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A B S T R A C T

The delivery of health care services, especially for patients with chronic conditions and/or requiring cyclical
treatment, can be accomplished by resorting to two organizational models: center-based care and home-based
care. In developed countries, government pressure to reduce healthcare spending and the COVID-19 pandemic
have led to the spread of home-based care. This type of care is proven to outperform the center-based one in
terms of cost-effectiveness, patient satisfaction, and adherence to treatment guidelines. However, even for
treatments usually suitable to be delivered at home, the patient’s health status or other constraints may make it
inappropriate to deliver service at the patient’s home. This calls for a new organizational model, referred to as
flexible care, where home-based and center-based care are not seen as mutually exclusive models but as options
that can be activated according to the patient’s and provider’s needs. This paper presents a novel network-based
deterministic optimization model and two matheuristics to address a scheduling problem typically faced by
providers adopting a flexible care model. The model considers a provider relying on a treatment room with a
fixed number of medical chairs, a fleet of vehicles, and a team of operators. It allows for determining on which
days of the planning horizon, in which setting (home or center), and by which operator each patient will be
treated. The model takes into account patients’ preferences and considers two objective functions: minimizing
provider costs and patients’ travel time. In addition, we propose a two-stage mixed-integer stochastic pro-
gramming model with recourse actions. This model allows incorporating the uncertainty due to the occurrence of
adverse events. Adverse events are sudden changes in the patient’s condition randomly happening at a specific
point in the planning horizon. These events render the patient unsuitable for home care and require them to be
visited at the center from that moment onward. The models have been inspired by a real case and tested on
multiple random instances.

1. Introduction

The delivery of health care services, especially in the case of patients
with chronic conditions and/or requiring cyclical treatment, can be
accomplished by resorting to two ideal-typical organizational models
once seen as alternatives: the center-based care (CBC) one, consisting of
patients receiving services at the server facility, and the home-based
care (HBC) one, involving health workers providing services at pa-
tients’ home. In developed countries, pressure from governments to
reduce healthcare spending in the face of an ever-increasing aging
population and social changes has increasingly driven the use of the HBC
model [1–4]. Furthermore, the COVID-19 pandemic and the associated

need to control hospitals’ capacity [5] and clinical risk further
contributed to this trend. Especially in the case of long-term care, HBC is
proven to outperform the CBC in terms of cost-effectiveness [6,7], pa-
tient satisfaction [8], and adherence to treatment guidelines [9]. In
addition, it allows for saving hospitals’ capacity for acute care
treatment.

Programs that reduce the burden of travel by bringing care to the
patient’s home or workplace, or satellite/mobile clinics closer to home,
are spreading rapidly around the world as they have been shown to
increase treatment capacity and improve patient satisfaction [10,11].

However, even for treatments usually suitable to be delivered at
home, the patient’s health status (e.g., comorbidities, allergies, possible
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adverse reactions to certain drugs) or other constraints (e.g., a lack of
proper housing, absence of informal caregivers) sometimes makes it
impossible or impractical to deliver service at the patient’s home. In
such an increasingly complex landscape, healthcare providers must
decide not only the type of care plan each patient should follow but also
the setting (HBC or CBC) in which it should be delivered, even for pa-
tients with the same disease. This complexity calls for a new organiza-
tional model, hereafter referred to as Flexible Care (FC), where HBC and
CBC are seen as options that can be activated depending on the patient’s
and provider’s needs [10].

This paper presents a (deterministic) novel network-based optimi-
zation model to address a scheduling problem typically faced by pro-
viders adopting an FC model and a two-stage mixed-integer stochastic
programming model with recourse actions, stemming from the deter-
ministic one, which allows for the incorporation of uncertainty due to
the occurrence of adverse events. An adverse event is an unexpected
event (like falls, injuries, infections, adverse drug reactions, as well as
psychological harms) causing a sudden deterioration in the patient’s
condition at a certain point of the time horizon, that renders them un-
suitable for home care and requires them to be serviced at the center
from that moment onward [12,13]. These types of events may require
the provider to reallocate and/or commit new resources to accommo-
date changing patient needs. This can severely harm the provider’s
performance. The stochastic model was created to strengthen the
robustness of schedules when dealing with adverse events.

The deterministic model considers a provider that can rely on an
equipped treating room (hereafter referred to as the center) with a fixed
number of medical chairs (e.g., clinical, infusion, chemotherapy chairs)
located in a hospital or outpatient clinic, a fleet of vehicles, and a team of
operators who can be deployed either at the center or on-field. Such a
provider needs to assist a set of patients requiring the same type of cyclical
treatment (i.e., a treatment dispensed with a given periodicity such as
infusions) and may or may not be eligible for home care over a medium
to a long period. The model allows for determining on which days of the
planning horizon the center will be reserved for the administration of a
given type of treatment, in which setting (home or center), and which
operator will serve each patient. The model considers patients’ prefer-
ences as well. We consider two objective functions (OFs). The first one
(OF1) minimizes the provider costs, which include center costs, operator
costs, and travel costs (provider-centered approach). The second one
(OF2) minimizes the patients’ travel time (patient-centered approach)
under the condition that the overall cost of the solution does not increase
from the optimal value of OF1 beyond a threshold deemed acceptable.

The stochastic model, in the first stage, mirrors the deterministic one.
In the second stage, i.e., after adverse events become known, cost mini-
mization is achieved through two recourse actions: resource overloading
and resource activation. Resource overloading implies using operators
already scheduled to work at the center on certain days to visit patients
who are reassigned from home care to the center on those same days due
to an adverse event. Overloading can result in overtime when operators
are required to work beyond the end of their scheduled shift to attend to
patients reassigned to them. Resource activation, instead, entails acti-
vating additional resources, including operators and the center, to attend
to patients at the center when it wasn’t initially booked for the same
service. The stochastic model’s objective function accounts for the total
expected cost for the providers and includes center cost, operators’ costs,
and travel costs as well as the overtime and resource activation costs.

The models have been inspired by a real case and tested on multiple
random instances.

This study contributes to both theory and practice. Indeed, while the
healthcare literature abounds with models supporting decisions in the
CBC and HCB settings, to the best of our knowledge, there are neither
models explicitly dealing with the FC setting, nor models addressing the
uncertainty arising from adverse events in home care.

Nonetheless, determining which patients to serve at home or at the
center and coordinating field activities with those at the center are both

topical and relevant problems. Community-based centers providing both
center-based and home care services to a local population are spreading,
at least in the EU, partly as a result of the National Health System re-
forms promoted in many countries after the COVID pandemic [14].
Optimizing the operation of these structures will, therefore, be essential
to ensure health systems’ sustainability and efficiency. In this regard, it
is worth noting that adverse events can cause significant disruption,
hence, taking into account their possible occurrence can considerably
facilitate the implementation of the optimization model solution in
real-world contexts. This paper is organized as follows. Section 2 re-
views the literature. Section 3 describes the problem addressed and the
notation adopted. Section 4 presents the deterministic models devel-
oped, while Section 5 describes the stochastic model. Section 6 in-
troduces the experimental campaign conducted, Section 7 shows and
discusses the results achieved, and Section 8 summarizes the main
findings from a managerial perspective. Finally, Section 9 reports the
study’s conclusions and limitations and proposes avenues for future
research.

2. Literature review

Literature dealing with health service planning typically supports
decisions such as (i) resources allocation (chairs, beds, devices, rooms,
etc.), (ii) assignment of operators to patients, (iii) appointment sched-
uling (i.e., determining day and time when a service is provided), (iv)
staff rostering, and (v) routing of operators or transportation of patients.
The first four types of decisions concern both CBC and HBC settings,
while routing decisions are more common in HBC, even if they have
recently been studied in CBC settings as well [10]. These decisions are
strongly intertwined and give rise to complex optimization problems
that are often difficult to solve, even for medium-scale instances. For this
reason, the literature abounds of works that consider only some of the
above decisions [15–17] or that propose multi-stage methods in which
decisions are made in a cascade [18,1,19–21]. However, recently,
thanks to the pattern-based methodology first introduced by Cappanera
and Scutellà [22], there has been an increase in works dealing with an
ever-increasing number of decisions simultaneously [23] up to Naderi
et al. [24] who deal with all the five above-mentioned decisions, while
also addressing the uncertainty of travel and service times. Reviewing
the massive amount of literature supporting decision-making in either
CBC or HBC settings is out of the scope of this paper. Instead, we refer
the reader to [25] for more details about the HBC setting and to [26] for
the CBC one (here, the most frequently addressed problem is appoint-
ment scheduling). It is worth pointing out, however, that the rapid
spread of home care services over the past decade has prompted the
production of a significant number of studies considering an increasing
number of features, e.g. multimodal transportation [27], complex
timing and synchronization constraints of operators [28], shared man-
agement of equipment by operators [29], continuity of care or loyalty
[30,31] and regularity of service [32] as well as various sources of un-
certainty. These include: uncertainty concerning service demand [33,
34,23,35], service time [36,37,20,38], both service and travel times [39,
40,37], caregiver availability [41], and corporate social responsibility
issues including employment opportunities and regional economic
development [42].

As for the OFs employed, most of them are provider-oriented and
concern, for example, the minimization of travel time/cost/distance
[43,44], overtime costs [43,45], or treatment duration/working time
[46,31]. Others are more patient-oriented [47,25] and concern, for
example, the maximization of the total priority of the treated patients
[48], the fulfillment of patient preferences [31,49], and the achievement
of continuity of care [30,31]. Finally, staff-oriented OFs exist, too, and
typically aim to achieve workload balancing across operators [33,30].

Despite the relevant number of features that the models currently
available in the CBC and HBC literature allow for consideration,
scheduling problems in the FC setting have not been investigated yet. In
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addition, no study other than [50] has considered the uncertainty
related to the potential onset of adverse events to date. Such a study,
however, deals with real-time scheduling problems and not, like ours,
with a medium-term planning problem.

This paper aims to address these gaps by focusing on a medium-term
planning problem comprising aspects of resource allocation, assign-
ment, appointment scheduling, and routing and by dealing with the
uncertainty caused by adverse events. The next section describes the
problem in detail.

3. Problems description and notation

3.1. Problem description

We consider a provider who, over a medium to long planning horizon
(e.g., three months), has to cyclically administer the same type of
treatment to a set of patients. The standard duration of the treatment
session and the standard time between two consecutive treatment ses-
sions can vary across patients, but it is fixed, for each patient, in the
planning horizon. Treatment times are not subject to a significant
variation (as is typically the case of infusion therapies or physiotherapy
sessions).

Depending on the treatment and the patient’s status, a deviation
from the standard time between two sessions may or may not be
accepted within a certain tolerance (e.g.,± 1 day). The treatment can be
administered at the center or the patient’s home, and its duration de-
pends on the patient’s treatment plan, not on the setting.

On a given day, to treat patients at the center, the provider must book
the center for the whole day. This choice aims to avoid setting up the
center more than once a day for different treatment types and simplify
the scheduling of center activities. Moreover, it allows patients with the
same condition to interact, share the problems related to their condition,
and socialize. Patients treated at the center go to the center autono-
mously and occupy a medical chair and an operator for the duration of
the treatment session.

To treat patients at home, instead, the operators need to pick up one of
the provider’s vehicles at the center, gather the material required to
administer the treatment, treat all patients daily assigned to them, and
return the vehicle to the center at the end of their tour. Homecare service
is assumed to be delivered in a setting where travel times are relatively
short, affected by modest variability, and known a priori.

The number of available operators, medical chairs, and vehicles is
fixed in the planning horizon.

The duration of each treatment session does not depend on the
setting where the treatment is administered. The distances and travel
times between each pair of patients and between the patients and the
center are known a priori.

All patients can be served at the center, but not all of them are also
eligible for home care. If a patient is assigned to home care (center care),
they will be seen at home (at the center) for all the planning horizon,
unless they will be affected by an adverse event, in which case they need
to be rescheduled at the center, for the rest of planning horizon.

Each operator can treat patients at both the center and home, but each
day an operator is assigned either to home or center care. Each patient
expresses a preference regarding the day on which to be seen (e.g., odd or
even days). The provider commits to continuity of care and, therefore,
ensures that the patient is always treated by the same or a limited number
of operators. In fact, being treated by many different front-line operators
has been proven to reduce trust in the provider and undermine patient
satisfaction [51]. When the center is not reserved for the treatment under
consideration and the operators are not scheduled at home, they can be
engaged in the administration of other treatments either at the center or at
home. Starting from this general problem, we studied two distinct though
related problems, one deterministic and one stochastic.

The deterministic problem neglects the potential occurrence of
adverse events (as well as any other form of uncertainty) and consists of

determining (i) on which days of the planning horizon the center should
be booked, (ii) on which day, (iii) in which setting (home or center), and
(iv) by which operator, each patient should be served, and (v) for each
day that operators are assigned to home care, the order in which they
should treat patients assigned to them. The objective is to minimize the
provider costs (OF1, provider-oriented) or the patients’ travel distance
(OF2, patient-oriented).

The stochastic problem, instead, considers that certain flexible pa-
tients (hereafter referred to as “affected patients”) might undergo an
unforeseen adverse event, necessitating their rescheduling at the center
from the day of the event onwards. Both the patients experiencing the
adverse event and the day when the event will occur are unknown. We
hypothesize that to treat a patient at the center following an adverse
event, the provider can either use operators who were already scheduled
to work at the center on the days the patient is rescheduled or, if there
are no scheduled visits for those days, activate new resources, such as
operators and the center itself. In the first case, the provider could incur
overtime costs as operators may need to extend their working hours
beyond the originally scheduled shift. In the second case, the provider
incurs the cost of activating extra operator and center capacity. The
objective of the stochastic problem is to minimize the overall expected
cost for the provider, encompassing center costs, operator costs, travel
costs, and additional expenses related to overtime and resource
activation.

3.2. Notation

This section introduces the notations we use in all models presented
in the remainder of this paper. We adopt a network representation to
model the sequencing of each patient’s treatment sessions over the
planning horizon. Thus, we have a graph Gp = (Np,Ap) associated with
patient p, with Np defining the set of nodes and Ap the set of arcs. Spe-
cifically, the set of nodes contains a node for each day in the planning
horizon D in which patient p can receive the service (Dp). This set is built
by filtering from D the days that are suitable for the patient considering
the day (lp) on which the patient received the last service in the past, the
standard time between two consecutive treatment sessions (μp) and the
tolerance (εp). Thus, the resulting set Dp depends on the specific patient.
Additionally, the node set includes the root node (r) and the terminal
node (t), i.e., Np = Dp ∪ {r,t}. The arc set Ap is made of three groups of
arcs: (i) the arcs linking the root node with nodes corresponding to days
on which the first treatment of the patient can occur, (ii) the arcs linking
nodes corresponding to days on which the last treatment of the patient
can occur with the terminal node, and (iii) arcs linking two nodes cor-
responding to days in which consecutive treatments can be provided to
that patient. The scheduling of the treatments of patient p in D is thus
described by a path leaving the root node, entering the terminal node,
and touching, exactly once, the nodes corresponding to the days on
which the treatments are provided.

To embed routing decisions in our model (see Section 4.4), we use
dummy node r to denote the node where the tours of operators working
in the home care setting start and end. The dummy node r is assumed to
be the same for all the operators o ∈ O and all the days d ∈ D. Ta-
bles 1 and 2, respectively, describe the notation used to identify the sets
and the parameters, while Table 3 reports the decision variables. In the
following, we use capital letters for sets, Greek letters for parameters,
and Latin letters for variables. Fig. 1 provides a pictorial representation
of the graph built for a hypothetical patient and gives examples of the
notation used. The graph refers to a planning horizon of 6 weeks – 42
days corresponding to nodes numbered from 1 to 42. Sundays corre-
spond to nodes labeled with multiples of 7. Nodes numbered with non-
positive labels correspond to days in the previous programming period.
Consider a patient p who had the last treatment on day lp = − 8. Then,
with μp = 14, and εp = 0, the first treatment must occur on day d = 6
(− 8 + 14), the second one on day 20, and so on. When εp = 1, a
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deviation of ± 1 day from the standard time between two treatments is
acceptable as long as the resulting day belongs to the set of days Dp on
which p can receive service. Thus, for example, the first treatment could
occur on day 5, 6, or 7, but on day 7 (Sunday) the center is closed, thus
resulting in Ip1 = {5,6}. A path starting from node r, entering node t, and
touching exactly one node in each set Ipk defines the treatment schedule
for p. As an example, according to path r-6–19–33-t, the three treatments
required by p are scheduled on days 6, 19, and 33.

4. Deterministic models and solution approaches

To solve the deterministic problem described in the previous section,
we propose and compare two alternative approaches, two-phase and one-
phase, that differ in how they handle operator routing decisions.

With the two-phase approach, routing decisions are addressed in the
second phase after the scheduling and allocation ones are made in the
first phase. This reduces the computational complexity of the model and
allows taking into account that in real-world settings, these decisions are
often decoupled. While this decoupling may lead to suboptimal solu-
tions on the theoretical level, it allows two problems of a different nature
to be handled separately. Scheduling and assignment decisions must be
made well in advance to allow patients and operators to organize their
activities. The routing ones, instead, can be postponed so as to accom-
modate last-minute patients’ or operators’ needs. The two-phase
approach, thus, in the first phase involves using an optimization
model to determine on which days of the planning horizon the center
should be booked and on which days, in which setting (home or center),
and by which operator each patient should be served (scheduling and
assignment decisions). Such a model uses approximated travel times and
distances (more on this in Section 4.1). Then, the second phase involves
determining the order in which the operators should visit their assigned
patients (routing decisions) by solving a classic Travelling Salesperson
Problem (TSP) [52,53]. The two-phase approach is implemented using,
in the first phase, five different optimization model variants (see Section
6.2) sharing a common set of constraints (see Section 4.1). Specifically,
starting from a baseline model (M0), we create four variants (M1, M2,
M3, M4) by adding some constraints or by changing the objective func-
tion (see Table 5). Two of these four variants (M1, M2) are matheuristics
defined starting from the solution of a purposely defined set
covering-like auxiliarymodel (AUX). Using AUX’s solution to fix some of

the decision variables in M0 allowed us to increase the number of solved
instances and achieve greater computational efficiency.

With the one-phase approach, instead, routing decisions are
considered jointly with the scheduling and assignment ones, within the
same model (Mrouting

0 ). Such a model is obtained by adding routing
constraints to the baseline one (and a few other minor changes, see
Section 4.4). The solution returned byMrouting

0 provides a benchmark for
appraising the quality of the solutions of the other models and for
assessing the advantages in terms of computational performance asso-
ciated with the two-phase approach.

4.1. Baseline model

Hereafter, we report the constraints shared by all the deterministic
models used in the experimentation.
∑

(r,dʹ) ∈ Ap

fprdʹ = 1 ∀ p ∈ P (1)

∑

(dʹ,d) ∈ Ap

fpdʹd −
∑

(d,dʹ) ∈ Ap

fpddʹ = 0 ∀ p ∈ P, ∀ d ∈ Dp
(2)

Table 1
Sets.

Symbol Set description Value

D Days in which service can be provided (working
days)

{1, 2, …, d, …, |D|}

W Weeks in D {1, 2, …, w, …, |W|},
each week w ∈ W is
a set of days

S Settings {c=center; h=home}
P Patients {1, 2, …, p, …, |P |}
Pc Patients who can receive the treatment only at

the center
Pc ⊆ P

Pd Patients p ∈ P\Pc who can receive the
treatment on day d

Pd⊆ P\Pc

O Operators {1, 2, …, o, …, |O|}
Sp Settings that are eligible for p ∈ P Sp ⊆ S
Dp Days in which p ∈ P can receive treatment Dp ⊆ D
Up Undesirable days for p ∈ P Up ⊆ Dp

Ap Arcs in the graph of p ∈ P (r, d) ∪ (d, d’) ∪ (d’, t)
Kp Intervals in which patient p can receive

treatment
{1, 2, …, k, …, |Kp|},
each interval k is a set
of days

Ipk Days in interval k in which patient p can receive
a treatment

E Adverse event scenarios {1, 2, …, e, …, |E|}
O Operators in O and an extra-resource o that

could be activated to manage adverse events
O ∪ {o}

Table 2
Parameters.

Symbol Description Scope

λ Center daily cost
η Operator daily cost
π Travel cost per km
θ Maximum number of operators that can work at

the center per day
ρ Maximum number of operators that can work in

home care per day
χ Daily activation cost of the operator o (in the

stochastic model)
ζ Hourly cost of overtime (in the stochastic

model)
ν Percentage of patients experiencing an adverse

event
εp Tolerance ∀ p ∈ P
μp Standard time between two consecutive

treatment sessions
∀ p ∈ P

ωp Maximum number of operators assigned to a
patient in the planning horizon

∀ p ∈ P

σp Maximum number of times a patient can be
treated at home on an undesirable day

∀ p ∈ P

lp Day of the last treatment session ∀ p ∈ P
δp Treatment time ∀ p ∈ P
ψp Minimum number of treatments patient p must

receive in D

ψp =

⌊
− lp + |D|

μp

⌋

∀ p ∈ P

Γ Travel distance matrix with γij distance from i to
j (c=center)

i, j ∈ P ∪{c}

γj Mean travel distance to j =
∑

i ∈ P ∪{c}γij
|P|

∀ j ∈ P ∪{c}

Φ Travel time matrix with φij travel time from i to j
(c=center)

i, j ∈ P ∪{c}

φj
Mean travel time to go to j =

∑
i ∈ P ∪{c}φij

|P|
∀ j∈ P ∪{c}

φ
Grand mean travel time =

∑
j ∈ P ∪{c}φj

|P|
αo Duration of operator shift ∀ o ∈ O
βo Maximum number of days each operator can

work in a week
∀ o ∈ O

Δ Maximum allowable cost increase when using
OF2

uepd 1 if in scenario e patient p on a day before d had
an adverse event, 0 otherwise.
(in the stochastic model)

∀ e ∈ E, ∀ p ∈ P\
Pc,∀ d ∈ D

ξe Probability of having the set of adverse events
characterizing scenario e (in the stochastic
model)

∀ e ∈ E
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∑

(d,t) ∈ Ap

fpdt = 1 ∀ p ∈ P (3)

∑

(dʹ,d) ∈ Ap

fpdʹd =
∑

s ∈ Sp

∑

o ∈ O
ypdos ∀ p ∈ P, ∀ d ∈ Dp

(4)

ypdoh ≤ vp ∀ p ∈ P\Pc, ∀ d ∈ D, ∀ o ∈ O (5)

ypdoc ≤ 1 − vp ∀ p ∈ P\Pc, ∀ d ∈ D, ∀ o ∈ O (6)

∑

d ∈ Up

∑

o ∈ O
ypdoh ≤ σp ∀ p ∈ P\Pc

(7)

∑

d ∈ Up

∑

o ∈ O
ypdoc = 0 ∀ p ∈ P (8)

kdos ≥ ypdos∀ p ∈ P, ∀ d ∈ Dp, ∀ o ∈ O, ∀ s ∈ Sp (9)

∑

s ∈ S
kdos ≤ 1 ∀ d ∈ D, ∀ o ∈ O (10)

∑

p ∈ P\Pc s.t. d ∈ Dp

(
δp + φp

)
ypdoh ≤ (αo − φc )kdoh ∀ d ∈ D, ∀ o ∈ O

(11)
∑

p ∈ P s.t. d ∈ Dp

δpypdoc ≤ αokdoc ∀ d ∈ D, ∀ o ∈ O (12)

zpo ≥ ypdos ∀ p ∈ P, ∀ d ∈ Dp, ∀ o ∈ O, ∀ s ∈ Sp (13)

∑

o ∈ O
zpo ≤ ωp ∀ p ϵ P (14)

xd ≥ kdoc ∀ d ∈ D, ∀ o ∈ O (15)

∑

d ∈ w

∑

s ∈S
kdos ≤ βo ∀ w ∈ W,∀ o ∈ O (16)

∑

o ∈ O
kdoc ≤ θ ∀ d ∈ D (17)

∑

o ∈ O
kdoh ≤ ρ ∀ d ∈ D (18)

∑

d ∈ Dp

∑

o ∈ O

∑

s ∈ Sp
ypdos ≥ ψp ∀ p ∈ P (19)

The first three sets of constraints (Constraints (1), (2), and (3)) assure
flow conservation. Specifically, they have a multicommodity structure
where a commodity is associated with each patient p. For each patient p,
they define a path that starts at the root node r (Constraints (1)), enters
the terminal node t (Constraints (3)), and flows through intermediate
nodes corresponding to the days on which patient p receives treatments
(Constraints (2)). Constraints (4) link the variables fpddʹ and ypdos; they
guarantee that if patient p is treated on day d, the treatment is given by
exactly one operator active in a setting that is feasible to patient p.
Constraints (5) and (6) ensure that each patient p is assigned to only one
setting over the entire planning horizon – if they are assigned to the
home care setting (Constraints (5)) on a certain day d, they will remain
associated with it in D, and the same applies to the center. Constraints
(7) and (8) control the maximum number of times patient preferences
can be violated. Patients assigned to the home care setting can receive
the service on an undesirable day a maximum of σp times (Constraints
(7)), while patients assigned to the center setting cannot be treated on an
undesirable day (Constraints (8)). Note that Constraints (8) fix variables
to zero. More correctly, this restriction should be handled at the vari-
able’s domain level by excluding the existence of a variable ypdoc relating
to the center setting and to a day disliked by p. However, for greater
readability of the model and not having to distinguish the domain of the
y each time depending on whether they refer to one setting rather than
the other, we preferred to write Constraints (8) explicitly. Constraints
(9) ensure that if patient p receives treatment on day d by operator o in
setting s, then that operator must be active on that day and in that
setting. Constraints (10) guarantee that each operator cannot work in
both home care and center settings on the same day. Constraints (11)
and (12) control that operators’ workload cannot exceed the shift
duration αo, respectively for operators working in the home care setting
and at the center. Specifically, for home care operators, the workload is
given by the sum of the service time for the treated patients, the mean
traveling time to reach them, and the mean traveling time to get back to
the center. For operators working at the center, only service times are
considered. Constraints (13) link the variables zpo with ypdos, imposing
that if patient p on a given day is treated by the operator o then the
patient-operator assignment variable zpo is set to 1. Constraints (14)
impose the continuity of care for both settings: according to them a

Table 3
Variables.

Symbol Type Description Domain

fpddʹ Binary 1 if patient p receives the treatment on day d’ after receiving treatment on day d, 0 otherwise ∀ p ∈ P, ∀ (d, d́ ) ∈ Ap

ypdos Binary 1 if patient p receives the treatment on day d from operator o in setting s, 0 otherwise ∀ p ∈ P, ∀ d ∈ Dp, ∀ o ∈ O,
∀ s ∈ Sp

kdos Binary 1 if operator o works on day d in setting s, 0 otherwise ∀ d ∈ D, ∀ o ∈ O, ∀ s ∈ S
zpo Binary 1 if operator o is assigned to patient p, 0 otherwise ∀ p ∈ P, ∀ o ∈ O
xd Binary 1 if the center is open on day d, 0 otherwise ∀ d ∈ D
vp Binary 1 if patient p ∈ P\Pc is assigned to the home care setting, 0 otherwise ∀ p ∈ P\Pc

qpd Binary 1 if patient p ∈ Pc is scheduled on day d
(in the auxiliary model)

∀ p ∈ Pc, ∀ d ∈ D

gdoij Binary 1 if on day d operator o visits node j after visiting node i, 0 otherwise (in the routing model) ∀ d ∈ Di∩ Dj

∀ o ∈ O
∀ i ∈ P\Pc ∪ {r},
∀ j ∈ P\Pc ∪ {r}

mdop Non Negative
Reals

The position of patient p in the tour of operator o on day d
(in the routing model)

∀ d ∈ D
∀ o ∈ O
∀ p ∈ P\Pc

yepdoc Binary 1 if in scenario e patient p on day d is treated at the center by operator o to manage the adverse event,
0 otherwise
(in the stochastic model)

∀ e ∈ E,∀ p ∈ P\Pc, ∀ d ∈ Dp,

∀ o ∈ O

kedos Binary 1 if in scenario e operator o works on day d in setting s, 0 otherwise,
(in the stochastic model)

∀ e ∈ E,∀ d ∈ D,∀ o ∈ O,∀ s ∈ S

tedo Non Negative
Reals

Overtime made by operator o on day d in scenario e (in the stochastic model) ∀ e ∈ E,∀ d ∈ D,∀ o ∈ O

aed Binary 1 if in scenario e on day d it is necessary to activate the operator o, 0 otherwise (in the stochastic model) ∀ e ∈ E,∀ d ∈ D
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maximum of ωp operators can be assigned to patient p during the
planning horizon. Constraints (15) book the center if at least one oper-
ator is working on that day in the center setting; vice versa, if the center
has not been booked, no operator can work there. Constraints (16)
impose that each operator works at most βo days per week. Constraints
(17) and (18) are the capacity constraints respectively at the center and
in the home care setting. Specifically, since there are θ stations at the
center and a maximum of one operator per station is allowed, at most θ
operators will be active at the center per day. Similarly, Constraints (18)
assure that the maximum number of operators active in the home care
setting per day is at most ρ, i.e., the number of available cars (a
maximum of one operator per car). Constraints (19) impose that, for
each patient, the number of treatments given in the entire planning
horizon complies with the treatment frequency defined in the care plan
of patients. In fact, if these constraints were not present, the tolerance of
the time between two successive treatments could lead to an insufficient
number of treatments. The minimum number of treatments can be
computed for each patient, as described in Table 2, considering the last
treatment time. The baseline model also includes valid inequalities (27)
and (28) that will be described in Section 4.2.

Eq. (20) reports OF1, while Eq. (21) reports OF2. OF1 minimizes the

total cost for the provider calculated as the sum of the center cost (first
term), the operator cost (second term), and the provider travel cost
(third and fourth terms). OF2 minimizes the distance traveled by pa-
tients treated at the center.

OF1 = min
∑

d ∈ D
λxd +

∑

d ∈ D

∑

o ∈ O

∑

s ∈ S
ηkdos +

∑

p ∈ P\Pc

∑

d ∈ Dp

∑

o∈ O
π γpypdoh

+
∑

d ∈ D

∑

o ∈ O
π γckdoh

(20)

OF2 = min
∑

p ∈ P

∑

d ∈ D

∑

o ∈ O

(
γpc + γcp

)
*ypdoc (21)

As already pointed out, to prevent the use of OF2 from leading to an
indiscriminate increase in provider costs, when OF2 is used, we
constrain these costs to be less than or equal to Δ percent of the cost (Ω)
of the optimal solution obtained with OF1. This is done by adding
Constraint (22) to the Constraints (1)-(19) characterizing the first model.

Fig. 1. Example of graph.
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∑

d ∈ D

λxd +
∑

d ∈ D

∑

o ∈ O

∑

s ∈ S
ηkdos +

∑

p ∈ P\Pc

∑

d ∈ Dp

∑

o ∈ O
π γpypdoh

+
∑

d ∈ D

∑

o ∈ O
π γckdoh ≤ (1+ Δ)* Ω

(22)

It is worth observing that in OF1 we approximate the distances be-
tween a given patient p and all the other patients and between the pa-
tient and the center c with γp and γc, respectively. Similarly, in
Constraints (11), the travel times are approximated with φp and φc. The
actual travel distance and time for each operator are established in the
second phase when the actual operator route is determined using a TSP
model. The effect of this approximation will be evaluated in Section 7.4.

4.2. Auxiliary model and valid inequalities

With the auxiliary model, we address the problem of establishing the
minimum number of days on which to book the center (variables xd in
Table 3) to schedule all the patients that necessarily need to be sched-
uled at the center (Pc). The model has a set covering-like structure, and it
is formulated as follows.

OF0 = min
∑

d ∈ D
xd (23)

∑

d ∈ Ipk

qpd ≥ 1 ∀ p ∈ Pc, ∀ k ∈ Kp
(24)

μp − εp ≤
∑

d ∈ Ip(k+1)

dqpd −
∑

d ∈ Ipk

dqpd ≤ μp + εp ∀ p ∈ Pc, ∀ k < |Kp|

(25)
∑

p ∈ Pc s.t. d ∈ Dp

δpqpd ≤ θ αoxd ∀ d ∈ D (26)

The objective function OF0 (Eq. (23)) minimizes the number of days
the center is booked. Constraints (24) impose that each patient receives
the kth treatment in the proper interval Ipk. Constraints (25) ensure that
two consecutive treatments are correctly sequenced in time. Specif-
ically, the distance between two consecutive treatments must be at least
μp − εp days and at most μp + εp days. Constraints (26) guarantee that the
total duration of all treatments scheduled on day d ∈ D does not exceed
the cumulative daily capacity of the center which is given by θ × αo

when the center is open (xd = 1) and zero otherwise (here we assume for
simplicity that the duration of the shifts is the same for all the operators).

From the solution of the auxiliary model, we can derive the valid
inequality (27). In fact, the number of days in which the center is booked
in the auxiliary model is a lower bound for the number of days in which
the center will be booked when the whole set of patients is analyzed.

Let xd be the optimal solution of the auxiliary model. Then, the
following Constraint holds.
∑

d ∈ D

xd ≥
∑

d ∈ D

xd (27)

Another valid inequality can be obtained by observing that a trivial
lower bound for the minimum number of working days required to cover
the total request can be computed by dividing the total service time by
the longest shift duration as follows.

∑

d ∈ D

∑

o ∈ O

∑

s ∈ S
kdos ≥

⎡

⎢
⎢
⎢

(∑
p ∈ P δpψp

)

maxo ∈ O {αo}

⎤

⎥
⎥
⎥

(28)

In our experimentation, Constraints (27) and (28) are included in all
model variants to improve their computational performance. The effect
of this inclusion are presented in Section 7.3.

4.3. Matheuristics

To increase the number of solved instances and achieve greater
computational efficiency, we have also devised two matheuristics. It is
important to note that in this context, the term "matheuristic" is not
employed to signify a methodology that combines an optimization
model with a heuristic (such as local search, Tabu Search, Simulated
Annealing, etc.). Instead, it identifies an approach to obtain sub-optimal
solutions in a computationally less demanding way by fixing the value of
certain decision variables [54,40]. Our matheuristics are characterized
by a different level of flexibility depending on which decisions are
retained in the original problem. Both of them are based on the solution
of AUX.

The first matheuristic requires the center to be booked on the days
established by the optimal solution of the auxiliary problem (see Con-
straints (29)).

xd ≥ xd ∀ d ∈ D (29)

Thus, the first matheuristic consists of a model characterized by the
Constraints (1)-(19), (27)-(29), and OF1.

The second matheuristic, in addition to retaining the decision on
when to book the center (Constraints (29)), also assigns the patients in Pc

to days d according to the optimal solution of the auxiliary problem
(Constraints (30)). In such constraints, qpd represents the value of the
variables qpd in the optimal auxiliary model’s solution.
∑

o ∈ O
ypdoc ≥ qpd ∀ p ∈ Pc, ∀ d ∈ Dp

(30)

Thus, the second matheuristic consists of a model characterized by
the Constraints (1)-(19), (27)-(30), and OF1.

Note that Constraints (26) of the auxiliary model are indeed a
relaxation of Constraints (12) which assure that, separately for each
operator, the time spent treating patients does not exceed the duration of
the shift. Thus, imposing patients’ treatment according to qpd, may make
the problem unfeasible. To prevent this, the feasibility of the auxiliary
model’s solution is checked, and for each day when Constraints (12) are
violated, the value of qpd corresponding to the patient p with the longest
treatment is set to zero in Constraints (30) until the solution becomes
feasible.

4.4. Model with embedded routing

To embed the routing decisions in the baseline model, we added
Constraints (31)-(34) and Constraints (36)-(38) to the baseline model,
substituted Constraints (11) with Constraints (35), and changed OF1
from (20) to (39).
∑

p ∈ Pd
gdorp = kdoh ∀ d ∈ D,∀ o ∈ O (31)

∑

pʹ ∈ Pd
gdopʹp −

∑

pʹ ∈ Pd
gdoppʹ = 0 ∀ d ∈ D, ∀ o ∈ O,∀ p ∈ Pd

(32)

∑

p ∈ Pd
gdopr = kdoh ∀ d ∈ D, ∀ o ∈ O (33)

∑

pʹ ∈ Pd
gdopʹp = ypdoh ∀ p ∈ P\Pc, ∀ d ∈ D, ∀ o ∈ O (34)

∑

pʹ,p ∈ P\Pc∪{r}

s.t. d ∈ Dp∩Dṕ

(
δp + φpʹp

)
gdopʹp ≤ αokdoh ∀ d ∈ D, ∀ o ∈ O

(assuming δr = 0)

(35)

gdoppʹ + gdopʹp ≤ 1 ∀ p, pʹ ∈ P\Pc,∀ d ∈ D,∀ o ∈ O (36)
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mdor = 0 ∀ d ∈ D,∀ o ∈ O (37)

mdopʹ ≥ 1+mdop −
⃒
⃒Pd
⃒
⃒
(
1 − gdoppʹ

)
∀ p, ṕ ∈ P\Pc, ∀ d ∈ D, ∀ o ∈ O

(38)

OFrouting1 = min
∑

d ∈ D

λxd +
∑

d ∈ D

∑

o ∈ O

∑

s ∈ S
ηkdos

+
∑

pʹ,p ∈ P\Pc∪{r}

∑

d ∈ Dp∩Dṕ

∑

o ∈ O
πγij g dopʹp

(39)

The first three sets of constraints (Constraints (31), (32), and (33))
assure flow conservation. For each operator o and each day d, they
define a tour that starts and ends at the dummy node r (Constraints (31)
and (33)) flowing through intermediate nodes corresponding to the
houses of patients that have been assigned to operator o in day d in
setting h (Constraints (32)) if the operator is active on that day in that
setting. Constraints (34) link the variables gdoppʹ and ypdoh; they guarantee
that if patient p is treated on day d by operator o in setting h, on that day
the operator o in setting h is following a tour that passes through patient
p. Constraints (35) control that operators’ workload cannot exceed the
shift duration αo for operators working in setting h. Specifically, the
workload is given by the sum of the service time for the treated patients
and the total (exact) traveling time to make the tour (time to move from
the dummy node r to the first patient served in day d, time to reach all
the patients in the tour of the operator o on day d, and travel time to
move from the last patient in the tour of operator o on day d to the
dummy node r). Constraints (36)-(38) manage subtour elimination.
Specifically, Constraints (36) break two-node cycles and guarantee that
if patients p and pʹ belong to the tour of operator o on day d, either p
precedes pʹ or pʹ precedes p. These constraints are used to tight the
classical MTZ-constraints in which nodes belonging to a tour are labeled
with their position in the tour (variables mdop): dummy node r, which is
the first node in the tour, has a label set to zero (Constraints (37)), while
(Constraints (38)) the label mdopʹ of node pʹ is greater than the label
mdopof node p when the operator travels from p to pʹ (gdoppʹ = 1).
Parameter |Pd| is used to make Constraints (38) redundant when gdoppʹ =

0.
OFrouting1 (39) minimizes the total cost for the provider calculated as

the sum of the center cost (first term), the operator cost (second term),
and the provider (exact) travel cost (third term). The first and second
terms are the same of OF1, while the third term is calculated exactly in
OFrouting1 considering the routing followed by operators.

5. Stochastic model

In the stochastic model we consider a number |E| of different sets of
adverse events. Each of these set is identified by the letter e and it is
characterized by a probability of occurrence ξe. Across the sets e
patients experiencing an adverse event and the day of occurrence of
such an event varies randomly. However, the number of affected
patients (ν × |P|) is the same for all sets. Table 4 reports an example with
ν=10 %, |P|=30 and |E|=5. Each row in the table represents a set of
adverse events involving three patients. The probability of occurrence of
each set is ξe=0.2. As an example, when e= 1, the three affected patients
are 1, 20, and 29, and for them, the adverse event occurs respectively on

days 25, 74, and 86.
In the stochastic model, two types of decisions are kept constant

across scenarios: the days on which the center is open and the days on
which visits are scheduled. Adverse events do not affect patients
assigned to the center. Conversely, if a patient is assigned to home care
and has an adverse event on day d, all the subsequent treatments, i.e.,
those planned in the following days {d + 1,…, T}, will necessarily be
rescheduled at the center. In that case, two situations may occur. If the
patient’s treatment is scheduled on days on which the center was not
booked, the center will have to be open with extra resources, i.e., an
additional operator (o) is activated upon request, and the activation cost
considers the cost of both the facility and the additional operator. If the
patient’s treatment is scheduled when the center was already booked,
the patient will be assigned to one of the operators already active at the
center for that day, with possible overtime costs. The activation of the
operator o incurs a cost (χ) that is higher than that of operators in set O.
The hourly cost of operator overtime (ζ) is greater than their ordinary
hourly cost.

The objective of the stochastic model is to minimize the expected
provider costs (OF1stochastic, provider-oriented) by considering a set of
scenarios weighted by their probability of occurring.
∑

(r,dʹ) ∈ Ap

fprdʹ = 1 ∀ p ∈ P (40)

∑

(dʹ,d) ∈ Ap

fpdʹd −
∑

(d,dʹ) ∈ Ap

fpddʹ = 0 ∀ p ∈ P, ∀ d ∈ Dp
(41)

∑

(d,t) ∈ Ap

fpdt = 1 ∀ p ∈ P (42)

∑

(dʹ,d) ∈ Ap

fpdʹd =
∑

o ∈ O

∑

s ∈ Sp

(
1 − uepd

)
ypdos

+
∑

o ∈ O

uepd y
e
pdoc ∀ e ∈ E, ∀ p ∈ P, ∀ d ∈ Dp

(43)

ypdoh ≤ vp ∀ p ∈ P\Pc, ∀ d ∈ D, ∀ o ∈ O (44)

ypdoc ≤ 1 − vp ∀ p ∈ P\Pc, ∀ d ∈ D, ∀ o ∈ O (45)

∑

d ∈ Up

∑

o ∈ O
ypdoh ≤ σp ∀ p ∈ P\Pc

(46)

∑

d ∈ Up

∑

o ∈ O
ypdoc = 0 ∀ p ∈ P (47)

kedoh ≥
(
1 − uepd

)
ypdoh ∀ e ∈ E, ∀ p ∈ P\Pc,∀ d ∈ D,∀ o ∈ O (48)

kedoc ≥
(
1 − uepd

)
ypdoc + uepdy

e
pdoc ∀ e ∈ E, ∀ p ∈ P, ∀ d ∈ D,∀ o ∈ O

(49)

kedoh + kedoc ≤ 1 ∀ e ∈ E, ∀ d ∈ D,∀ o ∈ O (50)

∑

p ∈ P\Pc s.t. d ∈ Dp

(
δp + φp

)(
1 − uepd

)
ypdoh ≤ (αo − φc)kedoh

∀ e ∈ E, ∀ d ∈ D, ∀ o ∈ O
(51)

∑

p ∈ P s.t. d ∈ Dp

δp
[(

1 − uepd
)
ypdoc + uepdy

e
pdoc

]
≤ αokedoc + tedo

∀ e ∈ E, ∀ d ∈ D, ∀ o ∈ O
(52)

zpo ≥ ypdos∀ p ∈ P, ∀ d ∈ Dp, ∀ o ∈ O, ∀ s ∈ Sp (53)

∑

o ∈ O
zpo ≤ ωp ∀ p ∈ P (54)

Table 4
Example of a set of adverse events with |E|=5.

ξe e (patient, day)

0.2 1 (1,25); (20,74); (29,86)
0.2 2 (18,36); (15,48); (28,6)
0.2 3 (21,28); (10,58); (4,4)
0.2 4 (26,68); (8,82); (3,51)
0.2 5 (5,72); (6,57); (19,16)
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xd ≥ kedoc ∀ e ∈ E, ∀ d ∈ D, ∀ o ∈ O (55)

∑

d ∈ w

∑

s ∈ S
kedos ≤ βo ∀ e ∈ E, ∀ w ∈ W,∀ o ∈ O (56)

∑

o ∈ O
kedoc ≤ θ ∀ e ∈ E, ∀ d ∈ D (57)

∑

o ∈ O
kedoh ≤ ρ ∀ e ∈ E, ∀ d ∈ D (58)

∑

d ∈ Dp

∑

o ∈ O

∑

s ∈ Sp
ypdos ≥ ψp ∀ p ∈ Pc

(59)

∑

d ∈ Dp

∑

o ∈ O

∑

s ∈ Sp

[(
1 − uepd

)
ypdos +

(
uepd
)
yepdoc

]

+
∑

d ∈ Dp

uepdy
e
pdoc ≥ ψp ∀ e ∈ E,∀ p ∈ P\Pc

(60)

yepdoc ≤ aed ∀ e ∈ E, ∀ p ∈ P, ∀ d ∈ Dp (61)

yepdoc = 0 ∀ e ∈ E, ∀ p ∈ Pc, ∀ o ∈ O, ∀ d ∈ D (62)

OFstochastic1 = min
∑

d ∈ D

λxd +
∑

e ∈ E
ξe

(
∑

d ∈ D

∑

o ∈ O

∑

s ∈ S
ηkedos

+
∑

p ∈ P\Pc

∑

d ∈ Dp

∑

o ∈ O
πγp
(
1 − uepd

)
y pdoh

+
∑

d ∈ D

∑

o ∈ O
πγckedoh +

∑

d ∈ D
χaed +

∑

d ∈ D

∑

o ∈ O
ζtedo

)

(63)

Constraints (40)-(42) assure flow conservation on the fpddʹ variables,
and as already noted, do not depend on the scenario. Constraints (43)
link the variables fpddʹ, ypdos, and yepdoc; they guarantee that if patient p is
treated on day d, the treatment is given by exactly one operator active in
a setting that is feasible to patient p if the patient did not have an adverse
event until d, otherwise, the treatment is given at the center by one
operator active in the setting c that day or by the additional operator o.
Constraints (44) and (45) ensure that patients are assigned to only one
setting over the entire planning horizon if they are not affected by
adverse events. Constraints (46) and (47) control the maximum number
of times patient preferences can be violated. Constraints (48), scenario-
wise, ensure that if patient p, not yet affected by an adverse event, re-
ceives treatment on day d by operator o in setting h, then that operator
must be active on that day in that setting and in that scenario. Con-
straints (49), scenario-wise, ensure that operators at the center are
activated either to treat patients not yet affected by an adverse event or
patients who have been assigned to the center after an adverse event.
Constraints (50), scenario-wise, ensure that an operator cannot work
simultaneously in the home and center settings on the same day d.
Constraints (51), scenario-wise, control that operators’ workload cannot
exceed the shift duration αo for operators working in the home care
setting. Constraints (52), scenario-wise, control operators’ workload for
operators working at the center. In Constrains (51), the patients
considered are those not affected by an adverse event, while in Con-
straints (52), both affected and not affected patients are considered ac-
cording to the day on which the adverse event involving them possibly
occurred. In Constraints (52), we accept an overtime (tedo) in the work-
load of center operators to deal with the consequences of adverse events.
Constraints (53) link the variables zpowith ypdos, imposing that if patient p
on a given day is treated by the operator o then the patient-operator
assignment variable zpo is set to 1. Constraints (54) impose the conti-
nuity of care for both settings. Constraints (55) book the center if at least
one operator is working on that day in the center setting; vice versa, if
the center has not been booked, no operator can work there. As already

observed, variables xd do not depend on scenarios. Constraints (56)
impose that, in each scenario, each operator works at most βo days per
week. Constraints (57) and (58) are the capacity constraints respectively
at the center and in the home care setting, again for each scenario.
Constraints (59) and (60), respectively for not flexible and flexible pa-
tients, impose that, for each patient, the number of treatments given in
the entire planning horizon complies with the treatment frequency
defined in the care plan of patients. Specifically, Constraints (60) impose
that, for flexible patients, the total number of visits is obtained by also
considering the ones made after the adverse event. Constraints (61) fix
that in each scenario e and on each day d if a patient received treatment
by the operator o, the extra operator o has to be activated. Constraints
(60) control that variable yepdoc is set to zero for all patients that have to
be treated at the center (∀ p ∈ Pc). In the implementation of the model
such constraints are implicitly considered in the variable domain and are
presented here in this form to avoid differentiating the constraints ac-
cording to the patient considered. Eq. (63) reports the objective function
OFstochastic1 . It minimizes the expected total cost for the provider calcu-
lated as the sum of the center cost (first term), the operator cost (second
term), the provider travel cost (third and fourth terms), the cost of the
additional operator o (fifth term), and the cost of overtime at the center
(sixth term). All costs, except center costs, are calculated separately for
each scenario and weighted according to its probability of occurrence.

6. Experimental campaign

6.1. Objectives

The objectives of our experimental campaign are fivefold: (i) quan-
tifying the benefits that it is possible to achieve in different operating
conditions by switching from a CBCmodel to an FC one; (ii) determining
the operating conditions that make the use of one of the proposed
models preferable to the others; (iii) assessing the error that originates
from using approximated travel distances; (iv) comparing the results
obtained with OF1 and OF2; (v) assess how adverse events may affect the
solution.

To obtain results as generalizable as possible, we generated a wide
set of random instances that are described in the next section. The
optimization models were coded in Python-Pyomo and solved using
CPLEX 20.1 on a PC equipped with a CPU Intel i7–4930 K @ 3.40 GHz
and 32 GB of RAM.

6.2. Model testing

In our experimental campaign, we ran several variants of the model
obtained as described in Table 5. For benchmarking purposes, the
baseline model was also run assuming that all patients could be sched-
uled only at the center (see M3).

6.3. Instances creation

Using the free and open global address collection open address
(https://openaddresses.io/), we randomly sampled a set of 50 addresses
in a medium Italian city (Florence, Area 102.4 km2, Population (2021)
361,619) and assumed that these were the home addresses of 50 patients
needing a specific treatment that can be administered both at home or at
a center. Then, using the open route web service (https://open-
routeservice.org/), we calculate the two matrices Γ and Φ (Table 2),
indicating, respectively, the travel distance and travel time between
each pair of patients and between each patient and a known hospital
hosting several outpatient clinics. These matrices were calculated
considering the actual road route to be followed; therefore, they are not
symmetrical. Each patient, then, was assigned the parameter lp
randomly sampling from [-μp+1,0], the parameter Up randomly
considering undesirable either the odd days of the week or the even
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ones. All these parameters were held fixed across instances. The value of
the other models’ parameters held fixed in our experimentation are re-
ported in Table 6, while Table 7 reports the parameters differing be-
tween the instances used for (all) the deterministic models and the
stochastic one (for which to reduce the computational burden we used a
subset of 30 patients randomly sampled from the mentioned 50 ones).
For the sake of simplicity, we considered μp to be fixed across patients,
and hence it will be referred to as µ in the following. These values have
been inspired by the real case of an Italian provider who supplies infu-
sion therapy to patients with Fabry disease. Such a disease is relentlessly
progressive and inevitably disabling [55]. Patients with Fabry disease
require infusion treatment once every 14 days [56]. For these patients,
home care, when feasible, can substantially enhance the quality of life
[57], bolster treatment adherence, and mitigate infection risks [58]. In
addition, due to the challenges posed by the Fabry disease to main-
taining a regular lifestyle, it is of utmost importance to schedule home
treatment in a way that takes into account the patient’s preferences and
ensures continuity of care [59,60].

To generate instances representing a wide set of different operating
conditions, we used three relative parameters tying together the main
problem features. These relative parameters are Treatment Time
Multiplier (TTM), Center Cost Multiplier (CCM), and Center-only Pa-
tients Percentage (CPP).

TTM ties together travel time and treatment time. It was used to
represent both situations in which the duration of the treatment can be
much higher than the average time taken to travel to the patient as well
as situations in which this difference is smaller. The patient treatment
time was thus calculated as δp= φ (TTM+rnd()), where rnd() is a random
integer ∈ [− 1,0,1]. Since the expected value of rnd() is 0, δp is, on
average, TTM times φ.

CCM ties together the daily cost to book the center for patients
needing a certain treatment and the daily cost of an operator able to

administer that treatment. The daily cost of the center λ was thus
calculated as λ =CCM × η and the values of CCM were selected to
represent situations where the relative magnitude of these costs varies
over a wide range.

CPP represents the percentage of patients who must be treated at the
center.

In addition to these relative parameters, we also tested different
values of the tolerance (εp) to represent both situations in which the time
between two consecutive treatments is fixed (εp=0) and equal to µp and
situations in which the treatment protocol for the disease is not so rigid
and allows the interval between two consecutive treatments to vary
between [µp - εp, µp + εp]. For the sake of simplicity, we considered εp to
be fixed across patients, and hence it will be referred to as ε in the
following.

The values of the parameters that vary across instances for the
deterministic models are reported in Table 8 which also reports the
value corresponding to the real case inspiring this work.

Combining these four parameters we obtained 54 different instances
representing a wide set of heterogeneous operating conditions. For each
instance, we tested the models M0, M1, M2, M3, and Mrouting

0 , obtaining
270 solutions (Section 7.1). Results relevant to these scenarios are dis-
cussed in the next section. To compare OF1 and OF2, we run model M4
holding ε = 1, thereby obtaining an additional 18 solutions (Section
7.2). Finally, to assess the effect of the valid inequalities on M0, we ran
other 270 instances (see Section 7.3). All the deterministic models have
been tested setting a gap limit of 1 % and a time limit of 1 hour. To test
the stochastic model, we fixed the model parameters as reported in
Table 9. Across instances, the number of affected patients does not vary
and it is equal to ν=10 % of the total number of patients as suggested by
the literature [61,62] and confirmed by the healthcare professional who
inspired this study. The hourly overtime cost (ζ) was set as twice the
operators’ hourly cost (η/αo), the operator o activation cost (χ) was set as

Table 6
Parameters not varying across instances.

Parameter Value

η 100 €
π 0.6 €/km
μp 14 days
ωp 2
σp 2
Δ 5 %
αo 360 min
βo 5 days
T 90 days

Table 7
Parameters differing between deterministic and stochastic models.

Parameter Value (for deterministic models) Value (for stochastic model)

|P| 50 30
|O| 4 2
θ 3 2
ρ 3 2

Table 8
Parameters varying across instances for the deterministic models.

Parameter Values used in the experimental
campaign

Values corresponding to the
real case

TTM {2, 3.5, 5} 3.5
CCM {1, 3, 10} 3
CPP {10, 20} 20
ε {0, 1, 2} 1

Table 9
Parameters in the stochastic model.

Parameter Values

TTM 3.5
CCM 10, 1
CPP 20
ν 10 %
ε 1
|E| {3, 5, 7, 10}
ξe 1/|E|
ζ 2 × η/αo

χ 2η × (1+CCM))

Table 5
Description of the models included in the experimental campaign.

Model ID Obj. fun. Constraints Description

M0 (20) (1)-(19), (27), (28) Baseline model with OF1
M1 (20) (1)-(19), (27), (28) and (29) Matheuristic 1 with OF1
M2 (20) (1)-(19), (27), (28) and (29, 30) Matheuristic 2 with OF1
M3 (20) (1)-(19), (27)-(28) and Pc ≡ P Baseline model, where it is assumed that all patients should be scheduled at the center, with OF1
Mrouting

0
(39) (1)-(10), (12)-(19), (27), (28), (31)-(38) Baseline model with OF1 and routing constraints

M4 (21) (1)-(19), (27), (28) and (22) Baseline model with OF2
AUX (23) (24)-(26) Auxiliary set-covering-like model
Mstoc

E (63) (40)-(62) Stochastic model based on |E| set of adverse events
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twice the sum of the daily operator cost (η) plus the daily center cost (η ×
CCM)). The values of these parameters were inspired by the real case.

With the stochastic model, we run 30 replications for each combi-
nation of the parameters in Table 9, each characterized by random
adverse events. In this case, the gap limit was set to 5 % and the time
limit to 2 h. We have chosen “extreme” CCM values to simulate scenarios
in which the most impactful recourse actions (i.e., resource activations)
have a very low (CCM=1) or very high (CCM=10) cost. CCM, in fact, is
linked to both the cost of activating the center and the cost (χ) of acti-
vating an extra operator. Furthermore, due to the computational
complexity of the stochastic problem, we reduced the scale of the
problem by considering (see Table 7) a lower number of patients (|P|=
30) and operators (|O|=2). Finally, we have tested the sensibility of our

solutions to the parameter |E| (|E| in {3, 5, 7, 10}).

7. Results and discussion

7.1. Deterministic models’ comparison under different operating
conditions

Fig. 2 and Fig. 3 report, respectively, the value of OF1 and the opti-
mality gap (gap) for each combination of parameters ε, TTM, CCM, and
CPP. Fig. 4, instead, reports the number of days when the center is
booked, according to the models’ solution. For benchmarking purposes,
Fig. 4 also reports the results relevant to the auxiliary model (AUX). The
number of days where the center is booked by AUX represents a lower

Fig. 2. Value of OF1.

Fig. 3. Optimality gaps.
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bound for the number of days the center is booked by the other models
(see Section 4.3). It is worth pointing out that AUX model has always
returned feasible solutions throughout the experimentation (i.e., not
violating Constraint (30)).

7.1.1. Scenarios with ε=0
In these scenarios, the days when the treatments must be adminis-

tered to each patient are known, and, consequently, the matheuristics do
not allow for reducing the solution space. It is, therefore, not surprising
that the M0, M1, and M2 models return the same optimal solution and,
consequently, the same value of OF (see the first two columns of Fig. 2
and Fig. 3). Such a value is significantly lower than the one, still optimal,
returned by M3. This means that, with ε = 0, letting the provider treat
certain patients at home instead of treating all patients at the center (as
M3 would imply) allows for reducing costs. By making a row-wise
comparison of columns 1 and 2 of Fig. 2, it can be noticed that the
distance between the value of M3’s OF (triangles) and the ones of the
other models (circles and squares) is larger when CPP is smaller (10 %).
This is because when models M0, M1, and M2 have fewer patients to
mandatorily schedule at the center, they can better leverage the home
care delivery to reduce to a minimum the number of days the center is
open. This effect is magnified as the value of CCM increases. It is worth
observing that when the treatment length is relatively high (TTM=5),
M3 returns no feasible solutions, while the other models do. This is
because the capacity of the center is not enough to process all the pa-
tients needing care. With ε = 0, thus, resorting to home care allows for
making up for insufficient center capacity at peak times.

7.1.2. Scenarios with ε>0
When ε increases, two contrasting effects emerge. On the one hand,

the number of feasible solutions increases, and so does the possibility of
finding solutions with a lower value of OF. On the other hand, the
models’ computational complexity increases (as the gaps in Fig. 3 show),
thereby making it more complex for the solver to find good solutions
within the set time limit (1 hour). It is worth noticing that the increase of
the computational complexity is not linear moving from ε = 0 to ε = 1
and from ε = 1 to ε = 2. This is because of two effects: first, the number
of model variables increases non-linearly with ε. Second, with ε = 1,
shifting a treatment by one day leads to a violation of the patient’s
preferences (patients who prefer to be seen on even days may be seen on
odd days and vice versa). Constraints (7) and (8) make it possible only a
limited number of times (σptimes for patients receiving treatments at the
center and 0 times for those treated at home) in the planning horizon.
With ε = 2, instead, treatments can be shifted two days forward or
backward without violating any patient preference. Because of this,
while with ε = 1, M3 is not able to find a feasible solution for the sce-
narios in which TTM is high (as it happens for ε = 0), for ε = 2, M3 finds
feasible solutions for all scenarios. Table 10 shows, for each model and
each value of ε, the percentage of treatments for which the time between
two consecutive treatments is equal to µ’. The model widely employs the
flexibility allowed by the tolerance. In fact, with ε = 2, the treatments
are frequently scheduled with µ’ = 12 or µ’ = 16.

As can be noticed, with ε = 1, the percentage of treatments delivered
exactly after µ=14 days from the previous one is larger than with ε = 2.

In general, holding all the other parameters fixed and increasing ε
always allows for finding at least a solution that is characterized by an
OF value smaller than the best solution obtained for a smaller value of ε,
as can be observed by comparing columns 1, 3, 5 or columns 2, 4, 6 of
Fig. 2. However, the model associated with such a best solution varies.
With ε ≥1, most of the models’ solutions are nonoptimal and charac-
terized by different bounds and optimality gaps (see Fig. 3). The causal
mechanisms that make one model prevail over the others in different
scenarios are described in the following section, distinguishing the
scenarios with ε=1 from those with ε=2.

7.1.3. Scenarios with ε=1
When ε = 1 (columns 3, 4 of Fig. 2), the models M0, M1, and M2

Fig. 4. Number of days the center is booked.

Table 10
Percentage of treatments delivered after µ’ days from the previous one.

ε 0 1 2

µ’ 14 13 14 15 12 13 14 15 16

M0 100 8.2 81.8 10.0 27.2 3.9 38.7 2.9 27.3
M1 100 9.3 81.0 9.7 21.0 1.5 65.6 1.6 10.3
M2 100 9.5 80.4 10.1 21.0 1.6 67.0 1.3 9.2
M3 100 0.0 100 0.0 27.9 0.0 40.3 0.0 31.9
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outperform M3 even if M3’s solutions, when they exist, are optimal,
while those of the other models are not (see Fig. 3). M0, M1, and M2 are
not significantly different from each other in terms of OF’s values. In
general, using models M0-M2 instead of M3 always allows for eligible
solutions and cost savings, and these savings are greater the more
expensive the center. Models M0, M1, and M2 return solutions in which
the center is booked for the same number of days (which is way smaller
than the one of M3, see Fig. 4) and filled as much as possible with
treatments on those days. The only exception is the scenario (CCM=1,
TTM=3.5, CPP=10 %) where M0 books the center for a number of days
(33) that is greater than that returned by M1 (26) and M2 (26). However,
since the cost of the center is relatively low, the overall cost of such a
solution differs only marginally from the others.

7.1.4. Scenarios with ε=2
Results are less straightforward to interpret when ε=2 (columns 5

and 6 of Figs. 2, 3, and 4). The first thing to notice is that, across sce-
narios, M0 returns solutions that are worse than those of the other
models (Fig. 2). This is because the model, being less constrained, is
more complex to solve, and the solutions found within the set time limit
are characterized by gaps that are large in absolute value (from 0.25 up
to 0.65) and way larger than those of the other models (Fig. 3).

For the scenarios in which ε=2 and TTM=2, the problem instances
become rather simple, and M3 outperforms all the other models. In these
scenarios, since treatments are short, it is possible to schedule all the
patients at the center just by using the residual capacity available on
those days when the center must be, in any case, booked to treat center-
only patients. In these cases, in fact, M3 finds (optimal) solutions in
which the center is booked for a number of days equal to the one
returned by the auxiliary problem (26). The other models, instead, are
not able to converge to such a solution within the set time limit. How-
ever, while M1 and M2 find solutions that are very close to those of M3,
M0 does not. In this scenario, thus, activating the home care option does
not allow for achieving any significant benefit.

For the scenarios in which ε=2, CCM≤3, and TTM=5, M3 still out-
performs the other models. This is because, other things being equal,
when the treatment time is high compared to the travel time (TTM=5), it
is more difficult to fit treatments into an operators’ tour. Operators are
likely to end their visits long before the end of the shift due to the
inability to perform further treatment. In such a situation, if the daily
cost of the center is low compared with the daily cost of the operators
(CCM≤3), opening the center an additional day may be a better option
than treating the patient at home. Interestingly, we observed that within
the set time limit, M3 finds solutions in which the center is booked for a
number of days (39) that is equal to the lower bound that we obtained
running the AUX model considering Pc ≡ P, (as we did with M3). So,
although the solver still does not certify it (gaps are slightly larger than
0), M3’s solutions are optimal, while the solutions of the other models
are largely sub-optimal. This means that these scenarios are computa-
tionally demanding.

For the scenarios in which ε=2, TTM≥3.5, and CCM=10 (i.e., the
non-trivial scenarios where the cost of the center is relatively high), M1
or M2 outperforms the other models. However, while M1 and M2 return
similar results for TTM=3.5 (and those results are better than those
returned by M0 and M3), their solutions differ a lot when TTM=5, based
on the parameter CPP. Specifically, when CPP=10 %, M2 outperforms
M1, while when CPP=20%,M1 is the best option. This is because, even if
the treatment time is relatively large and CPP is low (10 %), booking the

center based on the auxiliary model’s solution and pre-assigning these
patients to the booked days (as M2 does), still leaves enough space to
optimally frame other patients on those same days. This limits the need
to open the center on other days, which is something most unwanted
given the high cost of the center (in fact, for both M2 and the auxiliary
model AUX, the center is booked for 26 days). In addition, this reduces
the computational complexity of the problem, which translates into a
small optimality gap (gap(M2)=0.06). On the contrary, booking the
center based on the auxiliary models’ solution without pre-assigning the
patients necessarily needing the center (as M1 does) leaves an exceed-
ingly large number of feasible solutions to explore. In fact, within the set
time limit, M1 finds suboptimal solutions (gap(M1)=0.31) with a high
value of the OF (compared with M2) due also to the fact that the center is
booked for a much larger number of days (38). However, when treat-
ments are long (TTM≥3.5) and there are many center-only patients
(CPP=20 %), the suboptimal allocation of such patients obtained with
M2 makes it difficult to optimally frame other patients on those days and
makes it necessary to book the center for a larger number of days (39).
This also makes the model more complex to solve (gap(M2)=0.32). In
this scenario, pre-assigning only the days the center is booked based on
the auxiliary model solution and letting the model choose when and
where to schedule patients (as M1 does) makes it possible to better
saturate the center capacity in the pre-assigned days and avoid booking
the center for additional days. In addition, it makes the model sub-
stantially easier to solve (gap(M1)=0.04).

7.2. Comparison OF1 vs. OF2

In this section, we evaluate the effect of switching from OF1 to OF2
while at the same time introducing Constraint (22), i.e., we compare the
results of the models M0 and M4. To do so, we consider the scenarios
where ε=1 and we fix Δ=5%. Thus, with M4 we bind the total cost of the
solution to be no more than 5 % larger than the corresponding M0’s one.
Such an allowable cost increase (ΔΩ) can be seen as a "budget" model M4
can rely on, to minimize patients’ travel time while respecting all the
other constraints. Table 11 reports the descriptive statistics of the per-
centage variation when switching from OF1 to OF2, of patients’ and
operators’ travel time, and of the solutions’ cost. Across scenarios, on
average, such a switch allows for reducing the patients’ travel time by
28.2 %. This translates into an average increase in the operators’ travel
time of 47.4 %. From Table 11, it is also possible to observe that the
variation of the patients’ travel time spans from − 54.5 % to − 5.2 % and
those of the operators from 14.1 % to 115.64 %.

To understand the root causes of this variability, it is useful to look at
Fig. 5.

The left panel shows the "budget" available to reduce patient travel
time. The middle and right panels, instead, show, respectively, the
percentage increase in the number of patients treated at home, and the
percentage variation of the patients and operator travel time that occurs
when switching from OF1 to OF2.

Due to space constraints, we show and comment only on the sce-
narios where CPP = 20 %, i.e., those characterized by the largest
variability.

Switching from OF1 to OF2 causes two effects: (i) an increase in the
net number of patients treated at home; (ii) a tendency to serve patients
who live farther from the center at home. As CCM increases, the cost of
the solution associated with OF1 (Ω) increases, as well as the "budget"
available to move patients from center to home care. Consequently, on

Table 11
Percentage variation when switching from OF1 to OF2.

Patients’ travel time Operators’ travel time Total costs

Mean Sd min max Mean Sd min max Mean Sd min max

− 28.2 13.1 − 54.5 − 5.2 47.4 29.7 14.1 115.6 4.8 0.2 4.3 5.0
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average, the percentage of patients served at home increases, and the
patient travel time decreases with CCM. The effect of TTM, instead, is
ambiguous: on the one hand, increasing TTM increases the budget to
serve patients at home, but on the other hand, it makes it less efficient to
move a patient from center to home care. As TTM increases, the same
reduction in patient travel time translates into a greater increase in
provider travel time. In fact, if TTM is high, treatments last longer, and it
is possible to serve fewer patients within an operator’s tour. In our
experimentation, the worst situation arises when TTM=3.5. Compared
to the scenario TTM=2, the increase in the budget available to raise the
operators’ utilization is not enough to compensate for the decrease in the
number of patients schedulable in a tour. Because of this, the dots in
Fig. 5 (middle and right panels) for CCM≥3 show a non-monotonic
trend.

7.3. Assessment of the effect of valid inequalities

To assess the effect of the valid inequalities (27) and (28), we
compared the OF value of model M0 and the OF value of M0’s continuous
relaxation (M0

relaxation) when the inequalities are included in the model
and when they are not. The optimal solution of the relaxed problem
provides a lower bound for the M0’s OF. An increase in the lower bound
suggests a potential improvement in computational performance
(although such improvement cannot be assumed with certainty).

The results are presented in Fig. 6 for all the scenarios commented on
in Section 7.1. The experimentation was conducted under a time limit of
1 h.

As can be observed (compare green circles with green triangles), the
introduction of valid inequalities considerably raises the value of the

Fig. 5. Budget available to reduce the patient travel time (left panel). Percentage variation in the number of patients treated at home (middle panel) and in travel
time (right panel) when switching from OF1 to OF2.

Fig. 6. OF at the root node and at the end of the time limit with and without the introduction of valid inequalities (27) and (28) into M0.
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lower bound (+64 % on average). Other parameters being equal, such
an increase gets bigger as CCM gets higher (up to +197 % when ε=1,
CPP=20 %, TTM=2, and CCM=10). On the contrary, valid inequalities
do not significantly affect M0’s OF value after 60 min of computation
(compare red circles with red triangles). However, by setting the time
limit to 10 min, we can notice (Fig. 7) that the valid inequalities allow
for a considerable decrease of M0’s OF value in the most computation-
ally challenging scenarios.

We can conclude that the valid inequalities (27) and (28) improve
the computational performance of the model and allow for obtaining
better (yet suboptimal) solutions in a shorter amount of time for the
most complex scenarios (i.e., with ε=2). In these scenarios, however, the
optimality gaps are still very high (44 % on average, see Fig. 3), and it is
preferable to use the matheuristics introduced in Section 4.3.

7.4. Assessment of the effects of approximating the travel time

Table 12 reports the mean, standard deviation, and range of varia-
tion (across operators and scenarios) of the error, defined as the

difference between the approximated operator travel time calculated in
the first phase and the actual travel time determined in the second phase
(i.e. when the operator routing is determined via the TSPmodel). Results
are not reported for M3, which considers all treatments delivered at the
center. Table 12 also reports the descriptives of the overtime that may
arise if the actual travel time exceeds the approximated one.

As can be noticed, approximating the travel distances and times in
the first phase leads to underestimating the operators’ working time (the
mean values of the error are negative) and to an error that is small and in
favor of safety. As a result, overtime is rare and lasts only a few minutes.
This approximation is, therefore, legitimate.

7.5. Assessment of the effects of embedding routing decisions in the
baseline model

To assess the benefits that may arise from embedding routing de-
cisions in the baseline model, we compared the results obtained from the
model Mrouting

0 (which determines the operators routing) with those
obtained using the M0 to schedule patients and assign operators and
subsequently determine the operator routing using a TSP (i.e., the two-
phase approach described in Section 4). Such a comparison has been
extended to all the scenarios presented in Section 7.1. As in the previous
case, we set T= 90. However, to testMrouting

0 also in less computationally
demanding scenarios, we repeated the analysis with T = 45 days.
Table 13 reports for each value of ε the mean total cost, the mean
operator travel distance, and the percentage of instances solved within
the set time limit with the two models. The mean values are calculated
across all the scenarios sharing the same value of ε.

Fig. 7. OF after 10 min with and without the introduction of valid inequalities (27) and (28) into M0.

Table 12
Error and overtime.

Error (min) Overtime (min)

Model Mean Sd Range Mean Sd Range

M0 − 1.5 5.2 [− 33.0,19.6] 0.0 0.1 [0,5.9]
M1 − 1.5 5.0 [− 29.3,16.4] 0.0 0.1 [0,4.5]
M2 − 1.5 5.0 [− 27.8,15.9] 0.0 0.0 [0,1.4]

Table 13
Comparison between Mrouting

0 and M0 in terms of mean total cost, mean travel distance, and % of solved instances.

Mean total cost Mean operator travel distance % Solved

T ε Mrouting
0

M0 Var % Mrouting
0

M0 Var % Mrouting
0

M0

90 0 26,946.8 26,979.3 − 0.1 744.6 798.8 − 6.1 100 100
90 1 38,914.2 25,845.8 50.1 301.5 895.9 − 54.0 83.3 100
90 2 29,207.7 32,237.9 3.7 0.0 540.0 − 100.0 72.2 100
45 0 13,566.6 13,598.6 − 0.24 360.9 414.3 − 14.8 100 100
45 1 12,840.2 11,962.2 6.84 409.6 464.8 − 13.5 100 100
45 2 12,173.3 8497.7 30.19 38.9 93.3 − 140.1 100 100
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As can be noticed, for T = 90, embedding routing constraints in the
baseline model allows for a (very limited) decrease in the mean total cost
(− 0.1 %) only for the simplest scenario (ε=0). For this scenario, it also
allows for a decent decrease in the operator travel distance. As scenarios
get more computationally demanding (ε>0), however, Mrouting

0 is not
able to return a good solution within the set time limit (1 hour), and
quite frequently it is not able to find a solution at all. It is worth
observing that when ε=2, Mrouting

0 returns trivial solutions where all
patients are served at the center (operator travel distance=0).

With T = 45 days, instead, Mrouting
0 always finds an admissible solu-

tion even for ε>0. These solutions, however, are slightly better than
those of M0 only for ε>0, as it happens with T = 90. The adoption of a
two-phase approach is thus fully legitimate.

7.6. Stochastic model

This section presents the results of the experimentation inherent in
the stochastic model. The section is structured in two parts.

In the first one, we use the Value of the Stochastic Solution (VSS) in-
dicator (Birge and Louveaux [63]) to assess ex-ante, the expected benefit
from solving a stochastic model rather than its deterministic counterpart
[64]. This assessment helps understand whether utilizing a stochastic
programming model is worthwhile, taking into account the associated
efforts.

After determining the appropriateness of using a stochastic model, in
the second part, we compare (as in M’Hallah and Visintin [65]) the
benefits that would be possible to achieve, ex-post, if stochastic model
solutions, rather than deterministic ones, were actually implemented.

7.6.1. Ex-ante evaluation with CCM=10
The VSS is defined as the difference between the optimal objective

function value of the Expected Value problem (Birge and Louveaux [63])
and the optimal objective function value of the stochastic problem. We
denote with Mstoc

E the stochastic model with |E| sets of adverse events
defined in Section 5 and with OF(Mstoc

E ) its optimal objective function
value. The Expected Value problem is the stochastic problem Mstoc

E in
which variables x and f are fixed according to the optimal solution of the
deterministic model M0. Indeed, by solving M0, we obtain a first-stage
solution, say x̂, f̂ , that is also feasible for the stochastic problem
Mstoc

E and we evaluate its cost. We denote with Mstoc-fixed
E the Expected

Value problem, and with OF(Mstoc-fixed
E ) its optimal objective function

value. Thus, VSS = OF(Mstoc-fixed
E ) – OF(Mstoc

E ) represents the goodness of
the solution of the Expected Value problem when used as an approxi-
mation of the optimal solution of model Mstoc

E .
In Table 14, we report the results relevant to 30 random instances,

where, for each instance, we solved the models Mstoc
E and Mstoc-fixed

E for
|E| in {3,5,7,10}. The table reports the mean and standard deviation of the
objective function, the optimality gap, and resolution times. In addition, it
provides the mean and standard deviation of the Center, Operators, and
Travel costs. The first row reports the results relevant to the deterministic

baseline model M0.
The mean gap is satisfying for both the deterministic and the sto-

chastic models, the resolution time is negligible for the Expected Value
problemsMstoc-fixed

E , whereas the mean resolution time to reach the gap is
quite high for Mstoc

E when |E|≥5. As expected, the resolution time for the
stochastic model increases as |E| increases (even if from E = 7 to E = 10
such an increase is negligible), and so does the objective function. It can
also be observed how the emergency cost associated with Mstoc

E , on
average, is significantly smaller than that of Mstoc-fixed

E , while the center
cost is slightly higher.

Table 15 reports the descriptive statistics of the VSS. As can be
noticed, VSS is rather big (larger than 24 % of the mean value of the OF
(Mstoc

E ) across scenarios). This is an indication of the appropriateness of
using a stochastic programming approach.

Finally, it is worth pointing out that because of the adverse events,
across scenarios, on average, 6.3 % of the visits initially scheduled at
home are rescheduled at the center (10.7 out of 170 on average).

7.6.2. Ex-post evaluation with CCM=10
Once the appropriateness of stochastic modeling had been checked,

we carried out an extensive experimental campaign to assess the benefit
stemming from its implementation.

The analysis was conducted as follows.
First, we considered scenarios where the cost of the recourse action

resource activation is high (i.e., CCM=10). In these scenarios, the benefits
of using a stochastic model should be magnified. For each of the above-
mentioned 30 instances (indexed by i), we solved models Mstoc

E and we
extracted the value of the variables x and f. Then we generated 30 sets
(indexed by j) of random adverse events, and for each couple i, j we
solved the Expected Value problem in which variables x and f are fixed
according to the optimal solution of Mstoc

E run on instance i. The objec-
tive function value of the Expected Value problem represents the cost
(hereafter ex-post cost) incurred by the provider to commit the resources

Table 14
Descriptive statistics for Objective Function, Optimality gap, and resolution time.

Objective function Gap Time Center Cost Operators Cost Travel Cost Emergency Cost

Model N M Sd M Sd M Sd M Sd M Sd M Sd M Sd

M0 1 29,575.6 – 0.0 – 40 – 20,000.0 – 8900.0 – 675.6 – 0.0 –
Mstoc

3 30 34,256.1 1402.3 0.0 0.0 151.3 209.8 22,400.0 1566.9 8967.8 242.2 631.7 15.3 1955.6 1238.1
Mstoc

5 30 35,999.0 1751.6 0.1 0.0 2585.8 3052.4 21,233.3 1546.6 8777.3 215.6 624.0 28.4 5045.3 1612.5
Mstoc

7 30 37,592.8 1627.8 0.1 0.0 6803.8 1514.4 20,900.0 2006.0 8788.1 191.0 625.3 31.7 6998.1 2021.6
Mstoc

10 30 38,088.8 1779.9 0.1 0.0 6855.2 1369.8 20,133.3 345.7 8895.0 127.1 632.6 9.5 8132.7 1689.8
Mstoc-fixed

3 30 45,978.1 3818.2 0.0 0.0 0.2 0.0 20,000.0 0.0 9046.7 230.4 652.4 27.6 16,255.6 3933.0

Mstoc-fixed
5 30 47,085.8 3276.4 0.0 0.0 0.2 0.0 20,000.0 0.0 9234.0 326.1 680.2 33.9 17,145.3 3424.8

Mstoc-fixed
7 30 46,858.9 2603.5 0.0 0.0 0.8 0.1 20,000.0 0.0 9200.0 302.0 673.0 32.3 16,961.0 2719.3

Mstoc-fixed
10 30 47,325.7 2227.8 0.0 0.0 0.9 0.1 20,000.0 0.0 9166.3 324.0 671.4 33.9 17,460.7 2325.0

Table 15
Descriptive statistics for VSS.

|E| N M(VSS) Sd(VSS) M(VSS)/ OF(Mstoc
E )

3 30 11,722.0 3424.7 34 %
5 30 11,086.8 2309.2 31 %
7 30 9266.0 1932.5 24 %
10 30 9236.9 1573.0 24 %

Table 16
Descriptive statistics for ex-post cost (CCM=10).

Model N M (ex-post cost) Sd (ex-post cost)

M0 900 46,219.2 3651.4
Mstoc

3 900 44,984.3 4038.7
Mstoc

5 900 43,903.8 3072.2
Mstoc

7 900 43,595.1 2615.8
Mstoc

10 900 43,122.1 2049.2
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required by the i th Mstoc
E ’s solution and to put in place the recourse

actions needed to deal with the unexpected adverse events in the j-th set.
Such a procedure allowed us to obtain, for each Mstoc

E a sample of 900
possible outcomes of their implementation, in terms of ex-post cost.
Finally, to determine what would happen if we implemented the
deterministic model, the same procedure was done starting from M0’
solution and generating 900 random sets of adverse events. Table 16
reports the descriptives of the ex-post cost associated with the imple-
mentation of each model across 900 scenarios.

To test whether these ex-post costs differ significantly, we first
checked the parametric tests’ assumptions. Levene’s test led us to reject
the assumption of homogeneity of variance (p-value <0.01) [66].
Therefore, we performed a bootstrap ANOVA with 5000 resamples [66].
The bootstrap ANOVA revealed a significant overall treatment effect
(F-value= 0.000, p-value < 0.001), which implies a statistically signif-
icant effect of the model on the mean ex-post cost. Following the boot-
strap ANOVA, we carried out bootstrap pairwise comparisons. Table 17
reports the bootstrap 95 % confidence intervals for the difference diff
between means.

As we can notice, none of these confidence intervals crosses zero. We
can thus conclude that, on average, as |E| increases the ex-post cost
significantly decreases. All the Mstoc

E models lead to lower ex-post cost
than M0. As for the effect size, we can observe that compared to M0,
M3

stoc, M5
stoc, M7

stoc, and Mstoc
10 allow, on average, a saving of 3 %, 5 %, 6 %,

and 7 %, respectively. As a final remark, it is worth noting that as |E|
increases, the cost of the (ex-ante) solution increases, and the resolution
time increases as well (Table 14). However, such a higher ex-ante cost
and computational burden translates into a lower ex-post cost
(Table 17), which is, indeed, the ultimate benefit sought by the provider.

7.6.3. Ex-ante and ex-post evaluation with CMM=1
To test whether it makes sense to use a stochastic model even in situ-

ations where recourse actions do not generate high costs, an analysis was
conducted considering CCM=1. Hereafter we report the results for the
most unfavourable situation for the stochasticmodel, i.e., the one inwhich
|E|=3 (as we observed in Table 17). With the set parameters, M(VSS) and
Sd(VSS) were equal to 2580.8 and 548.2, respectively. This implies that
even when the cost of the resource activation is limited and |E| is small, it
stillmakes sense touse a stochasticmodel. The ex-post evaluation revealed
that using the deterministicmodel leads, on average, to higher ex-post cost
(M = 13,979.2, Sd=708.6) than the stochastic one (M = 13,540.7,
Sd=604.4) and that the difference (diff) between these values is signifi-
cantly larger than zero (we performed a bootstrap t-test with 5000
resamples, to test the null hypothesis Ho of diff=0, against the alternative
hypothesis H1 of diff ≥0 and we were unable to reject Ho, t = 3.826,
p = 0.001).

8. Managerial insights

This study demonstrates that a provider, needing to cyclically
administer specific treatment, over a medium to long planning horizon

(e.g., three months), to a group of patients some of which cannot be seen
at home, can achieve significant benefits by implementing an FC model.
Enabling a provider to activate home care services can enhance patient
satisfaction and minimize overall costs while also avoiding capacity
issues.

In such a context, adopting a two-phase approach, where routing
decisions are taken sequentially with respect to the assignment and
scheduling ones, instead of a one-phase approach, where all these de-
cisions are taken at once, can carry several advantages. In fact, while
resulting in suboptimal solutions, a two-phase approach enables the
independent handling of two distinct problems. Scheduling and
assignment choices, which are crucial for organizing activities in
advance, need early decisions, and models M0, M1, M2, M3, and M4 are
suitable to address these decisions in different operating conditions. In
contrast, routing decisions can be deferred to accommodate the last-
minute needs of patients or operators using a classic TSP model. In
addition, a two-phase approach, being less computationally demanding,
allows for finding better solutions within a reasonable time frame (1
hour) even if a tolerance is introduced in terms of time between two
consecutive treatments (and only negligibly worse solutions when no
tolerance is allowed, see comparison M0 -Mrouting

0 in Section 7.5). This is
very important as, where this does not undermine the effectiveness of
the treatment, introducing even a slight tolerance in the frequency with
which treatments are administered (± 1 day) can significantly improve
service quality in terms of care continuity and lead to significant cost
savings (see Section 7.1, ε=1). Increasing the tolerance further (± 2
days), although it can still decrease the service cost, also considerably
increases the computational complexity of the problem being addressed
(see Section 7.1, ε=2). To capture the benefits associated with greater
tolerance, it is advisable to use matheuristics M1 and M2 as an alterna-
tive to the optimal model M0, as these provide better, albeit sub-optimal,
solutions in a more affordable time frame. Specifically, M1 is preferred to
M2 when the percentage of patients to be served at the center is high. In
those cases, when both the cost to book the center for a day is similar to
the daily cost of an operator (CCM≤3) and the treatment duration is
large compared to the average travel time, it is advisable not to resort to
FC model, but to use M3 to schedule all patients at the center, as within a
reasonable time frame such a model returns the best solutions. Our study
also shows that accepting a modest increase in the total cost of service
(~5 %) can significantly reduce patients’ total travel time (~20 %) and,
consequently, their satisfaction (see comparison M4 vs M0 in Section
7.2). Finally, our study demonstrates that if adverse events are a
concern, it is advisable to use a stochastic model incorporating uncer-
tainty concerning the occurrence of these events (Mstoc

E , see Section 7.6).
When using stochastic models, considering a larger set of adverse events
(|E|) leads to lower ex-post costs. However, this also makes the model
more computationally demanding.

9. Conclusions

This study proposes novel deterministic optimization models to

Table 17
Lower and upper bound of 95 % confidence intervals for the difference between means (CCM=10).

Pairwise comparisons diff Lower bound Upper bound

Mean ex-post cost (M0) - Mean ex-post cost (Mstoc
3 ) 1234,9 861.8 1574.0

Mean ex-post cost (M0) - Mean ex-post cost (Mstoc
5 ) 2315,4 2010.0 2630.6

Mean ex-post cost (M0) - Mean ex-post cost (Mstoc
7 ) 2624,1 2341.1 2911.5

Mean ex-post cost (M0) - Mean ex-post cost (Mstoc
10 ) 3097,1 2823.5 3375.2

Mean ex-post cost (M3) - Mean ex-post cost (Mstoc
5 ) 1080,5 753.7 1420.7

Mean ex-post cost (M3) - Mean ex-post cost (Mstoc
7 ) 1389,2 1062.2 1699.3

Mean ex-post cost (M3) - Mean ex-post cost (Mstoc
10 ) 1862,2 1561.6 2158.0

Mean ex-post cost (M5) - Mean ex-post cost (Mstoc
7 ) 308,7 52.7 586.3

Mean ex-post cost (M5) - Mean ex-post cost (Mstoc
10 ) 781,7 532.7 1028.4

Mean ex-post cost (M7) - Mean ex-post cost (Mstoc
10 ) 472,9 262.5 697.7
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schedule cyclic treatments in FC settings using a two-phase approach
where assignment and scheduling decisions are decoupled from the
routing ones. In addition, it proposes matheuristics to gain efficiency
when addressing complex instances. Furthermore, this study proposes a
stochastic model to address uncertainties related to the occurrence of
adverse events. The key findings of this study can be summarized as
follows. (i) In most cases FC is to be preferred to CBC as it allows for
making up for insufficient center capacity at peak times and better
matching customer needs. CBC is preferable under two conditions: when
the cost to book the center for a day is comparable to the daily cost of an
operator and when the treatment duration significantly exceeds the
average travel time. In these situations, the computational complexity of
the problem does not allow any of the proposed models to find FC so-
lutions outperforming CBC in a reasonable computational timeframe.
(ii) The tolerance ε is a very important managerial lever. When possible,
increasing ε allows significant savings but at the cost of a higher
computational complexity. (iii) When computational complexity is an
issue, it is preferable to use the presented matheuristics instead of the
exact model. (iv) For the medium-term tactical problem considered,
using a two-phase approach—where routing decisions follow assign-
ment and scheduling decisions — rather than a one-phase approach —
where all decisions are made simultaneously — is advantageous. In fact,
within a reasonable computational timeframe, it allows for comparable
or even better solutions. (v) If there are concerns about adverse events,
employing a stochastic model rather than a deterministic one allows for
finding more robust solutions and cost savings.

This work is not without limitations. First, we do not consider hybrid
care solutions [67,68] in which, along the disease course, the same
patient may be served both at home and at the center. Second, we
consider service and travel times and the time between two consecutive
treatments as known and deterministic (also in the stochastic model).
Third, our experimentation refers to settings where travel distances and
times are limited. Fourth, we assumed that all patients must be served
and, consequently, we considered scenarios where there is enough ca-
pacity to serve them all. Fifth, we have not dealt with cases where
servers provide different types of treatment at once [69,70]. Finally, we
had to resort to downsized instances to deal with the computational
complexity of the stochastic model.

Future research should thus address new service configurations (e.g.,
hybrid care, multi-treatment visits). In addition, they may also consider
settings where patients are spread over a larger area and/or travel and
service times are affected by significant variability and/or scenarios
where capacity is limited, and additional decisions should be taken
concerning the selection of the patients to serve. Finally, interesting
avenues of research might be to employ exact techniques (like Branch-
and-Price or Logic-based Benders decompositions) for solving the sto-
chastic model on larger instances, and to employ a discrete event
simulation to assess the robustness of the models’ solution.
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[22] Cappanera P, Scutellà MG. Joint assignment, scheduling, and routing models to
home care optimization: a pattern-based approach. Transp. Sci. 2015;49:830–52.
https://doi.org/10.1287/trsc.2014.0548.

[23] Restrepo MI, Rousseau L-M, Vallée J. Home healthcare integrated staffing and
scheduling. Omega (Westport) 2020;95:102057. https://doi.org/10.1016/j.
omega.2019.03.015.

[24] Naderi B, Begen MA, Zaric GS, Roshanaei V. A novel and efficient exact technique
for integrated staffing, assignment, routing, and scheduling of home care services
under uncertainty. Omega (Westport) 2023;116:1–15. https://doi.org/10.1016/j.
omega.2022.102805.

[25] Di Mascolo M, Martinez C, Espinouse M-L. Routing and scheduling in home health
care: a literature survey and bibliometric analysis. Comput Ind Eng 2021;158:1–48.
https://doi.org/10.1016/j.cie.2021.107255.

[26] Youn S, Geismar HN, Pinedo M. Planning and scheduling in healthcare for better
care coordination: current understanding, trending topics, and future
opportunities. Prod Oper Manag 2022;31:4407–23. https://doi.org/10.1111/
poms.13867.

[27] Fikar C, Hirsch P. A matheuristic for routing real-world home service transport
systems facilitating walking. J Clean Prod 2015;105:300–10. https://doi.org/
10.1016/j.jclepro.2014.07.013.

[28] Qiu H, Wang D, Yin Y, Cheng TCE, Wang Y. An exact solution method for home
health care scheduling with synchronized services. Nav Res Logist 2022;69:
715–33. https://doi.org/10.1002/nav.22044.

[29] Cappanera P, Requejo C, Scutellà MG. Temporal constraints and device
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