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Abstract
Background Human Amniotic Membrane (hAM) is endowed with several biological activities and might be considered an 
optimal tool in surgical treatment for different ophthalmic pathologies. We pioneered the surgical use of hAM to treat retinal 
pathologies such as macular holes, tears, and retinal detachments, and to overcome photoreceptor damage in age-related 
macular degeneration. Although hAM contributed to improved outcomes, the mechanisms of its effects are not yet fully 
understood. The characterization and explanation of the effects of hAM would allow the adoption of this new natural product 
in different retinal pathologies, operative contexts, and hAM formulations. At this end, we studied the properties of a hAM 
extract (hAME) on the ARPE-19 cells.
Methods and results A non-denaturing sonication-based technique was developed to obtain a suitable hAME. Viability, pro-
liferation, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) were studied in hAME-treated ARPE-19 
cells. The hAME was able to increase ARPE-19 cell viability even in the presence of oxidative stress (H2O2, TBHP). More-
over, hAME prevented the expression of EMT features, such as EMT-related proteins, fibrotic foci formation, and migration 
induced by different cytokines.
Conclusions Our results demonstrate that the hAME retains most of the properties observed in the whole tissue by others. 
The hAME, other than providing a manageable research tool, could represent a cost-effective and abundant drug to treat 
retinal pathologies in the future.
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Introduction

The human amniotic membrane (hAM) is the tissue sur-
rounding the embryo, composed of a stromal and a cellu-
lar component. An epithelial single-cell layer is placed on a 
stroma with embedded mesenchymal cells. The interest in 
the hAM’s unique properties and its widespread availability 
increases in the field of regenerative medicine [1, 2]. How-
ever, the hAM has been employed in anterior eye chamber 
surgery since 1940 to treat corneal wounds [3]. Although 
the hAM has a simple tissue architecture, its molecular 
composition is very rich in bioactive molecules [1, 2]. De-
epithelized hAM may be an optimal substrate to grow reti-
nal pigmented epithelial cells for possible use in allografts 
[4]. Recently, we successfully used hAM patches to surgi-
cally repair retinal defects such as macular holes and retinal 
tears [5, 6]. The hAM, when implanted inside the macu-
lar holes and retinal breaks, induced mechanical closure of 
these lesions accompanied by anatomical and partial func-
tional recovery, due to the plug effect [5]. We postulated that 
a pro-regenerative action on the retinal layers might have 
played a role. However, the regenerative effect is difficult to 
document with the in vivo retinal imaging methods existing 
today, while studies on the biological activities of hAM on 
retinal cells in vitro are relatively scarce.

The retina is a multi-layered tissue, constituted by many 
different cell types. Among them, retinal pigmented epi-
thelium (RPE) plays a pivotal structural and trophic role 
in sustaining photoreceptor homeostasis and functionality 
[7]. RPE cells are also one of the main cell types involved 
in side effects of retinal injury and surgery such as prolif-
erative vitreoretinopathy (PVR). PVR is a common con-
sequence of retinal detachment (RD), leading to impaired 
vision and poor surgery outcomes [8]. In RD, the RPE cells 
that disperse in the vitreous or are exposed to vitreal factors 
such as TGF-β2, TNF-α, TGF-β1, IL-1, IL-6, may undergo 
a conversion to a mesenchymal phenotype epithelial-to 
mesenchymal transition (EMT) [9, 10]. Transdifferenti-
ated cells begin to produce adherent scar membranes which 
impair vision, impede retinal reattachment, and are difficult 
to remove without causing retinal tears [8]. Despite many 
promising studies, a treatment to effectively prevent PVR 
is yet to come. Anti-PVR experimental attempts are usually 
made with drugs capable of preventing EMT, sometimes 
producing undesired side effects on the retina itself [11]. 
Although hAM’s antiangiogenic, anti-inflammatory, and 
antifibrotic properties have been described [12, 13], there 
are few studies on the possible use of hAM to treat PVR and 
its effects on RPE cells. The work of He and coworkers [14] 
reports the anti-EMT properties of a hAM-purified compo-
nent, namely the heavy chain-hyaluronic acid/pentraxin 3, 
which shows antifibrotic effects on the human ARPE-19, 

RPE-derived, cells. Another recent study indicates that the 
whole hAM did not show toxic or proliferative effects on 
ARPE-19 cells, while it significantly increased their viabil-
ity [15].

Our work presents the effects on ARPE-19 cells of a hAM 
extract (hAME) obtained from the same hAM preparation 
we employed in retinal surgery. Our results add knowledge 
that may be fruitful in view of a future optimized use of dif-
ferent hAM-derived products.

Materials and methods

Preparation of hAME

Frozen fragments of surgical grade hAM were obtained 
from the Tissue Bank “Centro delle Cornee Piero Perelli” 
(Lucca, Italy). The hAM was prepared, stored, and collected 
with informed consent in agreement with the Italian Guide-
lines approved on September, 14th, 2016, by the National 
Transplant Centre. A hAME was produced with a sonication 
method on ice. Fragments of hAM, derived from two dif-
ferent donors (I and II), previously stored at -80 °C in glyc-
erol solution as preservative, were washed 5 times in 10 mL 
PBS and weighed. hAM fragments were placed in PBS at a 
1:1 ratio V/W and submitted to sonication (Branson Soni-
fier 150, Emerson, USA) at 20 W with 7–15 pulses for 10 s 
to obtain hAME. Total protein content was assessed by the 
Bradford method (Bradford reagent, Sigma-Aldrich). The 
minimal time and number of pulses ensuring the maximal 
yields in terms of total proteins were assessed (see Results 
section). Our protocol yields about 1–3 µg/µL total proteins. 
Protein extracts were aliquoted and stored at -20 °C until 
use.

Cells

ARPE-19 cells, obtained from American Type Culture 
Collection (ATCC, USA), were cultured in high glucose 
(4.5 g/L) Dulbecco’s Modified Eagles Medium (DMEM, 
Euroclone, Italy) supplemented with 10% fetal bovine 
serum (FBS) (Euroclone, Italy), 2mM L-glutamine solu-
tion (Euroclone, Italy) and Penicillin-Streptomycin solution 
(10,000 units penicillin and 10 mg streptomycin/ml, Euro-
clone, Italy) in a humidified incubator at 37 °C in 5% CO2. 
ARPE-19 cells were passed weekly by trypsinization and 
used until passage 6.

Chemicals and treatments

H2O2 (Sigma-Aldrich, USA) and tert-Butyl hydroperox-
ide solution (TBHP) (Sigma-Aldrich, USA) were used as 
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oxidative apoptotic stimuli. Recombinant tumor necrosis 
factor-alpha (TNF-α) and transforming growth factor-beta 
2 (TGF-β2) were from Peprotech (USA); transforming 
growth factor-beta 1 (TGF-β1) was from Abcam (UK). In 
the experiments with ARPE-19 cells, TNF-α, TGF-β2, TGF-
β1, TBHP, and H2O2 were added 30 min after hAME. Treat-
ments were done for 24–48 h as indicated in the Results 
section.

Cell viability

Viability was analyzed by the Cell Proliferation Reagent 
WST-1 (Roche, Switzerland). Cells were plated at sub-con-
fluence (4.0 × 103 cells/well) in 96 multiwell culture dish 
plates, treated for 24 h, and stained according to the manu-
facturer’s instructions by substituting the culture media with 
phenol red-free medium, added with WST-1 reagent. The 
plates were read by a multiple plate reader (Biorad, model 
550, USA). Quantification of live and dead cells was per-
formed by a Cytosmart apparatus (Corning, USA), using 
trypan blue staining (Merck, USA).

Western blot analysis

Aliquots of 50 µg of ARPE-19 whole-cell lysates, obtained 
as previously described [16], were subjected to Western 
blotting. Protein extracts were separated by SDS-PAGE 
(Thermo-Fisher, USA) and transferred onto nitrocellulose 
membranes (Bio-Rad, USA). Membranes were incubated 
in Odyssey Blocking Solution (Millipore, Italy) for 1 h at 
room temperature. Membranes were then incubated over-
night at 4 °C with the primary antibody (all primary anti-
bodies were used diluted 1:1,000 in a mix of 1:1 Odyssey 
Blocking Solution and PBS-Tween 0.1%), washed with 
PBS-Tween 0.1% solution, and probed with the secondary 
IRDye antibody according to the manufacturer’s instruc-
tions (secondary antibody diluted 1:12,000). The primary 
antibodies were: ZO-1 (D7012, Cell signaling, USA), 
β-actin (sc-47,778, from Santa Cruz Biotechnology, USA), 
N-Cadherin (N-Cad) (4061P Cell signaling, USA). The 
protein bands were analyzed by the Odyssey Infrared Imag-
ing System (LI-COR Bioscience, USA), using the Odyssey 
software for protein quantification.

Cell motility

Cell motility was assessed using a Culture-Insert 4 Well 
(Ibidi, Germany). Briefly, 1.0 × 105 cells were seeded in the 
wells of a culture insert located at the center of a 35 mm 
culture dish. After 24 h the culture insert was removed to 
reveal the wound gap of 500 μm. Then, cells were washed 
with PBS to remove floating cells, and fresh medium with 

0.5% FBS, TGF-β1 (5 ng/mL), and hAME (50 µg/mL), was 
added. Pictures were taken at regular intervals until 48 h 
using a 10x phase contrast objective (Nikon, The Nether-
lands). The cell-free area was measured using ImageJ soft-
ware via MRI wound healing plugin [17].

Flow cytometry analysis of apoptosis

Cells were seeded (2.0 × 105) in 35 mm Petri dishes. After 
24 h cells were treated. After 48 h cells were detached by 
trypsin solution (Euroclone, Italy) and harvested with super-
natants, centrifuged, resuspended in 500 µL of 1x Annexin 
Binding Buffer (BD Biosciences, USA), and incubated with 
5 µL of Annexin V-FITC (BV421 Annexin V, BD Biosci-
ences, USA) and 5 µL of and 7-AAD (BD Biosciences, 
USA) at room temperature for 30 min in the dark. Cells were 
then analyzed with a BD FACS Canto II (BD Biosciences, 
USA). Data were analyzed with Diva software (BD Biosci-
ences, USA). A minimum of 10,000 events were collected.

EMT-associated fibrotic deposit (EAFD) assay

EAFDs were analyzed as previously described [18]. Briefly, 
ARPE-19 cells were placed on 12-well plates at a den-
sity of 5.0 × 104 cells/well. After 72 h, cells were washed 
twice with culture media without serum, and then cultured 
for 96 h without serum in the presence of TNF-α (10 ng/
mL), TGF-β2 (5 ng/mL), or hAME. The cells were fixed 
with methanol for 5 min, air-dried at room temperature for 
5 min, and stained with Giemsa solution (Merck, USA) for 
15 min. Pictures of multiple fields were taken with a light 
microscope equipped with a camera and the area occupied 
by fibrotic deposits was quantified by the ImageJ software 
[17]: the contrast of the black and white images is increased, 
the area of the darker regions corresponding to the foci is 
drawn manually and the relevant % area is calculated auto-
matically. Five fields for each experiment were analyzed.

Statistics

Experiments were repeated at least three times. Results 
are expressed as means ± SD. Multiple comparisons were 
performed by the Student’s t-test or One-way or Two-way 
ANOVA using GraphPad Prism. Statistical significance was 
accepted at p < 0.05.
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untreated cells. Dead cells increased slightly and propor-
tionally to the increase in cell proliferation albeit not signifi-
catively (Fig. 2a). On the whole, the results shown in Figs. 1 
and 2 demonstrated that treatment with hAME determined 
an increase in ARPE-19 cell viability with concomitant 
induction of proliferation.

hAME counteracts the effect of the oxidative stress 
on ARPE-19 cell viability

Oxidative stress was induced in ARPE-19 cells by two dif-
ferent stimuli, H2O2 and TBHP, for 24 h. We performed 
dose-effect experiments and chose the concentration of 
H2O2 and TBHP that produced a 20% and 70% reduction 
in cell viability, i.e. 350 µM for H2O2 and 30 µM for TBHP, 
respectively (Fig. 3a-b). Figure 3c shows that treatment of 
ARPE-19 cells with hAME severely abolished the reduction 
of viability determined by H2O2 or TBHP.

hAME does not protect ARPE-19 cells from oxidative 
stress-induced apoptosis

In order to assess if the hAME protects ARPE-19 cells from 
apoptosis induced by oxidative stress, FACS experiments 
were performed on ARPE-19 cells treated with hAME and 
exposed for 24 h to H2O2 and TBHP, at the same concentra-
tions used in viability experiments (Fig. 4a-d and S1). The 
treatments with the two oxidants resulted mostly in early 
and late apoptotic death. Treatment with hAME did not pro-
tect ARPE-19 cells from apoptosis induced by H2O2 and 
TBHP.

Results

hAME increases ARPE-19 cell viability

Based on the protocol used for preparation and storage, 
hAM fragments are considered to be non-viable. We pre-
liminary observed that culturing ARPE-19 cells in the 
presence of a fragment of hAM (2 × 2 mm) for 24 h, deter-
mined a clear increment in cell number (data not shown). 
We consequently have been prompted to further character-
ize the properties of the tissue. In order to obtain reproduc-
ibility and manageability, we used the hAM in the form of 
an extract. ARPE-19 cells were treated with five different 
concentrations of hAME (12.5, 25, 50, 100, 200 µg/mL), 
and cell viability was assessed 24 h after treatment (Fig. 1a). 
Treatment with 50 µg/mL maximally increased cell viability 
and was chosen for all the subsequent experiments. Also, 
hAMEs arising from hAM fragments from different donors 
gave no significant differences and were used interchange-
ably (Fig. 1b). Increasing the number of sonicator pulses 
(from 7 to 15) did not modify the effect on viability (Fig. 1b).

hAME increases the proliferation of ARPE-19 cells

An increase in viability can result from different causes such 
as metabolic activity, proliferation, and apoptosis. In order 
to assess if the increase in viability was due to cell prolif-
eration we counted the viable cell numbers at different time 
points (24 h and 48 h) using the trypan blue to distinguish 
between total living and dead cells at each time points. Cells 
were counted at 0, 24, and 48 h of hAME treatment (Fig. 2a-
c). The number of living cells increased by about 30% in 
hAME-treated cells at both time points with respect to the 

Fig. 1 Effect of hAME on ARPE-19 cell viability. (a) with increasing 
concentration of hAME (from donor I) (12.5–200 µg/mL), obtained by 
7 ultrasound pulses for 10 s on ice; (b) with two hAMEs from different 

donors (I and II), obtained by different numbers of ultrasound pulses 
(7 and 15 for 10 s on ice) (see Methods Section); ARPE-19 cells were 
treated for 24 h with hAME (50 µg/ml). * p < 0.05 vs. untreated
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Fig. 3 Effect of hAME on ARPE-19 cells exposed for 24 h to oxida-
tive stress stimuli. Evaluation of ARPE-19 viability in the presence of 
(a) increasing concentration of H2O2; (b) increasing concentration of 

TBHP; (c) treatment with 350 µM H2O2 and 30 µM TBHP in combi-
nation with 50 µg/mL hAME. * p < 0.05 vs. untreated; § p < 0.05 vs. 
H2O2; ^ p < 0.05 vs. TBHP

 

Fig. 2 Effect of hAME on ARPE-19 cell proliferation. (a) Quantifica-
tion of total living cells treated for 24–48 h with hAME (50 µg/mL) via 
trypan blue assay. (b, c) Representative microscopic images of ARPE-

19 cells not treated or treated with hAME for 48 h, respectively (scale 
bar: 100 μm, 20X magnification). * p < 0.05 vs. 24 or 48 h
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an increase of about 180% in the area occupied by EAFDs 
with respect to the untreated control, and that the hAME 
was able to reduce this increase to about 45%.

Discussion

Retina is a highly structured, polarised, and specialised tis-
sue, with cells of different histological origins. Healing of a 
heavily damaged retina would require the coordinated inter-
vention of many differentiated cell types, most of which are 
endowed with scarce plasticity and stem potency, to recon-
stitute a complex tissue architecture [20]. Spontaneous 
retinal healing has not been extensively studied in humans, 
however, it appears to have lower possibilities than in other 
vertebrates, such as fishes or amphibians, especially when 
cell regeneration should occur [20]. While Müller cells can 
regenerate and provide different neural cell types to some 
extent [21], RPE cells have a limited regenerative poten-
tial [22, 23], but rather undergo mesenchymal trans-differ-
entiation and subsequent uncontrolled proliferation when 
exposed to factors from vitreous, thus contributing to PVR 
[24].

Prompted by the preliminary observation, showing an 
apparent pro-proliferative effect on ARPE-19 cells of the 

hAME inhibits EMT in ARPE-19 cells

First, a wound healing assay was employed to evaluate 
cell motility. ARPE-19 cells were seeded at confluence 
and treated for 24 and 48 h with hAME and/or TGF-β1, 
a known inducer of ARPE-19 cell motility [19]. Results 
shown in Fig. 5a reveal that the propensity to migrate was 
inhibited in cells treated with hAME by about 30% and 50% 
with respect to the untreated and TGF-β1 treated controls, 
respectively.

Moreover, protein expression of epithelial (Zonula 
occludens protein 1, ZO-1) and mesenchymal (N-Cad) mark-
ers was evaluated (Fig. 5b). Cells were cultivated in serum 
free medium treated for 24 h with TNF-α + TGF-β2, which 
reduced the expression of ZO-1 while increasing N-Cad. 
Treatment with hAME alone did not determine a significant 
alteration of both ZO-1 and N-Cad. Instead, hAME treat-
ment was able to significantly counteract TNF-α + TGF-β2 
modulation of ZO-1 and N-Cad.

Finally, to evaluate if hAME is able to inhibit EMT-
associated fibrotic deposit (EAFD) formation, we used a 
protocol established by Takahashi et al. [18]. In particular, 
ARPE-19 cells were treated with TNF-α + TGF-β2, known 
inducers of EAFD, in the presence or absence of hAME. 
Results in Fig. 6a-b reveal that cytokines treatment induced 

Fig. 4 Effect of hAME on ARPE-
19 cell apoptosis. (a) Dot plots 
of Annexin-V/7AAD evalua-
tion via FACS analysis of cells 
treated with H2O2 (a) living and 
(b) dead cells or TBHP (c) living 
and (d) dead cells. * p < 0.05 vs. 
untreated
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were induced by ARPE-19 cell exposure to TNF-α and 
TGF-β2. hAME treatment consistently reduced the effect 
of cytokines on EAFD formation, prevented the ZO-1 
decrease and N-Cad increase at the level of the untreated, 
respectively. In migration assays, hAME treatment was able 
to reduce the motility of unstimulated ARPE-19 cells, and 
of TGF-β1-stimulated cells.

These hAME properties observed in vitro could explain 
the good outcomes of surgery employing hAM, and sup-
port the notion that regeneration could have occurred, while 
fibrosis could have been prevented, in patients. Of note, in 
our operative setting [5], complete anatomical continuity 
was achieved in recurrent macular holes using a patch of 
hAM, indicative of regeneration, and no scar was observed.

Conclusions

Although the composition of hAM has been studied for a 
long time, we do not know much about the versatility of 
its many properties. Furthermore, the heterogeneity of the 
hAM (it is known that the composition and properties are 
different in different districts [28]) could represent both a 
limitation and an opportunity in several applications and 
deserve to be investigated, especially before routine clinical 
use. These findings encourage us to increase the efforts to 
unravel the potential of this natural product such as hAM, 

whole hAM, we produced an extract to assure reproduc-
ibility, manageability, and precise dosing for experimental 
procedures. Our results indicate that hAME was able to 
increase viability in ARPE-19 cells and to enhance in vitro 
proliferation. Hillenmeyer et al. [15] found that the exposi-
tion of ARPE-19 cells to a fragment 2 × 2 mm of hAM for 3 
days, in serum-free medium, did not increase proliferation 
albeit increasing viability. hAM is used differently in the 
two studies: as an extract in the former and as a fragment in 
the latter, and by different experimental protocols. In addi-
tion, hAME was able to strongly prevent the reduction of 
cell viability induced by oxidative stress (H2O2 or TBPH). 
Despite the positive effect on cell viability, hAME treatment 
did not protect cells from apoptosis induced by oxidative 
stress; this is apparently in contrast with a paper of Krishna 
et al. [25] in which the whole hAM instead protects the 
ARPE-19 cells from hyperoxia. However, the experimental 
setting of these authors was very different in that ARPE-19 
cells were grown onto a decellularized whole hAM with the 
aim of producing a transplantable tissue.

We then looked at the hAME effects on cell migration, 
EMT marker expression, and EAFD formation, because it 
was demonstrated that the mesenchymal transition in the 
RPE cells contributes to retina alterations observed in PVR 
and diabetic vitreoretinopathy [26]. ZO-1 downregulation, 
N-Cad upregulation (two well-known markers of epithelial 
and mesenchymal phenotype [27]), and EAFD formation 

Fig. 5 Effect of hAME on EMT-related traits of ARPE-19 cells treated 
with hAME in the presence or not of TGF-β1 or TNF-α + TGF-β2. 
(a) Motility of ARPE-19 was evaluated by wound healing assay and 

evaluation of the % free-cell area. (b) Western blot and relevant quanti-
tative proteins in ARPE-19 cells. * p < 0.05 vs. untreated; ̂  p < 0.05 vs. 
hAME; § p < 0.05 vs. TGF-β1; ~ p < 0.05 vs. hAME + TGF-β + TNF-α
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