F — cf. equalities (4.11)–(4.14).
Moreover, sinceG(1) ∈ K andD(xi) ∈ A for each variable xi, clearly for each p ∈ A
we have δπ(p) ∈ A. In other words, denoting by |A function restriction to A, we
see that Cπ,A := (A, δπ|A, oρ|A) forms a sub-coalgebra (Moore sub-automaton) of
(P , δπ, oρ). Let µπ|A be the final coalgebra morphism from Cπ,A to Σ. The kernel
ker(µπ|A) = ker(µπ) ∩ A yields, informally speaking, all valid identifications among
the variables xi and their affine combinations, under the given linear initial value
problem. It is easy to compute ker(µπ|A) by resorting to Algorithm 3. In fact, we
can specialize the algorithm so as to avoid the (costly) computation of the ideals Ii, as
described in the next result. In what follows, we let

Θ =
n∑
k=0

akxk + an+1 (4.30)

with a0, ..., an+1 distinct parameters, be the complete template of degree 1.

Theorem 7 (linear version of Algorithm 3). Let (D, ρ) be a linear initial value
problem and π be a well-behaved product. Let Θ be the template defined in (4.30),
and R0,R1, ... be the sequence of vector spaces defined in steps 1 and 4 of Algorithm
3. If i ≥ 0 is the first index such that Ri = Ri+1, then Θ[Ri] = ker(µπ|A).

7Affine SDEs with constant terms in the drift expressions can be easily coded up as linear systems,
by introducing extra variables and initial conditions.
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Proof. Let L ∈ K(n+1)×(n+1) be the matrix defining the given linear SDEs: for
i = 0, ...,n, the row i of L is (li0, ..., lin), where ẋi = li0x0 + · · ·+ linxn is the SDE for
xi (recall that x0 = x). Now let v0 := (ρ(X ), 1)T ∈ Kn+2, seen as a column vector,
and let L′ ∈ K(n+2)×(n+2) be the matrix obtained from L by first adding an extra zero
row, then an extra zero column, then setting L′[n+ 1,n+ 1] := G(1) (here indices run
from 0 to n + 1). Also consider the vectors: (X , 1), obtained from the concatenation
of X and 1, and δπ(X ) := (δπ(x0), ..., δπ(xn)). With this notation in place, for every
r ∈ Kn+2 a column vector of parameters, we can write: Θ[r] = rT · (X , 1)T and
δπ(Θ[r]) = rT · (δπ(X ), δπ(1))T = rT · L′ · (X , 1)T ; more generally, one can easily
check that δ(j)

π (Θ[r]) = L′j · (X , 1)T ; here we also exploit the fact that δ(j)
π (1) = G(1)j

for all j ≥ 1, a consequence of (4.15)–(4.17). Therefore oρ(Θ[r]) = rT · v0 and more
generally, oρ(δ(j)

π (Θ[r])) = rT · L′j · v0 for each j ≥ 0.
Now define the vectors vj := L′jv0, for each j ≥ 1. Then, as oρ(δ(j)

π (Θ[r])) =
rT · vj , by definition of Rj one has Rj = {v0, ..., vj}⊥, the orthogonal complement
of the subspace spanned by {v0, ..., vj} in Kn+2. Consider the least i s.t. Ri+1 = Ri,
which must exist as the Ri’s form a descending chain of finite dimensional vector
spaces. Then vi+1 ∈ span{v0, ..., vi}, that is vi+1 = ∑i

j=0 λjvj , for some λj ∈ K.
We now show that, for each k ≥ 1, vi+k ∈ span{v0, ..., vi}: this will imply that
Ri = Ri+1 = Ri+2 = · · · , that is the chain of vector spaces has stabilized. For k = 1,
this holds by definition of the index i. Assume k > 1. Then, for some λ′j ∈ K, we
have: vi+k = L′vi+k−1 = L′

∑i
j=0 λ

′
jvj = ∑i

j=0 λ
′
jL
′vj = ∑i

j=0 λ
′
jvj+1, where in the

third equality we have exploited the induction hypothesis. Now the last expression is
a linear combination of elements in span{v0, ..., vi}; in particular, vi+1 is in the span
by assumption. This shows that vi+k ∈ span{v0, ..., vi}.

Now, for each r ∈ Ri, by definition of Ri = Ri+1 = · · · , we have oρ(δ(j)
π (Θ[r])) =

0 for each j ≥ 0, which implies µπ|A(Θ[r]) = 0. Conversely, if µπ|A(Θ[r]) = 0, then
for each j ≥ 0 we have: oρ(Θ(j)[r]) = (µπ|A(Θ[r])(j))(0) = µπ|A(Θ[r])(j) = 0; then,
by definition, r ∈ Ri. This concludes the proof. 2

It is worthwhile to note that the transition functions on A for π ∈ {×,⊗, ↑
} coincide: for these products, CA := Cπ,A can be identified with the coalgebra
of (expressions for) stream weighted automata [155, 157]. In particular, the final
morphism µA := µπ|A represents the standard semantics of weighted automata in
terms of streams of [155, 157]; see also Example 13 below. On the other hand,
for these products the algorithm outlined in Theorem 7 basically corresponds to the
partition refinement algorithm for linear weighted automata described in [30, 21]. This
algorithm has been subsequently generalized to the case where weights are drawn from
a (semi)ring, under certain conditions: see, e.g., [19, 119] and the references therein.

We conclude the section with an example.

Example 13. For our purposes, a finite-state weighted automaton is a finite-state
automaton where both states and transitions are labelled with weights drawn from
a field K. Weights on states are also called output weights. Figure 4.1 displays a
weighted automaton with ten states {x1, ...,x10} with outputs in K = R; outputs
are assumed to be 1 for x10 and 0 for any other state. The semantics of weighted
automata can be given in terms of streams as described in e.g. [155]. Equivalently,
one can associate to each state xi a linear SDE and an initial condition, as dictated
by, respectively, its outgoing transitions and its output weight. For our example,
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1/2
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3/4 1
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Figure 4.1: A weighted automaton. Output weights (not displayed) are assumed to be
1 for state x10 and 0 for any other state.

this leads to: D = {ẋ1 = x2, ẋ2 = 2
3x3 + 1

3x4, ..., ẋ10 = 1
2x2 + 1

2x6}, and
ρ(x1) = 0, ρ(x2) = 0, ..., ρ(x10) = 1. The semantics is then given by the final
morphism µA.

We run the linear version of Algorithm 3 described in Theorem 7 on this example
with π ∈ {×,⊗, ↑}; as remarked above, these products coincide on A. The algorithm
stops at iteration i = 5, returning a space R5 such that Θ[R5] = ker(µA). Concretely,
Θ[R5] can be described as the set of all linear expressions that are instances of the
template Θ′ below, for any choice of the involved free parameters a1, ..., a7 in R:

Θ′ =a1(x2 − x6) + a2(−4x3/3 + x8) + a3(−4x3/3 + x9) + a4(−2x3 + x4)+
a5(−x1 + x10 − 1) + a6(−x1 + x5) + a7(−x6 + x7) .

This implies for instance that: µA(x2) = µA(x6), (4/3)µA(x3) = µA(x8), and so on.
For π = �, the algorithm stops at iteration i = 4 with a different result, expressed by
the following template:

Θ′′ =a1(x2 − x6) + a2(−4x3/3 + x8) + a3(x− x1 − 4x3/3− x6) + a4(−4x3/3 + x9)+
a5(−2x3 + x4) + a6(x10 + 4x3/3 + x6 − 1) + a7(−x1 + x5) + a8(−x6 + x7) .

4.6 An implicit function theorem for the stream calcu-
lus

Let E ⊆ P be a finite, nonempty set of polynomials that we call polynomial system.
A stream solution of E is a tuple of streams σσσ = (σ1, ...,σn) such that p(x,σσσ) = 0
for each p ∈ E . We want to show that, under certain syntactic conditions, any stream
solution of E can be uniquely defined via a polynomial SDE initial value problem
(D, ρ). Instrumental to establish this result is a close stream analog of the well known
Implicit Function Theorem (IFT) from calculus.

Let us introduce some extra notation on polynomials and streams. Beside the
variables x, we shall consider yyy = (y1, ..., yn), a set of new, distinct initial value
indeterminates yyy0 = (y01, ..., y0n) and primed indeterminates y′y′y′ = (y′1, ..., y′n).
As usual, we let y0 = x; moreover, by slightly abusing notation, we will let y00
denote 0 (the scalar zero). We will assume a fixed total order on all variables (x =
)y0 < y1 < · · · < yn and, for any monomial m 6= 1, on the variables in yyy define
min(m) := min{y : y occurs inm}, where the min is taken according to the fixed
total order on variables. In the definition below, we order the individual variables in a



98

monomial according to < before proceeding to differentiation. It will turn out that the
chosen total order is semantically immaterial, see Remark 10 further below. The total
degree of a monomialm is just its size, that is the number of occurrences of variables
inm. Recall thatK[x,yyy0,yyy,yyy′] denotes the set of polynomials having with coefficients
in K and indeterminates in x,yyy0,yyy,yyy′.

Definition 13 (syntactic stream derivative). The syntactic stream derivative operator
(·)′ : P → K[x,yyy0,yyy,yyy′] is defined as follows. First, we define (·)′ on monomials by
induction on the total degree as follows:

(1)′ := 0 (x)′ := 1 (yi)′ := y′i (1 ≤ i ≤ n)

(yi ·m)′ := y′i ·m+ y0i · (m)′ (0 ≤ i ≤ n, yi = min(yi ·m) andm 6= 1).

The operator (·)′ is then extended to polynomials in P by linearity.

As an example, (xy2
1 +y1y2)′ = y2

1 +y′1y2+y01y
′
2. Note that p′ lives in a polynomial

ring K[x,yyy0,yyy,yyy′] that includes P . We shall write p′ as p′(x,yyy0,yyy,yyy′) when wanting
to make the indeterminates that may occur in p′ explicit. With this notation, it is easy
to check that (·)′ commutes with substitution, as stated in the following lemma.

Lemma 7. For every p(x,yyy) and σσσ, we have that (p(X,σσσ))′ = p′(X,σσσ(0),σσσ,σσσ′).

Proof. For p a monomial, the proof is by induction on its total degree, and straight-
forwardly follows from Definition 13. The general case when p is a linear combination
of monomials follows then by linearity of the definition of (·)′. 2

Remark 10. While the definition of syntactic streamderivative does depend on the cho-
sen total order of indeterminates (y0, ..., yn), Lemma 7 confirms that this order becomes
immaterial when the indeterminates are substituted with streams. In particular, if (·)′
and (·)† are two syntactic stream derivative operators, corresponding to two different to-
tal orders, Lemma 7 implies that p′(X,σσσ(0),σσσ,σσσ′) = p†(X,σσσ(0),σσσ,σσσ′) = (p(X,σσσ))′,
where the last occurrence of (·)′ denotes stream derivative.

Ultimately, this coincidence stems from the fact that the asymmetry in the definition
of stream derivative of the convolution product, (σ × τ)′ = σ′ × τ + σ(0) · τ ′, is only
apparent. Indeed, taking into account the equality σ(0) = σ−X × σ′, one can obtain
the symmetric rule (σ× τ)′ = σ′× τ + σ× τ ′−X × σ′× τ ′. Note, however, that the
equality σ(0) = σ −X × σ′ cannot be expressed at the syntactic (polynomial) level.

The next lemma is about rational SDEs, and how to convert them into polynomial
SDEs. This result has already appeared in the literature in various forms, see e.g.
[16, 126]. Here we keep its formulation as elementary as possible, and tailor it to our
purposes. Its proof is a routine application of equation (4.8).

Lemma 8 (from rational to polynomial SDEs). Let fi(x,yyy0,yyy) for i = 1, ...,n
and g(x,yyy0,yyy) be polynomials, and rrr0 ∈ Kn be such that g(0, rrr0, rrr0) 6= 0. Let
σσσ = (σ1, ....,σn) be any tuple of streams satisfying the following system of (rational)
SDEs and initial conditions:

σ′i = fi(X, rrr0,σσσ) · g(X, rrr0,σσσ)−1 σi(0) = r0i (i = 1, ...,n) . (4.31)
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Then, for a new variable w, there is a polynomial h(x,yyy0,yyy,w), not depending on σσσ,
such that (σσσ, τ), with τ := g(x, rrr0,σσσ)−1, is the unique solution of the following initial
value problem of n+ 1 polynomial SDEs and initial conditions:

σ′i = fi(X, rrr0,σσσ) · τ σi(0) = r0i (i = 1, ...,n)
(4.32)

τ ′ = −g(0, rrr0, rrr0)−1 · h(X, rrr0,σσσ, τ) · τ τ(0) = g(0, rrr0, rrr0)−1 . (4.33)

In particular, the polynomial h(x,yyy0,yyy,w) is obtained from g′ = g′(x,yyy0,yyy,yyy′) by
replacing each variable y′i with the polynomial fi(x,yyy0,yyy) · w, for i = 1, ...,n.
Conversely, for any (σσσ, τ) satisfying (4.32) and (4.33), we have that σσσ also satisfies
(4.31).

An important technical ingredient in the proof of the IFT for streams is an operator
of stream partial derivative ð

ðyi on polynomials: this will allow us to formulate a
stream analog of the chain rule from calculus8. For our purposes, a chain rule for
polynomials suffices; for a more general scenario, see [157, Eq.25], where composition
of streams is introduced (and can be used for covering the case of arbitrary functions).
The following result is instrumental to formally introduce stream partial derivatives
and the chain rule for streams.

Lemma 9. For every p ∈ P , any y′i ∈ yyy′ can only occur linearly in p′, i.e., there
is a unique (n + 1)-tuple (q0, q1, ..., qn) of polynomials in K[x,yyy0,yyy] such that p′ =
q0 +∑n

i=1 qi · y′i.

Proof. Let us first consider existence. We first consider the case in which p is a
monomial and we proceed by induction on its total degree. The base cases follows by
the first three cases of Def. 13: for p = 1, set all qi’s to 0; for p = x, set q0 = 1 and
all other qi’s to 0; for p = yi, set qi = 1 and all other qj’s to 0. For the inductive case,
consider p = yi ·m withm 6= 1 and yi = min(yi ·m). By induction hypothesis, there
is a unique (n+1)-tuple (q̂0, q̂1, ..., q̂n) of polynomials such thatm′ = q̂0 +∑n

j=1 q̂j ·y′j .
By the fourth case of Def. 13, p′ := y′i ·m+ y0i ·m′; then, it suffices to set q0 = y0i · q̂0,
qi = y0i · q̂i +m, and all other qj’s to y0i · q̂j . The case when p is a linear combination
of monomials follows by by linearity.

As to uniqueness, suppose there are two tuples (q0, q1, ..., qn) and (q̃0, q̃1, ..., q̃n) of
polynomials in K[x,yyy0,yyy] such that p′ = q0 + ∑n

i=1 qi · y′i = q̃0 + ∑n
i=1 q̃i · y′i. This

implies (q0 − q̃0) +∑n
i=1(qi − q̃i) · y′i = 0. For each j = 1, ...,n, the indeterminate y′j

in the last sum does not occur in any of the terms (qi − q̃i) (0 ≤ i ≤ n), which implies
that (qj − q̃j) = 0, hence qj = q̃j . This in turn implies q0 − q̃0 = 0, hence q0 = q̃0 as
well. 2

For reasons that will be apparent in a while, we introduce the following suggestive
notation for the polynomials qi uniquely determined by p according to Lemma 9:

ðp
ðx

:= q0
ðp
ðyi

:= qi (i = 1, ...,n) ∇\ yyy p :=
(
ðp
ðy1

, ..., ðp
ðyn

)
.

8The chain rule fromcalculus is: d
dxf(y1(x), ..., yn(x)) =

∑n
i=1

∂
∂yi

f(y1(x), ..., yn(x))· ddxyi(x) =
∇yyy f(y1(x), ..., yn(x)) · ( d

dxy1(x), ..., d
dxy1(x))T .
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With this notation, the equality for p′ in the lemma can be written in the form of a
chain rule:

p′ := ðp
ðx

+ (∇\ yyy p) · yyy′T . (4.34)

Also, it is easy to check that ðpðx ∈ P , so that one may write ðp
ðx(x,yyy) if wanting to

emphasize the dependence on indeterminates. Practically, ðp
ðyi (1 ≤ i ≤ n) can be

easily computed from p′ by taking its quotient with respect to y′i: this means expressing
the syntactic stream derivative as p′ = (· · · ) + q · y′i, with y′i not occurring in (· · · ),
then letting ðp

ðyi = q. Likewise, ðpðx can be computed by removing from p′ all terms
divisible by some y′i. A few examples are discussed below.

Example 14 (partial stream derivatives). Let α be a monomial. For x not occurring
in α, j ≥ 1 and yi 6= x, we have:

• ð
ðxx

jα = xj−1α, ð
ðxα = 0 and ð

ðyix
jα = 0;

• for yi not occurring in α, ð
ðyiα = 0.

When yi occurrs in α, the position of yi in the total order of variables plays a role in
the result (only at a syntactic level, cf. Remark 10). As an example, ð

ðy2
2y2

1y
2
2y3 =

2y2
01y3(y2 + y02). The partial stream derivative operator is linear. As an example,

for p = x2y1y
3
2 + 2y1y

2
2 + 2x + 1, we have: ðp

ðx = xy1y
3
2 + 2, ðp

ðy1
= 2y2

2 and
ðp
ðy2

= 2y01(y02 + y2). These are all instances of a general rule expressed by equation
(4.42), which is established in the proof of Lemma 12.

The following lemma translates the syntactic formula (4.34) in terms of streams.
Its proof is an immediate consequence of (4.34) and of Lemma 7.

Lemma 10 (chain rule for stream derivative). For any σσσ and rrr0 = σσσ(0), we have:

(p(X,σσσ))′ = ðp
ðx

(X, rrr0,σσσ) + (∇\ yyy p)(X, rrr0,σσσ) · σσσ′T .

Now we assume |E| = n, say E = {p1, ..., pn}. Fixing some order on its elements,
we will sometimes regard E as a vector of polynomials, and use the notation E(x,yyy)
accordingly. In particular, we let∇\ yyy E denote the n× n matrix of polynomials whose
rows are ∇\ yyy pi, for i = 1, ...,n. Evidently, this is the stream analog of the Jacobian
of E . Moreover, we let ðEðx :=

(
ðp1
ðx , ...., ðpnðx

)
. The following lemma is an immediate

consequence of the fact that E(X,σσσ)′ = 0 and of previous lemma, considering E
componentwise.

Lemma 11. Let σσσ = (σ1, ...,σn) be a solution of E and rrr0 = σσσ(0). Then

(∇\ yyy E)(X, rrr0,σσσ) · σσσ′T +
(
ðE
ðx

(X,σσσ)
)T

= 0. (4.35)
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Example 15. Consider the polynomial system made up of a single equation, E = {p},
where p(x,yyy) := y − (1 + xy2) with yyy = y = y1 (see also [157, pg. 117]). We
compute

(∇\ yyy E)(x, rrr0,yyy) =∇\ y p(x, r0, y) = ðp
ðy

(x, r0, y) = 1

ðE
ðx

(x,yyy) = ðp
ðx

(x, y) = −y2 .

Hence, for any stream solution σ of E , applying Lemma 11 we get:

σ′ − σ2 = 0 .

Consider now E = {q} with q(x, y) := x2 + y2 − 1, where y = y1 and y0 = y01. We
compute

(∇\ y E)(x, r0, y) = y + y0

ðq
ðx

(x, y) = x .

Hence, for any stream solution σ of E , applying Lemma 11 we get:

(σ + σ(0)) · σ′ +X = 0 .

Let us recall a few facts from the theory of matrices and determinants in a com-
mutative ring, applied to the ring Σ. By definition, a matrix of streams A ∈ Σn×n is
invertible iff there exists a matrix of streamsB ∈ Σn×n such that A×B = B×A = I
(the identity matrix of streams); this B, if it exists, is unique and denoted by A−1. It
is easy to show that A ∈ Σn×n is invertible if and only if A(0) ∈ Kn×n is invertible9.
By general results on determinants, det(A×B) = det(A) ·det(B) (Binet’s theorem).
For streams, this implies that, if A is invertible, then det(A) as a stream is invertible,
that is det(A)(0) 6= 0. Moreover, again by virtue of these general results, the formula
for the element of row i and column j of A−1 is given by:

A−1(i, j) = (−1)i+j det(A)−1 · det(Aji) (4.36)

where Aji denotes the (n− 1)× (n− 1) adjunct matrix obtained from A by deleting
its j-th row and i-th column. Also note that, for a n × n matrix of polynomials,
say P = P (x,yyy0,yyy), det(P ) is a polynomial in x,yyy0,yyy, and det(P (X, rrr0,σσσ)) =
(det(P ))(X, rrr0,σσσ).

Theorem 8 (IFT for streams). Let rrr0 ∈ Kn be such that E(0, rrr0) = 0 and (∇\ yyy

E)(0, rrr0, rrr0) is invertible as a matrix in Kn×n. Then there is a unique stream solution
σσσ of E such that σσσ(0) = rrr0. Moreover, (∇\ yyy E)(X, rrr0,σσσ) is invertible as a matrix in
Σn×n and σσσ satisfies the following system of n rational SDEs and initial conditions:

σσσ′T = −(∇\ yyy E)(X, rrr0,σσσ)−1 ·
(
ðE
ðx

(X,σσσ)
)T

σσσ(0) = rrr0 . (4.37)

9Note this is true only because we insist that the inverse matrix must also lie in Σn×n. Working in
the field of formal Laurent series, which strictly includes Σ, this would be false: e.g. X(0) = 0, butX
has X−1 as an inverse.
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Moreover, from (4.37) it is possible to build a system of n + 1 polynomial SDEs in
n+ 1 variables and corresponding initial conditions, whose unique solution is (σσσ, τ),
for a suitable τ .

Proof. We will first show that the initial value problem given in (4.37) is satisfied by
every, if any, stream solution σσσ of E such that σσσ(0) = rrr0. Indeed, consider any such
σσσ. As (∇\ yyy E)(X, rrr0,σσσ)(0) = (∇\ yyy E)(0, rrr0, rrr0), which is invertible by hypothesis, the
above considerations on matrix invertibility imply that there exists (∇\ yyy E)(X, rrr0,σσσ)−1

inΣn×n. Multiplying equality (4.35) fromLemma 11 to the left by (∇\ yyy E)(X, rrr0,σσσ)−1,
we obtain that σσσ satisfies (4.37). Now define the following (matrix of) polynomials:

• g(x,yyy0,yyy) := det(∇\ yyy E)

• Ã := [ãij] with ãij := (−1)i+j det((∇\ yyy E)ji)

• fi(x,yyy0,yyy) := −Ãi ·
(
ðE
ðx

)T
, where Ãi denotes the i-th row of Ã.

Applying our previous observation on the determinant of a matrix of polynomials,
we have that det((∇\ yyy E)(X, rrr0,σσσ)) = g(X, rrr0,σσσ), and similarly (−1)i+j det((∇\ yyy

E)(X, rrr0,σσσ))ji) = ãij(X, rrr0,σσσ). Therefore, by the formula for the inverse matrix
(4.36), equation (4.37) can be written componentwise as follows

σ′i = fi(X, rrr0,σσσ) · g(X, rrr0,σσσ)−1 σi(0) = ri0 (i = 1, ...,n) . (4.38)

This is precisely the rational form in (4.31). Then Lemma 8 implies that there is
a set D of n + 1 polynomial SDEs in the indeterminates yyy,w, and corresponding
initial conditions ρ := (rrr0, g(0, rrr0, rrr0)−1), satisfied when letting yyy,w = σσσ, τ , where
τ = g(X, rrr0,σσσ)−1:

y′i = fi(x, rrr0,yyy) · w yi(0) = ri0 (i = 1, ...,n)
(4.39)

w′ = −g(0, rrr0, rrr0)−1 · h(x, rrr0,yyy,w) · w w(0) = g(0, rrr0, rrr0)−1 (4.40)

with h obtained from g as described in Lemma 8. Note the SDEs D we have arrived
at are purely syntactic and do not depend on the existence of any specific σσσ. Now, by
Theorem 4 there is a (unique) solution, say (σσσ, τ), of the polynomial SDE initial value
problem (D, ρ) defined by (4.39)-(4.40).

We now show that σσσ is a stream solution of E . By the last part of Lemma 8, σσσ
satisfies (4.38), which, as discussed above, is just another way of writing (4.37). Now
we have

E(0,σσσ)(0) = E(0, rrr0) = 0

E(0,σσσ)′ = (∇\ yyy E)(X, rrr0,σσσ) · σσσ′T +
(
ðE
ðx

(X,σσσ)
)T

= − (∇\ yyy E)(X, rrr0,σσσ) · (∇\ yyy E)(X, rrr0,σσσ)−1 ·
(
ðE
ðx

(X,σσσ)
)T

+
(
ðE
ðx

(X,σσσ)
)T

= −
(
ðE
ðx

(X,σσσ)
)T

+
(
ðE
ðx

(X,σσσ)
)T

= 0
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where the second equality is just the chain rule on streams (Lemma 10), and the
third equality follows from (4.37). As E(0,σσσ)(0) = 0 and E(0,σσσ)′ = 0, by e.g. the
fundamental theorem of the stream calculus (4.2) it follows that E(0,σσσ) = 0. This
completes the existence part of the statement.

As to uniqueness, consider any tuple of streams ζζζ ∈ Σn that is a stream solution of
E and such that ζζζ(0) = rrr0. As shown above, (ζζζ, ξ), with ξ = g(X, rrr0,ζζζ)−1, satisfies the
polynomial SDE initial value problem (D, ρ) defined by (4.39)-(4.40). By uniqueness
of the solution (Theorem 4), (ζζζ, ξ) = (σσσ, τ). 2

The above theorem guarantees existence and uniqueness of a solution of E , pro-
vided that there exists a unique tuple of “initial conditions” rrr0 ∈ Kn for which E
satisfies the hypotheses of Theorem 8. The existence and uniqueness of such a rrr0 must
be ascertained by other means. In particular, it is possible that the algebraic condi-
tions E(0, rrr0) = 0 and det((∇\ yyy E)(x, rrr0, rrr0)) 6= 0 are already sufficient to uniquely
determine rrr0. There are powerful tools from algebraic geometry that can be applied
to this purpose, such as elimination theory: we refer the interested reader to [57]
for an introduction. For now we shall content ourselves with a couple of elementary
examples. An extended example is presented in Section 4.8.

Example 16. Let us consider again E = {p} with p(x, y) := y− (1 + xy2), described
in Example 15. Note that p(0, r0) = 0 uniquely identifies the initial condition r0 =
σ(0) = 1. Also note that ∇\ y p = 1 is invertible at y = r0 = 1: hence Theorem 8
applies. The system (4.37) followed by the transformation of Lemma 8 becomes the
following polynomial system of SDEs and initial conditions:

y′ = y2w y(0) = 1
w′ = 0 w(0) = 1 .

Note that the SDEs and initial condition for w define the constant stream 1 =
(1, 0, 0, ...), hence the above system can be simplified to the single SDE and ini-
tial condition: y′ = y2 and y(0) = 1. The unique stream solution of this initial value
problem is σ = (1, 1, 2, 5, 14, 42, ...), the stream of Catalan numbers. Hence σ is the
only stream solution of E .

More generally, any set of guarded polynomial equations [16] of the form E =
{yi − (ci + xpi) : i = 1, ...,n} satisfies the hypotheses of Theorem 8 precisely when
rrr0 = (c1, ..., cn). Indeed, E(0, rrr0) = 0, while ∇\ yyy E = I , the n × n identity matrix,
which is clearly invertible. The SDEs and initial conditions (D, ρ) determined by the
theorem are given by y′i = pi and yi(0) = ci for i = 1, ...,n, plus the trivial w′ = 0
and w(0) = 1, that can be omitted.

For a non guarded example, consider E = {q} where q := x2 + y2− 1, again from
Example 15. q(0, r0) = 0 gives two possible values, r0 = ±1. Let us fix r0 = 1. We
have∇\ y p = y+ y0, which is 6= 0 when evaluated at y = y0 = r0. Applying Theorem
8 and Lemma 8 yields the following SDEs and initial conditions:

y′ = −xw y(0) = 1

w′ = xw2

2 w(0) = 1
2 .
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The SDE for w arises considering equation (4.8) for the multiplicative inverse of a
stream, in detail, lettingw = 1

y+1 , we get: w
′ = −w(0)·(y+1)′ ·w = −1

2 ·(−xw)·w =
xw2

2 .
The unique solution of the derived initial value problem is the stream σ =

(1, 0,−1/2, 0,−1/8, 0,−1/16, ...); these are the Taylor coefficients of the function√
1− x2 around x = 0. This stream is therefore the unique solution of E with r0 = 1.

If we fix r0 = −1, we obtain −σ as the unique solution, as expected.

Remark 11 (relation with algebraic series). Recall from [71, 173] that a stream σ
is algebraic if there exists a nonzero polynomial p(x, y) in the variables x, y such that
p(X,σ) = 0. For |E| > 1, algebraicity of the solution is not in general guaranteed.
[71, Th.8.7] shows that a sufficient condition for algebraicity in this case is that E be
zero-dimensional, i.e. that E has finitely many solutions when considered as a set of
polynomials with coefficients in C(x), the fraction field of univariate polynomials in x
with coefficients in C. In this case, in fact, for each variable yi one can apply results
from elimination theory to get a single nonzero polynomial p(x, yi) satisfied by σi.
See also the discussion in Section 4.8.

On the other hand, we do not require zero-dimensionality of E in Theorem 8.
Moreover, for the case of polynomials with rational coefficients, [26, Cor.5.3] observes
that the unique solution of a polynomial SDE initial value problem like (4.3) is a
tuple of algebraic streams. Then, an immediate corollary of Theorem 8 is that, under
the conditions stated for E and rrr0, the unique stream solution of E is algebraic, even
for positive-dimensional systems — at least in the case of polynomials with rational
coefficients. As an example, consider the following system of three polynomials in the
variables x and yyy = (y1, y2, y3):

E = {y1y3
4 + x2 − y2

2 + y2 , −y1
2y2 + xy3 + y1 , (4.41)

−y1
3xy3

5 + y1
4y3

4 − y1
2x3y3 + x2y1

3 + x2y2y3
2 − x2y3

2 + y1
2 − xy3 − y1

}
.

Considered as a system of polynomials with coefficients in C(x), E is not zero-
dimensional — in fact, its dimension is 110. It is readily checked, though, that for
rrr0 = (1, 1, 1) we have E(0, rrr0) = 0 and det((∇\ yyy E)(0, rrr0, rrr0)) = 12 6= 0. From
Theorem 8, we conclude that the unique stream solution σσσ of E satisfying σσσ(0) = rrr0 is
algebraic.

4.7 Relations with the classical IFT
We now discuss a relation of our IFT with the classical IFT from calculus. We start
with the following lemma. In the rest of the section, we fix K = R.

Lemma 12. Let p(x,yyy) be a polynomial, rrr0 ∈ Rn, and yi in yyy. Consider the ordinary
∂p
∂yi

(x,yyy) and stream ðp
ðyi (x,yyy0,yyy) partial derivatives. Then ∂p

∂yi
(0, rrr0) = ðp

ðyi (0, rrr0, rrr0).

Proof. Let p = x · p0 + q where x does not occur in q. Write q as a sum of
k monomials, q = ∑k

j=1 αjy
kj
i , where both x and yi do not occur in any of the

10 As checked with Maple’s IsZeroDimensional function of the Groebner package.
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monomials αj . Moreover, let us write each αj as αj = βj · γj , where βj (resp. γj)
contains all the y’s with index smaller (resp., greater) than i.

For the ordinary partial derivative, we have that

∂p

∂yi
(x,yyy) = x · ∂p0

∂yi
+

k∑
j=1

kjαjy
kj−1
i .

For the stream partial derivative, let us denote with chyi the quantity
∑h
j=0 y

j
0iy

h−j
i , with

c0
yi

:= 1 and c−1
yi

:= 0. Taking into account the rules for ð and writing m(uuu) for the
evaluation of a monomialm at yyy = uuu, we have

ðp
ðyi

(x,yyy0,yyy) =
k∑
j=1

βj(yyy0)(ckj−1
yi

)γj(yyy0) . (4.42)

By denoting with chyi(r1, r2) the term chyi with r1 (∈ R) in place of y0i and r2 (∈ R) in
place of yi, we have that chyi(r, r) = (h+ 1) rh, for any r ∈ R. Upon evaluation of the
above polynomials at x = 0, yyy0 = rrr0, yyy = rrr0, we get

∂p

∂yi
(0, rrr0) =

k∑
j=1

kjαj(rrr0)r0i
kj−1

ðp
ðyi

(0, rrr0, rrr0) =
k∑
j=1

βj(rrr0)(ckj−1
yi

(r0i, r0i))γj(rrr0)

=
k∑
j=1

βj(rrr0)(kjrkj−1
0i )γj(rrr0) =

k∑
j=1

kjαj(rrr0)rkj−1
0i .

2

The above lemma implies that the classical and stream jacobian matrices evaluated
at x = 0,yyy = rrr0 are the same: (∇yyy E)(0, rrr0) = (∇\ yyy E)(0, rrr0, rrr0). In particular,
the first is invertible if and only if the latter is. Therefore, the classical and stream
IFT can be applied exactly under the same hypotheses on E and rrr0. What is the
relationship between the solutions provided by the two theorems? The next theorem
precisely characterizes this relationship. In its statement and proof, we make use of
the following concept. Consider the set A of functions R → R that are real analytic
around the origin, i.e., those functions that admit a Taylor expansion with a positive
radius of convergence around x = 0. It is well-known that A forms a R-algebra.
Now consider the function T that sends each f ∈ A to the stream T [f ] of its Taylor
coefficients around 0, that is T [f ](j) = f (j)(0)/j! for each j ≥ 0.11 It is easy to check
that T acts as aR-algebra homomorphism fromA to Σ; in particular, by denoting with
‘ · ’ the (pointwise) product of functions, we have that T [f · g] = T [f ]× T [g].

Theorem 9 (stream IFT, classical version). Let rrr0 ∈ Rn be such that E(0, rrr0) = 0
and (∇yyy E)(0, rrr0) is invertible as a matrix in Rn×n. Then there is a unique stream
solution σσσ of E s.t. σσσ(0) = rrr0. In particular, σσσ = T [f ], for f : R→ Rn a real analytic

11Let Γ be the partial function that sends each stream σ to its ordinary generating function Γ[σ](x) =∑
j≥0 σ(j)xj , provided the latter has a positive radius of convergence; then, T = Γ−1.
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function at the origin, which is the unique solution around the origin of the following
system of n rational odes and initial conditions:

d

dx
f(x) = −(∇yyy E)(x, f(x))−1 ·

(
∂E
∂x

(x, f(x))
)T

f(0) = rrr0 . (4.43)

Proof. Under the conditions on E and rrr0 stated in the hypotheses, the classical
IFT implies the existence of a unique real analytic function f : R → Rn, say f =
(f1, ..., fn), such that f(0) = rrr0 and E(x, f(x)) is identically 0. Moreover, it tells us that
f satisfies the system of (polynomial) nonlinear odes and initial conditions in (4.43).
Note that det((∇yyy E)(0, rrr0)) 6= 0 and the continuity of det(E(x, f(x))) around the
origin, guaranteed by the IFT [152, Th.9.28], in turn guarantee that (∇yyy E)(x, f(x))
is nonsingular in a neighborhood of x = 0. Let σσσ = (σ1, ...,σn) be the stream of
the coefficients of the Taylor series of f expanded at x = 0, taken componentwise:
σσσ = T [f ] := (T [f1], ..., T [fn]). Now σσσ is a stream solution of E , as a consequence
of the fact that T is a R-algebra homomorphism between A and Σ: indeed, for
each p(x,yyy) ∈ E , 0 = p(x, f(x)) implies (0, 0, ...) = T [0] = T [p(x, f(x))] =
p(T [x], T [f ]) = p(x,σσσ). Uniqueness of σσσ is guaranteed by Theorem 8, because
(∇\ yyy E)(0, rrr0) = (∇yyy E)(0, rrr0, rrr0) (see Lemma 12) and it is invertible by hypothesis.
2

A corollary of the above theorem is that one can obtain the unique stream solution
of E also by computing the Taylor coefficients of the solution f of (4.43). Such
coefficients can be computed without having to explicitly solve the system of odes.
We will elaborate on this point in Section 4.9, where, we will compare in terms of
efficiency the method based on SDEs with the method based on odes, on two nontrivial
polynomial systems. Here, we just consider the odes method on a simple example.

Example 17. Consider again the system E = {y − (1 + xy2)} in the single variable
y = y1, with the initial condition r0 = 1, seen in Example 16. Since (∇y E)(x, y) =
1− 2xy is nonzero at (0, r0), we can apply Theorem 9. The ode and initial condition
in (4.43) in this case are, letting f = y: d

dx
y(x) = y2

1−2xy and y(0) = 1. This system
can be solved explicitly. Alternatively, one can compute the coefficients of the Taylor
expansion of the solution, e.g. by successive differentiation: y(x) = ∑

j≥0
y(j)(0)
j! xj =

1 + 1x+ 2x2 + 5x3 + 14x4 + 42x5 + · · · . Such coefficients form again the stream σ of
Catalan numbers that is therefore the unique stream solution of E with σ(0) = r0 = 1.

4.8 An extended example: three-coloured trees
We consider a polynomial system E implicitly defining the generating functions of
‘three-coloured trees’, Example 14 in [71, Sect.4]. For each of the three considered
colours (variables), [71, Sect.4] shows how to reduce E to a single nontrivial equation.
This implies algebraicity of the series implicitly defined by E : the reduction is con-
ducted using results from elimination theory [57]. Here we will show how to directly
transform E into a system of polynomial SDEs and initial conditions, (D, ρ), as implied
by the stream IFT (Theorem 8). As the coefficients in E are rational, reduction to SDEs
directly implies algebraicity (Remark 11), besides giving a method of calculating the
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streams coefficients. We will also consider reduction of E to a system of polynomial
odes, as implied by the classical version of the IFT (Theorem 9), and compare the
obtained SDE and ode systems.

Three-coloured trees are binary trees (plane and rooted) with nodes coloured by
any of three colours, a, b, c, such that any two adjacent nodes have different colours
and external nodes are coloured by the a-colour. Let A,B, C denote the sets of three-
coloured trees with root of the a, b, c color respectively, andA,B,C the corresponding
ordinary generating functions: the n-th coefficient of A is the number of trees with
a-coloured root and n external nodes; similarly for B and C. Below, we report from
[71, Sect.4,eq.(40)] the polynomial system E ; to adhere to the notation of Section 4.2,
we have replaced the variables (A,B,C) with yyy = (y1, y2, y3).12

E :


y1 − x− (y2 + y3)2 = 0
y2 − (y3 + y1)2 = 0
y3 − (y1 + y2)2 = 0 .

(4.44)

System (4.44) has been derived via the symbolic method [71], a powerful technique
to translate formal definitions of combinatorial objects into equations on generating
functions to count those objects. For instance, consider a three-coloured tree with an
a-coloured root. It can either be single node, accounted by x in the first equation, or
a root with two subtrees, each with root either of b- or of c-colour. Considering this
structure, system (4.44) can be readily deduced.

Since the number of external nodes of any empty tree is 0, we set rrr0 = (0, 0, 0).
It is immediate to verify that E(0, rrr0) = 0 and (∇\ yyy E)(0, rrr0, rrr0) =

[ 1 0 0
0 1 0
0 0 1

]
= I , that

is obviously invertible, hence Theorem 8 holds, and we generate system (4.37) in
Theorem 8. In particular, after applying Lemma 8, we get the following polynomial
system of SDEs and initial conditions:

y′1 = 2wy1y2 + wy2y3 − w y1(0) = 0
y′2 = −2wy2

1 − 4wy1y2 − wy1y3 − wy1 − 2wy2y3 y2(0) = 0
y′3 = −wy1y2 − wy1 − 2wy2 y2(0) = 0
w′ = 4w2y2

1y
2
2 + 4w2y2

1y2y3 − 8w2y2
1y

2
3 − 6w2y2

1y3 + 8w2y1y
3
2+ w(0) = −1

14w2y1y
2
2y3 + 6w2y1y

2
2 − 10w2y1y2y

2
3 − 8w2y1y2y3 − 2w2

y1y2 − 4w2y1y
3
3 − 7w2y1y

2
3 − 7w2y1y3 + 4w2y3

2y3 + 6w2y2
2

y2
3 + 3w2y2

2y3 − 4w2y2
2 − 6w2y2y

3
3 − 3w2y2y

2
3 − 10w2y2y3−

3w2y2 − 2w2y2
3 − 3w2y3 .

(4.45)

See Appendix C.2 for details of the derivation. By Theorem 8, the original system E in
(4.44) has a unique stream solution σσσ such that σσσ(0) = rrr0, and (σσσ, τ) = (σ1,σ2,σ3, τ),
for a suitable τ , is the unique stream solution of (4.45). In particular, we have: σ1 =
(0, 1, 0, 0, 4, 16, 56, 256, 1236, ...). This matches the generating function expansion for
y1 in Example 14 of [71]: g1(z) = z + 4z4 + 16z5 + 56z6 + 256z7 + 1236z8 + ....

12We note that there is a slip in the first equation appearing in [71], by which the term (B + C)2 =
(y2 + y3)2 appears with the wrong sign. The correct sign is used here.
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On the other hand, applying the classic IFT (Theorem 9) to system (4.44), there
is a unique real analytic solution f(x) = yyy(x) = (y1(x), y2(x), y3(x)) of the ode
initial value problem (4.43) s.t. yyy(0) = rrr0 = (0, 0, 0). The system in ques-
tion can be computed starting from the classical jacobian of E , (∇yyy E)(x,yyy) =[ 1 −2y2+−2y3 −2y3−2y2
−2y1−2y3 1 −2y3−2y1
−2y1−2y2 −2y2−2y1 1

]
.

Since ∂E
∂x

(x,yyy)|x=0,yyy=rrr0 = (−1, 0, 0), (4.43) yields the following system of rational
odes and initial conditions:

d

dx
yyy(x) = −(∇yyy E)−1 ·

(
∂E
∂x

)T
= ∆̃−1 ·

 4y2
1+4y1y2+4y1y3+4y2y3−1

−4y2
1−4y1y3−4y1y2−2y1−4y2y3−2y3

−4y2
1−4y1y2−4y1y3−2y1−4y2y3−2y2

 yyy(0) = rrr0.

(4.46)

where ∆̃ := −16y2
1y2 − 16y2

1y3 − 4y2
1 − 16y1y

2
2 − 32y1y2y3 − 12y1y2 − 16y1y

2
3 −

12y1y3 − 16y2
2y3 − 4y2

2 − 16y2y
2
3 − 12y2y3 − 4y3

3 + 1 is the determinant of∇yyy E .
Considering a series solution of the system, we obtain, for the first component of

the solution f :

y1(x) = x+ 4x4 + 16x5 + 56x6 + 256x7 + 1236x8 + 5808x9 +O(x10)

whose coefficients match those of σ1 for (4.45).

4.9 Classical vs. stream IFT: computational aspects
We compare the stream and the classical version of the IFT from a computational point
of view. First, we discuss how the recurrence (4.5) can be effectively implemented for
any polynomial SDE initial value problem of the form (4.3), not necessarily arising
from an application of Theorem 8. The basic idea is to always reduce products
involving more than two terms to binary products, for which the convolution formula
(4.1) can be applied. In order to perform this reduction systematically, let us consider
the set T of all subterms t = t(x,yyy) that occur in the polynomials pi in D. We
assume that T also includes all the constants appearing in D, the constant 1, and all
the variables y0 (:= x), y1, ...., yn. For each term t in T , a stream σt is introduced
via the following recurrence relation that defines σt(k). Formally, the definition goes
by lexicographic induction on (k, t), with the second elements ordered according the
“subterm of ” relation. For the sake of notation, below we let p0 = 1, and let the case
t = c · t1 for c ∈ K be subsumed by the last clause, where c is treated as the constant
stream (c, 0, 0, ...). Finally, k > 0.

σt(0) = t(0, rrr0)
σyi(k) = σpi(k − 1) (i = 0, ...,n)
σc(k) = 0 (c ∈ K)

σt1+t2(k) = σt1(k) + σt2(k)
σt1·t2(k) = ∑k

j=0 σt1(j) · σt2(k − j) .

(4.47)

This algorithm for turning a system of SDEs into a system of recurrence relations can
be considered as folklore. It has been applied in e.g. [89, Sect.10], to the SDE for the
Fibonacci numbers, which is linear. Here we explicitly describe it for the general case
of polynomial SDEs. Its correctness, as stated by the next lemma, is obvious.
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Lemma 13. Let σσσ = (σ1, ...,σn) be the unique stream solution of a problem (D, ρ) of
the form (4.3). With the above definition of σt, we have σi = σyi , for i = 1, ...,n.

In a practical implementation of this scheme, one can avoid recursing over the
structure of t, as follows. At the k-th iteration (k > 0), the values σt(k) are computed
and stored by examining the terms t ∈ T according to a total order onT compatiblewith
the “subterm of ” relation. In this way, whenever either of the last two clauses is applied,
one can access the required values σt1(j),σt2(j) up to j = k already computed and
stored away in the current iteration. The computation of the k-th coefficientσσσ(k), given
the previous ones, requires therefore O(Pk + S) multiplications and additions, where
P and S are the number of overall occurrences in T of the product and sum operators,
respectively. Overall, this means O(Pk2 + Sk) operations for the first k coefficients.
This complexity is minimized by choosing a format of polynomial expressions that
minimizes P : for example, a Horner scheme (note that Horner schemes exist also for
multivariate polynomials). Memory occupation grows linearly as O(k(P + S)).

Another method to generate the coefficients of the stream solution is applying the
classical version of the IFT (Theorem 9), and rely on the ode initial value problem in
(4.43). However, this choice appears to be computationally less convenient. Indeed,
apart from the rare cases where (4.43) can be solved explicitly, one must obtain the
coefficients of the solution by expanding it as a power series — indeed its Taylor
series. Once the rational system (4.43) is reduced to a polynomial form, which is
always possible by introducing one extra variable, the coefficients of this power series
can be computed by a recurrence relation similar to that discussed in Lemma 13 for
(4.5). The catch is that the size of the resulting set of terms T is significantly larger for
the ode system (4.43) than it is for the SDE system (4.37). To understand why, consider
that, under the given hypotheses, the SDE system in (4.37) is equivalent to E ′ = 0,
while the ode system in (4.43) is equivalent to d

dx
E = 0. Now, the terms appearing in

E ′ are approximately half the size of those appearing in d
dx
E . This is evident already

when comparing with one another the stream and the ordinary derivatives of a bivariate
polynomial p(x, y) = qm(y)xm + · · ·+ q1(y)x+ q0(y):

p(x, y)′ = qm(y)xm−1 + · · ·+ q1(y) + q′0(y)
d

dx
p(x, y) =

(
qm(y)mxm−1 + xk

d

dx
qm(y)

)
+ · · ·+

(
q1(y) + x

d

dx
q1(y)

)
+ d

dx
q0(y) .

A small experiment conducted with two different systems of polynomials, the
three-coloured trees (4.44) and the one-dimensional system (4.41), is in agreement
with these qualitative considerations. For each of these systems, we have computed a
few hundreds coefficients of the solution, using both the methods in turn: SDEs via the
recurrence relation of Lemma 13 (Theorem 8), and odes via a power series solution
(Theorem 9). In the second case, we have used Maple’s dsolve command with the
series option13. For both systems, we plot in Figure 4.2 the execution time as a function
of the number of computed coefficients.

Remark 12 (Newton method). In terms of complexity w.r.t. k (number of computed
coefficients), Newton iteration applied to formal power series [118, 169, 76, 36] does
asymptotically better than the O(k2) algorithm outlined above. In particular, [36,

13Python and Maple code for this example available at https://github.com/Luisa-unifi/IFT

https://github.com/Luisa-unifi/IFT
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Figure 4.2: Execution time as a function of the number of computed coefficients for the
stream solution of system (4.44) (left) and of system (4.41) (right). The orange (lower)
curve is the recurrence relation (4.47) computed via Lemma 13 (authors’ Python code);
the blue (upper) curve is the power series solution of (4.43) (Maple’s dsolve).

Th.3.12] shows that, under the same hypotheses of IFT, the first k coefficients of the
solution of a system of algebraic equations can be computed by Newton iteration in
timeO(k log k); on the downside, each iteration of Newton involves in general finding
the solution of a n× n linear system.

4.10 Conclusion
We have studied connections between polynomials, differential equations and streams,
in terms of algebra and coalgebra. Our main result shows that, given any stream
product that satisfies certain reasonable assumptions, there is a way to define a tran-
sition function on polynomials such that the induced unique coalgebra morphism into
streams is a commutative K-algebra homomorphism – and vice versa. An important
application of this result is the design of algorithms for deciding polynomial stream
equivalence, and for finding all polynomial equations of a given format. Moreover, we
have presented an implicit function theorem for the stream calculus, a powerful set of
tools for reasoning on infinite sequences of elements from a given field. Our theorem
is directly inspired from the analogous one from classical calculus. We have shown
that the stream IFT has clear computational advantages over the classical one.

As for future work, it would be interesting to see whether we can define new
notions of products that respect the format we devised in this chapter. In the field
of nonlinear dynamical systems [104], convolution of discrete sequences arises as a
means to describe the composition of distinct signals or subsystems (e.g., a plant and a
controller); we would like to understand if our approach can be useful to reason on such
systems as well. The work on stream IFT can also be extended in several directions.
First, we would like to explore the relations of our work with methods proposed in the
realm of numerical analysis for efficient generation of the Taylor coefficients of ode’
solutions [74]. Second, we would like to go beyond the polynomial format, and allow
for systems of equation involving functions that are in turn defined via SDEs. Finally,
we would like to extend the present results to the case of multivariate streams, that
is consider a vector of independent variables, akin to the more general version of the
classical IFT.



Chapter 5

Inference: Bayesian parameter
estimation

5.1 Overview
In this chapter we consider parametric ordinary differential equations and we provide
guaranteed estimates for their parameters values in terms of confidence intervals. More
precisely, we investigate the more general problem of estimating posterior parameter
distributions given an observation. The proposed framework encompasses a wide
variety of systems, including odes with noisy state observations, and neural networks.
We take a Bayesian standpoint, that is, we assume a known prior distribution on
the unknown parameter values. Computationally, the most widespread approach to
Bayesian posterior estimation relies on Monte Carlo (MC) simulation, and specifically
on Markov Chain Monte Carlo (MCMC) [125, 91, 151] and on the particles-based
Sequential Monte Carlo (SMC) [66]. The use of these techniques is justified by
asymptotic results, saying that in the limit of an infinite number of simulation steps
or particles, the samples produced by these methods converge in distribution to the
exact posterior [151]. If the simulation is performed with only a finite number of
steps or particles, which of course is always the case in practice, formal guarantees of
correctness for the obtained samples are extremely hard to achieve.

We explore a hybrid approach, which combines imprecise probability in the form
of P-boxes [68] (see below) with MC simulation. The goal is to obtain sharp estimates
of posterior quantities, such as Cumulative Distribution Functions (CDFs), and their
expectations and higher moments, equipped with formal guarantees of correctness. At
the same time, we aim at reducing the computational effort required by the simulation
phase, in comparison to the above mentioned classical MC methods. Instrumental in
achieving these goals are the following three elements: (1) leveraging the power of
Interval Arithmetic (IA) [131] in order to drastically reduce the parameter search space;
(2) accepting a level of controlled uncertainty on the computed estimates, introduced
by the MC simulation phase of our method; (3) switching from conditioning on an
individual observation y∗ to conditioning on a (small) set of potential observations S∗.
We give a more detailed account of our approach below.

The proposed method consists of two phases. The first phase is entirely determin-
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istic. We assume a functional relation among observations y, parameters θ and noise
ψ, say y = g(θ,ψ) := f(θ) +h(ψ), for known, real vector valued functions f ,h. With
this functional model, the problem of estimating the probability of θ given that y ∈ S∗
can be recast as a problem of volume — or better, probability measure — estimation
(Subsection 5.2.1). Rather then going for a direct MC estimation of the involved mea-
sures, though, we first reduce the search space: we compute a tight overapproximation
of the set of feasible parameters θ, those that can actually be mapped into S∗ by g for
some instance of the noise ψ. Such an overapproximation can be effectively computed
relying on an interval extension of the function f : via IA, one can often determine at
once if a whole rectangular region of the parameter space is unfeasible and discard it
right away. This process can be repeated in a branch-and-bound fashion, and gives
rise to a well-known refinement algorithm [100] (Section 5.2). The reduced parameter
space obtained in this way can be significantly smaller than the original one. In any
case, as discussed below, even a moderate volume reduction brings significant bene-
fits in the subsequent phase of MC estimation. Moreover, the reduced space comes
partitioned into axis-aligned hyper-rectangles, from which it is easy to draw samples.

In the second phase, we use a randomized algorithm A to actually compute the
confidence intervals of the wanted posterior quantities (Section 5.3). We start by
building a pair of lower and upper approximations of the true posterior CDF: this pair
is commonly referred to as a P-box [68], as the graphs of the approximate CDFs form
an envelope for that of the exact CDF. Being the outcome of a randomized algorithm,
unlike classical ones our P-boxes have a confidence level attached: such objects are
known in the literature as confidence bands [108]. From confidence bands, confidence
intervals for the posterior expectation and other moments can be easily built (Section
5.4). The core algorithm A is very simple, and involves the extraction of a number of
independent samples (θ,ψ), with θ drawn from the the reduced parameter space, and
considering the fraction of these pairs that are mapped into S∗ by g. Confidence levels
for the resulting estimates can be established relying on an exponential tail inequality
for the sum of independent random variables, Hoeffding’s bound [96]. We show that,
by sampling from the reduced parameter space, the number of samples necessary to
guarantee a given confidence level drops to a fraction µ2 of the number necessary with
the original space, where µ ∈ [0, 1] is the measure of the reduced space (Section 5.5).

We have put our algorithm at work on a few problems of parameter estimation from
the literature (Section 5.6). Specifically, we have considered: the set of benchmarks
for noisy ode parameter estimation proposed in [52], where DSA, a method based on
imprecise probability, is put forward; and a problem of feature relevance estimation
for neural network classifiers proposed in [4]. For odes, we also offer a comparison
with the results obtained with the state-of-the-art approaches (DSA, MCMC, SMC)
from [52]. This comparison shows clearly the benefits of our method.

Related work We shall limit our discussion on related work to Bayesian inference,
a framework where a prior distribution on parameters is presupposed. Bayesian
parameter inference has found application in a variety of fields, ranging from biological
models [80, 55, 179] to linear hybrid dynamical systems [75] and more recently
probabilistic programming [83]; cf. the extensive literature review in [52, Sect.1]. As
argued above, a problem of MCMC/SMC Bayesian inference methods is the difficulty
of establishing formal guarantees for the obtained estimates. Moreover, these methods



113

are computationally demanding (cf. our Table 5.1 in Section 5.6) and require an
explicit expression of the likelihood, the function mapping θ to the probability of
obtaining a certain observation given θ; this expression is often not available. An
Approximate Bayes Computation (ABC) approach [117] has been proposed in recent
years that also works in the absence of an explicit likelihood, and is more similar in
spirit to ours. However, ABC shares the same difficulties as MCMC and SMC about
formal guarantees, and is even more demanding from a computational point of view.

Closely related to ours is a method recently proposed by Chou and Sankara-
narayanan [52] for ode parameter inference. This method too is based on imprecise
probability [64, 172, 70, 68], which is a way of dealing with uncertainty. Like in our
case, the parameter space is divided into disjoint cells. Differently from our approach,
first likelihoods bounds for each cells are computed analytically; then these bounds are
normalized to obtain bounds on posterior probabilities. The method of [52] avoidsMC
estimation, hence the computed bounds on probabilities are certain. On the contrary, in
our case the MC phase introduces a level of controlled aleatoric uncertainty, hence our
bounds come equipped with confidence levels. As clearly shown by the comparison
in Section 5.6, the MC phase allows us to trade off a small level of (un)certainty for
greater efficiency and accuracy. Additional differences between [52] and our approach
are discussed in Section 5.6.

An important computational ingredient of our approach is the SIVIA refinement
algorithm [102, 100], which has been used in several works on parameter estimation.
Notably, Jaulin in [101] proposes the use of IA for Bayesian estimation, in the following
sense: givenα ∈ [0, 1] and a posterior probability density function, compute a minimal
volume region whose probability w.r.t. the density equals α. Note that this is very
different from the problem considered here: we apply SIVIA to the model function f ,
not to the posterior density function. In fact, we do not even presuppose an explicit
knowledge of the posterior density. Another recent proposal is the application of
SIVIA to feature relevance in neural networks [4]; this is further discussed in Section
5.6.

A proposed method for obtaining confidence bands from empirical CDF functions
relies on theDvoretzky–Kiefer–Wolfowitz (DKW) inequality [67, 121, 108]. This is an
exponential tail inequality that bounds the probability that the empirical CDF deviates
from the exact CDF by more than a given ε. When compared to our measure-based
approach, a serious drawback of empirical CDFs in the present setting is that they
require exact sampling from the posterior, a nontrivial problem in itself. General exact
sampling schemes, like rejection sampling [151], might turn out to be very expensive.
We leave for future work an experimental comparison with the empirical CDF + DKW
approach.

5.2 Preliminaries

5.2.1 Framework and problem statement
Let f : Rn −→ Rm and h : R` −→ Rm be functions, with f continuous. Here,
y = g(θ,ψ) := f(θ) + h(ψ) will be interpreted as a functional relation among the
observations y, the parameters θ and the (independent) nuisance parameters ψ. For
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instance, the parameters ψ might represent additive noise: ` = m, h = identity, hence
y = f(θ) + ψ. A probability measure µ on the space of all parameters Rn × R` is
given, and f ,h are assumed to be measurable under µ. This induces a triple of random
variables (Θ, Ψ,Y ) where Y := g(Θ, Ψ) = f(Θ) + h(Ψ). We will assume that
µ(·) factorizes as µ(A× B) = µ0(A) · µ1(B), where µ0,µ1 are probability measures
over Rn and R`, respectively. In other words, Θ and Ψ are independent. Moreover,
in all applications, we shall consider a µ0 with a finite-diameter support1. Given a
(typically, small) measurable set of observations S∗ ⊆ Rm, for any t ∈ (R ∪ {+∞})n
one is interested in computing the quantity F (t|S∗) defined below, which is the a
posteriori CDF of Θ given Y ∈ S∗. Here, ≤ on vectors is taken componentwise,
Rn≤t := {θ ∈ Rn : θ ≤ t} and Pt := Rn≤t×R`. Provided Pr(Y ∈ S∗) > 0, we define:

F (t|S∗) := Pr(Θ ≤ t |Y ∈ S∗)

= µ(Pt ∩ g−1(S∗))
µ(g−1(S∗)) . (5.1)

We introduce a notion of correctness for randomized algorithms that approximate
F (t|S∗).

Definition 14 (algorithms for confidence intervals). Let f ,h, g,µ and S∗ be fixed
as specified above. Consider a randomized algorithm A that, taken as input a tuple
t ∈ (R ∪ {+∞})n, returns as output a pair a real valued random variables, written
A(t) = [A(t),A(t)]. For any δ ≥ 0, we say that A approximates F (·|S∗) with
confidence 1− δ if for each t ∈ (R ∪ {+∞})n

Pr
(
A(t) ≤ F (t|S∗) ≤ A(t)

)
≥ 1− δ .

For each t, the probability Pr(·) is taken only on the internal random choices in the
execution of A(t).

In other words, for each t, [A(t) , A(t)] is a confidence interval for F (t|S∗). In the
above definition, we do not impose requirements on the accuracy of the approximation,
that is on the width of the interval [A(t) , A(t)]: this can only be judged a posteriori.

Based on an algorithmA for F (t|S∗), one can easily build P-boxes. We shall limit
our discussion to the important special case of marginal CDFs. For λ ∈ R, let F (λ|S∗)
abbreviate F (t|S∗) with t = (λ, +∞, ..., +∞); similarly, let A(λ) := A(t). Note that
F (λ|S∗) = Pr(Θ1 ≤ λ|Y ∈ S∗) is the first marginal posterior CDF of Θ (the same
reasoning applies to the othermarginals). Now choose k+1 ≥ 2 node points on the real
line, say λ0 < λ1 < · · · < λk, such that F (λ0|S∗) = 0 and F (λk|S∗) = 1. Based on
A(λ1), ...,A(λk−1), we define F− and F+, stepwise lower and upper approximations
of F , as follows. Below, for the sake of uniform notation, we convene that A(λ0)
denotes 0, and that A(λk) denotes 1. Moreover j = 0, ..., k − 1.

F−(λ|S∗) :=


0 if λ < λ0
A(λj) if λ ∈ [λj ,λj+1)
1 if λ ≥ λk

F+(λ|S∗) :=


0 if λ < λ0
A(λj+1) if λ ∈ [λj ,λj+1)
1 if λ ≥ λk.

(5.2)

1supp(µ0) is the smallest closed measurable set T ⊆ Rn s.t. µ0(T ) = 1.
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Note that F−,F+ are in turn random variables, depending on the random variables
A(λ1), ...,A(λk−1). Importantly from the computational point of view, these k − 1
calls to A are not required to be independent: as we shall see, there is a way of
computing them at essentially the same cost of a single call (see Section 5.3, Remark
14). The next result says that, with high probability, the pair (F−,F+) is a P-box
for the exact marginal posterior CDF F (λ|S∗). Otherwise said, the pair (F−,F+) is
a confidence band [108] for F (λ|S∗). The proof of the proposition is an immediate
consequence of the previous definition of A and of a union bound on probabilities.

Proposition 6 (confidence bands). SupposeA approximates F (·|S∗) with confidence
1− δ. Then, with probability at least 1− (k − 1)δ, we have that for all λ ∈ R:

F−(λ|S∗) ≤ F (λ|S∗) ≤ F+(λ|S∗) . (5.3)

From the confidence band (F−,F+), confidence intervals for a variety of statistics,
including moments of the true posterior, can be easily computed. We will detail this
point in Section 5.4. We will design a correct core algorithm A under certain mathe-
matical and computational assumptions, listed below. Mathematically, we assume the
following.

1. S∗ = I1×· · ·×Im is an axis-aligned hyper-rectangle (from now on, rectangle for
short), where each Ij = [aj, bj] (aj < bj) is a closed interval of R. In typical use
cases, S∗ might be a small rectangle centered at a given observation y∗ ∈ Rm;

2. there exists an interval extension f of the function f , see the next section for the
precise definition.

Computationally, we assume we have efficient algorithms to:

(a) compute f , f , and h;

(b) compute µ0(R) for any rectangle R ⊆ Rn;

(c) for any non-zero measure rectangle R ⊆ Rn, sample from the the random
variable Θ|R obtained by conditioning2 Θ on the event Θ ∈ R;

(d) sample from Ψ.

In the next section, we will review in detail these prerequisites and explore some
instances of the model where they are fulfilled.

5.2.2 Interval arithmetic, coverings, set inversion
Interval Arithmetic (IA) [131] offers a framework to compute rigorously with abstract
versions of functions, where individual points are replaced by intervals. The abstract
functions conservatively extend their concrete counterparts (see below). IA can be
used, for instance, to compute certified bounds on the error of numerical operations.
In what follows, we quickly introduce the terminology of IA we need.

2Explicitly, Θ|Ris the random variable induced by the measure on Rn defined by µR(R′) :=
µ0(R ∩R′)/µ0(R).
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Formally, an interval I is a finite, closed interval [a, b] ⊆ R. A rectangle is a
cartesian product of intervals,R = I1×· · · Ik. We let IR denote the set of all intervals
included in R. For J = (I1, ..., Ik) ∈ IRk a tuple of intervals, we define the rectangle
[J ] := I1 × · · · × Ik ⊆ Rk. An interval extension of f : Rn → Rm is a function
f = (f 1, ..., fn) : IRn −→ IRm that is compatible with f , that is:

1. whenever x ∈ [I1, · · · , In] then f(x) ∈ [f(I1, ..., In)]; and

2. whenever Ii ⊆ I ′i for i = 1, ...,n then [f(I1, ..., In)] ⊆ [f(I ′1, ..., I ′n)].

A basic fact about IA is that the set of interval extensions is closed under composition:
if f and g are interval extensions of f , g respectively, where f : Rn → Rm and
g : Rm → Rp, then g ◦ f is an interval extension of g ◦ f . By slight abuse of
notation, for a rectangleR = I1×· · ·× In, we let f(R) := [f(I1, ..., In)]. The volume
of the difference f(R) \ f(R) is a measure of how accurate the interval extension
f is with respect to the concrete function f . Functions most commonly found in
applications, including all polynomials, exponentials and trigonometric functions, do
possess accurate interval extensions [131]. Moreover, every monotonic function has
an interval extension.

Given a set A ⊆ Rn, a covering of A is a finite set of rectangles C = {R1, ...,RK}
such that: (a) A ⊆ ⋃K

i=1Ri, and (b) the rectangles R1, ...,RK are almost-disjoint
according to a fixedmeasureµ0(·) onRn, that is for each 1 ≤ i < j ≤ K,µ0(Rj∩Ri) =
0 3. Given a function f : Rn → Rm and rectangles S ⊆ Rm and R0 ⊆ Rn, we will be
interested in computing a covering of the set

f−1(S) ∩R0 = {x ∈ Rn : f(x) ∈ S} ∩ R0.

This problem is referred to as set inversion in [102, 100], where a practical branch-
and-bound algorithm based on IA is offered: SIVIA, standing for Set Inversion Via
Interval Analysis. In our application of SIVIA, S will be a suitable superset of S∗,
and R0 a superset of the support of µ0. We give a pseudocode description of SIVIA
as Algorithm 4. SIVIA maintains a set L of rectangles, each represented as a n-tuple
of intervals, initially containing only R0. At each iteration, a rectangle R is extracted
from L, and IA is used to check if the f -image of R is: (a) entirely inside S (feasible),
or (b) entirely outside S (unfeasible), or (c) indeterminate. In case (a), R is inserted
into a set of inner rectangles, Cin, and will not be reconsidered; in case (b),R is simply
discarded; in case (c),R is bisected4 and the resulting halvesR1,R2 are inserted into L
for later consideration. An exception to the last rule is when the width ofR is less than
a given resolution threshold, ρ: in this case,R is inserted into a set of outer rectangles,
Cout and will not be reconsidered. Informally, outer rectangles are those found at the
border of the covering. The output of the algorithm is the pair (Cin, Cout). Note that
the set theoretic operations involving f(R) and S in lines 5 and 7 can be efficiently
implemented, as both sets are rectangles.

3E.g. Ri and Rj might share part of a face.
4Explicitly, if R = I1 × · · · × In and Ij = [a, b] is the largest among the intervals involved in the

product, we have: width(R) := b−a,R1 := I1×· · ·×[a, c]×· · ·×In andR2 = I1×· · ·×[c, b]×· · ·×In,
where c = a+b

2 .
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Algorithm 4 SIVIA [100]
Input: S ⊆ Rm, a rectangle to be inverted; R0 ∈ IRn, a rectangle; f : IRn −→ IRm, an
interval extension of function f ; ρ > 0, a resolution threshold.
Output: (Cin, Cout), sets of rectangles such that Cin ∪ Cout covers f−1(S) ∩R0.

1: Cin, Cout ← ∅
2: L← {R0}
3: while L 6= ∅ do
4: R← remove(L) . extract a rectangle from L

5: if f(R) ⊆ S then . if the rectangle is feasible
6: Cin ← Cin ∪ {R} . then insert it into Cin

7: else if f(R) ∩ S 6= ∅ then . otherwise if the rectangle is indeterminate
8: if width(R) < ρ then . if its width less than resolution
9: Cout ← Cout ∪ {R} . then insert it into Cout

10: else
11: R1,R2 ← Bisect(R) . otherwise bisect the rectangle
12: L← L ∪ {R1,R2} . insert the resulting halves into L
13: end if
14: end if
15: end while
16: return (Cin, Cout)

Lemma 14. Algorithm 4 always terminates returning a pair (Cin, Cout) of sets of
rectangles. Moreover, (1) Cin ∪ Cout is a covering of f−1(S) ∩ R0; (2)

⋃ Cin ⊆
f−1(S) ∩R0.

Remark 13 (complexity). The worst case time complexity of SIVIA is exponential
in n [100], not surprisingly given its branch-and-bound structure. This theoretical
complexity is less of a concern for our purposes than it may seem at first glance, for
two reasons. First, we can set a relatively large resolution threshold ρ, as the subsequent
Monte Carlo estimation of µ0(f−1(S)) can greatly benefit even from a conservative
covering; this point will be made precise in Section 5.5. Second, in our application of
SIVIA, the set S will be typically quite small: as a consequence, one may expect that
in roughly half of the iterations the rectangle R will be unfeasible hence will not lead
to further bisections.

5.2.3 Discretized odes and neural networks
Ordinary differential equations and neural networks are models that naturally fit in the
framework introduced in Subsection 5.2.1.

Let us consider odes first. Let z = (z1, ..., zp) be a vector of distinct variables.
Consider an initial value problem defined by: a system of p (nonlinear) odes that
also depend on a tuple of n parameters θ, written ż(t) = φ(z(t), θ), and a fixed
initial condition z(0) = z0 ∈ Rp. Under suitable regularity assumptions on φ, for
any θ∗ ∈ Rn a unique solution z(t; z0; θ∗) to this problem exists in a time interval
containing 0. Assuming φ, z0 and a prior probability distribution µ0(θ) are known, the
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goal is to estimate the posterior distribution of θ given a vector y∗ of k observations,
obtained by a measurement of the solution z(t; z0; θ∗) at fixed time points t1 < ... < tk,
say y∗ = (y∗1, ..., y∗k) ∈ Rm, with y∗i ∈ Rp and m = k · p. Such measurements will
be assumed to be affected by an additive noise ψ ∈ Rm, generated by an independent
random variable Ψ, induced by a known probability measure µ1 over Rm. To recast
this in the setting of Subsection 5.2.1, let us fix a tolerance threshold γ > 0, let θ ∈ Rn,
ψ ∈ Rm and define:

S∗ = Πk
i=1Πp

j=1[y∗i,j − γ , y∗i,j + γ]
f(θ) = (z(t1; z0; θ), ..., z(tk; z0; θ))

g(θ,ψ) = f(θ) + ψ .

An interval version of f(θ) can be computed via set reachability techniques for odes,
see e.g. [47, 8]; but this is quite expensive. In our experiments, from the outset we will
replace the original model with an accurate discretized version of the ode, obtained by
applying Euler’s scheme, which we now quickly introduce. For a fixed z0 and time step
τ > 0, consider the recurrence relation (s ≥ 0): z̃0 := z0 and z̃s+1 = z̃s + τ · φ(z̃s, θ).
It can be seen that z̃s ≈ z(s · τ ; z0; θ), and this approximation can be made arbitrarily
accurate by choosing τ sufficiently small. Making the dependence on θ explicit in
the notation, let us denote by z̃s(θ) the elements of this sequence. Assuming that
each si = ti/τ is an integer for i = 1, ..., k, we will replace the above f(θ) with the
following

f(θ) := (z̃s1(θ), ..., z̃sk(θ)) .

If φ has an interval extension φ, it is easy to compute f , an interval extension of f .

Example 18 (simple ball/1). We use a toy model also considered in [52] as a running
example. The vertical motion of a ball obeys the following ode, where in z = (z1, z2),
z1 is the position, z2 is the velocity, and the parameter θ, on which we want to
make inference, is gravity acceleration: ż = (ż1, ż2) = φ(z, θ) := (z2,−θ). We
take z0 := (0,−4) as the initial condition. Although this ode is trivial to solve
analytically, for the purpose of illustration we will consider its Euler’s discretization.
We choose τ = 0.1 and consider the recurrence relation for z̃s = (z̃1,s, z̃2,s) given by:
z̃0 := z0 and z̃s+1 := z̃s + τ · (z̃2,s,−θ). Making the dependence on the parameter
θ explicit, let us write this as z̃s(θ). We choose to observe the system once at time
t = 1, hence set f(θ) := z̃10(θ). For θ∗ = 9.8, one has f(θ∗) = (−8.4,−13.8):
we choose this as our observation y∗ and fix the tolerance γ = 0.5, hence S∗ =
[−8.9,−7.9] × [−14.3,−13.3]. We assume a noise vector ψ ∈ [−1, 1]2 and let h be
the identity: consequently, g(θ,ψ) := f(θ) + ψ is the functional description of our
model. To complete the description, we have to specify the probability measures µ0
and µ1: we choose µ0 to be the uniform distribution on the finite supportR0 := [7, 12],
and µ1 to consist of a pair of independent truncated gaussian distributions on [−1, 1] of
standard deviation 0.1. Application of SIVIA to this example is postponed to Example
19.

Let us now consider neural networks. Generally speaking, a trained feedforward
neural network with k hidden layers [82] implements a function f : Rn −→ Rm
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defined as

f(θ) = (fk+1 ◦ fk ◦ · · · ◦ f0)(θ)

where each layer fj has the structure fj(ξj) = αj(Wj · ξj + bj): here, ξj is a column
vector, Wj, bj are fixed and known weight matrix and bias vector of appropriate
dimensions, respectively, while αj is an activation function, applied componentwise
to Wj · ξj + bj; here ξ0 = θ is seen as a column vector. Provided each of the
activation functions αj possesses an interval extension αj , an interval extension f
exists and can be easily computed. Commonly encountered activation functions, such
as various versions of Linear Unit (LU), hyperbolic tangent, and in general monotonic
activation functions, do possess interval extensions. Recasting this in the framework
of Subsection 5.2.1, one can be interested in inferring a posterior distribution of θ
given the result of an application of the function, y∗ = f(θ∗). Noise is not considered
in this setting. Moreover, one is often interested in the restriction of f to few selected
components of θ. This is the case in the application to feature relevance, that will be
discussed in detail in Section 5.6.

5.3 The core algorithm A
Consider equality (5.1). We will first discuss how to estimate the denominator
µ(g−1(S∗)). Let R0 ⊆ Rn be a rectangle, R0 ⊇ supp(µ0), the support of µ0: in
the discussion in Section 5.1, R0 corresponds to the original space, the one from
which one would sample θ in the absence of further information. We take the feasible
space to be

F := pr1..n

(
g−1(S∗)

)
∩R0 .

This set5 contains all θ’s that can be sampled and mapped into S∗ for some choice of ψ.
Now assume we have a covering C = {R1, ...,RK} of F : the union of the rectangles
in C forms the reduced space. We will discuss later in the section how to compute C.

Lemma 15. µ(g−1(S∗)) = µ
(
g−1(S∗) ∩ (R1 × R`)

)
+ · · ·+ µ

(
g−1(S∗) ∩ (RK × R`)

)
.

Proof. LetA = R1∪· · ·∪RK . We have g−1(S∗)∩ (R0×R`) = g−1(S∗)∩ (A×R`),
because for every θ ∈ R0 \ A ⊆ F c we have (θ,ψ) /∈ g−1(S∗) for any ψ ∈ R`. Then
by elementary set-theoretic reasoning

g−1(S∗) ∩ (R0 × R`) =
(
g−1(S∗) ∩ (R1 × R`)

)
∪ · · · ∪

(
g−1(S∗) ∩ (RK × R`)

)
.

By assumption, the rectangles R1, ...,RK are almost disjoint w.r.t. µ0, which im-
plies the above union is almost disjoint w.r.t. µ. Moreover, R0 × R` ⊇ supp(µ).
Consequently:

µ(g−1(S∗)) = µ
(
g−1(S∗) ∩ (R0 × R`)

)
= µ

(
g−1(S∗) ∩ (R1 × R`)

)
+ · · ·+ µ

(
g−1(S∗) ∩ (RK × R`)

)
.

5pr1..n is projection on the first n coordinates. Elements ofF outside the support of µ0 play no role.
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2

Now each of the summands in Lemma 15, µ
(
g−1(S∗) ∩ (Ri × R`)

)
for i = 1, ...,K,

can be estimated via a MC simulation: informally speaking, one draws a number
Ni of samples (θ,ψ) from Ri × R` and computes the fraction ri of them such that
g(θ,ψ) = f(θ) + h(ψ) ∈ S∗. Then

µ
(
g−1(S∗) ∩ (Ri × R`)

)
≈ ri · µ(Ri × R`)

= ri · µ0(Ri) (5.4)

(the approximate equality above will rendered rigorously below). Note that, by our
assumption of independence, (θ,ψ) can be sampled by separately drawing θ from Rn
via µ0|Ri , and ψ from R` via µ1, which we assume we know how to do. Overall, the
more tightly the union of the Ri’s overapproximates F , the more efficient this process
is: this will made precise in Section 5.5.

Concerning the actual computation of a covering C of the feasible space, we
proceed as follows. Let h,h be the vectors of inf’s and sup’s values of h over R`, taken
componentwise, possibly equal to ±∞. That is, for i = 1, ...,m

hi := inf
ψ∈R`

hi(ψ) hi := sup
ψ∈R`

hi(ψ) .

The following lemma is an easy consequence of the definition of F . We let A + B
denote theMinkowski sumof two subsets ofRm,A+B := {a+b : a ∈ A and b ∈ B},
with the sum taken componentwise, and [−h,−h] := Πm

i=1[−hi,−hi].

Lemma 16. F ⊆ X0 := f−1(S∗ + [−h,−h]) ∩R0.

R0

X0 F
C

Therefore a covering C of X0 is also a covering of F ,
cf. the figure on the right. Accordingly, we will consider
coverings of X0 from now on. Moreover, will always
consider cases where both h and h are finite. Note that
too large values of |h|, |h| will tend to make X0 coincide
with R0, trivializing the proposed method. A covering C of X0 can be computed via
the SIVIA algorithm presented in Section 5.2: C := Cin ∪ Cout, where (Cin, Cout) =
SIVIA(S,R0, f , ρ), with S := S∗+[−h,−h] and ρ > 0 a chosen resolution threshold.
Note that S too is a rectangle in Rm, since S∗ is by assumption.

The estimation of the numerator µ(g−1(S∗) ∩ Pt) in (5.1) proceeds similarly, but
g−1(S∗) must be replaced with g−1(S∗) ∩ Pt, where Pt = Rn≤t × R`. Also, one must
ensure that C refines Rn≤t (see details in Algorithm 5, step 1). The summation in
Lemma 15 is replaced by one that involves only the rectangles contained in Rn≤t.

Having identified the basic ingredients, we proceed now to a formal presentation
of the core algorithm A: see Algorithm 5. The algorithm consists of three steps.
Step 1 is entirely deterministic, and just consists in the refinement of C, if required.
Step 2 introduces the basic random variables. Step 3 introduces the random variables
that correspond to the actual simulation part, consisting in an overall N independent
samplings of the random variables defined in the previous step, and in the construction
of the actual confidence interval. Here ε > 0 represents an error threshold, which has an
impact on thewidth of the returned confidence interval. Note that the quantity ri·µ0(Ri)



121

Algorithm 5 core algorithm A
Input: t ∈ (R ∪ {+∞})n, a n-tuple of real numbers or +∞.
Output: A(t) = [A(t) , A(t) ], a pair of random variables defining a confidence interval
for F (t|S∗).
Fixed parameters: S∗, f ,h,µ0,µ1, as in Subsection 5.2.1; C = {R1, ...,RK}, a covering
of X0 s.t. µ0(Ri) > 0 for each i = 1, ...,K; N = N1 + · · · + NK (Ni ≥ 1), an integer
number of samples to draw in the simulation step (budget); ε > 0, an error threshold.

1: If necessary, split the rectangles of C to make it a refinement of Rn≤t, that is: for each
R ∈ C, eitherR ⊆ Rn≤t or µ0(R∩Rn≤t) = 0. LetHt := {j : 1 ≤ j ≤ K and Rj ⊆ Rn≤t}.

2: For each i = 1, ...,K, recalling that Θ|Ri is drawn from Ri according to µ|Ri(·), define
the random variable

Xi := µ0(Ri) · 1{g(Θ|Ri ,Ψ)∈S∗} .

3: For each i = 1, ...,K, let Xi1, ...,XiNi be Ni i.i.d. copies of Xi. Let X :=∑K
i=1

1
Ni

∑Ni
j=1Xij and Xt :=

∑
h∈Ht

1
Nh

∑Nh
j=1Xhj . Return the following, where the

right endpoint by convention is 1 if X − ε < 0.

A(t) =
[
A(t) , A(t)

]
:=
[
Xt − ε
X + ε

, Xt + ε

X − ε

]
.

in (5.4) of the informal derivation above, corresponds in step 3 of the algorithm to a
realization of the random variable

∑Ni
j=1

1
Ni
Xij = ( 1

Ni

∑Ni
j=1 1{g(Θ(ij)

|Ri
,Ψ(ij))∈S∗}) ·µ0(Ri),

with the superscript (ij) used here to denote different i.i.d. copies of a random variable.
As part of the parameters, we presuppose a partition of the sampling budget over the
K rectangles of the covering C, N = ∑K

i=1Ni: an optimal way of determining this
partition will be discussed in Section 5.5.

We proceed to prove the correctness of A, which is based on the following well-
known result. Note that the random variables considered in the statement are required
to be independent, but need not be identically distributed.

Lemma 17 (Hoeffding’s bound [96]). LetZ1, ...,Zk be independent random variables
such that ai ≤ Zi ≤ bi for i = 1, ..., k. Let Z := ∑k

i=1 Zi and ε > 0. Then
Pr(|Z − E[Z]| > ε) ≤ 2 exp(− 2ε2∑k

i=1(bi−ai)2 ).

Theorem 10 (correctness of A). For any t ∈ (R ∪ {+∞})n, let C,N ,Ni,X,Xt, ε
and A(t) be as defined in Algorithm 5.

1. E[X] = µ(g−1(S∗)) and Pr(|X − E[X]| > ε) ≤ δ0 := 2 exp
(
− 2ε2∑K

i=1
µ0(Ri)2
Ni

)
.

2. E[Xt] = µ(Pt ∩ g−1(S∗)) and Pr(|Xt − E[Xt]| > ε) ≤ δ1 :=

2 exp
(
− 2ε2∑

h∈Ht
µ0(Rh)2
Nh

)
.

3. F (t|S∗) = E[Xt]
E[X] ∈ [A(t) , A(t)] with probability at least 1 − δ, where δ =

δ0 + δ1 ≤ 2δ0. In other words, A approximates F (·|S∗) with confidence 1− δ.

Proof. We consider the three parts separately.
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1. Let i ∈ {1, ...,K} and consider the definition of Xi in step 2, Xi = µ0(Ri) ·
1{g(Θ|Ri ,Ψ)∈S∗}. Now Z := 1{g(Θ|Ri ,Ψ)∈S∗} is a Bernoulli random variable with
success (1) probability p equal to

p = E[Z] = Pr(g(Θ|Ri , Ψ) ∈ S∗) = µ(g−1(S∗) ∩Ri × R`)
µ0(Ri)

.

Hence, for each i, j: E[Xij] = E[Xi] = µ0(Ri)E[Z] = µ(g−1(S∗) ∩ Ri × R`).
Applying the linearity of expectation, we have:

E[X] =
K∑
i=1

1
Ni

Ni∑
j=1

E[Xij] =
K∑
i=1

1
Ni

·Ni · µ(g−1(S∗) ∩Ri × R`) (5.5)

=
K∑
i=1

µ(g−1(S∗) ∩Ri × R`) = µ(g−1(S∗)) (5.6)

where the last step stems from Lemma 15. The upper bound on Pr(|X −
E[X]| > ε) is obtained by applying Hoeffding’s bound (Lemma 17) toX , seen
as the sum of the N independent random variables Xij

Ni
, for i = 1, ...,K and

j = 1, ...,Ni. Here we take into account the fact that, for each such i, j we have
0 ≤ Xij

Ni
≤ µ0(Ri)

Ni
.

2. The derivation for E[Xt] is similar to the previous case, but only the variables
Xhj for h ∈ Ht, corresponding to rectangles contained in Rn≤t, contribute to the
summation. Therefore in place of (5.5)-(5.6), we have

E[Xt] =
∑
h∈Ht

1
Nh

Nh∑
j=1

E[Xhj] =
∑
h∈Ht

1
Nh

·Nh · µ(g−1(S∗) ∩Rh × R`)

=
∑
h∈Ht

µ(g−1(S∗) ∩Rh × R`) = µ(Pt ∩ g−1(S∗)) .

3. The previous two parts imply that F (t|S∗) = E[Xt]
E[X] (note that by assumption

E[X] = µ(g−1(S∗)) > 0). The event E[Xt]
E[X] /∈ [A(t),A(t)] can be decomposed

as: (E[Xt]
E[X] < A(t)) or (E[Xt]

E[X] > A(t)). We analyse these two events separately.

(a) E[Xt]
E[X] < A(t) = Xt−ε

X+ε implies E [Xt] < Xt − ε or E [X] > X + ε, given the
positivity ofX+ε. In turn, this implies |E [Xt]−Xt| > ε or |E [X]−X| > ε.

(b) E[Xt]
E[X] > A(t) implies X − ε > 0 and E[Xt]

E[X] > A(t) = Xt+ε
X−ε (note that

X− ε ≤ 0 would implyA(t) = 1 by definition ofA, but E[Xt]
E[X] ≤ 1). Given

the positivity ofX−ε, this in turn implies E [Xt] > Xt+ε or E [X] < X−ε.
In turn, this implies |E [Xt]−Xt| > ε or |E [X]−X| > ε.

We have therefore proved that

F (t|S∗) /∈ [A(t),A(t)] implies ( |E [Xt]−Xt| > ε or |E [X]−X| > ε ).
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In terms of probability, by applying the bounds obtained in part 1 and 2 and a
union bound, we obtain:

Pr
(
F (t|S∗) /∈ [A(t),A(t)]

)
≤ Pr (|E [Xt]−Xt| > ε) + Pr (|E [X]−X| > ε )

≤ δ1 + δ0 = δ .

From this inequality, the thesis for this part immediately follows.

2

Example 19 (simple ball/2). Consider the model defined in Example 18. For the
additive noise Ψ, we have the range h = (−1,−1) and h = (1, 1), hence, in the
notation discussed in this section, we can set S = [−9.9,−6.9]× [−15.3,−12.3] and
X0 = f−1(S) ∩R0. A covering C of X0 can be computed calling SIVIA(S,R0, f , ρ),
where we set the resolution to ρ = 0.2×5, that is the 20% of the width ofR0. After five
bisections, we obtain a covering of X0 composed of four rectangles, specifically: C =
{[8.25, 8.875], [8.875, 9.5], [9.5, 10.75], [10.75, 11.375]}; we have µ0(∪C) = 0.625.
Now, suppose we want to estimate F (t|S∗) for t = 8.8. We set ε = 0.01, N = 15000,
and the Ni’s proportional to µ0(Ri), getting δ0 < 0.001 hence δ < 0.002. We run
A(t). In step 1, we refine C by splitting [8.25, 8.875] into [8.25, 8.8], [8.8, 8.875], thus
obtaining five rectangles R1, ...,R5. In step 2, we define the basic r.v.’s Xi. In step 3,
we run the actual simulation, in which a value forX and and one forXt are computed.
In detail,X will take on the value

∑5
i=1 ri ·µ0(Ri), where ri the fraction of theNi i.i.d.

samples (θ,ψ) with θ ∈ Ri that are mapped into S∗; and Xt will take on the value
r1 ·µ0(R1) whereR1 = [8.25, 8.8]. In a specific simulation, we have foundX = 0.592
and Xt = 0.095, so that, taking into account ε = 0.01, the r.v. A(t) = [A(t),A(t)]
takes on confidence interval [0.141, 0.181].

Remark 14 (enhancements of A). We outline two straightforward enhancements of
the core algorithm A.

1. It is sometimes possible to identify rectangles R ∈ C such that g(R × [h,h]) ⊆
S∗. In case C = Cin ∪ Cout is a set of rectangles obtained with SIVIA, one can
check the rectangles R ∈ Cin using an interval version of g, g := f + [h,h].
In any case, let C0 be the set of identified rectangles that satisfy this property.
Letting v0 := µ0(⋃ C0) and v0,t := µ0(⋃{R ∈ C0 : R ⊆ Rn≤t}), one defines
X̃ := v0 + ∑

Ri∈C\C0
∑N
j=1Xij and X̃t := v0,t + ∑

i∈Hts.t.Ri∈C\C0
∑N
j=1Xij . A

tighter interval confidence Ã(t) can then be obtained using X̃, X̃t in place of
X,Xt. The confidence 1 − δ itself is modified accordingly, and gets sharper.
We omit the rather obvious details.

2. Suppose onemust computeA(t) for t ∈ {t1, ..., tk}, rather than for a single point.
By a slight modification ofA, it is possible to return confidence intervals for each
of the F (ti|S∗) in a single run. The required modifications of the core algorithm
A are: first, the covering C is ensured to refine all the Rn≤ti’s; second, in step 3,
all the variables Xt1 , ....,Xtk are defined, and the corresponding k confidence
intervals are computed accordingly. We denote by A(t1, ..., tk) a call to this
modifed algorithm. By a union bound, the probability that F (ti|S∗) ∈ A(ti) for
all i = 1, ..., k is at least 1 − kδ. This algorithm can be used to compute the
confidence bands described in Subsection 5.2.1.
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5.4 Confidence intervals for posterior moments
We concentrate on the first marginal of the posterior distribution, denoted by F (λ|S∗)
according to the notation introduced in Subsection 5.2.1. The same arguments, of
course, apply to the other marginals. In Subsection 5.2.1, we have seen how to
compute stepwise approximations of F (λ|S∗), starting from confidence intervals for
F (λ|S∗) for a set of node points, say A(λ1), ....,A(λk), see (5.2). The computed
approximation forms a confidence band, (F−,F+). Starting from this band, we can
compute confidence intervals for various statistics of F (λ|S∗). We first examine in
detail the case of the expected value, E[Θ1|S∗]. In the result below, the hypothesis
λ0 ≥ 0 can be removed by resorting to a slightly more complicated formula.

Corollary 3. Let (F−,F+) be the confidence band defined in (5.2). Assume λ0 ≥ 0.
Then E[Θ1|S∗] ∈ [v−, v+] with probability at least 1− (k − 1)δ, where:

v− :=λ0 +
k−1∑
j=0

(1− F+(λj |S∗))(λj+1 − λj) v+ :=λ0 +
k−1∑
j=0

(1− F−(λj |S∗))(λj+1 − λj) .

Proof. According to a well known formula [69], for a positively supported random
variable Z with CDF F , one has E[Z] =

∫+∞
0 (1 − F (z))dz. Below, we apply this

formula to F (λ|S∗). We have

E[Θ1|S∗] =
∫ +∞

0
(1− F (z|S∗))dz ≤

∫ +∞

0
(1− F−(z|S∗))dz

=
∫ λ0

0
dz +

∫ λk

λ0
(1− F−(z|S∗))dz = λ0 +

k−1∑
j=0

∫ λj+1

λj

(1− F−(z|S∗))dz

= λ0 +
k−1∑
j=0

∫ λj+1

λj

(1− F−(λj |S∗))dz = λ0 +
k−1∑
j=0

(1− F−(λj |S∗))(λj+1 − λj)

= v+

where, tanks to Proposition 6, the ≤ in the first row above holds true with probability
at least 1− (k − 1)δ. The other inequality is proven similarly. 2

Example 20 (simple ball/3). Consider again the simple ball model introduced in
Example 18. We build a confidence band (F−,F+) as specified in (5.2). We choose
k = 25 evenly spaced points in R0: λ0 = 7,λ1, ...,λ25 = 12. Then we compute
A(λ1), ...,A(λ24) as specified in Remark 14(2), this time setting SIVIA’s resolution to
ρ = 0.1 × 5, and choosing ε, N in such a way that (k − 1)δ ≤ 0.001. The obtained
F− and F+ are plotted in Figure 5.1, left. Relying on (F−,F+), we apply Corollary
3, and obtain the confidence interval [v−, v+] = [9.65, 9.85] for E[Θ|S∗].

A similar confidence interval can be obtained for the variance σ2 = Var[Θ1|S∗],
relying on the formula E[Z2] = 2

∫+∞
0 z(1 − F (z))dz, which again holds for a

nonnegative Z. One gets σ2 ∈ [σ2−,σ2+] with probability ≥ 1 − 2(k − 1)δ,
where σ2− = 2[λ0 + ∑k−1

j=0 λj(1 − F+(λj|S∗))(λj+1 − λj)] − (v+)2 and σ2+ =
2[λ0 +∑k−1

j=0 λj+1(1− F−(λj|S∗))(λj+1 − λj)]− (v−)2.
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5.5 Optimal allocation of computational resources
Generally speaking, optimality in this section should be intended in the sense of
algorithmic choices that minimize the expression of the Hoeffding bound. In the
following analysis, we refer to the core algorithm of Section 5.3. Suppose that a
covering C ofX0 is given. The next result says how to optimally allocate a budget ofN
samples among theK rectangles of C, that is a strategy that minimizes the quantity δ0
defined in Theorem 10(1), which bounds (up to a factor of 2) the probability of error
of A.

Theorem 11. Let C = {R1, ...,RK} be a covering ofX0,A = ⋃K
i=1Ri with µ0(A) > 0,

N = N1 + · · ·+NK (Ni ≥ 1) and δ0 as in Theorem 10(1). Then

δ0 ≥ 2 exp
(
− 2Nε2

µ0(A)2

)
. (5.7)

Equality in (5.7) holds if Ni = N µ0(Ri)
µ0(A) for i = 1, ...,K.

Proof. Recall that δ0 = 2 exp
(
− 2ε2∑K

i=1
µ0(Ri)2
Ni

)
. Consider the denominator inside the

exponential. We have

K∑
i=1

µ0(Ri)2

Ni
= N

K∑
i=1

Ni

N

(
µ0(Ri)
Ni

)2
≥ N

(
K∑
i=1

Ni

N

µ0(Ri)
Ni

)2

= N

(
K∑
i=1

1
N
µ0(Ri)

)2

= µ0(A)2

N

where in the second step we have applied Jensen’s inequality to the convex function
λ 7→ λ2. Now (5.7) is a direct consequence of the inequality just proved. Finally, by
inspection, equality in (5.7) holds true under the stated condition. 2

With reference to the expression of δ0 in Theorem 10, the preceding theorem
elucidates two important facts. First, an optimal allocation of a budget of N samples
can be obtained by drawing Ni = N µ0(Ri)

µ0(A) samples from each rectangle Ri of the
covering. As we have assumed we can sample efficiently from rectangles, we will
adopt this strategy. Note that we will actually draw Ni := dN µ0(Ri)

µ0(A) e samples per
rectangle, leading to an actual number of samples slightly larger than the allocated
budget ofN , but still less thanN +K. With the actual sampling strategy, we will still
have

δ0 ≤ 2 exp
(
− 2Nε2

µ0(A)2

)
. (5.8)

Second, with the above optimal strategy, δ0 will only depend on the volume of the
set A that encloses X0: hence coverings that yield tighter enclosures A of X0 should
be preferred. Letting δ = 2δ0 (cf. Theorem 10(3)) and holding ε fixed, the number
N = ln(1/2δ)

2ε2 µ0(A)2 of samples necessary to guarantee a confidence level δ decreases
quadratically as µ0(A) decreases: see the plot in Figure 5.1. This part of the result also
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Figure 5.1: Left: confidence band (δ ≤ 0.001) for the posterior CDF of the simple ball model
in Example 20. Right: number N of samples necessary to achieve δ = 0.001 as a function of
1− µ0(A). Here ε = 0.001.

explains why a covering-based based algorithm is, typically, by far more convenient
than a crude MC sampling from a rectangle R0 containing X0: switching from R0
to A, the number of samples drops from N0 = ln(1/2δ)

2ε2 (recall that µ0(R0) = 1) to
N0 · µ0(A)2.

The above discussion on budget allocation presupposes that a covering C is given.
What if the cost of building C must explicitly be taken into account? The costs of
refinement and of simulation are not easily comparable on the same scale, mainly
because, depending on the function f , computing f(R) can be much more expensive
than drawing a sample θ and computing f(θ). A practical strategy might be to allocate
a time budget for the construction of C and stop the iterations of SIVIA as soon as
this time expires, returning the current C = Cin ∪ Cout ∪ L as a covering. If the
extraction policy in step 4 of SIVIA privileges rectangles with the largest width, this C
is, practically speaking, the best covering that can be obtained with the allocated time
budget.

5.6 Experiments
Wehave put a proof-of-concept implementation6 ofA at work on a number of examples
concerning odes models and neural network classifiers.

5.6.1 Discretized odes
We have put A at work on the benchmarks7 in [52]. We describe our experimental
setting with reference to the notation introduced in subsection 5.2.3. In all cases, we
apply A to an Euler-discretized version of the ode. The timestep τ is chosen small
enough to guarantee that, over the considered time horizon, the discretized solution
is in very good agreement with the solution obtained via a traditional numerical

6Python code and examples available at https://github.com/Luisa-unifi/Posterior_
estimates.

7With one exception, the Analogmodel, which has switching control features not easy to represent
in our framework.

https://github.com/Luisa-unifi/Posterior_estimates
https://github.com/Luisa-unifi/Posterior_estimates
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Benchmark nz, nθ θ∗ EA confidence
interval

tA γ EDSA tDSA EMCMC tMCMC ESMC

FITZHUGH-NAGUMO

model-1 2, 2 0.3
0.15

0.308±7.0e-03
0.153±6.7e-03

11.46 0.05
0.05

0.295
0.16

38 0.29
0.16

2011 0.29
0.16

model-2 2, 3 0.30
0.15
0.5

0.294±2.4e-02
0.152±1.0e-03
0.569±2.5e-02

15.90 0.05
0.05
0.01

0.26
0.10
0.41

1077 0.26
0.09
0.39

11410 0.26
0.09
0.40

LAUB-LOOMIS

model-1 7, 3 1.8
0.8
0.3

1.810±2.8e-02
0.797±2.3e-02
0.297±2.3e-02

16.81 0.05
0.05
0.05

1.83
0.80
0.34

2612 1.52
0.80
0.39

1282 1.92
0.80
0.33

model-2 7, 3 0.9
0.8
0.3

0.912±5.8e-03
0.799±2.3e-02
0.297±2.3e-02

24.55 0.05
0.05
0.05

0.93
0.77
0.27

848 0.90
0.82
0.28

1251 0.89
0.82
0.28

model-3 7, 4 1.8
0.8
0.3
2.5

1.811±2.81e-02
0.797±2.3e-02
0.298±2.3e-02
2.556±2.9e-02

28.13 0.07
0.05
0.05
0.06

1.85
0.79
0.29
2.49

557 1.64
0.79
0.33
2.54

4008 1.39
0.78
0.50
2.58

model-4 7, 4 0.9
0.8
0.3
1.4

0.912±5.8e-03
0.797±2.3e-02
0.297±2.3e-02
1.457±5.6e-03

41.93 0.05
0.05
0.05
0.05

0.94
0.78
0.26
1.46

1794 0.94
0.80
0.28
1.47

3828 0.95
0.80
0.26
1.48

model-5 7, 5 0.9
0.8
0.3
2.5
1.3

0.90±5.7e-03
0.839±4,0e-02
0.339±4.0e-02
2.594±4.6e-02
1.297±2.3e-02

118.25 0.05
0.05
0.05
0.05
0.05

0.89
0.78
0.29
2.63
1.27

3974 0.86
0.85
0.28
2.52
1.26

4213 0.87
0.82
0.29
2.59
1.27

model-6 7, 5 1.8
0.8
0.3
2.5
1.3

1.847±5.1e-02
0.839±4.0e-02
0.296±2.3e-02
2.529±8.7e-03
1.297±2.3e-02

185.66 0.05
0.05
0.05
0.05
0.05

1.82
0.76
0.31
2.67
1.26

5239 1.62
0.77
0.37
2.66
1.29

3811 1.92
0.77
0.32
2.67
1.29

model-7 7, 6 0.9
0.8
0.3
2.5
1.3
1.8

0.909±5.79e-03
0.797±2.3e-02
0.297±2.3e-02
2.509±6.4e-03
1.308±2.3e-02
1.799±2.8e-02

386.70 0.05
0.05
0.05
0.05
0.05
0.05

0.89
0.78
0.34
2.68
1.28
1.99

75166 0.85
0.84
0.34
2.78
1.30
2.14

4189 0.84
0.87
0.34
2.67
1.3
2.04

P53 6, 2 9.0e-04
9.9e-06

9.0e-04±5.2e-07
9.6e-06±4.9e-08

50.28 0.04
0.04

8.9e-04
9.9e-06

111 8.9e-04
9.8e-06

15600 8.9e-04
9.8e-06

ROSSLER 3, 2 0.1
0.1

0.150±2.6e-02
0.170±6.7e-02

16.66 0.05
0.05

0.12
0.09

34 0.11
0.09

1386 0.11
0.10

GENETIC 9, 2 50.0
50.0

50.013±1.1e-02
50.042±4.8e-01

10.26 0.05
0.05

50
49.1

155 50
49.1

3120 50.0
49.0

DALLA-MAN 10, 2 0.0581
0.0871

0.060±1.31e-03
0.088±9.75e-04

11.47 0.05
0.05

0.05
0.082

9119 0.055
0.081

24000 0.055
0.082

Table 5.1: Comparison of A, DSA and MCMC on the benchmarks from [52]. Legend. nz:
number of state variables of the ode; nθ: number of parameters of the ode; θ∗: values of θ used
to generate the observed data; EA, confidence interval: confidence interval for the posterior
expectations E[Θi|S∗] (i = 1, ...,nθ), built via A (Corollary 3); tA: execution time (s) of A,
including SIVIA; γ: half-side of S∗ (tolerance) for A; EDSA, EMCMC, ESMC: estimates of
posterior expectations obtained via DSA, MCMC and SMC; tDSA, tMCMC: execution times
(s) of DSA and MCMC.
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Figure 5.2: confidence bands (δ ≤ 0.001) for the marginal CDFs of the two parameter
Fitzhugh-Nagumo ode. Left: θ1. Right:θ2.

ode integrator — specifically, Python’s odeint(). In all cases, the observed data y∗
consists of a single measurement of the trajectory, taken at the end of the time horizon:
multiple measurements do not bring any advantage in terms of accuracy, and introduce
unnecessary computational burden. We consider an additive gaussian noiseΨ centered
at the origin, with standard deviation as specified in [52, 53], but truncated at ≥ 5
standard deviations (only in one case, 3) to the left and to the right of the origin. The
set S∗ is a hypercube centered at y∗ of side 2γ chosen experimentally, with small
volumes ranging from 10−1 to 10−10. Initial conditions and true parameter values are
fixed as specified in [52, 53]. In all cases, the sampling budget N , the error threshold
ε and the number k + 1 of node points in the construction of the confidence bands
via A (Proposition 6) are chosen so as to ensure a confidence 1 − δ ≥ 0.999. We
focus on computing confidence intervals for the posterior’s marginal expectations, as
per Corollary 3. The obtained results are reported in Table 5.1. By way of example,
in Fig. 5.2 we also report the confidence bands for the marginal CDFs of an instance
of the Fitzhugh-Nagumo model.

For comparison, we have also reported the results of the DSA algorithm of [52]
and of classical MCMC and SMC estimation; all these figures are taken from [52,
Table 1]. In comparing theses results, one should be aware of the differences between
the theoretical and experimental settings here and in [52]. First, while considering
non discretized odes, [52] relies on sensitivity analysis for the estimation of rectangle
measures, which can be regarded as a form of — in general, unsound — discretization
of the parameter space; on the contrary, we start from the outset with a discretized ode
model, and do not introduce further levels of discretization or unsoundness. Second,
[52] provides an estimate of the posterior density given an individual observation
y∗; we consider the posterior probability distribution given an observation set S∗ of
small but positive measure. Third, the estimate intervals provided by [52] are certain
— modulo the unsoundness discussed above; in our case, confidence intervals by
definition introduce an extra level of aleatoric uncertainty, however small. The case of
MCMC/SMC is still different, because no formal guarantee is provided. Despite these
differences, we note that the estimates of the posteriors’ expected value produced by
the three approaches are overall remarkably similar. The execution time of A is up to
three orders of magnitude smaller than DSA’s and MCMC’s8. A final caveat concerns
the comparison with the true value θ∗ used to generate the observation y∗. Although

8[52] does not report execution times for SMC, but we expect them to be in line with MCMC’s.
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θ∗ is often taken as a proxy of the exact posterior expectation E[Θ|S∗], one should
remark that these two values need not coincide. Indeed, in a few experiments, it is
observed that θ∗ lies outside the returned confidence interval: this is not an indication
that the computed interval is ‘wrong’.

5.6.2 Feature relevance in neural network classifiers
Our algorithm can be applied also to the quantification of feature relevance in neural
network classifiers. We illustrate this methodology in the case of a classifier for images
of the MNIST dataset [115].

Consider a classifier that maps items x consisting of p real valued features, say
x = (x1, ...,xp), into one of s categories. Possibly after normalization of domain
and range, without loss of generality one can regard such a classifier as a function
C : [0, 1]p → [0, 1]s, where C = (C1, ...,Cs). Here it is understood that x ∈ [0, 1]p
is classified as i ∈ {1, ..., s} if and only if i = argmaxj=1,...,sCj(x) and Ci(x) > l0,
for a chosen threshold 1 > l0 ≥ 1/2 — in particular, ties are ruled out. Assume a
given x∗ = (x∗1, ...,x∗p) ∈ [0, 1]p is classified as i by C. One is often interested in
assessing the relative importance of a certain feature, or set thereof, in obtaining such
a classification: one speaks of feature relevance. Here we follow a recent proposal in
[4]. Consider the k-th feature (k ∈ {1, ..., p}) and the function Ci,k : [0, 1] → [0, 1]
defined by

Ci,k(θ) := Ci(x∗1, ...,x∗k−1, θ,x∗k+1, ...x∗p) .

Let µ(·) denote the uniform probability measure on [0, 1]. The relevance of the k-th
feature in classifying x∗ to i is defined as:

ηk(x∗) := 1− µ
(
C−1
i,k ([l0, 1])

)
.

Note that ηk(x∗) ∈ [0, 1). According to [4], the value ηk(x∗) reflects how sensitive
the classification of x∗ is to changes in the k-th feature, other features held constant:
values closer to 1 indicate higher sensitivity.

We recast the problem of estimating ηk(x∗) with guarantees in the framework
of Subsection 5.2.1. In the notation of that section, we let f = Ci,k, hence let
n = m = 1, and ` = 0, that is no noise, which implies f = g and µ = µ0; moreover,
we let S∗ = [l0, 1]. Then µ

(
C−1
i,k ([l0, 1])

)
= µ

(
f−1(S∗)

)
. We assume non noise both

for ease of implementation, but also to be as close as possible to the configuration
used in [4], where noise is not considered. Letting R0 = [0, 1], we define the variable
X as in Algorithm 5 in Section 5.3. Then apply the first item of Theorem 10 to find
that µ

(
C−1
i,k ([l0, 1])

)
= E[X]. The same theorem says thatX approximates E[X] with

confidence 1 − δ0. As a consequence, 1 − X approximates ηk(x∗) with confidence
1− δ0.

We have applied the above outlined methodology to the estimation of the feature
relevance for a classifier of the MNIST image dataset [115]. The considered classifier
is implemented by a feedforward neural network with two hidden layers of respectively
30 and 10 neurons, using eLU (exponential LU) as an activation function for all layers.
We use the Batch Gradient Descent as an optimization method with batch size of 10,
and the dataset is shuffled for each epoch. The trained network exhibits an accuracy
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of around 96% on a test subset of the MNIST dataset. For a few selected pictures
from the dataset, we have computed the relevance of each of the 28 × 28 = 784
features (pixels) composing the image, applying the above methodology. Each pixel
is represented by a grayscale value in the interval [0, 1]. This way, for each selected
picture, we have obtained a 28 × 28 matrix of feature relevance values in [0, 1). We
have set δ0 ≤ 0.001. The average computation time for each pixel is about 6 seconds.
For a better visualization and interpretation of the results, a feature relevance matrix
can be converted to a colormap, called relevance map in [4]: see Fig. 5.3. While,
as expected, most pixels have relevance 0, there are a few clusters of highly relevant
pixels, located approximately in the void zones of the original image.

These empirical results differ slightly from those reported in [4], where highly rel-
evant features tend to reproduce the contours of the represented digit. This difference
can be imputed to the experimental settings here and in [4] being not exactly compa-
rable, as in [4] a neural network with only one hidden layer of neurons is considered.
Despite this discrepancy, also in [4] certain pixels located at a significant distance
from the contours appear to influence significantly the classification decision of the
network (cf. [[4], Fig.10]). The authors of [4] leave a more in-depth discussion of
this behaviour as future work, and we do the same here. Let us also point out that
the shallow neural networks employed here and in [4] are not known to be particularly
appropriate for the MNIST benchmark; but our aim here is just to show a potential
future application of the proposed approach.

Figure 5.3: Example of relevance map. Left: original image from the MNIST dataset,
correctly classified as ‘4’. Center: relevance map, with brighter colours representing more
relevant features (black=0, white=1). Right: overlay of the first and second image. Clusters of
highly relevant pixels tend to occupy void zones.

5.7 Conclusion
Assuming a functional relation between observations and parameters, we describe
a method to estimate the Bayesian posterior parameters distribution, given that the
observation belongs to a small set. Guarantees for the estimated a posteriori quantities,
including CDFs and moments thereof, are given in the form of confidence bands or
confidence intervals. We leverage IA to drastically reduce the computational cost
of MC simulation. In terms of accuracy and execution time, the method compares
very favourably to state-of-the-art techniques on benchmarks for noisy ode parameter
estimation. An application to relevance feature in neural networks has also been
proposed.

As for future research, we would like to further investigate the scalability of the
method, studying applications to more complex models and possibly to probabilistic
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programming. Another direction is the relation with Approximate Bayesian Compu-
tation (ABC) [117] and Importance Sampling [151], which, among well-established
techniques, appear to be closest in spirit to our approach.
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Chapter 6

Inference, a more general view:
Probabilistic Programming

6.1 Overview
Probabilistic Programming (PP) is a powerful programming paradigm, but also an
efficient statistical modeling tool that enables inference to be performed automatically.
In the field of Probabilistic Programming, the denotational approach dating back to
Kozen’s work is well established, see [111, 85, 15] and references therein. Equivalent
operational approaches based on sequential composition and/or ‘big step’ semantics
also have been considered, see e.g. [137]. Here we depart from this tradition and
consider an action-based probabilistic programming language with a ‘small-step’ op-
erational semantics: we want to argue that this brings benefits both in terms of clarity
of presentation and in pragmatical terms of effective implementation. The language
we consider (Section 6.3) is a calculus à laMilner’s CCS [127], where an action can be
either a random sampling or an assignment. Continuous and discrete distributions can
be freely mixed, conditionals and unbounded loops are allowed. In order to account for
conditioning/observation, we also consider a fail statement indicating that the current
computation must be rejected.

The small-step operational semantics is formalized in terms of a (self) product
of a Markov kernel (Sections 6.2, 6.3), and directly leads to a sampling method, as
we discuss below. On top of the operational semantics, an observational semantics
(Section 6.4) is introduced, based on a probability space of infinite sequences of states.
To this purpose, a standard cylindrical sigma-field construction [12, Ch.2] is leveraged.
In fact, we aremore flexible than this, and define the observational semantics in terms of
expectation of measurable functions over the considered probability space, conditioned
on non-failure. The main result here is an approximation theorem, which provides
lower and upper bounds of the exact semantics (expectation), based on the semantics
of the program truncated at a chosen finite execution length t: the finite semantics is
effectively computable, or at least relatively easy to estimate with guarantees.

Indeed, one of the benefits and motivations of our approach is that the small-step
semantics directly translates into an exact sampling algorithm, that can be efficiently
parallelized (Section 6.5). The returned independent samples can be used for Monte
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Carlo (MC) inference, with formal statistical guarantees, expressed in terms of con-
fidence intervals computed via exponential tail inequalities, such as Hoeffding’s [96].
Specifically, we exploit a form of Single Instruction Multiple Data (SIMD) parallelism
that arises naturally from the definition of our Markov kernel: the basic idea is that, on
each transition, the kernel is applied to a whole vector of independent store-program
pairs at once. Here SIMD should be contrasted with MIMD (M=Multiple), a form of
thread-level parallelism that is a commonplace in MC methods1. Being able to exploit
SIMD parallelism is practically relevant: indeed, modern CPUs and programming lan-
guages offer extensive support for massive SIMD parallelism in terms of vectorization,
that is instructions operating on whole arrays at once, that can result in huge gains in
performance. If desired, the proposed sampling scheme can be effectively combined
with Importance Sampling (IS) to alleviate the problem of rejections, arising in the
presence of conditioning/fail actions.

Preliminary experiments conducted with a proof-of-concept implementation based
on TensorFlow [1], and comparison with some state-of-the-art tools, show promising
results (Section 6.6). Some concluding remarks are drawn in the final section (Section
6.7).

All in all, we can summarize our twomain contributions as follows: (1)A simple yet
rigorous, measure-theoretic small-step operational semantics, that directly translates
into an effective SIMD-parallellisable inference algorithm. (2) A clean observational
semantics and a finite approximation theorem, which provides a formal basis for MC
estimation with guarantees.

Related work Book [15] provides an introduction to and a survey of recent literature
on PP; see also the review article [85]. With few notable exceptions that we will
review below, most work on the semantics of probabilistic programs still follows the
denotational approach initiated by Kozen [111]. This includes, among others, the
work of Borgström, Gordon et al. see e.g. [20], and the work of Staton see e.g.
[174, 175], who consider a measure-theoretic and/or categorical point of view. In this
line of work emphasis is, for instance, on providing conditions under which a density
for a program-induced random variable exists. We do not consider such aspects in our
framework, as a (cumulative) distribution, which always exists, is all that is needed.

As mentioned earlier, a few works depart from the traditional denotational setting,
and are closer in spirit to ours. The work of Aditya et al. on Markov Chain Monte
Carlo (MCMC) for R2 [137] considers a big-step sampling semantics. It is unclear
how a big-step semantics would translate into a SIMD-parallel algorithm. Also, no
approximation results in terms of finite execution paths is provided. In [45] the authors
apply program analysis to IS. Here we too consider IS, but with a complementary
concern: integrating IS into a clean measure-theoretic semantics, rather than devising
syntax-driven transformations, as they do.

The work of Jasen et al. on model checking PP [99] also follows an operational
approach. Themain difference fromus is that [99] only considers discrete distributions,
for which techniques of discrete-space Markov chains [13] apply; they also consider
nondeterminism, which is not a concern in our work. Similar remarks apply to Gretz et
al. [87], who adopt a nondeterministic Dijkstra guarded command language extended

1E.g. when multiple threads execute independent chains in a Markov Chain Monte Carlo method.
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with a discrete probabilistic choice (pGCL), basically corresponding to sampling from
Bernoulli distributions. Again, the distributions definable by the programs are discrete,
and discrete-space Markov Decision Processes (MDPs) are sufficient for operational
modeling of the programs. They propose reasoning techniques based on probabilistic
versions of weakest preconditions and invariants: these techniques allow in some cases
to compute expected values of programs exactly, but they are not as generally applicable
as the guaranteed MC estimation, based on finite approximation, we consider here.

Several works describe tools and algorithms for inference in PP, based on MCMC
or variations thereof, like R2 [137] or WebPPL [83], among the many. In Section 6.6
we compare our sampling algorithm with these tools mainly in terms of efficiency.
Not being MCMC an exact sampling technique (as the drawn samples are not truly
independent), these algorithms cannot offer formal guarantees of accuracy. On the
side of formal guarantees, symbolic tools like Hakaru [134] and Psi-solver [77] are
based on formal manipulations of integrals, that can return explicit, exact answers in
a limited set of cases. More similar in spirit to ours is the work of Sankaranarayanan
et al. [165], who provide formal guarantees by only analyzing a subset of adequately
chosen execution paths of a program. The analysed programs are loop-free queries.
We leave an experimental comparison with [165] for future work.

It is common for programming languages, including the above mentioned webPPL
and R2, to provide programmers with vectorization primitives. This language-level
vectorization should not be confused with leveraging vectorization at the level of the
inference algorithm, which is our concern here. Indeed, on nontrivial probabilistic
programs and inference tasks, the difference in terms of execution time and accuracy
between our approach and others shows up clearly, sometimes dramatically; see the
experiments in Section 6.6.

6.2 Preliminaries
We review a few basic concepts of measure theory following closely the presentation in
the first two chapters of [12], which is a reference forwhatever is not explicitly described
below. Given a nonempty set Ω, a sigma-field F on Ω is a collection of subsets of Ω
that contains Ω, and is closed under complement and under countable disjoint union.
The pair (Ω,F) is called a measurable space. A (total) function f : Ω1 → Ω2 is
measurable w.r.t. the sigma-fields (Ω1,F1) and (Ω2,F2) if whenever A ∈ F2 then
f−1(A) ∈ F1. We let R = R ∪ {−∞, +∞} be the set of extended reals, assuming
the standard arithmetic for ±∞ (cf. [12, Sect.1.5.2]), and R+ the set of nonnegative
reals including +∞. The Borel sigma-field F on Ω = Rm is the minimal sigma-field
that contains all rectangles of the form [a1, b1] × · · · × [an, bn], with ai, bi ∈ R. We
shall mostly work with measurable spaces (Ω,F) where Ω = Rm for some m ≥ 1
and F is the Borel sigma-field over Ω. Throughout this chapter, “measurable” means
“Borel measurable”, both for sets and for functions. In particular, function f is Borel
measurable if the preimage of any Borel set under f is a Borel set. On functions,
Borel measurability is preserved by composition and other elementary operations on
functions; continuous real functions are Borel measurable.

A measure over a measurable space (Ω,F) is a function µ : F → R+ that is
countably additive, that is µ(∪j≥1Aj) = ∑

j≥1 µ(Aj) whenever Aj’s are pairwise
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disjoint sets in F . The Lebesgue integral of a Borel measurable function f w.r.t. a
measure µ [12, Ch.1.5], both defined over a measurable space (Ω,F), is denoted by∫

Ω µ(dω)f(ω), with the subscript Ω omitted when clear from the context. When µ is
the standard Lebesgue measure, we may omit µ and write the integral as

∫
Ω dωf(ω).

For A ∈ F ,
∫
A µ(dω)f(ω) denotes

∫
Ω µ(dω)f(ω)1A(ω), where 1A(·) is the indicator

function of the set A. We let δv denote Dirac’s measure concentrated on v: for each
set A in an appropriate sigma-field, δv(A) = 1 if v ∈ A, δv(A) = 0 otherwise.
Otherwise said, δv(A) = 1A(v). Another measure that arises (in connections with
discrete distributions) is the counting measure, µC(A) := |A|. In particular, for a
nonnegative f , we have the equality

∫
A µC(dω)f(ω) = ∑

ω∈A f(ω).
Let h be a nonnegative measurable function and defined on (Ω,F), and µ be a

measure on F . The function ν(A) :=
∫
A µ(dω)h(ω) (A ∈ F) defines a new measure

on F . The function h is called a density of ν w.r.t. µ. A basic fact about densities is
that, for each measurable f ,

∫
ν(dω)f(ω) =

∫
µ(dω)h(ω) · f(ω), in the sense that if

one of the integrals exists so does the other, and the two are equal: this is called chain
rule for densities; see [12, Ch.2.2,Pr.4].

A probability measure is a measure µ defined on Ω such that
∫
µ(du) = 1. For

a given nonnegative measurable function f defined over Ω, its expectation w.r.t. a
probability measure ν is just its integral: Eν [f ] =

∫
ν(dω)f(ω). The following

definition is central.

Definition 12 (Markov kernel). Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A
function K : Ω1 × F2 −→ R+ is a Markov kernel from Ω1 to Ω2 if it satisfies the
following properties:

1. for each ω ∈ Ω1, the function K(ω, ·) : F2 → R+ is a probability measure on
(Ω2,F2);

2. for each A ∈ F2, the function K(·,A) : Ω1 → R+ is measurable.

We will mostly be concerned with the case Ω1 = Ω2, F1 = F2. The following
is a standard result about the construction of finite product of measures over a space
Ωt = Ω × · · · × Ω (t times) for t ≥ 1 an integer. The formulation below is a
specialization of [12, Th.2.6.7] to Markov kernels and nonnegative functions. In
particular, part (a) gives a way to construct a measure on the product space Ωt, starting
from an initial measure µ1 and t− 1 Markov kernels. The product space is, intuitively,
the sample space of the paths of length t of a Markov chain. In particular, a path of
length t = 1 consists of just an initial state — no transition has been fired. Part (b)
is a generalization of Fubini theorem, which allows one to express an integral over
the product space w.r.t. the measure of part (a) in terms of iterated integrals over the
component spaces. Below, we will let ωt range over Ωt.

Theorem 13 (product of measures). Let t ≥ 1 be an integer. Let µ1 be a probability
measure on Ω and K2, ...,Kt be t − 1 (not necessarily distinct) Markov kernels from
Ω to Ω.

(a) There is a unique probability measure µt defined on (Ωt,F t) such that for every
A1 × · · · × At ∈ F t we have:

µt(A1 × · · · × At) =
∫
A1
µ1(dω1)

∫
A2
K2(ω1)(dω2) · · ·

∫
At
Kt(ωt−1)(dωt) .

(6.1)
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(b) (Fubini) Let f be a nonnegative measurable function defined onΩt. Then, letting
ωt = (ω1, ...,ωt), we have∫

µt(ωt)f(ωt) =
∫
µ1(dω1)

∫
K2(ω1)(dω2) · · ·

∫
Kt(ωt−1)(dωt)f(ωt) .

(6.2)
In particular, on the right-hand side, for each j = 1, ..., t− 1 and (ω1, ...,ωj−1),
the function ωj 7→

∫
Kj+1(ωj)(dωj+1) · · ·

∫
Kt(ωt−1)(dωt)f(ωt) is measurable

over Ω.

It is customary to denote the measure µt defined by part (a) of the theorem also as
µ1 ⊗K2 ⊗ · · · ⊗Kt.

6.3 Probabilistic programs
When writing programs, one will have to rely on a repertoire of basic distributions
and functions. We introduce the necessary terminology below. Then we introduce the
syntax and operational semantics of the language, given in terms of a Markov kernel.

Basic elements Both continuous and discrete basic distributions will be considered.
Each basic distribution is assumed to admit a density w.r.t. a suitable measure. This
enables efficient sampling, but does not imply that measures corresponding to whole
programs (cf. Section 6.4) have a density. A crucial point for the expressiveness of the
language is that a basic density may depend on parameters, whose value at runtime is
determined by the state of the program. To ensure that the resulting programs define
measurable functions, it is important that the dependence between the parameters
and the density be in turn of measurable type. We formalize this with the concept
of parametric density, introduced below. In the definition, v ∈ Rm represent the
parameters, and G(v, ·) a density over the reals, determined by the parameters v.

Definition 14 (parametric density). Let G : Rm × R → R+ be a function. Assume
G is measurable over Rm+1. We say G is a parametric density w.r.t. the measure µG
over R if the function (v,A) 7→

∫
A µG(dr)G(v, r) is a Markov kernel from Rm to R.

Example 21. Consider ρU(v, r) = 1(0,1)(r) (the argument v is ignored): this is
the density of the uniform distribution on (0, 1) w.r.t. the Lebesgue measure.
For h = (h1,h2) measurable functions, with h2 positive, consider ρG,h(v, r) :=

1
h2(v)

√
2π exp

(
−1

2

(
r−h1(v)
h2(v)

)2
)
: this is a Normal (Gaussian) distribution of mean h1(v)

and standard deviation h2(v) w.r.t. the Lebesgue measure. For an example of dis-
crete distribution, consider a measurable function h which takes values in [0, 1]; then
ρB,h(v, r) = (1−h(v))·1{0}(r)+h(v)·1{1}(r) is the density of a Bernoulli distribution
with success probability h(v) w.r.t. the counting measure.

Let m ≥ 1 be fixed throughout the following definitions: m will represent the
number of variables in the program. For the actual syntax of our language, we fix three
sets of functions.

• Update functions: a countable set of measurable functions g : Rm → R.
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• Parametric densities: a countable set of parametric densitiesG : Rm×R→ R+.
For simplicity, we will stick to the case where µG is either the standard Lebesgue
measure (for continuous distributions) or the counting measure (for discrete
ones).

• Predicates: a countable set of measurable functions φ : Rm → {0, 1}. By φ
we denote the predicate 1 − φ. An Iverson bracket style notation will be often
employed, e.g.: [x1 ≥ 1] is the predicate that on input v yields 1 if v1 ≥ 1, 0
otherwise.

Syntax Fix a tuple ofm distinct variables (symbols), x = (x1, ...,xm). An action α
is either an assignment or a random extraction2

α ::= xi = g
∣∣∣ xi ∼ G (6.3)

for any 1 ≤ i ≤ m. Moreover, we fix a countable set of statement variables ranged
over by Y ,Y ′, .... The syntax of program statements S,S ′, ... is given by the following
grammar:

S ::= Y
∣∣∣ nil

∣∣∣ fail
∣∣∣ α.S

∣∣∣ if φ then S1 else S2

∣∣∣ recY .S (6.4)

with the convention that recY binds Y in the last clause above, and that different
occurrences of rec bind different variables. We shall only consider closed program
statements with guarded recursion, a standard restriction in process calculi [127]: in
each recursive subterm recY .S, all occurrences of Y in S are within the scope of
some action α.(·) operator. We let P denote the set of closed and guarded program
statements. Note that P is, by construction, a countable set. In this syntax, nil stands
for (correct) termination and fail for failure. The other clauses are self-explanatory.
We shall use the following abbreviation

obs(φ).S := if φ then S else fail .

Example 22 (random walk). The following program S models a random walk via a
an unbounded loop. The initial value of variables, (i, r, y) in this example, is always
assumed to be zero. First, r is drawn at random3 in (0, 1). Then, at each iteration y is
updated according to a Normal distribution ρG of mean y and s.d. 2r, until |y| ≥ 1.

S = r ∼ ρU . recY . (if |y| < 1 then (y ∼ ρG(y, 2 · r).i = i+ 1.Y ) else nil) . (6.5)

As a variation of the above, one might be interested in observing only those computa-
tions that terminate in at least 3 iterations:

S′ = r ∼ ρU . recY . (if |y| < 1 then (y ∼ ρG(y, 2 · r).i = i+ 1.Y ) else obs(i ≥ 3)) .
(6.6)

2Variables xi are only introduced as syntactic sugar: they will not get instantiated, and might be
dispensed with using a terser notation, like @i = g and @i ∼ G.

3Technically, Definition 14 requires that we specify a density ρG((c, 2r), ·) also when r ≤ 0: this
can be fixed arbitrarily for our purposes.
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Operational semantics The operational semantics of P will be given by a Markov
kernel K(·, ·). Some additional notation is in order. First, we assume a bijection
between P and N, so that without loss of generality we can regard P as a subset of
R. In particular, we will consider a set of state-program pairs Rm × P ⊆ Rm+1.
Henceforth, we fix our state space and sigma-field as follows:

Ω := Rm+1 F := Borel sigma-field over Rm+1

while reserving the symbol Fk for the Borel sigma-field over Rk, for any k ≥ 1. For
any S ∈ P and A ∈ F , we let AS := {v ∈ Rm : (v,S) ∈ A} be the section of
A at S. Note that AS ∈ Fm, as sections of measurable sets are measurable, see [12,
Th.2.6.2,proof(1)].

For v = (v1, ..., vm) ∈ Rm, r ∈ R and 1 ≤ i ≤ m, we let v[r@i] := (v1, ..., r, ..., vm)
denote the tuple where vi has been replaced by r. Moreover, we let v-i ∈ R

m−1 be the
vector obtained from v by removing its i-th component, and let A(v-i,S) = {r ∈ R :
(v[r@i],S) ∈ A} ⊆ R be the section of A at (v-i,S), which is a measurable set in F1.

Now we define a function K : Ω × F → R+. Due to the presence of rec , a
plain inductive definition on the structure of S would not go through. Nevertheless,
it is still possible to give a syntax-driven definition, as follows. The syntactic depth
of S, written dp(S), is inductively defined by plain induction on S, as expected:
dp(Y ) = dp(nil) = dp(fail) = 0, dp(α.S) = 1 + dp(S), dp( if φ then S1 else S2) =
1 + max{dp(S1), dp(S2)}, and dp(recY .S) = 1 + dp(S). Let the unfolding of
S, written u(S), be the term obtained from S by replacing each subterm recY .S ′
that is not in the scope of a rec (·) or α.(·), by S ′[recY .S ′/Y ]. As an example, if
S = recY .recY ′. if φ then α.Y else α′.Y ′ then

u (S) = recY ′. if φ then α.S else α′.Y ′ .

We call S stable if S = u(S). Define the k-th unfolding of S, u(k)(S), for k ≥ 0,
by induction on k as expected. We let the stability depth be sdp(S) := min{k ≥
0 : u(k)(S) is stable }. This parameter is well defined and finite for programs S ∈ P .
In particular, if Y occurs in S, then sdp(S[recY .S/Y ]) < sdp(recY .S) for each
term recY .S ∈ P . In what follows, we shall refer to the induction on the pairs
p(S) := (sdp(S), dp(S)) ordered lexicographically as to structural induction on S.
Note that in particular p(S[recY .S/Y ]) < p(recY .S). Below, we shall writeK(ω,A)
as K(ω)(A), for any A ∈ F .

Definition 15 (Markov kernel over Ω). We let K : Ω × F → R+ be the function
defined by structural induction on S as follows. Below, v ∈ Rm, r ∈ R and A ∈ F .

K(ω)(A) = δω(A) (ω /∈ Rm × P)

K(v, nil)(A) = δ(v,nil)(A)
K(v, fail)(A) = δ(v,fail)(A)

K(v,xi = g.S)(A) = δ(v[g(v)@i],S)(A)
K(v,xi ∼ G.S)(A) =

∫
A(v-i,S)

µG(dr)G(v, r)
K(v, if φ then S1 else S2)(A) = φ(v)K(v,S1)(A) + φ(v)K(v,S2)(A)

K(v, recY .S)(A) = K(v,S[recY .S/Y ])(A) .
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Note that the first clause ensures that κ(·)(A) is defined on all elements of Ω, even
those that do not represent valid state-program pairs.

Lemma 18. The function K is a Markov kernel from Ω to Ω.

The proof that K is a Markov kernel is a bit laborious but not difficult. We
show separately that for each fixed ω ∈ Ω, the function A 7→ K(ω)(A) is a probability
measure onF , and that for each fixedA ∈ F , the functionω 7→ K(ω)(A) is measurable
on Ω. This allow us to conclude, relying on some basic facts from measure theory
(e.g. continuity implies measurability).

Example 23. Consider the program S (random walk) in (6.5). Here we have m = 3
variables, (i, r, y). Assume for simplicity that A = R × P , for some rectangle
R = [a1, b1] × [a2, b2] × [a3, b3] ⊆ [0, 1]3. Also call S1,S2,S3 the continuations of S
after the first, second and third action, respectively. Let ρG((c, s), r) be the Normal
parametric density of mean c and standard deviation s, and assume s ∈ (0, 1) below.
Then one can check:

K(((0, 0, 0), S)(A) = δ1([a1, b1])
K(((1, 0, 0), S1)(A) = b2 − a2
K(((1, s, 0), S2)(A) =

∫ b3
a3
ρG((0, 2s), r)dr .

6.4 Observable semantics
For any t ≥ 1, we call Ωt the set of paths of length t. Consider now the set of
paths of infinite length, Ω∞, that is the set of infinite sequences ω̃ = (ω1,ω2, ...) with
ωi ∈ R

m+1. For anyωt ∈ Ωt and ω̃ ∈ Ω∞, we identify the pair (ωt, ω̃)with the element
of Ω∞ in which the prefix ωt is followed by ω̃. For t ≥ 1 and a measurable Bt ⊆ Ωt,
we let Bt := Bt × Ω∞ ⊆ Ω∞ be the measurable cylinder generated by Bt. We let
C be the minimal sigma-field over Ω∞ generated by all measurable cylinders. Under
the same assumptions of Theorem 13 on the measure µ1 and on the kernelsK2,K3, ...
there exists a unique measure µ∞ on C such that for each t ≥ 1 and each measurable
cylinder Bt, it holds that µ∞(Bt) = µt(Bt): see [12, Th.2.7.2], also known as the
Ionescu-Tulcea theorem. In the definition below, we let 0 = (0, ..., 0) (m times) and
consider δ(0,S), the Dirac’s measure on Ω that concentrates all the probability mass in
(0,S).

Definition 16 (probability measure induced by S). Let S ∈ P . For each integer
t ≥ 1, we let µtS be the probability measure over Ωt uniquely defined by Theorem 13(a)
by letting µ1 = δ(0,S) and K2 = · · · = Kt = K. We let µ∞S be the unique probability
measure on C induced by µ1 and K2 = · · · = Kt = · · · = K, as determined by the
Tulcea-Ionescu theorem.

In other words, µtS = δ(0,S) ⊗ K ⊗ · · · ⊗ K (t − 1 times K). By convention, if
t = 1, µtS = δ(0,S). The measure µ∞S can be informally interpreted as the limit of the
measures µtS and represents the semantics of S. We will be interested in the following
events of Ωt and Ω∞, for t ≥ 1. We start from the following three sets that form a
partition of Ω: L := Rm × (R \ {nil, fail}), T := Rm × {nil}, F := Rm × {fail}.
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• Ft := Lt−1 × F× Ω∞, the paths that fail at time t;

• Tt := Lt−1 × T× Ω∞, the paths that terminate at time t;

• F∞ := ⋃
t≥1 Ft, the paths that eventually fail;

• T∞ := ⋃
t≥1 Tt, the paths that eventually terminate.

We are interested in evaluating a program only on non failed paths: that is, we will
work by conditioning on the event (F∞)c. Recall that the support of an (extended)
real valued function f is the set supp(f) := {z : f(z) 6= 0}. In what follows,
we shall concentrate on nonnegative measurable functions f to avoid unnecessary
complications with the existence of integrals. The general case can be dealt with by
the usual trick of decomposing f as f = f+ − f−, where for each z one defines
f+(z) := max(0, f(z)) and f−(z) := −min(0, f(z)), and then dealing separately
with f+ and f−.

Definition 17 (observable semantics). Let f be a nonnegative measurable function
defined on Ω∞. We let the unnormalized semantics of S and f be [S]f := Eµ∞S [f ](=∫
µ∞S (dω̃)f(ω̃)). Let the support of f be contained in (F∞)c, then we let

[[S]]f := [S]f
[S]1(F∞)c

(6.7)

provided the denominator is not zero; otherwise [[S]]f is undefined.

We are mainly interested in [[S]]f in cases where, informally speaking, the value
of f does not depend on what happens after termination, that is it is determined by
the first terminated state: we call these functions termination based, and define them
formally below. We also define lifting, a natural way of defining termination based
functions from functions on Ω that only look at the value of variables in (correctly)
terminated states.

Definition 18 (termination based f , lifting). Let f : Ω∞ → R+ be a measurable
function. We say f is termination based if supp(f) ⊆ T∞ and for each t ≥ 1 and
ωt ∈ Lt−1 × T, we have that f is constant on {ωt} × Ω∞. For any such f and t ≥ 1,
we let ft : Ωt → R+ be defined by ft(ωt) := f(ωt, ∗∞), for an arbitrarily fixed ∗ ∈ L.

Given a nonnegative measurable g on Ω with supp(g) ⊆ Rm × {nil}, we define
the lifting of g to Ω∞ as the function f defined as follows: for ω̃ = (ω1,ω2, ...),
f(ω̃) := g(ωt) if ω̃ ∈ Tt for some t ≥ 1; otherwise, f(ω̃) := 0. The lifting of g to Ωt

is ft, where f is the lifting of g to Ω∞.

Most functions of interest can be defined via lifting.

Example 24. f = 1T∞ , the indicator function of the termination event, is termination
based, and is just the lifting of the predicate g(v,S) = [S = nil] onΩ. Another example
are lifting of functions g that just return the final values of the program’s variables, or
functions thereof, in terminated states. Outside the class of lifted functions, a function
that, for instance, counts the number of times a given event E ⊆ Ω is observed until
termination, is termination based.
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Informally speaking, the functions ft approximate f over paths of length t. It is
not difficult to check that, for any t, ft is measurable over Ωt, starting from the obvious
case where f is the indicator function. The next result shows how to approximate
[[S]]f with quantities defined only in terms of ft and µtS , which is the basis for the MC
approximation algorithm in the next section. Formally, for t ≥ 1 and a measurable
function h : Ωt → R+, we let

[S]th := EµtS [h] (=
∫
µtS(dωt)h(ωt) ) .

We also use the abbreviation T≤t := ∪tj=1Lj−1×T×Ωt−j ⊆ Ωt. The intuitive content
of the result is as follows. At a given time t, the probability mass over paths of length
t is divided among terminated ones (T≤t), live ones (Lt) and failed ones ((T≤t ∪ Lt)c).
As t grows, the live probability mass can be distributed over terminated and failed
paths. Then considering the numerator in (6.7), at any given time t we obtain an upper
bound by moving all the live probability mass to terminated paths, while taking into
account a boundM on f ; and a lower bound by zeroing the live probability mass. We
can argue similarly for the denominator.

Theorem19 (finite approximation). Assume that, for some t ≥ 1, µtS(T≤t) > 0. Then
for any termination based function f , we have that [[S]]f is well defined. Moreover,
given a uniform upper bound ft ≤M (M ∈ R+), for each t large enough:

[S]tft
[S]t1T≤t + [S]t1Lt

≤ [[S]]f ≤ [S]tft +M · [S]t1Lt

[S]t1T≤t
. (6.8)

In particular, if for some t we have [S]t1Lt = 0, then

[[S]]f = [S]tft
[S]t1T≤t

. (6.9)

When f is an indicator function, f = 1A, we can of course take M = 1 in the
theorem above.

Example 25. Let us consider again the program S on the variables (i, r, y) in (6.5).
Let f be the lifting of the indicator function g defined on Ω that characterizes the final
states of the program in which i ≥ 3, formally: g((a, b, c), z) = 1 if a ≥ 3 and z = nil,
and 0 elsewhere. So [[S]]f is the probability that the execution of S terminates with
at least 3 iterations. Fix t = 120. Drawing a large number of independent samples4
from the program, we can estimate the expected values in (6.8) as arithmetic means,
and can check that in this case the bounds yield:

0.45 ≤ [[S]]f ≤ 0.56 .

Also, [S]t1T≤t
≥ 0.93, that is the probability of terminating within time t = 120 is at

least 0.93. Further details on the actual computation of these figures are postponed
until Section 6.6.

4For this example, we have used 105 samples. In fact, the stated bounds hold with very high
probability: this will be made rigorous in the next section in terms of confidence intervals.
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Remark 15. Concerning the probability of termination, that is the µ∞S (T∞) = [[S]]f
with f = 1T∞ , we note only the lower bound in (6.8) can be useful. Indeed, in this
case ft = 1T≤t , so that the upper bound’s numerator in (6.8) is always at least as large
as the denominator.

Remark 16 (from expectations to distributions). While our semantics is given in
terms of expectations, it is fairly general. In particular, for any nonnegative measurable
h defined on Ω∞, all the relevant information about h is conveyed by its cumulative
distribution function, conditioned on non failure, defined for any r ∈ R as

F (r) := µ∞S
(
h−1([−∞, r]) ∩ (F∞)c

)
/µ∞S ((F∞)c) .

Now F (r) can be recovered by letting f = 1h≤r · 1(F∞)c in Definition 17, that is
F (r) = [[S]](1h≤r · 1(F∞)c). To see this, note that this f is just the indicator function of
h−1([−∞, r]) ∩ (F∞)c. We also note that this f is not termination based, so Theorem
19 as is does not apply to it. We think that at least for finite (rec -free) S, an extension
of the theorem to such f is easy, but leave the details for future work.

6.5 Inference via vectorized Monte Carlo sampling
Monte Carlo estimation It is convenient to extend our notation for the measure µtS
to the case of an arbitrary initial vector v ∈ Rm, by letting µtS,v := δ(v,S)⊗K⊗· · ·⊗K
(t− 1 times K), and [S]tvf :=

∫
µtS,v(ωt)f(ωt).

Proposition 20. Let f : Ωt → R+ be a nonnegative measurable function and t ≥ 1.
Then, for ω1 := (v,S) ∈ Ω

[S]tvf =
∫
K(ω1)(dω2) · · ·

∫
K(ωt−1)(dωt)f(ω1,ω2, ...,ωt) . (6.10)

Moreover, the function v 7→ [S]tvf is measurable.

Proof. We have

[S]tvf =
∫
µtv,S(ωt)f(ωt)

=
∫
δ(v,S)(dω1)

∫
K(ω1)(dω2) · · ·

∫
K(ωt−1)(dωt)f(ωt)

=
∫
K(v,S)(dω2) · · ·

∫
K(ωt−1)(dωt)f((v,S),ω2, ...,ωt)

where second equality follows from Theorem 13(b) (Fubini), and the third equality
follows from the definition of Dirac’s measure. The expression in the last line is
(6.10), which equals (6.11) by definition. As to measurability, call h(ω) the expression
obtained from (6.10) by replacing (v,S) with a generic ω = (v, y) ∈ Ω. The resulting
function of ω is measurable, as implied by the last part of Theorem 13(b) (Fubini).
Hence also the function obtained from h by fixing y = S, that is v 7→ [S]tvf , is
measurable: it is obtained by composing ameasurable function (h) with the continuous
hence measurable function v 7→ (v,S). 2

By virtue of Proposition 20, any expectation (integral) involved in (6.7) or in
(6.8) can be expressed as t − 1 iterated expectations (integrals). We shall sometimes
abbreviate this as follows, letting ω1 = (0,S):

[S]tf = EµtS [f ] = Eω2∼K(ω1),ω3∼K(ω2),...,ωt∼K(ωt−1)[f(ω1, ...,ωt)] . (6.11)
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Equation (6.11) is the basis for implementing a Monte Carlo sampling inference algo-
rithm. Indeed, the Law of LargeNumbers implies that expectation can be approximated
by arithmetic mean (see further below for a rigorous statement):

[S]tf ≈ 1
N

N∑
i=1

f(Zi) (6.12)

where Z1,Z2, ...,ZN are N i.i.d. random variables, with Zi distributed according to
µtS . Explicitly, for each i, as prescribed by (6.11):

Zi = (ωi,1, ...ωi,t), where: ωi,1 = (0,S),ωi,2 ∼ K(ωi,1), ...,ωi,t ∼ K(ωi,t−1) . (6.13)

If f is of bounded variation, that is f(ωt) ≤ M < +∞ for each ωt ∈ Ωt, the quality
of the approximation (6.12) can be controlled via the Hoeffding inequality [96], which
implies that, for each ε > 0

Pr
(∣∣∣[S]tf − 1

N

∑N
i=1 f(Zi)

∣∣∣ > ε
)
≤ δ := 2e−2Nε

2
M2 . (6.14)

From confidence intervals of width ε for expectations [S]tf , it is easy to build con-
fidence intervals for the ratios representing the lower and upper bounds in (6.8) via
simple algebraic manipulations. These resulting bounds tend to be quite loose in some
situations, e.g. when f returns small values. To obtain less naive bounds, consider the
subset of the N samples that are in T≤t ∪ Lt, say Z̃1, ..., Z̃Na for some 0 ≤ Na ≤ N ;
we call these the accepted samples. Out of these, there will be 0 ≤ Nt ≤ Na samples
in T≤t (terminated), and Na −Nt in Lt (live). Assuming Na > 0, for ε > 0, a tighter
confidence interval is∑Na

i=1 ft(Z̃i)
Na

− ε ≤ [[S]]f ≤
∑Na
i=1 ft(Z̃i)
Nt

+ ε + M ·
(

Na

max{0,Nt − εNa}
− 1

)
(6.15)

where, by applyingHoeffding’s inequality, one can prove that the both the above bounds
hold with confidence at least 1 − (2δa + δt), with δa = e−2Naε2/M2 and δt = e−2Naε2 .
The convention r/0 = +∞ for r ≥ 0 applies above. When it is known that µtS(Lt) = 0,
the termM · (· · · ) can be omitted, and we can set Nt = Na. Let us also mention that
there is life beyond Hoeffding: in particular, empirical versions of Bernstein inequality
[122, 133] are convenient when the samples exhibit a low empirical variance.

A vectorized algorithm While the above is standard, we argue that, thanks to the
uniform formulation of the Markov kernel K(·), (6.12) can be efficiently implemented
in vectorized form. This is outlined in Figure 6.1, where we use the following notation
and conventions. We use a pair of arrays (V ,P ) to storeN (independent) instances of
pairs (program store, control pointer). In particular, V ∈ RN×m and P ∈ PN×1 store,
respectively: N program’s stores v ∈ Rm; and N control pointers, each represented
as a statement S ∈ P . The basic operations we rely upon are the following.

1. Boolean masking: for any two arraysW ∈ RK×m and β ∈ RK×1, we letW [β]
denote the sub-array ofW formed by all rows ofW at indices i s.t. β(i) 6= 0.
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K̃(V ,P )
1: V ′,P ′ ← empty arrays of the same shape as V ,P
2: B ← { (S, 1{S}(P )) : S ∈ set(P ) }
3: for (S,β) ∈ B do
4: switch S do
5: case nil or fail
6: V ′[β]← V [β], P ′[β]← S

7: case xi = g.S′
8: V ′[β, i]← g(V [β]), P ′[β]← S′

9: case xi ∼ G.S′
10: V ′[β, i]← R, P ′[β]← S′, where R ∼ DG(V [β])
11: case if φ then S1 else S2
12: β1 = φ(V ), β2 = 1− β1
13: V ′[β · βj ],P ′[β · βj ]← K̃(V [β · βj ],Sj), j = 1, 2
14: case recY .S′
15: V ′[β],P ′[β]← K̃(V [β],S′[S/Y ])
16: end for
17: return (V ′,P ′)

A(S,h, t,N)
1: V ←N ×m array, filled with 0
2: P ←N × 1 array, filled with S
3: do t− 1 times
4: V ,P ← K̃(V ,P )
5: end do
6: return 1

N

∑
h(V ,P )

Figure 6.1: Vectorized Monte-Carlo algorithm for estimating [S]tf , with f : Ωt → R.
Left: Algorithm K̃: given (V ,P ) = ((vj)Nj=1, (Sj)Nj=1), the returned (V ′,P ′) stores
N independent drawings fromK(v1,S1), ...,K(vN ,SN). Right: AlgorithmA, Monte
Carlo estimation (6.12) of [S]tf . Here we assume f is the lifting to Ωt of a function
h defined on Ω. Notation. set(P ) ⊆ P is the set of elements that appear in P ;
V [β, i] is the i-th column of V [β];∑h(V ,P ) := ∑N

j=1 h(vj,Sj), where vj , Sj denote
the j-th row of V , P , respectively. Broadcast of individual values to whole arrays is
automatically performed as needed: W ← w means filling the arrayW with a specific
value w, and so on. β · β′ denotes the element-wise product of β and β′.

2. Vectorization: for any function h : Rm → R, possibly a predicate, and array
W ∈ RK×m, we leth(W ) be theK×m array obtained by applyingh elementwise
onW , as expected.

Vectorization also applies to random sampling. Denote by DG(v) the distribution
on R induced by the parametric density G(v, r), taking parameters v ∈ Rm: in
R ∼ DG(W ), R is a K × 1 array obtained by K independent extractions, drawn
according to the distributions DG(w) for w in W . Modern CPUs offer extensive
support for performing boolean masked assignments such asW [β]← W ′[β] as single
instructions (to some extent, depending on the size of W ): this effectively leverages
SIMD parallelism, eliminating levels of looping and iterations, and potentially leading
to significant runtime speed-up. Vectorization is also supported by many high-level
programming languages5. Note that, in the for loop of algorithm K̃ at line 3, the
number of iterations is bounded by |set(P )|, which is of the order of the syntactic
size of S and independent of the number of samples N to be taken. An optimization
of this scheme is possible by considering a suitable restricted language of program
statements; this will be explored in Section 6.6.

5For instance, in Python via the Numpy or TensorFlow packages.
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Importance sampling Consider the program S = x1 ∼ ρU(0, 1).x2 ∼
ρG(x1, 1).obs(|x2 − x1| > 3).nil. The obs statement demands that x2 fall more
than three standard deviations away from x1. Suppose we draw N samples from
this program, relying in the algorithm A in the previous section. Recalling that
obs(φ).nil = if φ then nil else fail, a large fraction of the resulting computations
— on average about 99.7% — will end into fail, that is will be rejected. If the
purpose of this procedure is obtaining samples of the terminated states of the pro-
gram, this is huge waste of computational resources. According to the princi-
ples of importance sampling (IS), it is better if in the second sampling step in S
one draws directly from the distribution ρG((x1, 1), ·) restricted to the set Ax1 =
(−∞,x1 − 3) ∪ (x1 + 3, +∞): call ρ̃G((x1, 1), ·) this new distribution. This change
of sampling distribution must be compensated by weighing each sample with an im-
portance weight W (x1) =

∫
Ax1

µ(dr)ρG((x1, 1), r). Formally, we apply Proposition
20 with t = 3, take into account the chain rule for densities and, assuming f is the
lifting of some g, compute as follows (in the second step, we take into account that
g(r1, r2, fail) = 0; in the third step, the definition of the restricted density ρ̃G(r1, 1; r2)):

[S]tf =
∫
µ(dr1)ρU (0, 1; r1) ·

∫
µ(dr2)ρG((r1, 1), r2) · [|r2 − r1| > 3] · g(r1, r2, nil) +∫

µ(dr1)ρU (0, 1; r1) ·
∫
µ(dr2)ρG((r1, 1), r2) · [|r2 − r1| ≤ 3] · g(r1, r2, fail)

=
∫
µ(dr1)ρU (0, 1; r1) ·

∫
µ(dr2)

(
ρG(r1,1;r2)·[|r2−r1|>3]

W (r1)

)
W (r1)g(r1, r2, nil)

=
∫
µ(dr1)ρU (0, 1; r1) ·

∫
µ(dr2)ρ̃G((r1, 1), r2)W (r1)g(r1, r2, nil)

= [S̃]tf̃
(6.16)

where S̃ = x1 ∼ ρU(0, 1).x2 ∼ ρ̃G(x1, 1). nil and f̃ is the lifting of W · g. Now,
provided we know how to draw efficiently samples from ρ̃G and how to computeW (x1)
(which is in fact easy), evaluating [S̃]tf̃ by applying A to S̃ and f̃ will be much more
efficient than applying A directly to S and f . In this example, when applying A to
S̃ we will have no rejections. Moreover, from the point of view of the application of
Hoeffding’s bound (6.14), we can replaceM with the much smallerM · supx1 W (x1),
obtaining to a significative sharpening of the bound. In fact, in this case W (x1) is
a constant, W (x1) ≈ 0.003. The above example can be generalized to a systematic
procedure, the interested reader can find the details in Appendix D.2. Let us remark
here that applying this procedure can be costly, as, in the general case, the number of
terms that may appear in an expansion like (6.16) can be exponential in the size of S.
In our experiments, IS turned out to be less convenient than a pure vectorized Monte
Carlo estimation.

6.6 Implementation and evaluation

We will specialize the sampling algorithm A of Section 6.5 to a sublanguage of
P , and present an implementation based on TensorFlow (TF) [1], an open source
library enabling efficient and SIMD-parallelmanipulation of tensors (multidimensional
arrays). We will then evaluate this implementation on a few probabilistic programs
taken from the literature. For loop-free examples, wewill also compare our results with
those obtained by applying two state-of-the-art tools for probabilistic programming.
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6.6.1 TSI: a TensorFlow based implementation
We focus on a sublanguage P0 ⊆ P , and present a TF-based implementation of a
specialized version of algorithm A. The syntax of P0 is obtained by imposing that
every rec subterm has the following form:

recY .( if φ then S1 else S2)

such thatS1 does not contain rec nor nil, S1 6= fail andS2 does not contain Y . So nested
rec ’s are not allowed, and exiting a loop is possible only either via a fail statement
inside S1 or by making φ false, in the last case proceeding then to S2. Accordingly,
in the rest of the section we will also use the following abbreviation, for any rec -free
statement S1 6= fail where every nil is guarded by an action prefix, and S2 does not
contain Y :

whileφ S1, S2 := recY .( if φ then S1[Y/nil] else S2)) (6.17)

The sublanguage P0 has been tailored so as to be mapped easily into TF, as explained
below; yet it is still expressive enough to allow for the description of nearly all the
examples in the literature we have examined. Our translation leverages the following
linguistic features of TF.

1. Vectorized assigment xi=g(x), where xi,x can be either scalar or tensor vari-
ables, or tuples thereof. Functions and predicates on scalars are automatically
extended to tensors as expected. Likewise, vectorized sampling from a distribu-
tion with parameters x will be written G(x).sample(): when the parameter x is
a tensor, this will yield a tensor of independent samples, one for each component
of x.

2. Vectorized if-then-else expression tf.where(cond,a,b). Here cond is a ten-
sor of booleans that acts as a mask: the result of tf.where is a tensor of the same
shape as a, where the value of each component is the corresponding element
from tensor a (if the corresponding element from cond is True) or from tensor
b (otherwise). These operations are executed independently on the elements of
the involved tensors cond,a,b, in a vectorized fashion.

3. Vectorized while-loop expression tf.while_loop(fcond,fbody,vars).
Here both fcond and fbody are functions that can be called with the vars tensor
variables as arguments: fcond returns a boolean scalar, and fbody returns a
tuple of tensors that can be assigned to variables vars. The semantics dictates
that the assignment vars=fbody(vars) be repeated as long as fcond(vars)
yields True; upon termination, the current value of vars is returned. Therefore,
although the termination condition fcond(vars) is global, different instances
of fbody are independently executed on the elements of tensors vars, in a
vectorized fashion.

An outline of our translation of P0 into TF is presented in Figure 6.2. A statement
S ∈ P0 is translated into a TF-Python function fS , introduced by the declaration T(S).
When invoked, fS will returnN independent samples, each drawn according to (6.13).
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In more detail, the command x,mask,t=fS(x,mask,t) executes N independent in-
stances of the initial statement S, applying successive transitions, until each instance
has reached at least a prescribed time (=path length) of t0. The tuple of tensors x =
x1,...,xm, one for each program variable, initially filled with 0, will store the drawn
N independent samples. The control pointer vector V of algorithm A is replaced
here by a pair of tensors mask,t. The tensor mask will keep track of which of the N
instances is actually terminated (True), failed (False) or live (NaN) at the end of the
execution. The tensor t is a counter, that will record the actual time at which each
instance will reach nil or fail, if ever. Note that “stuttering” transitions from nil or fail
do not increment t; but transitions from if-then-else’s where one of the two branches
is a nil or fail do increment t (cf. lines 19 and 31). The use of t is necessary because
theN instances are not necessarily time-aligned at the end of the execution of fS . The
information contained in mask,t will be used at the end to discern which instances
are actually terminated/failed/live at time t0, and the corresponding samples from x
(like in lines 42,43). Taken together, these form the wanted N i.i.d. samples from µt0

drawn according6 to (6.13).
The clauses of the translation functionT(·) should be self-explanatory, but possibly

for the last one. In the case of while, a complication is that, within the given time limit
of t0, the N independently executed instances may exit the loop at different times, or
even not exit the loop at all. In the corresponding code (lines 23-34), the execution
of an instance is suspended as soon as it reaches either an exit condition or time t0
(second branch of where in the definition of fbody, line 26); the while_loop stops
when all instances have reached this situation (condition in fcond, lines 28,29). Next,
the execution of all instances is resumed with S2 (lines 30,31), but this will have an
effect only for instances that had exited the loop normally, that is by invalidating φ
before time t0 without failing: the other instances are deemed either live or failed
at time t0 (lines 32, 33), and S2 will have no effect for them. Further details are
provided in the caption of Figure 6.2. A simplification of this translation is possible
for statements S ∈ P0 that rule out either while or if-then-else (this in fact covers all
the examples we will see); see [34].

Technically, the TF execution model is based on data flow graphs: under the hood
[130], the code is expressed as a computational graph, a data structure where nodes
represent operations, and edges represent data, arranged as tensors, that flow through
the graph between operations. A graph execution model is defined that leverages fine-
grained, massive SIMD-parallelism. Better performances are obtained on GPU-based
hardware.

We will refer to the framework resulting from our translation of P0 into TF as TSI,
for Tensor-based Sampling and Inference.

6.6.2 Evaluation of TSI
In the first subsection, we present experimental results obtained by putting TSI at work
on four loop-free probabilistic programs taken from the literature: TrueSkill, Pearl’s
Burglar Alarm, ClickGraph and MontyHall. At the same time, we compare TSI with

6Like for algorithm A, since f is assumed to be the lifting of some h defined on Ω, we only keep
the last element of each sequence, ωi,t0 in the notation of (6.13).
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two state-of-the-art probabilistic languages (and inference tools), webPPL [83] and R2
[137]: we have chosen them because the corresponding languages are easy to compare
with ours, in particular both feature observe or equivalent statements for conditioning.
webPPL incorporates the principles of Church [84], a LISP based PPL with an elegant
semantics. For the time being, we have left out of our comparison languages and
tools that are more tailored to fitting parameters to data and do not feature observe
statements, like Stan [43], or that lack a formally defined semantics.

Translation function

38 T(nil) = return x,TRUE ,t
39
40 T(fail) = return x,FALSE ,t
41
42 T(xi = g.S) =
43 t=t+1
44 xi=g(x)
45 T(S)
46
47 T(xi ∼ G.S) =
48 t=t+1
49 xi=G(x). sample ()
50 T(S)
51
52 T( if φ then S1 else S2) =
53 T(S1)
54 T(S2)
55 x,mask ,t ’= tf. where (phi(x), {fS1 (x,mask ,t)}, {fS2 (x,mask ,t)})
56 t=tf. where (t==t’,t+1,t ’)
57 return x,mask ,t
58
59 T(whileφ S1, S2) =
60 T(S1)
61 T(S2)
62 def fbody (x,mask ,t):
63 x,mask ,t=tf. where (phi(x)&( mask != False )&(t<t0),{fS1 (x,mask ,t)} ,{x,mask ,t})
64 return x,mask ,t
65 fcond = lambda x,mask ,t: Any(phi(x)&( mask != False )&(t<t0 ))
66 x, mask , t =tf. while_loop (fcond , fbody , (x,mask ,t))
67 x’,mask ’,t ’=fS2 (x,mask ,t)
68 t ’= tf. where (t==t’,t+1,t ’)
69 x,mask ’,t=tf. where (not(phi(x))&(t<t0 )&( mask != False ),{x’,mask ’,t ’} ,{x,NAN ,t})
70 mask=tf. where (mask != False ,mask ’, False )
71 return x,mask ,t
72
73 T(S) =def fS(x,mask ,t):
74 T(S)
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Workflow
Example assumingm = 1, hence x is x1. Compute est, the MC estimation (6.12) of [S]t0ft0 , assuming f is the lifting of h.

38 x1=tf.fill (0, shape =(1 ,N))
39 mask=tf.fill(NaN , shape =(1 ,N))
40 t=tf.fill (1, shape =(1 ,N))
41 T(S)
42 x1 ,mask ,t=fS(x1 ,mask ,t)
43 term = (mask == True) & (t <= t0) # mask selecting terminated instances at time t0
44 est = sum(h(x1[term ]))/N

Figure 6.2: Outline of the translation from P0 into Python with TensorFlow. Top,
translation function. Definition of functions T(S) and auxiliary T(S), by structural
induction on S. Bottom, workflow. The function fS defined byT(S) is called with in-
put arguments x,mask,t where x = x1,...,xm: here xi,mask,t are tensors of shape
(1,N), filled with 0, NaN and 1, respectively. x,mask,t=fS(x,mask,t) computes N
independent samplings stored in x, and masks mask and t, to be used for selecting
instances that are actually live/terminated/failed at the specified time t0, and calculate
estimations of [S]t0ft0 and [[S]]f . Notation. TRUE (resp. FALSE, NAN) denote the
(1,N) tensor filled with True (resp. False, NaN). We use {...} to denote concate-
nation of tensors x,mask,t = x1,...,xm,mask,t along the axis 0: assuming each
of xi,mask,t is a tensor of shape (1,N), then {x,mask,t} returns a tensor of shape
(m+2,N). Likewise, the left-hand side of any assignment, x,m,t = tf.where(...)
actually denotes slicing of the tensor resulting from tf.where(...) intom+2 (1,N)-
tensors, which are then assigned to the variables x1,...,xm,mask,t. In actual TF
syntax, {...} corresponds to using tf.concat(), and x,m,t = tf.where(...) to
suitable tensor slicing operations. Any(b), for b a tensor of booleans, is the scalar
boolean value obtained by OR-ing all elements in b. The usual Python’s notation and
rules to broadcast scalars to whole tensors apply, as well as those on boolean masking
of tensors.

In the second subsection, we apply TSI to probabilistic programs involving un-
bounded loops, and discuss the obtained results mainly from the point of view of
accuracy. Code and examples for these experiments7 are available online [34].

Loop-free programs and comparison with WebPPL and R2 We consider
TrueSkill, Pearl’s Burglar Alarm, ClickGraph and Monty Hall, four nontrivial proba-
bilistic programs with obs statements. On these models, we compare TSI with both
WebPPL, a programming language based on JavaScript, and R2, a probabilistic pro-
gramming system based on C#. In Table 6.1, we report the execution time required
by the different approaches on the four programs, as the number of samples increases,
together with the estimated expected value for their output variables. In each case, the
value of t for TSI has been chosen large enough to guarantee termination or failure of
all instances (no live terms). N is the number of samples generated by TSI, including
non-accepted (failed) ones. Out of these, a number Na ≤ N in each case is accepted:
this Na is the number of samples that the other tools are required to generate in each

7Our PC configuration is as follows. OS: Windows 10; CPU: 2.8 GHz Intel Core i7; GPU: Nvidia
T500, driver v. 522.06; TF: v. 2.10.1; CUDA Toolkit v. 11.8; cuDNN SDK v. 8.6.0.
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case. In all cases TSI is significantly faster — up to three orders of magnitude —
than the other tools. In the table, we only report the central value of TSI’s confidence
interval of width 2ε, computed by (6.15) with Nt = Na and the rightmost term elided.
We see that TSI also performs very well in terms of accuracy: e.g. for N = 106, the
reported value coincides with the exact expectation, in all the analyzed models. The
confidence is also good: forN ≥ 5× 106 and ε = 0.005, it always exceeds 0.99. Note
that not being MCMC an exact sampling techniques, in the case of webPPL-MCMC
and R2 the generated samples cannot be used to give formal guarantees. In conclu-
sion, over the considered examples, TSI shows a significant advantage in terms of both
execution time and accuracy.

TS (skillA=1.057) BA (burg=0.029) CG (simAll=0.570) MH (win=0.666)

TSI
webppl
rej.

webppl
mcmc

R2 TSI
webppl
rej.

webppl
mcmc

R2 TSI
webppl
rej.

webppl
mcmc

R2 TSI
webppl
rej.

webppl
mcmc

R2

N = 104
runtime 0.001 0.051 0.041 0.063 0.003 0.036 0.016 0.046 0.006 0.032 0.011 0.031 0.011 0.104 0.097 0.015

exp. 1.057 1.056 1.052 1.063 0.029 0.035 0.037 0.035 0.560 0.541 0.630 0.513 0.671 0.663 0.675 0.668

N = 105
runtime 0.001 0.305 0.147 0.640 0.005 0.191 0.065 0.296 0.008 0.119 0.052 0.141 0.015 0.692 0.523 0.141

exp. 1.056 1.056 1.057 1.063 0.029 0.030 0.027 0.026 0.561 0.554 0.551 0.530 0.666 0.666 0.664 0.664

N = 106
runtime 0.002 2.765 1.061 6.370 0.040 1.154 0.344 2.893 0.031 0.954 0.223 1.309 0.071 6.426 4.925 1.454

exp. 1.057 1.057 1.056 1.057 0.029 0.029 0.027 0.029 0.570 0.547 0.542 0.567 0.666 0.666 0.665 0.666

N = 5× 106
runtime 0.002 14.345 5.215 32.567 0.042 8.198 1.636 14.610 0.125 4.791 0.824 6.283 0.344 33.562 25.200 7.332

exp. 1.057 1.057 1.058 1.057 0.029 0.029 0.028 0.029 0.570 0.547 0.551 0.570 0.666 0.666 0.666 0.666

Table 6.1: Vectorized Comparison of TSI, webPPL and R2 on TrueSkill (TS), Burglar
Alarm (BA), ClickGraph (CG) and Monty Hall (MH) programs. runtime: execution
time; exp.: estimated expected value; N : number of i.i.d. samples generated by TSI.
For Na = number of i.i.d. samples accepted by TSI, the estimated acceptance rates
Na/N for the four programs are: 0.14, 0.20, 0.025 and 1.

Unbounded loops and random walks Consider the programs S and S ′ defined
respectively in (6.5) and (6.6) in Example 22, describing two random walks. Both
programs use unbounded loops in an essential way that neither webPPL nor R2 are able
to express easily. Moreover, both programs fall in sublanguage P0 we have considered
in this section. Indeed, using the abbreviation introduced in (6.17), S and S ′ can be
equivalently rewritten as

S = r ∼ ρU . while (|y| < 1) (y ∼ ρG(y, 2 · r).i = i+ 1.nil), nil
S ′ = r ∼ ρU . while (|y| < 1) (y ∼ ρG(y, 2 · r).i = i+ 1.nil), obs(i ≥ 3) .

Continuing now with Example 22, consider [[S]]f , that is the probability that S termi-
nates correctly in at least 3 iterations. In the case of S ′, we consider [[S ′]]f ′, where
f ′ (is the lifting of the function that) looks at the final value of variable r: that is,
r conditioned on the observation that i ≥ 3. We can compute upper and a lower
bounds of [[S]]f and [[S ′]]f ′ by applying (6.8), for any fixed value of t ≥ 1, the length
of execution paths. As the exact expected values involved in (6.8) are not available, we
proceed to their estimation via TSI, with confidence intervals provided by Hoeffding
inequality (6.14), as discussed in Section 6.5. In detail, we fix an error threshold of
ε = 0.005 andN = 106 samples, and apply the bounds (6.15). We report the obtained
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results in Table 6.2, for different values of t. As t gets larger, TSI provides tighter and
tighter confidence intervals for [[·]]. For example, at t = 202, for [[S]]f an interval of
width 0.04 is computed in less than 0.5 seconds.

t [[S]]f term. prob. runtime

12 0.623± 0.112 0.714 0.016
22 0.576± 0.065 0.817 0.021
102 0.538± 0.027 0.927 0.042
202 0.530± 0.020 0.950 0.343

t [[S′]]f ′ term. prob. runtime

12 0.663± 0.337 0.445 0.016
22 0.663± 0.336 0.647 0.022
102 0.442± 0.115 0.861 0.062
202 0.406± 0.079 0.904 0.268

Table 6.2: Vectorized Confidence intervals for [[S]]f (left) and [[S ′]]f ′ (right), termina-
tion probability on paths of length≤ t and corresponding execution time, as a function
of t. The chosen path lengths t correspond to the execution ofK iterations of the while
loop, for K = 5, 10, 50, 100.

6.7 Conclusion
We have presented a simple yet rigorous measure-theoretic small-step semantics for
a probabilistic programming language, that lends itself to a direct, SIMD-parallel
implementation. An approximation theorem reduces the effective estimation, with
guarantees, of the program semantics (expectation) to the analysis of finite execution
paths of a chosen length. TSI, a prototype implementation based on TensorFlow, has
shown encouraging results.



Chapter 7

Conclusion

This thesis is centered on Formal Methods for the analysis of continuous dynami-
cal systems, especially of those specified in terms of ordinary differential equations.
General goals of Formal Methods for dynamical system include designing methods
for proving correctness in terms of Safety, and more generally of reachability, and
for guaranteed parameter inference. In these respects, our main contributions can be
summarized as follows.

• Invariants and conservation laws. We present a method to compute polynomial
conservation laws for systems of partial differential equations. The method is
effective, being based mainly on linear algebraic operations, and complete, in
the sense that it can find all the polynomial conservation laws up to a specified
order of derivatives and degree.

• Linearization and reachability. We study conditions and methods to compute
reduced, linear approximations of nonlinear ODEs that are accurate also non
locally. We leverage the approximations generated in this way for reachability
analysis. In particular, we describe CKR, an algorithm to overapproximate the
set of reachable states of a given nonlinear ODEs system over a finite time
horizon.

• SDEs, a (co)algebraic approach. We study connections among polynomials,
differential equations and streams in terms of algebra and coalgebra. We describe
a method to find all invariant polynomials that fit a user-specified polynomial
template, for a given ODEs system. This generalize to systems of Streams
Differential Equations (SDEs). We also propose a stream version of the Implicit
Function Theorem (IFT) for algebraic systems of equations.

• Inference: Bayesian parameter estimation. We provide a method to compute
guaranteed estimates for ODEs parameters, relying on noisy observations from
their trajectories. To this effect, we combine Monte Carlo simulation, uncertain
probability and Interval Arithmetic. Guarantees come in the form of confidence
intervals for the posterior expectations of the parameters.

• Inference, a more general view: Probabilistic Programming. We present an
action based probabilistic programming language equipped with a small-step
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operational semantics, formalized in terms of a product of Markov kernels. This
approach provides benefits in terms of both clarity and effective implementation
and directly leads to an exact sampling algorithm that can be efficiently SIMD-
parallelized. In particular, the algorithm can be applied to compute estimates of
(discretized) ODEs parameters.

In each case, we have experimented with a proof-of-concept implementation of the
proposed method, and shown that it compares favourably to state-of-the-art tools or
techniques, in terms of accuracy and/or performance.

7.1 Future work
This work is open to further expansion in several directions. For instance, regarding
reachability analysis, it is well-known that states sets representation is crucial for both
accuracy and efficiency of the considered reachability method. In order to further im-
prove the scalability of ckr algorithm, we might change the states sets representation
and rely on zonotopes rather on polytopes. In this regard, some preliminary experi-
ments have shown very encouraging results. Moreover, it would be interesting to apply
ckr to Runtime Verification and Model Predictive Control to see how it performs and
whether it can be effectively useful.

Turning specifically to safety of ODEs, it would be interesting to investigate a new
family of deep neural network models that has been introduced recently in [49]: Neural
Ordinary Differential Equations (NODEs). Essentially, NODEs are ODEs in which the
dynamics are specified by a neural network. From a more deep-learning perspective,
NODEs are deep neural network models in which the derivative of the hidden state
is parameterized using a neural network, rather then specifying a discrete sequence
of hidden layers. More generally, it would be interesting to deepen Data-Driven
approaches for ODEs to exploit the large amount of data that is available nowadays
and try to prove safety properties or to provide guarantees of correctness for them.

Concerning stream differential equations, we would like to verify if new notions
of products can be defined respecting the product format presented in Chapter 4. We
would like also to extend the stream Implicit Function Theorem presented in Chapter
4 to the case of multivariate streams, that is considering a vector of independent
variables.

Regarding parameter inference, it would be interesting to apply the hybrid approach
to provide guaranteed estimates for ODEs parameters developed in Chapter 5 to more
complex models, and further analyze its application to feature relevance in neural
network classifiers. Finally, the sampling scheme based on probabilistic programming
proposed in Chapter 6 can be improved considering more sophisticated inference
algorithms based for example on particles filters as Sequential Monte Carlo [63]. In
this way rejected computations are replaced via resampling rather than being discarded.
At the same time, it would be interesting to establish a more formal relation between
inference algorithms and formal semantics for probabilistic programming languages.
Probabilistic programming has been heavily applied in different fields: to do sensitivity
analysis, but also for support in medical diagnostics or computer vision. It would be
interesting to consider some of these applications in detail.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Corollary 1

We can conservatively extend any givenmonomial order≺ on (X∪D)⊗ by introducing
an elimination order ≺el on (a∪X ∪D)⊗, as follows. First, order the elements in a as
a1 < · · · < as. Then, for α,α′ ∈ a⊗ and β, β′ ∈ (X ∪D)⊗, we let αβ ≺el α

′β′ if and
only if either α ≺lex α

′ or (α = α′ and β ≺ β′). In other words, monomials are first
compared lexicographically in their a-part and in case of ties, in their (X ∪ D)-part
according the the original order. Any ∆ ⊆ R[X ∪D] that is a Groebner basis in the
ring P = R[X ∪ D] w.r.t. the original order is also a Groebner basis in the larger
ring R[a ∪ X ∪ D] w.r.t. the elimination order: this is an immediate consequence
of Buchberger’s Criterion [57, Ch.2,§6,Th.6], as the S-polynomials of ∆ w.r.t. the
original order and the elimination order coincide. Proof of Corollary 1. First, by

the linearity of total derivative, it is easily seen that for each xi ∈ X , template π and
v ∈ Rs: Dxi(π[v]) = (Dxiπ)[v]. Now, in order to proof the inclusion in the statement,
consider any v ∈ V . We have:

S(div (Π[v])) = S(
∑
i

Dxi(πi[v]))

= S((
∑
i

Dxiπi)[v])

= S((div Π)[v])
= (S(div Π))[v] (A.1)

= 0 (A.2)

where (A.1) follows from Lemma 3 and (A.2) from the definition of V . Therefore
div (Π[v]) ∈

〈
Σ
〉
and, by Lemma 1, div (Π[v]) ∈ Inv(Σ). Assume now that〈

Σ
〉

= I(V(Σ)), we prove the reverse inclusion. Let (p1, ...., pn) ∈ CL(Σ,Z). By
assumption, there is v ∈ Rs such that (p1, ...., pn) = (π1[v], ...,πn[v]) = Π[v]. We
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prove that v ∈ V , that is (S(div Π))[v] = 0. Indeed

(S(div Π))[v] = S((div Π)[v]) (A.3)

= S((
∑
i

Dxiπi)[v])

= S(
∑
i

Dxi(πi[v]))

= S(div (Π[v]))
= 0 (A.4)

where (A.3) follows again from Lemma 3 and (A.4) from the fact that by hypothesis
div (Π[v]) ∈ Inv(Σ), hence div (Π[v]) ∈

〈
Σ
〉
by Lemma 1. 2

A.2 Proof of Proposition 2
We first introduce Riquier’s analyticity theorem. An initial data specification ρ :
Pa(Σ) −→ R is said to be analytic at x0 ∈ Rn if, for each u ∈ U , the following power
series1 defines a real analytic function of x in a neighborhood of x0

uρ(x) 4=
∑

uζ∈Pa(Σ)

ρ(uζ)
ζ! (x− x0)ζ . (A.5)

We report below Riquier’s analyticity theorem, seen as a special case of the version
given by Lemaire [114, Th.1].

Theorem A.2.1 (Riquier’s analyticity theorem). Let Σ be passive orthonomic w.r.t.
a ranking which is Riquier and weakly orderly. For any initial data specification
ρ analytic at x0 there is a unique analytic solution U of Σ around x0 such that
∂|τ |

∂τ
U i(x0) = ρ(uiτ ) for each uiτ ∈ Pa(Σ).

Proof of Proposition 2. We show thatΣ isD-locally solvable, analytically. Partition
D asD = D0∪D1, whereD1 are the leading derivatives ofΣ, andD0 are the remaining
derivatives, which must therefore be parametric. Let (x0,u0

D) = (x0,u0
D0 ,u0

D1) ∈
V(Σ). Below, we will denote the component of u0

D corresponding to uiτ ∈ D by u0,i
τ .

Define an initial data specification ρ : Pa(Σ) −→ R as follows:

ρ(uiτ )
4=
{
u0,i
τ if uiτ ∈ D0

0 otherwise.

For each u ∈ U , the corresponding function uρ(x) defined in (A.5) is clearly analytic
around x0 — in fact, a polynomial — hence ρ is analytic at x0. Riquier’s Theorem
A.2.1 ensures therefore the existence of an analytic solution of the corresponding
initial value problem, that is an analytic function U = (U1, ...,Um) around x0 such
that ∂|τ |

∂τ
U i(x0) = ρ(uiτ ) for each uiτ ∈ Pa(Σ). In particular, for each uiτ ∈ D0, we

have ∂|τ |

∂τ
U i(x0) = u0,i

τ . In other words, UD0(x0) = u0
D0 .

1Here for ζ = xk1
1 · · ·xkn

n we let ζ! 4= k1! · · · kn!.
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Consider now any leading derivative uiτ ∈ D1, with uiτ + f ∈ Σ. By assumption,
f = f(x,uD0), that is f does not depend on uD1 . Then we have

∂|τ |

∂τ
U i(x0) = −f(x0,UD0(x0))

= −f(x0,u0
D0)

= u0,i
τ

where the first equality follows because U is a solution of Σ, the second one from
UD0(x0) = u0

D0 and the last one because (x0,u0
D) ∈ V(Σ), hence u0,i

τ +f(x0,u0
D) = 0.

Overall, we have shown that UD(x0) = u0
D. Since (x0,u0

D) ∈ V(Σ) is arbitrary, this
proves that Σ is D-locally solvable, analytically.

The rest of the proof is exactly like that of Proposition 1. 2
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Appendix B

Proofs and additional details of
Chapter 3

B.1 On-the-fly computation of Arnoldi iteration
Let us describe a convenient way of building the subspace Km and the matrices
V ,B,Hm.

1. For brevity, let L := AT . Note that, as Lj+1v = L(Ljv), all that is needed to
build the set spanningKm in (3.13) is the vector v and access to the matrix-vector
multiplication function u 7→ Lu. In fact, there exist effective and numerically
stable algorithms that, given a handle to such a function, will build both the
orthonormal basis V of Km and the matrix Hm = V TLV . For example, one
has the Arnoldi algorithm [160, Ch.6]. In particular, the matrix Hm is built by
Arnoldi incrementally, along with the vectors vj as they are generated, without
having to perform the matrix multiplications V TLV explicitly. The resulting
matrix Hm has the additional nice property of being upper Hessenberg: that
is, upper triangular except possibly for the presence of nonzero elements in the
first sub-diagonal. The matrix V , on the other hand, need not be sparse: in
fact, it is typically observed that the vectors vj tend to get dense as j approaches
m. Moreover, these vectors must be kept stored as they are generated until the
termination of the algorithm. This is an unpleasant characteristic of Arnoldi;
mitigations are possible, see [160].

2. Concerning the the function u 7→ ATu, note that, from (3.10)

L(uTα) = αTATu+ ψTBTu . (B.1)

This implies that, for each u ∈ RM , the vector ATu can be obtained by first
taking the Lie derivative of the function uTα and then collecting the nonzero
coefficients of the αi’s (1 ≤ i ≤ M ) in this derivative. As a consequence, the
matrix-vector multiplication function u 7→ ATu can be computed “on the fly”,
without building the whole A explicitly.

We also briefly outline a method for computing the remainder function h(x). The
vectors vTmB and rm appearing in the definition (3.22) of h(x) can be computed relying
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on Lie derivatives only, basically as discussed in the previous subsection. In particular:
(a) vTmB is built by collecting the nonzero coefficients of the ψi functions in the Lie
derivative L(vTmα). As such derivative is already invoked in the last iteration (j = m)
of the Arnoldi algorithm to build ATvm, the vector vTmB comes at no additional cost;
(b) rm can be obtained by running an extra iteration of Arnoldi (j = m+ 1) and letting
rm = wm+1.

B.2 Proofs

Proof of Theorem 3. Let us first note that every vector vj of the basis V can be
expressed as a product of v with a certain polynomial of the matrix AT of degree
not greater than j − 1. More precisely, for each j = 1, ...,m, there is a univariate
polynomial pj such that vj = pj(AT )v and deg(pj) ≤ j − 1: this can be easily proven
by induction on j.

Now, let R = [r1| · · · |rm] be the M × m matrix whose j-th column rj is the
projection of ATvj onto K⊥m: explicitly, rj := ATvj − V V TATvj . Note that rj = rm
had been introduced earlier on, when defining h(x); cf. (3.22). The proof of [28, Th.4]
(pp. 9-10) shows that

εg(t;x0) = ||v||2
∫ t

0
e

(t−τ)HT
m

1

(
V TBψ(x(τ ;x0)) +RTα(x(τ ;x0))

)
dτ (B.2)

where e(t−τ)HT
m

1 is the first row of the exponential matrix e(t−τ)HT
m (note that our basis

α is denoted ‘φ’ in the notation of [28]). Now we use our previous observation that
vj = pj(AT )v, for a certain polynomial pj of degree≤ j− 1 to establish two facts. (a)
Applying also (3.12), we have that, for each 1 ≤ j ≤ m− 1: vTj B = (pj(AT )v)TB =
vTpj(A)B = 0. In other words, the firstm− 1 rows of V TB are zero. (b) At the same
time, also r1 = r2 = · · · = rm−1 = 0, that is the first m− 1 rows of RT are zero. To
see this, for 1 ≤ j ≤ m − 1, recall that deg(pj) ≤ j − 1 so that ATvj = ATpj(AT )v
can be expressed as a linear combination of the (AT )iv for i = 0, ...,m − 1: as such
ATvj ∈ Km hence its orthogonal projection rj onto K⊥m is zero. From these facts (a)
and (b), it follows that (B.2) reduces to

εg(t;x0) = ||v||2
∫ t

0
e

(t−τ)HT
m

1m

(
vTmBψ(x(τ ;x0)) + rTmα(x(τ ;x0))

)
dτ

= ||v||2
∫ t

0
e

(t−τ)HT
m

1m h(x(τ ;x0)) dτ .

From the above equality, (3.23) follows by applying basic properties of integrals and
norms.

Concerning (3.24), note that |e(t−τ)HT
m

1m | ≤ ||e(t−τ)HT
m|| ≤ De−(t−τ)λ, for a suitable

positive D and nonnegative λ s.t. −λ is ≥ than the real part of any eigenvalue of Hm,
see e.g. [104, Th.4.5]. The thesis follows by noting that e−(t−τ)λ ≤ 1. 2

We refer the reader to [104] for the definition of exponentially stable system at the
origin.

Corollary B.2.1 (error on infinite time horizon). Suppose the functions in α and ψ
are polynomials, and that h(0) = 0. Suppose Hm is stable, and that the system (3.3)
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is exponentially stable at the origin. Then there are positive constants G and λ and a
region of exponential stability at the origin such that for each for each x0 in this region
and each t large enough

|εg(t;x0)| ≤ G
(1− e−λt)

λ
. (B.3)

Therefore |εg(t;x0)| is bounded as t→ +∞.

Proof. Since h(0) = vTmBψ(0)+rmα(0) = 0, the function h(x) in (3.22) is a polyno-
mial missing the constant term, that is h(x) = ∑k

i=1 µiγi for some coefficients µi ∈ R
and monomials γi 6= 1, i = 1, ..., k. Consider the∞-norm of x(t;x0): by exponential
stability, there are positive constants E,λ such that for each t large enough we must
have ||x(t;x0)||∞ ≤ Ee−λt < 1, hence |h(x(t;x0))| ≤ C(t) := (∑k |µk|)Ee−λt. Let
G := ||v||2D(∑k |µk|)E. Then by (3.24), εg(t;x0) ≤ G

∫ t
0 e
−λτdτ = G(1− e−λt)/λ.

2

The constants G and λ can be readily calculated from the Jordan decomposition
of Hm, which is in turn easy to obtain for a relatively smallm; see [104, pp.135-136].
A region of exponential stability can be determined by applying methods based on
Lyapunov functions [104, Ch.4].

Proof of Proposition 3. Let Λ be the m × m diagonal matrix with λ1, ...,λm in
the main diagonal. Then definition (3.27) can be re-written as follows, where we let
φ̃ := (φ̃1, ..., φ̃m)T = UTα denote the vector of approximate Koopman eigenfunctions.

gK(t;x0) :=
m∑
i=1

ν̃ie
λitφ̃i(x0)

= ν̃T eΛtφ̃(x0)
= (vTW )(eΛt)(UTα(x0)) . (B.4)

NowWeΛt = W (I+Λt+· · · (Λt)k
k! +· · · ) = (W+WΛt+· · ·+W (Λt)k

k! +· · · ). Each term
of the last summation can be written as ((Λt)kWT )T

k! = (WT (LT t)k)T
k! = (At)kW

k! . Hence
WeΛt = eAtW . Now eAt(WUTα(x0)) is precisely the unique solution of the system
identified in the statement. From this and from (B.4) the first part of the thesis follows.
Finally, ifA is diagonalisable all of its eigenvalues are non-defective, hencem = M and
U ,W are invertible square matrices. FromW TU = I we get (W TU)T = UTW = I
hence (UTW )−1 = W−1(UT )−1 = I . Therefore WUT = W (W−1(UT )−1)UT = I ,
which implies z0 = α(x0). 2

Proof of Proposition 4. Let Λ be the diagonal matrix with the eigenvalues λ̂1, ..., λ̂m
of H in the main diagonal. Then (3.33) can be re-written as follows.

ĝK(t;x0) :=
m∑
i=1

ν̂ie
λ̂itφ̂i(x0)

= ν̂T eΛtφ̂(x0)
= (vTV Ŵ )(eΛt)(ÛTV Tα(x0)) . (B.5)

Just as in the proof of Proposition 3, one sees that WeΛt = eH
T tW . More-

over, from the identity Ŵ T Û = I implies ÛT Ŵ = I , which in turn implies
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Ŵ−1(̂UT )−1 = Im. Hence Ŵ ÛT = Ŵ (Ŵ−1(̂UT )−1)ÛT = Im. By definition,
y(t) := WeΛtÛTV Tα(x0) = eH

T tV Tα(x0) is the unique solution of the system ẏ =
HTy with the initial condition y(0) = y0 = V Tα(x0). Hence ŷ(t) coincides with the
y(t; y0) in (3.34). Then from (B.5), ĝK(t;x0) = vTV ŷ(t) = vTV y(t; y0) = ĝ(t; y0).
2

B.3 Further details on experiments
Plots for x7 of system LL

Reachsets computation In this section we provide some additional details on the
experiments we performed in order to compare ckr with cora and Flow∗. Regarding
Table 3.1, in addition to the considered time horizon, we also report m, the approxi-
mation order used respectively by the three algorithms. However, it is worth pointing
out that m has slightly different meanings for each of them. For Flow∗, m is the
order of the Taylor expansion of the flow map, computed via Lie derivatives [47].
Instead, for cora, it represents the number of terms of the Taylor series of the matrix
exponential that expresses the solution of the linear system used to approximate the
original nonlinear dynamics. Finally, in ckr,m is the approximation order in the sense
of Theorem 2, which coincides with the dimension of the reduced system (3.15).

For ckr, we use m = 4 or m = 5 in all runs, as these values are sufficient to
guarantee fairly accurate results. In the case of Flow∗ and cora, we set m = 4, 8, 10
and check how the results vary in terms of accuracy. Only Flow∗ computes less
accurate reachsets with m = 4 (for system (3.41)(b)); in the remaining cases there
seems to be no significant difference. Anyway, for both Flow∗ and cora it is also
possible to tunem semi-automatically.

Another relevant parameter to be set in our experiments for reachsets computation
is stepsize ∆. For both Flow∗ and cora, the stepsize has been empirically chosen in
the range [0.001, 0.05] so as to maximize the breakdown time — except in the case
of the Lotka-Volterra system (3.41)(b), where for cora we accepted a slightly shorter
breakdown time in exchange of a considerable improvement in accuracy. Instead, for
ckr we fixed the initial timestep to ∆ = 0.05, although in this case the timestep is
adaptive, thus it may change during execution.

One must also note that, although it never happens in the experiments of Table
3.1, ckr breaks down as well. For instance, in the case of VdP, ckr breaks down at
T = 7.88 seconds when setting the initial timestep to 0.05 and m = 5. In the case of
system (3.41)(b), with initial timestep 0.01 and m = 5, it breaks down at T = 6.58.
In other cases, as the execution proceeds, it may happen that the algorithm does not
break down, yet the stepsize is reduced more and more slowing down the execution.



177

Finally, in few cases, ckr seems to never break down no matter how large is the time
horizon. This happens typically with stable systems, like (3.43).

Concerning the configuration of the parameters of cora, in the experiments re-
ported in Table 3.1 we have used the default representation of reachsets (zonotopes)
for both system (3.41)(b) and system (3.43). Only in the case of VdP, the use of
the more sophisticated polynomial zonotopes gave significant benefits, allowing the
execution to be completed up to T = 5. We must note that, in this case, the average
area of cora’s reachsets has been computed by first converting them into zonotopes;
as a result this area might be slightly overestimated. More generally, the bad results
(i.e., large over-approximations) for cora are mainly due to the size of the initial set.
Indeed, for the employed linearization algorithm, the dynamics within the set differ
too much, so that at some point in time the abstraction error becomes too large and the
analysis terminates prematurely [180].



178



Appendix C

Proofs and additional details of
Chapter 4

C.1 Proof
Here we show that the shuffle product is well-behaved; the other products are dealt
with similarly. To this aim, we need a preliminary lemma.

Lemma C.1.1. For everym1,m2 ∈M, it holds that F⊗[m1;m2] = δ⊗(m1m2).

Proof. By induction on m1. The base is m = 1: by (4.15), F⊗[1;m2] = δ⊗(m2) =
δ⊗(1m2). For the inductive step, assume m1 6= 1 and let xi be the variable with
the lowest index in m1m2; assume m2 = xim

′
2 (the proof can be done similarly if

m1 = xim
′
1). Then:

F⊗[m1;m2] = δ⊗(m1) ·m2 +m1 · δ⊗(xim′2) by def. of F⊗

= δ⊗(m1) ·m2 +m1 · F⊗[xi;m′2] by (4.13)

= δ⊗(m1) · xim′2 +m1 · (δ⊗(xi) ·m′2 + xi · δ⊗(m′2)) by def. of F⊗

= δ⊗(m1) · xim′2 + δ⊗(xi) ·m1m
′
2 + xim1 · δ⊗(m′2)

= δ⊗(xi) ·m1m
′
2 + xi · (δ⊗(m1) ·m′2 +m1 · δ⊗(m′2))

= δ⊗(xi) ·m1m
′
2 + xi · F⊗[m1;m′2] by def. of F⊗

= δ⊗(xi) ·m1m
′
2 + xi · δ⊗(m1m

′
2) by induction

= F⊗[xi;m1m
′
2] by def. of F⊗

= δ⊗(xim1m
′
2) by (4.13)

= δ⊗(m1m2) 2

Proposition C.1.1. ⊗ is well-behaved.

Proof. Recall from Example 8 that F⊗ = y2y3 + y1y4. Then:

• property (4.15) is satisfied, since F⊗[1; q] = 0 · q + 1 · δ⊗(q) = δ⊗(q);
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• property (4.16) follows from Lemma C.1.1. Indeed, F⊗[xim1;m2] =
δ⊗(xim1m2) = δ⊗(m1xim2) = F⊗[m1;xim2];

• property (4.17) holds. Indeed:

F⊗ [∑i∈I rimi ; q] = δ⊗ (∑i∈I rimi) · q + (∑i∈I rimi) · δ⊗(q) by def. of F⊗

= (∑i∈I ri δ⊗(mi)) · q + (∑i∈I rimi) · δ⊗(q) by (4.14)

= ∑
i∈I ri (δ⊗(mi) · q) +∑

i∈I ri (mi · δ⊗(q))

= ∑
i∈I ri (δ⊗(mi) · q +mi · δ⊗(q))

= ∑
i∈I ri F⊗[mi; q] by def. of F⊗

• property (4.18) trivially holds. 2
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Proof of Lemma 5. We proceed by structural induction on p. We have two base
cases:

1. p = 0: δπ(p · q) = δπ(0) by def. of product in P

= 0 by (4.14)

= Fπ[0; q] by (4.17) .

2. p = m ∈ M: If m = 1, we trivially conclude by (4.15), since p · q = q.
Otherwise, we consider a second structural induction on q. The non-trivial base
case of this second induction is for q = m′ ∈M. Let xi be the variable with the
smallest index in m ·m′ and m′′ be m ·m′ with one occurrence of xi removed.
Then δπ(m ·m′) = δπ(xi ·m′′), by commutativity and associativity inM. Now

• if m′′ = 1, then m′ = 1 (i.e., that q = 1) and m = xi; then δπ(xi ·m′′) =
δπ(xi) = Fπ[m′′;xi] = Fπ[m;m′], by identity of the product, (4.15) and
(4.18);

• otherwise, δπ(xi · m′′) = Fπ[xi;m′′] = Fπ[m;m′], by (4.13) and (4.16)
(applied |m| − 1 times).

For the second inductive step, let q = ∑
j∈J rjmj , for |J | > 0. We have

δπ(p · q) = δπ(∑j∈J rj (m ·mj)) by distributivity in P

= ∑
j∈J rj δπ(m ·mj) by (4.14)

= ∑
j∈J rj Fπ[m;mj] by the base case for q (q a monomial)

= ∑
j∈J rj Fπ[mj;m] by (4.18)

= Fπ[q;m] by (4.17)

= Fπ[p; q] by (4.18) .

For the inductive step, let p = ∑
i∈I rimi, for |I| > 0. Then:

δπ(p · q) = δπ(∑i∈I ri (mi · q)) by distributivity in P

= ∑
i∈I ri δπ(mi · q) by (4.14)

= ∑
i∈I ri Fπ[mi; q] by the second base case for p (p a monomial)

= Fπ[p; q] by (4.17) .
2

Let us recall the notation introduced in the proof of Theorem 4. Given a polynomial
substitution (a map from variables to polynomials) ζ , and a monomialm = xi1 · · ·xik ,
we let mζ denote the polynomial ζ(xi1) · . . . · ζ(xik). Similarly, given a stream
substitution (a map from variables to streams) ξ, we let mξ denote the stream
ξ(xi1) π · · · π ξ(xik).

Proof of Proposition 5. We have to prove two properties for ν, for every p ∈ P .
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1. oρ(p) = ν(p)(0). To this aim, let us first prove that oρ(m) = ν(m)(0), for every
m ∈M; the proof is by induction onm.

• Base (m = 1). oρ(1) = 1 = 1π(0) = ν(1)(0), where the first equal-
ity holds by definition, the second one by Def. 8(2), and the last one by
homomorphism of ν.

• Induction (m = xim1). ν(xim1)(0) = (ν(xi) π ν(m1))(0) =
(ν(xi)(0))(ν(m1)(0)) = ρ(xi)oρ(m1) = oρ(m), where the first equality
holds by homomorphism, the second one by Def. 8(1), the third one since
ν respects ρ and by induction, and the last one by definition.

Now, let p = ∑
i rimi. Then, oρ(p) = ∑

i rioρ(mi) = ∑
i ri(ν(mi)(0)) =

ν(p)(0), where the first equality holds by definition of oρ, the second one by this
claim for monomials, and the third one by algebra homomorphism of ν.

2. ν(δπ(p)) = ν(p)′. We proceed by cases on p.

p = 0. In this case, ν(δπ(0)) = ν(0) = 0 = ν(0)′, where the first equality
holds by (4.14), the second one by homomorphism, and the third one by
definition of 0 and homomorphism of ν.

p = m ∈M. The proof is by induction onm.
• m = 1. In this case, let G be

∑
i rimi, where the mi’s are monomials

in y1. Then, by letting ζ be the substitution that maps y1 to 1, we have
that:
ν(δπ(1)) = ν(G(1)) by (4.11)

= ∑
i ri ν(miζ) by def. of G and homomorphism of ν

= ∑
i ri ν(1) since everymi is a monomial only in y1

= ∑
i ri 1π by homomorphism of ν

= G(1π) by def. of G and the fact thatmi’s are monomials only in y1

= 1′π by Def. 8(2)

= ν(1)′ by homomorphism of ν.

• m = xi. In this case, ν(δπ(xi)) = ν(D(xi)) = ν(xi)′, where the first
equality holds by (4.12), and the second one since ν respects D.

• m = xim̄, for m̄ 6= 1 and xi the variable with smallest index in m.
Let F be

∑
j rjmj , where the mj’s are monomials in the variables

x, y1, . . . , y4. For every such a monomial mj , let us denote by ej,k
the exponent of variable yk in mj , for k = 0, ...4, where we let
y0 = x; i.e. mj = xej,0y

ej,1
1 y

ej,2
2 y

ej,3
3 y

ej,4
4 . Furthermore, let us define

the substitutions ζ and ξ as follows:

ζ : x 7→ x ξ : x 7→ ν(x)
y1 7→ xi y1 7→ ν(xi)
y2 7→ D(xi) y2 7→ ν(xi)′
y3 7→ m̄ y3 7→ ν(m̄)
y4 7→ δπ(m̄) y4 7→ ν(m̄)′ .
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By assumption on ν (homomorphism and respect of (D, ρ)) and by
induction on m̄, which is smaller thanm, we have the following, where
(ν(u))e stands for ν(u)π · · · π ν(u) (e times):

ν(mjζ) = (ν(x))ej,0 π (ν(xi))ej,1 π (ν(D(xi)))ej,2 π (ν(m̄))ej,3 π (ν(δπ(m̄)))ej,4

= (ν(x))ej,0 π (ν(xi))ej,1 π (ν(xi)′)ej,2 π (ν(m̄))ej,3 π (ν(m̄)′)ej,4

= mjξ . (C.1)

Putting all together, we obtain the desired result form:

ν(δπ(xim̄)) = ν(F (xi,D(xi), m̄, δπ(m̄))) by (4.13) and (4.12)

= ν(∑j rjmjζ) by definition of F and ζ

= ∑
j rj ν(mjζ) by homomorphism of ν

= ∑
j rjmjξ by (C.1)

= F (ν(xi), ν(xi)′, ν(m̄), ν(m̄)′) by definition of F and ξ

= (ν(xi) π ν(m̄))′ by Def. 8(1)

= ν(xim̄)′ by homomorphism of ν.

p = ∑
i∈I rimi, for |I| > 0.

ν(δπ(p)) = ν(∑i∈I ri δπ(mi)) by (4.14)

= ∑
i∈I ri ν(δπ(mi)) since ν is an algebra homomorphism

= ∑
i∈I ri (ν(mi)′) by the case for p a monomial

= ν(p)′ by linearity of stream derivatives.
2

C.2 Three-coloured trees example: details
In order to generate the rational system (4.37), rather than explicitly determining the
inverse of the jacobian ∇\ yyy E , it is practically convenient firstly to form the equivalent
system (4.35) and then solve for y′y′y′. To this purpose, we apply the syntactic stream
derivative operator to the polynomial equations of system (4.44), obtaining:

y′1 − 1− y′2y2 − y′3y3 − 2y′2y3 = 0
y′2 − y′3y3 − y′1y1 − 2y′3y1 = 0
y′3 − y′1y1 − y′2y2 − 2y′1y2 = 0 .

(C.2)

Then we note that (C.2) is a linear system in the variables yyy′ = (y′1, y′2, y′3)T of
the form Ay′y′y′ = bbb, where A = (∇\ yyy E)(0, rrr0,yyy) =

[ 1 −y2−2y3 −y3
−y1 1 −y3−2y1

−y1−2y2 −y2 1

]
and

bbb = −(∇\ x E)(0,yyy)T = (1, 0, 0)T . Note that this is another way of writing system
(4.35). Now, we solve Ay′y′y′ = bbb for y′y′y′. Denoting the determinant of ∇\ yyy E as

∆ = 2y2
1y2 +4y2

1y3 +4y1y
2
2 +10y1y2y3 +3y1y2 +2y1y

2
3 +3y1y3 +2y2

2y3 +4y2y
2
3 +3y2y3−1
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and taking into account the initial condition, we arrive at (4.37):
y′1 = ∆−1 · (2y1y2 + y2y3 − 1) y1(0) = 0
y′2 = ∆−1 · (−2y2

1 − 4y1y2 − y1y3 − y1 − 2y2y3) y2(0) = 0
y′3 = ∆−1 · (−y1y2 − y1 − 2y2) y3(0) = 0 .

(C.3)

In order to convert the above rational SDE initial value problem to a polynomial one,
we can apply Lemma 8. In practice, we replace ∆−1 with a new variable w, then
we add the corresponding equation to system (C.3). In order to derive a SDE for the
variable w, we recall that the multiplicative inverse σ−1 of a stream σ s.t. σ(0) 6= 0
satisfies the SDE and initial condition (4.8). In our case, starting from w′ = w(0)∆′w,
and calling p1, p2, p3 the right-hand sides of the SDEs in (C.3), we get

w′ = w(0) · (2y′1y1y2 + 4y′1y1y3 + 4y′1y2
2 + 10y′1y2y3 + 3y′1y2 + 2y′1y2

3 + 3y′1 + y3

+2y′2y2y3 + 4y′2y2
3 + 3y′2y3)w

= −(2p1y1y2 + 4p1y1y3 + 4p1y
2
2 + 10p1y2y3 + 3p1y2 + 2p1y

2
3 + 3p1 + y3

+2p2y2y3 + 4p2y
2
3 + 3p2y3)w

w(0) = −1

where the initial conditionw(0) = −1 is implied by∆(0, rrr0) = −1. Finally, expanding
the pi’s and putting everything together, we obtain the following polynomial system of
SDEs and initial conditions:

y′1 = 2wy1y2 + wy2y3 − w y1(0) = 0
y′2 = −2wy2

1 − 4wy1y2 − wy1y3 − wy1 − 2wy2y3 y2(0) = 0
y′3 = −wy1y2 − wy1 − 2wy2 y2(0) = 0
w′ = 4w2y2

1y
2
2 + 4w2y2

1y2y3 − 8w2y2
1y

2
3 − 6w2y2

1y3 + 8w2y1y
3
2+ w(0) = −1

14w2y1y
2
2y3 + 6w2y1y

2
2 − 10w2y1y2y

2
3 − 8w2y1y2y3 − 2w2

y1y2 − 4w2y1y
3
3 − 7w2y1y

2
3 − 7w2y1y3 + 4w2y3

2y3 + 6w2y2
2

y2
3 + 3w2y2

2y3 − 4w2y2
2 − 6w2y2y

3
3 − 3w2y2y

2
3 − 10w2y2y3−

3w2y2 − 2w2y2
3 − 3w2y3 .

(C.4)



Appendix D

Proofs and additional details of
Chapter 6

D.1 Proofs
Proof of Lemma 18. The proof consists of the following three steps.

(a) For each fixed ω ∈ Ω, the function A 7→ K(ω)(A) is a probability measure
on F . For ω /∈ Rm × P , this is obvious as δω is a probability measure on F .
For ω = (v,S) with S ∈ P , the proof goes by structural induction on S. The
base cases when S = nil, S = fail and S = (xi = g.S ′) are obvious, and the
wanted probability measure is again δω in the first two cases, and δ(v[g(v)@i],S′)
in the third case. Let us now consider the base case when S = xi ∼ G.S ′.
We will show that K(v,S) satisfies the additivity property on countable dis-
joint unions. Let a sequence of disjoint measurable sets A1,A2, ... ∈ F be
given and let A = ⋃

j≥1Aj . Note that, by elementary set-theoretic reason-
ing, A(v-i,S) = ⋃

j≥1Aj,(v-i,S), where the union is disjoint. Then K(v,S) =∫
A(v-i,S′)

µG(dr)G(v, r) = ∑
j≥1

∫
Aj,(v-i,S′)

µG(dr)G(v, r) = ∑
j≥1K(v,S)(Aj),

where the second equality follows from basic property of integrals of measurable
functions, in particular [12, Cor.1.6.4]. This proves that K(v,S) is a measure
on the sigma-field F . Moreover, it is a probability measure, asK(v,S)(Ω) = 1,
because Ω(v-i,S) = R and by definition of parametric density G. This completes
the proof for the case S = xi ∼ G.S ′. For the remaining two cases (inductive
step), the thesis follows immediately from the induction hypothesis.

(b) For each fixed A ∈ F and fixed S ∈ P , the function v 7→ K(v,S)(A) is
measurable on Rm. The proof goes again by structural induction on S. For
S = nil, we note that δ(v,nil)(A) = 1Anil(v), which as an indicator function is
measurable. The proof for S = fail is essentially the same. Similarly, for
S = (xi = g.S ′), we have δ(v[g(v)@i],S′)(A) = 1AS′ (v[g(v)@i]), which, as a
composition of measurable functions of v, is measurable. The most delicate
case is S = xi ∼ G.S ′. Consider the function ζ(v,A) :=

∫
A µG(dr)G(v, r) for

v ∈ Rm and A ∈ F1, the measurable sets of R. By definition of parametric
density G, ζ is a Markov kernel from Rm to R. Let us write a generic v ∈ Rm
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as v = (v-i, vi). The function that we want to prove measurable is g(v-i, vi) =
ζ((v-i, vi),A(v-i,S′)), where A and S ′ are fixed. We will show measurability
for the two arguments separately, v-i and vi, from which measurability of g
as a function of v will follow. First note that, for each fixed vi, also ζvi :
(v-i,A) 7→ ζ((v-i, vi),A) is a Markov kernel from Rm−1 to R; and similarly for
each fixed v-i, also ζv-i : (vi,A) 7→ ζ((v-i, vi),A) is a Markov kernel from R
to R. Now consider the two statements separately. (1) for each fixed vi, the
function v-i 7→ g(v-i, vi) = ζvi(v-i,A(v-i,S′)) is measurable: indeed, A(v-i,S′) is
the section of AS′ at v-i, and we can apply a general fact on kernels and sections
in [12, Th.2.6.2,proof(2)] to the kernel ζvi . (2) For each fixed v-i, the function
vi 7→ g(v-i, vi) = ζv-i(vi,A(v-i,S′)) is measurable: this follows directly from the
fact that ζv-i is a Markov kernel, and that A(v-i,S′) is a fixed measurable set that
does not depend on the first argument vi of ζv-i . The remaining two cases follow
easily from the induction hypothesis.

(c) For each fixedA ∈ F , the function ω 7→ K(ω)(A) is measurable on Ω. For each
ω = (v, z) ∈ Ω and A ∈ F , we can write:

K(v, z)(A) = 1Rm×Pc(v, z) · 1A(v, z) +
∑
S∈P

1Rm×{S}(v, z) ·K(v,S)(A) .

Each term of the above summation is a measurable function of (v, z). In
particular, for each fixed term S, we have shown in (b) above thatK(v,S)(A) is a
measurable function of v alone, henceK(v,S)(A) is also a measurable function
of (v, z) (i.e. the function obtained by composing the projection (v, z) 7→ v
with v 7→ K(v,S)(A)). A countable summation of nonnegative measurable
functions of ω is still measurable a measurable function of ω (e.g. because it
is the pointwise limit of the partial sum functions, cf e.g. [12, Th.1.5.4]). This
completes the proof that K is a Markov kernel.

2

We now turn to the proof of Theorem 19. We first need a general lemma about
measurability of functions in a cylindrical sigma-field.

Lemma D.1.1. Let h : Ωt → R+ a nonnegative measurable function, and define
h̃ : Ω∞ → R+ as h̃(ω̃) := h(ω̃1:t). Then h̃ is measurable, and for each measurable
cylinder Bt ⊆ Ω∞, we have

∫
Bt
µ∞S (dω̃)h̃(ω̃) =

∫
Bt µ

t
S(dωt)h(ωt).

Proof. First, consider the case of indicator functions h = 1At , for a measurable
At ⊆ Ωt. Then h̃ = 1At , the indicator function of the measurable cylinder generated
by At, and the statement is obvious, because h̃ is measurable, and

∫
Bt
µ∞S (dω̃)h̃(ω̃) =∫

µ∞S (dω̃)h̃(ω̃)1Bt(ω̃) = µ∞S (Bt∩At) = µtS(Bt∩At) =
∫
Bt µ

t
S(dωt)h(ωt). The state-

ment for the general case of h follows then by standard measure-theoretic arguments
(linearity, dominated convergence). 2

Lemma D.1.2. Let S be a program, f termination based and t ≥ 1. Then ft is
measurable. Moreover,

∫
Tt µ

∞
S (dω̃)f(ω̃) =

∫
Lt−1×T µ

t
S(dωt)ft(ωt).

Proof. Let us first show that ft is measurable in Ωt. Let A be any measurable set in
R. By definition, f−1(A) = {(ωt, ω̃) : f(ωt, ω̃) ∈ A} is measurable. The section at
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ω̃ = ∗∞ of this set is precisely f−1
t (A): a proof analogous to that in [12, Th.2.6.2(1)]

shows that sections of elements in C are measurable. Let f be termination based and
consider Lemma D.1.1 with h = ft. Note that f coincides with f̃t on Tt. Indeed, for
anyωt ∈ Lt−1×T, we have that f is constant on {ωt}×Ω∞ by definition of termination
based function; hence, for any (ωt, ω̃) ∈ Tt, we have f(ωt, ω̃) = f(ωt, ∗∞) = ft(ωt) =
ft((ωt, ω̃)1:t) = f̃t(ωt, ω̃). Therefore

∫
Tt µ

∞
S (dω̃)f(ω̃) =

∫
Tt µ

∞
S (dω̃)f̃t(ω̃). Now we

apply Lemma D.1.1 with h = ft and Bt = Tt, hence Bt = Lt−1 × T, and the thesis
follows. 2

Lemma D.1.3. Let f be termination based, S a program and t ≥ 1. Then we have:

(a)
∫
µ∞S (dω̃)f(ω̃) = ∑

t≥1
∫

Lt−1×T µ
t
S(dωt)ft(ωt);

(b)
∑

1≤j≤t
∫

Lj−1×T µ
j
S(dωj)fj(ωj) =

∫
µtS(dωt)ft(ωt);

(c) Let f(ω̃) ≤ M for each ω̃, possibly M = +∞. Then
∫
µtS(dωt)ft(ωt) ≤∫

µ∞S (dω̃)f(ω̃) ≤
∫
µtS(dωt)ft(ωt) +M · µtS(Lt).

Proof.

(a) As supp(f) ⊆ T∞ = ⋃
t≥1 Tt (disjoint union), it follows that f = ∑

t≥1 f · 1Tt ,
hence by commutativity of

∫
with series of nonnegative functions [12, Cor.1.6.4],

we have
∫
µ∞S (dω̃)f(ω̃) = ∑

t≥1
∫

Tt µ
∞
S (dω̃)f(ω̃). Now apply Lemma D.1.2 to

each summand
∫

Tt µ
∞
S (dω̃)f(ω̃).

(b) We have that
∑

1≤j≤t
∫

Lj−1×T µ
j
S(dωj)fj(ωj) = ∑

1≤j≤t
∫

Tj µ
∞
S (dω̃)f(ω̃) by

Lemma D.1.2. Now each cylinder Tj , 1 ≤ j ≤ t, can be written as Tj =
Lj−1×T×Ω∞ = (Lj−1×T×Ωt−j)×Ω∞. Therefore: ∑1≤j≤t

∫
Tj µ

∞
S (dω̃)f(ω̃) =∑

1≤j≤t
∫

(Lj−1×T×Ωt−j)×Ω∞ µ
∞
S (dω̃)f(ω̃) = ∑

1≤j≤t
∫

Lj−1×T×Ωt−j µ
t
S(dωt)ft(ωt),

where in the last stepwe have appliedLemmaD.1.1withB = Lj−1×T×Ωt−j and
h = ft (hence h̃ = f ) to each summand. Now Ωt = ⋃t

j=1(Lj−1×T×Ωt−j)∪A,
for some measurableA, such that all the unions are disjoint, andA∩ supp(ft) =
∅. As a result, ∑1≤j≤t

∫
Lj−1×T×Ωt−j µ

t
S(dωt)ft(ωt) =

∫
Ωt µ

t
S(dωt)ft(ωt), which

completes the proof of this part.

(c) The lower bound is obvious, from the previous two parts. As to the upper bound,
first note that the support of f is included in T∞, which can be decomposed as
T∞ = ⋃t

j=1 Tj ∪
⋃
j>t Tj (disjoint unions). Hence

∫
µ∞S (dω̃)f(ω̃) = ∑t

j=1
∫

Tj µ
∞
S (dω̃)f(ω̃) +

∫⋃
j>t

Tj µ
∞
S (dω̃)f(ω̃)

≤ ∑t
j=1

∫
Lj−1×T µ

j
S(dωj)fj(ωj) +M

∫⋃
j>t

Tj µ
∞
S (dω̃)

where, in the last step, we have applied Lemma D.1.2 to the first summation and
the assumption onM to bound the second summation. Now

⋃
j>t Tj ⊆ Lt×Ω∞,

hence
∫⋃

j>t
Tj µ

∞
S (dω̃) = µ∞S (⋃j>t Tj) ≤ µ∞S (Lt × Ω∞) = µt(Lt).

To sum up:
∫
µ∞S (dω̃)f(ω̃) ≤ ∑t

j=1
∫

Lj−1×T µ
j
S(dωj)fj(ωj) + Mµt(Lt). Now

the first summation equals
∫
µtS(dωt)ft(ωt) by part (b), from which the thesis

follows.
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2

Proof of Theorem 19. The proof goes by bounding the numerator and the
denominator in definition (6.7). As for the numerator, one uses directly the
bounds in part (c) of Lemma D.1.3. As for the denominator, one first notes that⋃t
j=1 Tj ⊆ (F∞)c ⊆ ∪tj=1Tj ∪ (Lt ×Ω∞), where all unions are disjoint. Therefore we

have
∑t
j=1 µ

∞
S (Tj) ≤ µ∞S ((F∞)c) ≤ ∑t

j=1 µ
∞
S (Tj) + µ∞S (Lt × Ω∞). Now, for each j,

by definition µ∞S (Tj) = µjS(Lj−1 × T), hence ∑t
j=1 µ

∞
S (Tj) = ∑t

j=1 µ
j
S(Lj−1 × T).

Now we apply Lemma D.1.3(b) to the last summation, with f = 1T∞ , and also note
that ft = 1T≤t to get:∑t

j=1 µ
j
S(Lj−1 × T) = ∑t

j=1
∫

Lj−1×T µ
j
S(dωj)(1T∞)j(ωj)

=
∫
µtS(dωt)(1T∞)t(ωt)

=
∫
µtS(dωt)1T≤t(ωt)

= µtS(T≤t) .

We have proven the following intermediate equality, that we record for use further
below:

µ∞S (∪tj=1Tj) = µtS(T≤t) . (D.1)

Next, we note that by definition µ∞S (Lt × Ω∞) = µtS(Lt). To sum up, for any t ≥ 1,
we have the following bounds for the numerator and denominator in (6.7) expressed in
the [S](·) notation:

[S]tft ≤ [S]f ≤ [S]tft + M · [S]t1Lt

[S]t1T≤t ≤ [S]1Fc ≤ [S]t1T≤t + [S]t1Lt .
(D.2)

Now consider t such that µtS(T≤t) > 0, which exists by hypothesis. Then [S]1Fc ≥
µ∞S (⋃tj=1 Tj) = µtS(T≤t) > 0, where the last equality is (D.1). Therefore [[S]]f is well
defined for any termination based f . Moreover, µt′S(T≤t′) > 0 for every t′ > t. Hence,
for every t large enough, the ratios in (6.8) exist and, as a consequence of (D.2), the
bounds (6.8) themselves hold true. 2

Next, we prove the bounds (6.15), giving confidence intervals for theMCestimation
procedure. We need an extension of Hoeffding inequality to conditional expectations.

Some notation is in order. Below, we let ν be any probability measure over a
measurable spaceΩ. We letEν [h] denote the expectation (integral) ofh taken according
to ν. Let A be a measurable event such that ν(A) = E[1A] > 0; then Eν [h|A] denotes
the conditional expectation of h given A, that is: Eν [h|A] := Eν [h · 1A]/Eν [1A].
This is the same as the expectation of h taken according to the probability measure
ν̃(C) := ν(C ∩ A)/ν(A), as can be readily proved by e.g. applying the chain rule
for densities (as for each C, ν̃(C) =

∫
C ν(dω)( 1A

ν(A))(ω)). For a sequence of random
variables all defined on Ω, say X = (X1, ...,XN), for A ⊆ Ω an event, and for
b ∈ {0, 1}N , we let Ab ⊆ ΩN denote the event

⋂N
i=1(1A(Xi) = bi). For any k ≥ 1, νk

will denote the product measure on Ωk.

Lemma D.1.4. Let A be a measurable event such that ν(A) = Eν [1A] > 0 and
N > 0 an integer. Let f be a bounded nonnegative measurable function on R, with
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f ≤ M . Let X1, ...,XN be i.i.d. random variables distributed according to ν. Define
N̂ := ∑N

i=1 1A(Xi) and

Y := 1
N̂

N∑
i=1

f(Xi)1A(Xi)

with the convention that (1/0) ·0 = 0. For each ε > 0, and b ∈ {0, 1}N with |b|H = n:

PrνN
(
Y − Eν [f |A] > ε

∣∣∣ Ab) ≤ e−2nε
2

M2 . (D.3)

Proof. Consider b ∈ {0, 1}N and n = |b|H > 0, as for n = 0 there is nothing to
prove. Let i1, ..., in be the indices in 1..N such that bij = 1. We have

PrνN
(
Y − Eν [f |A] > ε

∣∣ Ab) = PrνN

 1
n

n∑
j=1

f(Xij )− Eν [f |A] > ε

∣∣∣∣ Ab
 (D.4)

= Prν̃n

 1
n

n∑
j=1

f(Xij )− Eν [f |A] > ε

 (D.5)

where ν̃(C) := ν(A ∩ C)/ν(A) for any measurable C ⊆ Ω. Here, equality (D.4)
holds by definition of Ab. Equality (D.5) can be proved via the Fubini theorem, as
follows. We shall use the following notation. As a subset of ΩN , Ab can be written
as: Ab = A1 × · · · × AN , with Ai = A if bi = 1 and Ai = Ac if bi = 0. We shall
write ωN = (ωn,ωN−n) to indicate that the tuple ωN = (ω1, ...,ωN) is partitioned into
two sub-tuples: ωn, consisting of the components of ωN of indices (i1, ..., in); and
ωN−n, consisting of the remaining components, say (j1, ..., jN−n). Also, for brevity
we denote by B ⊆ ΩN the event to the left of | in expression in (D.4), and we let
B̂ := {ωn : (ωn,ωN−n) ∈ B}— that is, the projection of B onto the components of
ΩN of indices (i1, ..., in). With this notation in place, we first note that 1B(ωN) does not
depend on components in ωN−n, that is 1B(ωN) = 1B̂(ωn). This allows us to factorize
the indicator function 1B∩Ab as follows: 1B∩Ab(ωN) = 1(Ac)N−n(ωN−n) · 1An(ωn) ·
1B̂(ωn) = 1(Ac)N−n(ωN−n) · 1B̂∩An(ωn) = 1Ac(ωj1) · · · 1Ac(ωjN−n) · 1B̂∩An(ωn). Then
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we have:

PrνN
(
B
∣∣ Ab) = 1

νN (Ab)

∫
νN (dωN )1B∩Ab(ω

N ) (D.6)

= 1
νN (Ab)

∫
ν(dω1)

∫
· · ·
∫
ν(dωN )(1Ac(ωj1) · · · 1Ac(ωjN−n) · 1B̂∩An(ωn))

(D.7)

= ν(Ac)N−n

νN (Ab)

∫
ν(dωi1)

∫
· · ·
∫
ν(dωin)1B̂∩An(ωn) (D.8)

= ν(Ac)N−n

ν(Ac)N−nν(A)n
∫
ν(dωi1)

∫
· · ·
∫
ν(dωin)1B̂∩An(ωn) (D.9)

=
∫
ν(dωi1)

∫
· · ·
∫
ν(dωin)

(1B̂∩An
ν(A)n

)
(ωn) (D.10)

=
∫
νn(dωn)

(1B̂∩An
ν(A)n

)
(ωn) (D.11)

=
∫
νn(dωn)

( 1An
ν(A)n · 1B̂

)
(ωn) (D.12)

=
∫
ν̃n(dωn)1B̂(ωn) (D.13)

= Prν̃n

 1
n

n∑
j=1

f(Xij )− Eν [f |A] > ε

 (D.14)

where: (D.6) follows from the definition of PrνN (·|·); (D.7) from applying Fubini
(Theorem 13(b)) and from the above discussed factorization of 1B∩Ab(ωN); (D.8) from
recalling that

∫
ν(dωj)1C(ωj)h(ωn) = ν(C)h(ωn) whenever ωj is not in ωn; (D.9)

from νN(Ab) = ν(A1) · · · · ν(AN) and from the definition of the Ai’s; (D.10) from
algebraic manipulations and basic properties of integrals (linearity); (D.11) again from
applying Fubini (Theorem 13(b)); (D.12) from a basic property of indicator functions
for intersection; (D.13) from the chain rule for densities and from the definition of
ν̃, recalling that we can write ν̃n(C) =

∫
C ν

n(dωn)(1An/νn(An))(ωn); finally (D.14)
from definition of Prνn(·).

From elementary properties of expectation, Eν̃n [ 1
n

∑n
j=1 f(Xij)] = Eν̃n [f(X1)] =

Eν̃ [f(X1)] = Eν [f |A]. Moreover, according to the product measure ν̃n the
variables X̃ = Xi1 , ...,Xin are by definition i.i.d. Therefore we can apply
the one sided version of Hoeffding inequality to ν̃n and X̃ to deduce that
Prν̃n

(
1
n

∑n
j=1 f(Xij)− Eν [f |A] > ε

)
≤ e−2nε

2
M2 . This fact and (D.5) imply the thesis,

that is inequality (D.3). 2

D.2 Importance Sampling
In order to generalize the example in Section 6.5, we introduce some new notation.
For any integer j ≥ 0, we let rj = (r1, ..., rj) range over Rj (when j = 0, rj is the
empty tuple). A drawing sequence is sequence of triples (index, parametric density,
predicate),

σ = (i1, ρ1,ψ1), ..., (i`, ρ`,ψ`)
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where 1 ≤ ij ≤ m. Relatively to a given drawing sequence σ, for v = (v1, ..., vm) ∈
Rm and 0 ≤ j ≤ `, we let v[r1, ..., rj] = v[rj] := v[r1@i1][r2@i2] · · · [rj@ij]. Moreover,
we define (below, µj is the measure associated with the density ρj , and g is any a
nonnegative measurable function defined on R` and 0 ∈ Rm):

J(σ, g) :=
∫
µ1(dr1) ρ1(0, r1)ψ1(0[r1]) ·

∫
µ2(dr2) ρ2(0[r1], r2)ψ2(0[r1, r2])·

· · · ·
∫
µ`(dr`) ρ`(0[r`])ψj(0[r`]) · g(r`)

Wj(rj−1) :=
∫
µj(drj) ρj(0[rj−1], rj)ψj(0[rj ]) ρ̃j(v, r) := ρj(v, r)ψj(v[r@ij ])

Wj(vi1 , ..., vij−1)
J̃(σ, g) :=

∫
µ1(dr1) ρ̃1(0, r1) ·

∫
µ2(dr2) ρ̃2(0[r1], r2)·

· · · ·
∫
µ`(dr`) ρ̃`(0[r`]) ·W1 ·W2(r1) · · · · ·W`(r`−1) · g(r`) .

(D.15)
where the definitions of ρ̃j, J̃ apply only if all theWj’s are everywhere strictly positive
(the measurability of the functions involved in the integrals is dealt with in the next
proposition). Next, let us call programs like S̃ above, consisting solely of a sequence
of drawings actions xi ∼ G terminated by nil, straight line programs [45]. The general
strategy consists in expanding [S]tf into a sum of iterated integrals J(σ, g), like the
one in (6.16). Basically, each drawing sequence σ corresponds to an integral J(σ, g),
which in turn corresponds to a straight line program (under a technical condition). We
state the formal result below.

Theorem D.2.1 (importance sampling). Let S ∈ P and t ≥ 1.

(a) There exist k ≥ 0 drawing sequences σ1, ...,σk s.t. for each measurable function
f : Ωt → R+

[S]tf = ∑k
i=1 J(σi, gi) (D.16)

for suitable nonnegative measurable functions g1, ..., gk (that depend also on f ).

(b) For each σi, the functions Wj and the functions under each integral in (D.15)
are measurable. If, additionally, all the Wj’s are strictly positive, then there
exist a straight line program S̃i such that for ti = |σi|+ 1

J(σi, gi) = J̃(σi, gi) = [S̃i]ti f̃i (D.17)

for some measurable function f̃i (that depends also on gi) defined on Ωti .

Before discussing the proof of this result, let us make some remarks on its actual
application. It is possible to effectively compute the expansion in (D.16) given S and
t, as well as the straight line programs in (D.17) along with expressions for f̃i (see
Proposition D.2.1 below). Under the assumption of positivity of the Wj’s, for each
i we can use (D.17) as the basis for a Monte Carlo estimation of Ji(σi, gi) via the
algorithmA in Section 6.5. There will be no rejection in the corresponding sampling.
The variance of the integrandW1 ·W2(r1) · · ·W`(r`−1)·g(r`) in J̃i(σi, gi)will be much
lower than in the pure Monte Carlo version without importance sampling. Moreover,
if a nontrivial upper bound b < 1 on the product of the Wj’s is available, it can be
exploited to improve the Hoeffding bound (6.14) by replacingM withM · b.

Concerning the positivity assumptions on the weight functionsWj , this can some-
times be ensured by simple program transformations, like those considered in [45].
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For instance, for ρD a uniform discrete density on a set of integers, one might trans-
form S = x1 ∼ ρD.x2 ∼ ρD.x3 ∼ ρD. obs(x1 ≤ x3 ≤ x2).nil into the (pragmatically
equivalent) S′ = x1 ∼ ρD.x2 ∼ ρD. obs(x2 ≥ x1).x3 ∼ ρD. obs(x1 ≤ x3 ≤ x2).nil. The
expansion (D.16) of S ′ will result in a sum of terms with drawing sequences having
positive weight functions. For continuous distributions this kind of transformations is
trickier, as one must tackle properly zero measure sets.

Finally, let us note that computing the expansion (D.16) can be costly, as k can
be exponential in the size of S, which typically happens when there are many nested
if-then-else’s, or loops with complicated exit conditions. In programs where there
are no fail statements, hence no obs, there will be no rejections, and IS might be less
convenient than the pure Monte Carlo estimation of Section 6.5. We now turn to the
actual proof of the above theorem. We need a preliminary result.

Proposition D.2.1 (expanded form). Let t ≥ 1, f : Ωt → R+ be a nonnegative
measurable function and S ∈ P . Then there are k ≥ 0 measurable nonnegative
functions over Rm, say J1, ..., Jk, such that for each v ∈ R

m

[S]tvf = ∑k
i=1 Ji(v) . (D.18)

Moreover, each Ji has the following form, for some functions µj, ρj,ψj (1 ≤ j ≤ `)
and γ and sequence of indices i1, ..., i` ∈ {1, ...,m} depending on i but not on f :

Ji(v) =
∫
µ1(dr1) ρ1(v, r1)ψ1(v, r1) ·

∫
µ2(dr2) ρ2(v[r1], r2)ψ1(v[r1, r2])·

· · · ·
∫
µ`(dr`) ρ`(v[r`−1], r`)ψ`(v[r`])f(γ(v[r`])) .

(D.19)
In particular, for each such Ji, we have the following.

(a) For j = 1, ..., `, the function ρj(·, ·) is a parametric density from Rm to R w.r.t.
a (Lebesgue or counting) measure µj over R appearing in S, and ψj(·) is a
predicate. Moreover, γ : Rm → Ωt is a measurable function.

(b) For j = 1, ..., `, each v and rj = (r1, ..., rj), the function

rj 7→ ρj(v[rj−1], rj)ψ`(v[rj]) ·
∫
µj+1(drj+1)ρj(v[rj], rj+1)ψj+1(v[rj+1])·

· · · ·
∫
µ`(dr`) ρ`(v[r`−1], r`)ψ`(v[r`])f(γ(v[r`]))

(D.20)
is measurable over R.

Proof. We proceed by structural induction on S. We only cover in detail the case S =
xi ∼ G.S ′, as the other cases are easier and/or follows immediately from the induction
hypothesis. For any v, let fv : Ωt−1 → R+ be defined by fv(ωt−1) := f((v,S),ωt−1);
this is a measurable function. Applying Proposition 20, equality (6.10) in the present
case can be written as

[S]tvf =
∫
µG(dr1)G(v, r1)[S ′]t−1

v[r1@i] fv . (D.21)

By induction hypothesis, there are functions of v, say J ′i(v)’s, s.t. for each v,
[S ′]t−1

v[r1@i]fv = ∑
i J
′
i(v[r1@i]), and each J ′i(v) is a measurable function of the form

(D.18), say:

J ′i(v) =
∫
µ2(dr2)ρ2(v, r2)ψ2(v[r2]) ·

∫
µ3(dr3) ρ3(v[r2], r3)ψ3(v[r2, r3])·

· · · ·
∫
µ`(dr`) ρ`(v[r2, ...r`-1], r`)ψ`(v[r2, ...r`], r`)fv(γ′(v[r2, ...r`])) .

(D.22)
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Now let Ji(v) :=
∫
µ1(dr1) ρ1(v, r1) · J ′i(v[r1@i]), where µ1 := µG and ρ1 := G.

Distributing the integral
∫
µ1(dr1)ρ1(v, r1)(·) over the sum [S ′]t−1

v[r1@i]f = ∑
i J
′
i(v[r1@i])

in (D.21), we have [S]tvf = ∑
i Ji(v). Moreover, we can check that each Ji(v) is

the form required by (D.18), with i1 := i, ψ1(v, r1) := 1 and γ(v, r1, r2, ..., r`) :=
((v,S), γ′(v[r1@i], r2, ..., r`); indeed from (D.22):

Ji(v) =
∫
µ1(dr1) ρ1(v, r1) · J ′i(v[r1@i])

=
∫
µ1(dr1) ρ1(v, r1) ·

∫
µ2(dr2)ρ2(v[r1], r2)ψ2(v[r1, r2])·

· · · ·
∫
µ`(dr`) ρ`(v[r1, r2, ..., r`-1], r`])ψ`(v[r1, r2, ..., r`])fv(γ′(v[r1, r2, ..., r`]))

=
∫
µ1(dr1) ρ1(v, r1)ψ1(v, r1) ·

∫
µ2(dr2)ρ2(v[r1], r2)ψ2(v[r1, r2])·

· · · ·
∫
µ`(dr`) ρ`(v[r1, r2, ..., r`-1], r`])ψ`(v[r1, r2, ..., r`], r`)f(γ(v[r1, r2, ..., r`]))

where the last equality stems from the definition of fv. We now check the conditions
(a) and (b) on ρj,ψj and γ.
(a) For j = 1, ..., `, the function ρj is a parametric density. For j = 1, this holds

by definition of G and µ1 = µG. For j > 1, this holds by induction hypothesis.
Measurability of φj and γ follows similarly, by induction hypothesis, and noting
(in the case of γ) that the composition of measurable functions is measurable.

(b) For j = 1, ..., `, for each v, the function in (D.20) is measurable. For 2 ≤ j ≤ `,
this follows immediately from the induction hypothesis (b) applied to J ′i : indeed,
with the above positions, the `−1 functions in the present case are the same as in
the induction hypotheses. For j = 1, the considered function can be written as
r1 7→ ρ1(v, r1)J ′i(v[r1@i]). As ρ1 and J ′i are measurable as functions of (v, r1),
so are the functions obtained from each of them by fixing all arguments but
one: in particular, r1 7→ ρ1(v, r1) and r1 7→ J ′i(v[r1@i]). Finally, the product of
measurable functions is measurable.

We are left with checking that each Ji(v) is measurable as a function of v. Let µ̃(v, ·)
denote the measure A 7→

∫
A µ1(dr1)ρ1(v, r1): by assumption, (v,A) 7→ µ̃(v,A) is a

Markov kernel.
Moreover, the chain rule implies that

∫
µ̃(v, dr1)J ′i(v[r1@i]) = Ji(v). The mea-

surability of Ji(v) then follows from the last part of Theorem 13(b) (Fubini, in the
case t = 2, j = 2), applied to the mentioned Markov kernel and to the function
r1 7→ J ′i(v[r1@i]). 2

Proof of Theorem D.2.1. Part (a) follows immediately from Proposition D.2.1,
letting v = 0 in equalities (D.18) and (D.19); in particular, from (D.19), for each i we
have Ji(0) = J(σi, gi)where σi = (i1, ρ1,ψ1), ..., (i`, ρ`,ψ`) and gi: r` 7→ f(γ(0[r`])),
as specified in (D.19).

Consider part (b). The measurability of the functions appearing in the iterated inte-
grals in J(σi, gi) is stated in Proposition D.2.1 (b). We consider now the measurability
ofWj . As ρj is a parametric density, the map (w,A) 7→

∫
A µj(dr) ρj(w, r) is a Markov

kernel from Rm to R. Consider the function h(w) :=
∫
µj(drj) ρj(w, rj)ψj(w[rj]).

By the chain rule for densities, h(w) is just the integral of the function rj 7→ ψj(w[rj])
w.r.t. the measure obtained when fixing the first argument of this Markov kernel to
w. The measurability of h then follows then from the last part of Theorem 13(b)
(Fubini, in the case t = 2), applied to the mentioned Markov kernel and to the function
rj 7→ ψj(w[rj]). Now rj−1 7→ Wj(rj−1) = h(0[rj−1]) can be expressed as a compo-
sition of measurable functions, from which the measurability of Wj as a function of



194

rj−1 follows. This also implies measurability ofWj(rj−1) as a function defined onRm

(where some of the arguments are ignored).
Finally, consider (D.17). Consider the expression for J(σi, gi) = Ji(0), given

by Proposition D.2.1 in (D.19) with v = 0. Under the assumption that the func-
tions Wj are all (strictly) positive, multiply and divide by Wj(rj−1) each factor
ρj(0[rj−1], rj)ψj(0[rj]), then move the factors Wj(rj−1) inside the innermost inte-
gral, which is possible by linearity of the integral. Letting x = (x1, ...,xm), by
definition ρ̃j(x, r) = ρj(x, r) · ψj(x[r@ij])/Wj(xi1 , ...,xij−1), and we can write:

J(σi, gi) = Ji(0)
=

∫
µ1(dr1) ρ̃1(0, r1) ·

∫
µ2(dr2) ρ̃2(0[r1], r2)·

· · · ·
∫
µ`(dr`) ρ̃`(0[r`]) · (W1 ·W2(r1) · · · · ·W`(r`−1) · f(γ(0[r`])))

= J̃(σi, gi) .

Using the positivity assumption on theWj’s, from PropositionD.2.1(a) it easily follows
that each ρ̃j(x, r) is a parametric density w.r.t. the measure µj . Consider now the
straight line program S̃i := xi1 ∼ ρ̃1. · · ·xi` ∼ ρ̃`. nil. Consider the function g on Ω
defined by g(x,S) := W1 ·W2(xi1) · · · · ·W`(xi1 , ...,xi`) ·f(γ(0[xi1 , ...,xi` ])) ·1{nil}(S)
and let f̃i be the lifting of g to Ωti , where ti = ` + 1. Relying on Proposition 20, one
can check that [S̃i]ti f̃i = Ji(0). From this fact and from Proposition D.2.1 equation
(D.18) the thesis follows. 2
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D.3 Models
We consider the following probabilistic models described for example in [85]. For
convenience, the programs are described in the language of [85], which is based on
sequential composition, but they are easy to translate into our language.

1: float skillA, skillB,skillC;
2: float perfA1,perfB1,perfB2;
3: float perfC2,perfA3,perfC3;
4:
5: skillA = Gaussian(100,10);
6: skillB = Gaussian(100,10);
7: skillC = Gaussian(100,10);
8:
9: // first game:A vs B, A won
10: perfA1 = Gaussian(skillA,15);
11: perfB1 = Gaussian(skillB,15);
12: observe(perfA1 > perfB1);
13:
14: // second game:B vs C, B won
15: perfB2 = Gaussian(skillB,15);
16: perfC2 = Gaussian(skillC,15);
17: observe(perfB2 > perfC2);
18:
19: // third game:A vs C, A won
20: perfA3 = Gaussian(skillA,15);
21: perfC3 = Gaussian(skillC,15);
22: observe(perfA3 > perfC3);
23: return skillA;

(a) TrueSkill model.

1: bool earthquake, burglary, alarm;
2: bool phoneWorking, maryWakes,called;
3: earthquake = Bernoulli(0.001);
4: burglary = Bernoulli(0.01);
5:
6: alarm = earthquake || burglary;
7:
8: if(earthquake){
9: phoneWorking = Bernoulli(0.6);
10: }else{
11: phoneWorking = Bernoulli(0.99);}
12: if(alarm && earthquake){
13: maryWakes = Bernoulli(0.8);
14: }else if(alarm){
15: maryWakes = Bernoulli(0.6);
16: }else{
17: maryWakes = Bernoulli(0.2);
18: }
19: called = maryWakes && phoneWorking;
20: observe(called);
21: return burglary;
22:
23:

(b) Pearl’s burglar alarm model.

1: simAll = Uniform (0 ,1);
2: clicksA = [1, 1, 0];
3: clicksB = [1, 1, 0];
4: for i in [0..3) {
5: sim = Bernoulli ( simAll );
6: if (sim) {
7: p1 = Uniform (0 ,1);
8: p2 = p1;
9: } else {
10: p1 = Uniform (0 ,1);
11: p2 = Uniform (0 ,1);
12: }
13: clickA = Bernoulli (p1 );
14: clickB = Bernoulli (p2 );
15: observe ( clickA == clicksA [i ]);
16: observe ( clickB == clicksB [i ]);}
17: return simAll ;
18:
19:

(c) Reduced ClickGraph model.

1: prob3 = [1/3, 1/3, 1/3];
2: prob2 = [1/2, 1/2];
3: carDoor = Categorical.Sample(prob3);
4: chosenDoor = Categorical.Sample(prob3);
5: if (carDoor == chosenDoor){
6: j = 0;
7: for i in [0..3){
8: if (i != carDoor){
9: possibleOpenDoors[j] = i;
10: j=j+1;}}
11: j=Categorical.Sample(prob2);
12: openedDoor = possibleOpenDoors[j];
13: }else{
14: for i in [0..3){
15: if ((i != carDoor) && (i != chosenDoor)){
16: openedDoor = i;}}}
17: win = false;
18: for i in [0..3){
19: if ((i != chosenDoor) && (i != openedDoor)){
20: win = (i == carDoor);}}
21: return win;}

(d) Monty Hall model.
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