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Abstract
Eigenvector-Centrality (EC) has shown promising results in the field of Psychiatry, with early results also pertaining to 
ADHD. Parallel efforts have focused on the description of aberrant interhemispheric coordination in ADHD, as measured 
by Voxel-Mirrored-Homotopic-Connectivity (VMHC), with early evidence of altered Resting-State fMRI. A sample was 
collected from the ADHD200-NYU initiative: 86 neurotypicals and 89 participants with ADHD between 7 and 18 years old 
were included after quality control for motion. After preprocessing, voxel-wise EC and VMHC values between diagnostic 
groups were compared, and network-level values from 15 functional networks extracted. Age, ADHD severity (Connor’s 
Parent Rating-Scale), IQ (Wechsler-Abbreviated-Scale), and right-hand dominance were correlated with EC/VMHC values 
in the whole sample and within groups, both at the voxel-wise and network-level. Motion was controlled by censoring time-
points with Framewise-Displacement > 0.5 mm, as well as controlling for group differences in mean Framewise-Displacement 
values. EC was significantly higher in ADHD compared to neurotypicals in the left inferior Frontal lobe, Lingual gyri, Peri-
Calcarine cortex, superior and middle Occipital lobes, right inferior Occipital lobe, right middle Temporal gyrus, Fusiform 
gyri, bilateral Cuneus, right Precuneus, and Cerebellum (FDR-corrected-p = 0.05). No differences were observed between 
groups in voxel-wise VMHC. EC was positively correlated with ADHD severity scores at the network level (at p-value < 0.01, 
Inattentive: Cerebellum rho = 0.273; Hyper/Impulsive: High-Visual Network rho = 0.242, Cerebellum rho = 0.273; Global 
Index Severity: High-Visual Network rho = 0.241, Cerebellum rho = 0.293). No differences were observed between groups 
for motion (p = 0.443). While EC was more related to ADHD psychopathology, VMHC was consistently and negatively 
correlated with age across all networks.
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Introduction

Attention Deficit/Hyperactivity disorder (ADHD) is char-
acterized by symptoms presenting in a heterogeneous 
manner across individuals, including attention deficits, 
impulsivity, and hyper-activity (American Psychiatric 
Association, 2013). Functional Magnetic Resonance Imag-
ing (fMRI) proved to be a powerful tool for exploring the 
neurobiological correlates of ADHD symptoms and behav-
iors (Damiani et al., 2020; Iravani et al., 2021; Qian et al., 
2018; Rosch et al., 2018; Silva et al., 2021; Tarchi et al., 
2021). Specifically, fMRI highlighted the importance of 
how each region is functionally connected to the rest of the 
brain. Two independent measures of these connections are 
centrality and interhemispheric coordination, the present 
study aims to elucidate their role in ADHD.

Centrality measures

An important proxy used in fMRI analyses is centrality, 
a group of graph-theory based parameters which measure 
the degree of connection between a specific brain region 
and all others. fMRI and centrality measurements have 
allowed researchers to identify functional centers in mod-
erating ADHD presentations and symptomatology (Dami-
ani et al., 2020; Iravani et al., 2021; Rosch et al., 2018). 
The concept of functional centers considers brain regions 
as “nodes”, and each relationship between pairs of regions 
as “edges”. As centrality measurements quantify the num-
ber and strength of relationships between edges and nodes, 
functional centers are nodes with a high number of mean-
ingful connections, that is, a high number of connections 
above a certain threshold. This conceptualization provides 
an efficient and simple instrument to better explore the 
complex functional organization of the brain, also known 
as the functional connectome (Iturria-Medina et al., 2008; 
Sporns, 2006; Sporns et al., 2005, 2007). Centrality meas-
urements proved to have the ability to capture intrinsic 
features of the human functional connectome in both neu-
rotypicals (Achard et al., 2006; He et al., 2009; Sporns 
et al., 2007; Tarchi et al., 2021; Zuo et al., 2012), and 
individuals with neuropsychiatric disorders (Reinelt et al., 
2019; Seidel et al., 2020), including ADHD (M. Zhou 
et al., 2019). However, the available evidence showed 
both increased and decreased centrality scores in ADHD 
compared to neurotypical controls, in particular for the 
superior Temporal lobes and the middle/inferior Occipital 
lobes (Di Martino et al., 2013; Hong et al., 2017; Tarchi 
et al., 2021; Zhou et al., 2019). Analyses of the age con-
tribution to centrality measurements in ADHD indicated 
a role for development in moderating the Resting-State 

fMRI activity in the middle Temporal cortex (Hong et al., 
2017), with additional reports of transient alterations dur-
ing development among patients with ADHD (Damiani 
et al., 2020; Hong et al., 2017). However, recent literature 
in the field of Computational Psychiatry and fMRI has 
focused the attention on subcortical structures (Castellanos 
et al., 2008; Damiani et al., 2020; Giraldo-Chica & Wood-
ward, 2017; Lottman et al., 2019; Zhou et al., 2017), and 
preliminary evidence highlighted their key role in ADHD 
(Bruchhage et al., 2018; Damiani et al., 2020). For these 
reasons, a centrality measurement sensitive to the contri-
bution of subcortical structures was preferred in the cur-
rent study. When compared to other centrality measure-
ments (e.g. Degree of Centrality), Eigenvector Centrality 
(EC) proved to be more sensitive subcortical regions (Zuo 
et al., 2012), and was thus selected as the centrality meas-
urement of choice, also considering its recursive nature 
(Lohmann et al., 2010).

Interhemispheric coordination

Parallel efforts in the study of the intrinsic characteristics of 
the human brain, as assessed by fMRI, have focused on the 
degree of functional integration between hemispheres, i.e. 
their interhemispheric coordination (Halpern et al., 2005). 
Interhemispheric coordination has been defined as the 
degree of left–right symmetry in the brain activity. Lower 
interhemispheric coordination has concerned a number of 
functions and associated brain areas, at the molecular, cel-
lular, and functional level (with relevance of asymmetry 
both during Resting-State, Toga & Thompson, 2003; and 
task conditions, Riès et al., 2016). The clinical relevance 
of increased or decreased hemispheric specialization in 
individuals has not yet been fully elucidated, while multiple 
theories rely on atypical lateralization as a mechanism for 
the onset of neuropsychiatric disorders (Angrilli et al., 2009; 
Berretz et al., 2020; Vingerhoets, 2019).

For these reasons, Voxel-Mirrored Homotopic Connectiv-
ity (VMHC) was developed in order to assess the degree of 
homotopy in fMRI (that is, the degree of similarity between 
symmetric brain regions, Wei et al., 2018). VMHC has been 
shown to yield valuable insight on psychiatric conditions 
in Resting-State fMRI scans. In particular, a lower inter-
hemispheric coordination has been reported in depression 
(Guo et al., 2013; L. Wang et al., 2013; Zhang et al., 2020); 
obsessive–compulsive disorder (Deng et al., 2019), schiz-
ophrenia (D. Wang et al., 2019), and bipolar disorder (L. 
Zhao et al., 2017). Although more commonly reported at the 
voxel-wise, whole-brain level, the characterization of brain 
networks by degree of interhemispheric coordination as 
assessed by VMHC has been proposed as a reliable marker 
of neurodegenerative processes (Cheung et al., 2021). The 
use of VMHC also seems supported by evidence of high 
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test–retest stability (intraclass correlation coefficient ≥ 0.8, 
Dai et al., 2020), in contrast to other similar measurements 
of interhemispheric coordination (Hagemann et al., 2002).

For what concerns ADHD, current reports highlighted 
specific VMHC alterations in this population (Jiang et al., 
2014, 2019; Zhou et al., 2018). In particular, lower VMHC 
was found in children with ADHD in comparison to neuro-
typicals in the Occipital lobes. VMHC also negatively cor-
related with anxiety scores at the Conners’ Parent Rating 
Scale and positively correlated with set-shifting abilities 
in children with ADHD (J. Zhou et al., 2018). Contrasting 
evidence was offered by Jiang et al. (2019), who showed 
higher VMHC scores in children with ADHD in comparison 
to neurotypicals in the Occipital cortex. Our group recently 
suggested that age can partially explain these contrasting 
findings in ADHD fMRI, since cortical-subcortical con-
nectivity can show transient alterations that are observable 
in specific time points between childhood and adulthood 
(Damiani et al., 2020).

The current study

Neuroplasticity is known to shape brain development during 
late childhood, adolescence and early adulthood (Aoki et al., 
2017; Guyer et al., 2018; Kadis et al., 2011; Petanjek et al., 
2011; Selemon, 2013), and age-related changes have been 
observed in interhemispheric coordination or brain centrality 
during the same period of life in both clinical conditions and 
the general population (Anderson et al., 2011; Di Martino 
et al., 2013; Everts et al., 2009; Kadis et al., 2011; Lo et al., 
2011; Nagel et al., 2013; Oades, 1998; Sato et al., 2015; Sch-
neider et al., 2011; M. Zhou et al., 2019). A divergence of 
neurodevelopment has been postulated for ADHD (Ameri-
can Psychiatric Association, 2013), as, among other factors, 
individuals with ADHD report delays in language or social 
development more frequently than their peers (American 
Psychiatric Association, 2013; Bruce et al., 2006; Staikova 
et al., 2013). Therefore, a description of the patterns of neu-
rodevelopment in individuals with ADHD and neurotypical 
controls is warranted for the interval between 7 and 18 years 
of age, a salient time span characterized by the onset of both 
ADHD (American Psychiatric Association, 2013; Chandra 
et al., 2021; Kieling et al., 2010; Rohde et al., 2000) and a 
relevant portion of all psychiatric disorders (Kessler et al., 
2007a, b; Solmi et al., 2021).

Aims

These premises call for using multiple whole brain, voxel-
wise parameters which could explore brain connectivity in 
ADHD. Centrality and interhemispheric coordination may 
thus provide two different perspectives on ADHD brain con-
nectivity: the former is more related to the global weight 

of a voxel, the second to the degree of symmetry reached 
between two homotopic voxels.

The primary aim of this study was to evaluate the poten-
tial differences in centrality (EC) and interhemispheric coor-
dination of the brain (VMHC) in participants with ADHD, 
compared to neurotypicals, using a sample of adolescents 
between the age of 7 and 18 years old at the voxel-wise level.

Although previous studies focused on voxel-wise differ-
ences between ADHD and neurotypicals, the current work 
also adopted a network-based approach to provide novel 
insights on EC/VMHC. This approach allows to clearly vis-
ualize the relationship between neuroimaging and clinical 
findings (Tarchi et al., 2021), and to improve their replicabil-
ity (Nickerson, 2018). The secondary aims of this study were 
i) to evaluate potential differences between neurotypicals 
and patients with ADHD in EC and VMHC at the network 
level. ii) to characterize the correlation of EC and VMHC 
with age, symptom severity, and cognitive/behavioral scores 
(Intelligence Quotient—verbal, performance, and full score; 
handedness—right hand dominance).

Methods

Sample

The current study sample was obtained from the New York 
University dataset of the ADHD200 repository, specifically 
from the International Neuroimaging Data-Sharing Initia-
tive. All participants were between 7 and 18 years of age. 
A quality check for each subject was present in the pheno-
typic key provided with the dataset, and those subjects that 
did not pass were discarded preventively. The psychiatric 
diagnosis was based on the Schedule of Affective Disorders 
and Schizophrenia for Children—Present and Lifetime Ver-
sion (Kaufman et al., 1997), administered to parents and 
children. ADHD specific psychopathology was evaluated 
through the Conners’ Parent Rating Scale-Revised, Long 
version (Gurley, 2011). Intelligence was evaluated with the 
Wechsler Abbreviated Scale of Intelligence (Canivez et al., 
2009). Inclusion in the ADHD group required a diagnosis 
of ADHD based on parent and child responses to the Sched-
ule of Affective Disorders and Schizophrenia for Children: 
Present and Lifetime Version, as well as on a T-score greater 
than or equal to 65 on at least one ADHD related index of 
the Conners’ Parent Rating Scale-Revised, Long version. 
Psychostimulant drugs were withheld at least 24 h before 
scanning. Inclusion criteria for the control group of neuro-
typicals required absence of any Axis-I psychiatric diagno-
ses per parent and child as per the interview by the Schedule 
of Affective Disorders and Schizophrenia for Children: Pre-
sent and Lifetime Version, as well as T-scores below 60 for 
all the Conners’ Parent Rating Scale- Revised, Long version 
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ADHD summary scales. Estimates of a Full Intelligence 
Quotient above 80, right-handedness and absence of other 
chronic medical conditions were required for all children 
(ADHD200, n.d.—NYU sample). Handedness was reported 
in a dimensional manner, and all included participants were 
right-handed. A handedness score ranging from 0 to + 1 
was used to quantify the degree of right-hand dominance. 
Further details about the sample can be found in the parent 
study (Castellanos et al., 2008). MRI data was acquired in 
a single site (New York University, Child Study Center), 
and on one of two 3 T Siemens Trio scanners. Functional 
MRI scans were collected using a T2*-weighted echo-planar 
imaging (EPI) sequence with the following parameters: slice 
thickness 4 mm, repetition time 2 s, echo time 20 ms, flip 
angle 90°, voxel size 3.0 × 3.0x4.0 mm. An anatomical scan 
was acquired for each participant and defaced in order to 
preserve anonymity, the voxel size was 1.3 × 1.0x1.3 mm. 
The Resting-State fMRI scan lasted 304 s. Participants were 
asked to remain still and keep their eyes closed; they were 
not presented with stimuli or asked to respond during the 
scan.

Preprocessing

fMRI data preprocessing steps were implemented in AFNI 
(Cox, 1996; Cox & Hyde, 1997; Taylor & Saad, 2013). 
Firstly, the structural and functional reference images were 
co-registered (Saad et al., 2013). The first 4 frames of each 
fMRI run were removed in order to discard the transient 
effects in amplitude observed until magnetization achieves 
steady state (Caballero-Gaudes & Reynolds, 2017). Slice 
timing correction (Konstantareas & Hewitt, 2001) and 
despike methods (Satterthwaite et al., 2013) were applied. 
Rigid-body alignment of the structural and functional image 
was performed. The anatomical image was then warped 
using the Montreal Neurological Institute (MNI) standard 
space template provided with the AFNI binaries. A symmet-
rical template was chosen in order to better compare results 
of inter-hemispheric connectivity. The “2009c” symmetric 
template of the MNI152 initiative was chosen as the tem-
plate of choice. Volume registration was then used to align 
the functional data to the base volume, warping it to the 
stereotactic space of choice. Bandpass (0.01–0.1 Hz) was 
performed (Shirer et al., 2015). Each of the voxel time series 
was then scaled to have a mean of 100. To control for non-
neural noise, regression based on the 6 rigid body motion 
parameters and their 6 derivatives was applied, as well as 
mean time series from cerebro-spinal fluid masks (Fox et al., 
2005; Vovk et al., 2011) eroded by one voxel (Chai et al., 
2012). Regression of white matter artifacts was performed 
through the fast ANATICOR technique as included in AFNI 
(Jo et al., 2010). To further improve motion correction, 

censoring of voxels with a Framewise Displacement (FD) 
above 0.5 mm was applied to the timeseries (Power et al., 
2014).

A visual quality assessment of each scan was performed 
at the end of preprocessing. Alignment between the anatomi-
cal and Resting-State scan, alignment between Resting-State 
scan and the reference volume, motion control (censored 
timepoints < 10% and absolute movement in each of the 6 
motion parameters < 2 mm translation and < 2° rotation) 
were inspected, and subjects excluded if at least one was 
altered.

Primary aims, voxel‑wise analysis

EC measures the importance of a node based on its connec-
tions to other important nodes (Bonacich, 1972, 2007). In 
fMRI, EC is based on both the number and the strength of 
connections between areas of the brain, with the most com-
monly used computational methods relying on correlation 
coefficients between voxels (Wink et al., 2012). Importance 
is assigned to voxels based on two factors: the raw number 
of meaningful connections (above a certain correlation coef-
ficient threshold), and the degree of connection to highly 
connected hubs. Whole brain, voxel-wise EC values of 
Resting-State scans were measured using FASTCAT func-
tionalities implemented in AFNI (Taylor & Saad, 2013). EC 
was measured by first calculating Pearson’s correlation coef-
ficients for each pair of voxels in the brain. As no sparsity 
or threshold correction coefficient is currently established 
in the literature, Fast Eigenvector Centrality was used as 
the method of choice to determine the correlation matrix 
(Wink et al., 2012). Subsequently, eigenvectors were calcu-
lated determining the largest eigenvalue in the correlation 
matrix according to the formula:

where

R	� represents the correlation matrix,

v	� represents the eigenvector of the matrix, and the scalar 
λ its corresponding eigenvalue.

VMHC, on the other hand, is a measure of interhemi-
spheric coordination between corresponding areas in fMRI 
(Wei et al., 2018). In other words, VMHC measures the level 
of symmetry, or correlation, between left/right pairs of vox-
els or brain areas. VMHC values were computed by calculat-
ing the Pearson’s correlation coefficients between each voxel 
and its interhemispheric counterpart in the mirrored sym-
metrical brain space. Thereafter, the correlation values were 
z transformed to improve normality: whole brain, voxel-wise 

Rv = �v
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VMHC maps were computed for each participant, then nor-
malized using Fisher z-transformation (Zuo et al., 2010). 
The adopted formula for computing Z-transformed VMHC 
values was the following:

where

v	� represented voxel-wise VMHC values.

Secondary aims, network‑level analysis

To calculate age-related variations, each participant’s voxel-
wise connectivity results was averaged within 15 networks. 
Masks for networks were obtained from the Functional 
Imaging in Neuropsychiatric Disorder Lab website – Uni-
versity of Stanford (Greicius & Eger, n.d.; Shirer et al., 
2012). As the cerebellum plays an important role in ADHD 
(Bruchhage et al., 2018; Curtin et al., 2018; Ding & Pang, 
2021; Miquel et al., 2019; Zhao et al., 2021), but was not 
included in the set of functional networks, a cerebellar map 
was retrieved from previous studies on cerebellar segmenta-
tion in the MNI stereotactic space (Diedrichsen et al., 2009). 
In total, 15 networks were included in secondary analyses. 
These 15 masks include: Anterior Salience, Auditory, Basal 
Ganglia, dorsal Default Mode Network (DMN), high Visual, 
Language, Left Executive Control, posterior Salience, Pre-
cuneus, Primary Visual, Right Executive Control, Sensori-
motor, ventral DMN, and Visuospatial networks, as well as 
a Cerebellar mask. A graphical representation of network 
maps is offered by the original publication from which the 
functional networks were derived (Shirer et al., 2012). In 
order to compare means between neurotypicals and patients 
with a diagnosis of ADHD, Student’s t-tests were calculated 
for mean EC/VMCH value per network, Hedges’ g estimate 
of effect size reported. Correlation coefficients were esti-
mated between the mean EC/VMHC value in each network 
and age/symptoms scores. Correlation coefficients were also 
estimated between the mean EC/VMHC value per network 
and IQ scores or handedness.

Control analyses

To control for the role of motion, group differences in mean 
FD values per run were explored through a student t-test, the 
estimated effect size was reported by Hedges’ g. A violin 
plot was used to graphically inspect group distributions in 
mean FD values, with a jitter element to represent individual 
observations. Quartile values per group were rendered in the 
distribution curve (25, 50, 75 percentiles).

1

2
ln
(1 + v)

(1 − v)

Statistical analyses

For both EC and VMHC, t-tests were used to measure 
whole brain, voxel-wise differences between neurotypicals 
and patients with a diagnosis of ADHD (3dttest +  + , by 
AFNI, Cox, 1996), with a False Discovery Rate corrected 
threshold (FDR-corrected-p) of 0.05. Significant voxels 
after thresholding were reported after clustering in order to 
remove potential, isolated, artifacts. A minimum cluster of 
30 voxels with 3 Nearest Neighbors (NN) was selected in 
accordance with previous literature (Damiani et al., 2020). 
Age, sex, IQ (verbal, performance, full scores) and handed-
ness were introduced as covariates when estimating group 
differences, using the 3dttest + AFNI command and the 
“-covariates” option. Results were also clustered accord-
ing to standard practice, with minimum size of 30 voxels, 
calculated by the 3 nearest neighbors. Secondary analyses 
were conducted with R, version 4.1.2 (R Core Team, 2020) 
and its library tidyverse (Wickham et al., 2019). Correlation 
coefficients were estimated using Spearman’s rho, p-values 
reported via correlation matrices. Analyses on the full sam-
ple were repeated considering neurotypicals and ADHD 
groups separately. To account for multiple comparisons, 
a p-value of 0.01 was adopted as a significance threshold, 
while thresholds between 0.01 and 0.05 were referred to as 
trends in reporting the results.

Results

Descriptive Statistics

In the sample, 37 participants were excluded for excessive 
motions or quality control (9 TYP, 28 ADHD). 10 par-
ticipants were excluded as at least one network had an EC 
value of 0, as it was not possible to calculate the respective 
value for computational or technical impossibility (4 TYP, 6 
ADHD). In fact, current EC estimation methods are memory 
intensive and might not resolve the matrix operations (Taylor 
& Saad, 2013; Wink et al., 2012). A final count of 86 neu-
rotypicals and 89 participants with ADHD were included in 
the study. Sample descriptives for both groups and overall 
can be found in Table 1.

Primary results

Analysis of EC resulted in wide and diffuse differences 
between neurotypicals and ADHD participants, with results 
observed at a minimal FDR-corrected-p of 0.0005. A visual 
representation of non-thresholded results was reported in 
Fig. 1a, while a threshold of FDR-corrected-p 0.05 and a 
minimum of 30 voxel clusters (NN = 3) was used to repre-
sent results as Fig. 1b.
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Table 1   Descriptive statistics

Differences evaluated by Mann–Whitney U-test as normality was not assumed. Values reported ± 1 Stand-
ard Deviation
W = Wilcoxon-Mann–Whitney two-sample rank-sum

Neurotypicals ADHD Difference Overall

N 86 89 / 175
Age 12.23

(± 3.10)
11.22
(± 2.76)

W 4522 *
p 0.026

11.71
(± 2.97)

Handedness 0.62
(± 0.24)

0.66
(± 0.26)

W 3350
p 0.236

0.64
(± 0.25)

Gender 40 ♂ 46 ♀ 66 ♂ 23 ♀ W 2651 *
p < 0.001

106 ♂ 69 ♀

ADHD Global Index Severity 45.50
(± 6.34)

71.20
(± 8.53)

W 103 *
p < 0.001

58.66
(± 14.92)

Inattentive score 45.55
(± 6.14)

70.44
(± 8.81)

W 122 *
p < 0.001

58.29
(± 14.61)

Hyper/Impulsive score 46.40
(± 5.42)

67.43
(± 12.20)

W 386 *
p < 0.001

57.16
(± 14.18)

Full IQ 110.57
(± 14.38)

107.41
(± 14.26)

W 3840
p 0.149

108.92
(± 14.36)

Verbal IQ 110.98
(± 13.56)

108.06
(± 14.79)

W 3789
p 0.202

109.46
(± 14.38)

Performance IQ 107.74
(± 14.89)

104.70
(± 13.82)

W 3833
p 0.155

106.15
(± 14.38)

Fig. 1   Voxel-wise results of Eigenvector Centrality analyses, no thresholding. Color-bar by Z-scores, from -3.75 to + 3.75, Blue higher in 
ADHD, Red higher in TYP. A. no thresholding, B. FDR-corrected-p 0.05 and minimum cluster size 30 voxels (NN 3)
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Significantly higher EC in ADHD compared to neuro-
typicals was found in the left inferior Frontal lobe, Lingual 
gyri, Peri-Calcarine cortex, superior and middle Occipital 
lobes, right inferior Occipital lobe, right middle Temporal 
gyrus, Fusiform gyri, bilateral Cuneus, right Precuneus, and 
Cerebellum. A detailed account of the thresholded clusters 
can be found in the Supplementary Materials as Table S1.

For what concerns individual factors, age, sex, clini-
cal severity, and IQ scores did not appear to significantly 
influence between groups voxel-wise differences. Between 
groups, no covariate-map had surviving voxels at FDR-cor-
rected-p 0.05.

Analysis of VMHC at the voxel-wise level resulted in no 
significant difference between neurotypicals and participants 
with ADHD, with no surviving voxel at FDR-corrected-p 
0.05. Again, age, sex, clinical severity, and IQ scores did not 
appear to significantly influence between groups voxel-wise 
differences (no surviving voxels at FDR-corrected-p 0.05).

Network‑based analyses

Network-based analyses showed a significant difference in 
EC between neurotypicals (TYP) and ADHD patients in 
the Higher Visual, Primary Visual, Language and Posterior 
Salience Networks, as well as in the Cerebellum (higher EC 
among individuals with ADHD in all significant networks). 
VMHC did not show any significant difference in network-
based analyses. Mean FD, as a measure of motion, was not 
significantly different between groups. Results were reported 
in Table 2.

Network-based analyses showed a significant correla-
tion between EC and age in 11 networks out of 15, when 
including all participants. Out of 15 networks, 7 showed 
a negative correlation between EC and age (Anterior Sali-
ence rho = -0.309; Auditory rho = -0.390; Basal Gan-
glia rho = -0.428; dorsal DMN rho = -0.406; Language 
rho = -0.369; Right Executive Control rho = -0.202; Cerebel-
lum rho = -0.242), while 4 had a positive correlation (Left 
Executive Control rho = 0.383; Precuneus rho = 0.258; ven-
tral DMN rho = 0.345; Visuospatial rho = 0.402). One net-
work showed a positive trend between EC and age, namely 
the Sensorimotor network (rho = 0.167). Results for network-
based analyses, including correlation coefficients and level 
of significance, were illustrated as Fig. 2. To be noted, EC 
values in the High Visual Network were positively correlated 
with age only for the ADHD group (ADHD rho = 0.264, 
p-value < 0.01; TYP rho = -0.131, p-value > 0.05; Overall 
rho = 0.022, p-value > 0.05).

Participants with ADHD showed a significant and 
negative trend between ADHD Global Index Severity and 
EC values in the Sensorimotor Network (rho = -0.232). 
For the overall sample, EC values also followed a posi-
tive trend with the Inattentive score of ADHD in the High 

Visual network (rho = 0.204) and a positive correlation 
with the Cerebellum (rho = 0.273). Additionally, a posi-
tive correlation was observed in the overall sample for the 
Hyper/Impulsive score in the High Visual (rho = 0.242), 
Right Executive Networks (rho = 0.204) and Cerebellum 
(rho = 0.276). Conversely, a negative trend was observed 
in the overall sample between EC values in the Senso-
rimotor Network and Hyper/Impulsivity severity scores 
(rho = -0.167). No significant correlation was found for EC 
and handedness or IQ, either as full or sub-domain scores. 
As previously reported, results for network-based analyses 
of EC correlation were illustrated as Fig. 2.

Table 2   Network-based analyses, group differences between neuro-
typicals and ADHD

In bold, statistically significant results
LECN Left executive control network
RECN Right executive control network

Network t-statistic p-value Hedges' g

anterior_Salience_EC 1.162 0.247 0.178
Auditory_EC 0.115 0.909 0.020
Basal_Ganglia_EC 0.182 0.856 0.031
dorsal_DMN_EC -1.266 0.207 -0.192
high_Visual_EC -3.704  < 0.001 -0.616
Language_EC -2.082 0.039 -0.315
LECN_EC -0.228 0.820 -0.035
post_Salience_EC -3.113 0.002 -0.470
Precuneus_EC -1.055 0.293 -0.162
prim_Visual_EC -3.160 0.002 -0.539
RECN_EC -1.277 0.203 -0.196
Sensorimotor_EC -1.309 0.192 -0.198
ventral_DMN_EC -1.458 0.147 -0.223
Visuospatial_EC -1.294 0.197 -0.195
Cerebellum_EC -4.229  < 0.001 -0.692
anterior_Salience_VMHC -1.065 0.288 -0.161
Auditory_VMHC -0.468 0.641 -0.071
Basal_Ganglia_VMHC -0.886 0.377 -0.134
dorsal_DMN_VMHC -1.164 0.246 -0.176
high_Visual_VMHC 0.246 0.806 0.037
Language_VMHC -1.130 0.260 -0.171
LECN_VMHC 0.638 0.524 0.096
post_Salience_VMHC -0.231 0.817 -0.035
Precuneus_VMHC -0.218 0.827 -0.033
prim_Visual_VMHC -0.268 0.789 -0.041
RECN_VMHC -0.346 0.730 -0.052
Sensorimotor_VMHC -1.142 0.255 -0.172
ventral_DMN_VMHC -0.405 0.686 -0.061
Visuospatial_VMHC 0.680 0.498 0.103
Cerebellum_VMHC -1.192 0.235 -0.180
Mean FD -0.769 0.443 -0.116
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Network-based analyses showed a significant, nega-
tive correlation between VMHC and age in 11 out of 15 
networks, when including all participants (Anterior Sali-
ence rho = -0.315; Auditory rho = -0.218; Basal Gan-
glia rho = -0.268; dorsal DMN rho = -0.354; Language 
rho = -0.381; Precuneus rho = -0.197; Right Executive 
Control rho = -0.212; Sensorimotor rho = -0.324; ventral 
DMN rho = -0.299; Visuospatial rho = -0.251; Cerebellum 
rho = -0.281). Results of the network-based analyses, includ-
ing correlation coefficients and level of significance, were 
illustrated as Fig. 3.

Verbal IQ was negatively correlated with VMHC values 
in the Left and Right Executive Networks in neurotypicals 
(rho = -0.327 and rho = -0.323 respectively) but not among 
participants with ADHD. Performance IQ showed a negative 
trend only for the Right Executive Network in neurotypicals 
(rho = -0.237) and only with the Visuospatial Network in the 
group of patients with ADHD (rho = -0.229). Full IQ scores 
showed a negative trend with VMHC only in the Left and 
Right Executive Networks for neurotypicals (rho = -0.271 
and rho = -0.280 respectively), while in the Visuospatial Net-
work in the group of patients with ADHD (rho = -0.240). 
Handedness was negatively correlated with VMHC only 

in the Language Network for neurotypicals (rho = -0.280), 
while in Basal Ganglia and ventral DMN and for participants 
with ADHD (rho = -0.335 and rho = -0.336 respectively). 
Results for network-based analyses of VMHC correlations 
were illustrated in Fig. 3.

Control analysis

No significant differences were observed for motion (mean 
FD value) between neurotypicals and participants with 
ADHD (p = 0.443, see Table 2). Violin plot distribution of 
mean FD value, with reported quartiles per group, showed 
high similarity and was illustrated in the Supplementary 
Materials as Supplementary Figure S2.

Discussion

The present study confirms the importance of centrality 
measurements in the evaluation of psychiatric disorders. 
The observed increases of EC in ADHD in comparison to 
neurotypicals were in a wide area in the posterior half of the 
Cerebrum, including: the left inferior Frontal lobe, Lingual 

Fig. 2   Heatmaps of Eigenvector Centrality correlations with age, 
handedness, IQ scores and severity scales. Colors from blue to red. 
DMN: Default Mode Network, LECN: Left Executive Control Net-
work, RECN: Right Executive Control Network, Blue higher negative 

correlation coefficient, Red higher positive correlation coefficients. A: 
Heatmap of the overall sample, B: Heatmap for neurotypicals, TYP, 
C: Heatmap for patients with a diagnosis of ADHD, * p-value < 0.05, 
** p-value < 0.01, *** p-value < 0.001

2533Brain Imaging and Behavior  (2022) 16:2526–2542

1 3



gyri, Peri-Calcarine cortex, superior and middle Occipital 
lobes, right inferior Occipital lobe, right middle Temporal 
gyrus, Fusiform gyri, bilateral Cuneus, right Precuneus, and 
Cerebellum. Although the current literature has focused on 
an aberrant interhemispheric coordination in ADHD, the 
current study did not find statistically significant differ-
ences between participants with ADHD and neurotypicals, 
as assessed by VMHC in a sample of participants aged from 
7 to 18 years.

EC was particularly correlated with age at the network-
level, pointing to a significant effect of neurodevelopment 
in the longitudinal trajectory of EC. Therefore, the present 
study offers a possible interpretation of the contrasting 
findings offered by previous literature. In fact, reports of 
increased centrality scores (Jiang et al., 2014) and decreased 
centrality scores (J. Zhou et al., 2018) in ADHD could be 
the result of specific alterations at different neurodevelop-
mental timepoints (Damiani et al., 2020; Hong et al., 2017). 
While early reports described increased centrality scores 
in ADHD for the superior Occipital lobes (M. Zhou et al., 
2019), the current study observed a similar trend only for 
the inferior and medial Occipital lobes (Hong et al., 2017). 

Previous reports of increased centrality scores in ADHD for 
the Striatum, Pallidum, and Basal Ganglia (Di Martino et al., 
2013) were not replicated. Furthermore, the current study 
supported decreased centrality scores in ADHD for the mid-
dle Temporal gyrus (Hong et al., 2017; Zhou et al., 2019).

Although age showed a homogeneous effect on VMHC 
(negative correlations in the overall sample and in each 
diagnostic group, across all networks), a heterogeneous 
correlation between EC and age was observed in the net-
work-based analyses. Networks differentiated into three 
association patterns (positive, negative, or null), which 
remained similar when comparing analysis of single 
groups and across the entire sample. These trends can be 
interpreted in light of recent literature, which described 
different patterns of association between age and the 
structural/functional topography of the brain (Bellantuono 
et al., 2021; Long et al., 2017; Lopez-Larson et al., 2011; 
Zuo et al., 2012). For what concerns VMHC, only global 
patterns of interhemispheric coordination and develop-
ment have been reported (Zuo et al., 2010). These patterns 
described a non-linear trend of decreasing global inter-
hemispheric coordination before adulthood, and a later 

Fig. 3   Heatmap of Voxel-wise Homotopic Connectivity correlations 
with age, handedness, IQ scores and severity scales. Colors from blue 
to red. DMN: Default Mode Network, LECN: Left Executive Con-
trol Network, RECN: Right Executive Control Network, Blue higher 

negative correlation coefficient, Red higher positive correlation coef-
ficients. A: Heatmap of the overall sample, B: Heatmap for neuro-
typicals, TYP, C: Heatmap for patients with a diagnosis of ADHD, * 
p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001
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progressive increase after senility (Zuo et al., 2010). In 
previous literature, the right hemisphere exhibited higher 
values of EC as a function of age in comparison to its left 
homologue, as evaluated in a sample of healthy children 
aged 2 to 6 years old (Long et al., 2017). Associative areas, 
such as the right superior Frontal lobe and both superior/
medial Temporal lobes, were observed to significantly 
increase in centrality scores as a function of age in the 
same sample (Long et al., 2017). Conversely, sensory areas 
such as the Occipital lobes and bilateral inferior Temporal 
lobes showed significantly decreased centrality scores with 
increasing age (Long et al., 2017). In the current study, 
the same areas (Occipital lobes—bilateral superior and 
middle gyri, right inferior gyrus; right middle Temporal 
gyrus) showed significantly higher EC in participants with 
ADHD aged between 7 to 18. In other words, the same 
areas which undergo a specific remodulation of EC as a 
function of age during early childhood (2–6 years old), 
also show significantly higher values in 7 to 18 years old 
individuals with ADHD. Together with these findings, it 
can thus be speculated that altered age-related trajectories 
in EC may represent the presence of a delayed or missed 
neurodevelopmental milestone in these individuals (Dark 
et al., 2018; Hannigan et al., 2021).

The Left and Right Executive Control networks exhibited 
significant but opposite correlations between EC and age, 
shifting from a marked left dominance in centrality towards 
an interhemispheric balance. Interestingly, this remodeling 
was not reflected by interhemispheric coordination, dem-
onstrating how neurodevelopment drives different trajecto-
ries between inter- and intra-network connectivity patterns. 
The divergent development of the Left and Right Execu-
tive Control networks seems to be supported by evidence of 
white matter asymmetry, differences in functional interhemi-
spheric connectivity, and reports of lateralized neural cor-
relates for executive tasks (Asanowicz et al., 2012; Vallesi, 
2012, 2021; Yin et al., 2013).

The dorsal and ventral DMN also showed significant but 
opposite correlations between EC values and age (positive 
for the ventral DMN, negative for the dorsal DMN). These 
findings might be interpreted in light of recent research 
on the separate role of these two components of the DMN 
(Chen et al., 2017; Lee et al., 2021; Sethi et al., 2018), and of 
the overlap between these regions and previously described 
ventral and dorsal streams of language processing (Hickok & 
Poeppel, 2007; Klein et al., 2015; Middlebrooks et al., 2017; 
Saur et al., 2008; Tomasi & Volkow, 2020; Wylie & Reg-
ner, 2014). As recent research highlighted the role of non-
linear, non-monotonic trajectories in the neurodevelopment 
of the functional connectome in the human brain (Gracia-
Tabuenca et al., 2021), especially for attention-related net-
works (Damiani et al., 2020; Gracia-Tabuenca et al., 2021), 
the authors warrant further research on the topic.

For what concerns ADHD severity, EC was correlated 
with the ADHD Global Index Severity score, and with the 
Inattentive/Hyper-impulsive subdomain scores. These cor-
relations were evaluated at the network level, and were sta-
tistically significant primarily in the High Visual network 
and the Cerebellum. The correlation between symptomatic 
scores and EC values in the High Visual network can be 
better interpreted when considering previous neuroimaging 
studies, which highlighted consistent alterations in cortical 
thickness and functional activity in the medial Occipital 
cortex of patients with ADHD (Castellanos & Proal, 2012; 
Dickstein et al., 2006; Proal et al., 2011). Current voxel-
wise results also showed important differences in EC values, 
which extended to most of the posterior brain.

Similarly, the correlation between symptomatic scores 
and Cerebellar EC values is in full agreement with the pre-
frontal-striatal-cerebellar model of ADHD (Curtin et al., 
2018; Goetz et al., 2014; Krain & Castellanos, 2006; Lan-
tieri et al., 2010). The prefrontal-striatal-cerebellar model 
posits a cerebellar involvement underpinning executive 
functioning, when integrated with the frontoparietal net-
work (Cortese et al., 2012; Miquel et al., 2019; Mulder et al., 
2008), and a cerebellar contribution to motor control, when 
integrated with somatosensory areas (Cortese et al., 2012; 
Picazio & Koch, 2015). The effect of EC at the network level 
was transdiagnostic, and neurotypicals showed a significant 
correlation between EC values and hyper-impulsivity in 
the Sensorimotor cortex and Executive Control networks. 
EC may therefore be posited as a marker of dimensional 
psychopathology rather than a diagnostic classification 
tool. As both clinical accounts and current results showed a 
protective role for age, to the present day it is not possible 
to exclude a potential compensatory plasticity during ado-
lescence and young adulthood. Furthermore, EC correlated 
with age similarly in the two groups, with no significant 
difference between groups in the age effect for voxel-wise 
analyses. However, the correlations EC showed with age 
in dorsal DMN, right Executive Control, Sensorimotor net-
work, and Cerebellum were opposite to the ones between EC 
and ADHD symptoms. Moreover, EC was not significantly 
correlated with handedness or IQ at the network level, which 
might be interpreted as a specificity of this measurement for 
the clinical correlates of ADHD psychopathology.

Although all included participants were right-handed, 
a dimensional approach to hand dominance allowed for 
novel interpretations about the role of hand dominance in 
the interhemispheric coordination and functional lateraliza-
tion of the brain. In particular, interhemispheric coordina-
tion—as measured by VMHC—was significantly correlated 
with right-hand dominance in the Language Network in the 
neurotypical sample. By contrast, the groups of patients 
with ADHD showed a higher correlation between VMHC 
and handedness across several networks (Basal Ganglia, 

2535Brain Imaging and Behavior  (2022) 16:2526–2542

1 3



Language, ventral DMN, Visuospatial Networks). These 
findings show similar patterns to the high inter-participant 
and task-specific variability of lateralization in language pro-
cessing areas (Cotosck et al., 2021; Gurunandan et al., 2020; 
Olulade et al., 2020; Vigneau et al., 2011), where marked 
functional lateralization is not clearly correlated to better 
performance. In turn, ventral DMN is central not only for 
sustained-attention (Sormaz et al., 2018) or goal-oriented 
behavior (Murphy et al., 2018; Spreng, 2012), but also for 
semantic fluency, entailing both cognition and memory 
(Martin et al., 2021). Consequently, in comparison to EC, 
VMHC rather seemed involved as a transdiagnostic marker 
of functioning in cognitive, verbal, or semantic tasks. In fact, 
VMHC correlated with IQ scores, but in a diverging man-
ner between neurotypicals and ADHD. While neurotypicals 
showed negative correlations between VMHC and IQ in the 
Executive Networks, the group of participants with ADHD 
showed negative correlations in the Visuospatial Network 
only. Of special interest, previous studies described an inter-
action between auditory and visual processing, with reports 
suggesting the existence of a dual interplay between these 
processes, and the emergence of both interaction and seg-
regation in brain areas related to these functions during late 
neurodevelopment (Berto et al., 2021). Moreover, studies 
have shown altered sensory processing in ADHD for what 
visual and auditory processing are concerned (Dunn & Ben-
nett, 2002; Ghanizadeh, 2011; Schulze et al., 2021). Current 
results could then partially explain these findings in light of 
a divergent neurodevelopment between neurotypicals and 
individuals with ADHD. In fact, although VMHC was con-
sistently and negatively correlated with age in both healthy 
controls and participants with ADHD, behavioral and cog-
nitive functioning seemed to correlate with different brain 
networks in the two groups.

Limitations

Although the included sample size was significantly high, 
further studies are needed in order to increase generaliz-
ability of results. Included participants ranged between 7 
and 18 years old, thus warranting caution in interpreting 
results in light of an adult population. Although a dimen-
sional approach to handedness allowed for a novel interpre-
tation of results, further studies including both left and right-
handed individuals are needed before definitive conclusions 
about the potential role of VMHC in determining interhemi-
spheric coordination as a function of performance. Due to 
the explorative nature of the network-level analysis, several 
trends with uncorrected p between 0.05 and 0.01 were also 
reported, avoiding to perform more stringent corrections in 
order to reduce the risk of false negatives. The role of motion 
was controlled for with extensive preprocessing measures 

and controlled for both in quality evaluations of individual 
scans and group differences at the group level, however the 
authors warrant caution in drawing conclusions from a sin-
gle study.

Conclusions

EC was significantly higher in ADHD in respect to neu-
rotypicals in the left inferior Frontal lobe, Lingual gyri, 
Peri-Calcarine cortex, superior and middle Occipital lobes, 
right inferior Occipital lobe, right middle Temporal gyrus, 
Fusiform gyri, bilateral Cuneus, right Precuneus, and Cer-
ebellum. The current study suggested the specificity of 
EC as a correlate of ADHD psychopathology as assessed 
through the Conners’ Parent Rating Scale. VMHC was not 
found to be significantly different between participants with 
ADHD and neurotypicals, but a specific correlation was 
found between VMHC and handedness or IQ at the network 
level, suggesting a role of interhemispheric coordination 
in verbal or semantic associated areas and overall perfor-
mance. Although all VMHC measures were negatively cor-
related with age in both healthy controls and participants 
with ADHD, behavioral and cognitive functioning corre-
lated with different brain networks in the two groups. The 
authors interpreted this finding as further evidence of neu-
rodivergence in ADHD. Finally, the authors discussed the 
complex relationship between EC, ADHD symptoms and 
age. Age significantly correlated (either positively or nega-
tively) with the centrality of several brain networks. Brain 
networks where EC significantly correlated with clinical 
severity scores also exhibited opposite correlation coeffi-
cients between EC and age.
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