
JOINT DOCTORATE BETWEEN
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Notation

In this work, natural units are employed where ℏ = c = kB = 1. The Minkowski
metric tensor is gµν = diag(1,−1,−1,−1). Greek indices are assumed to run from
0 to 3, whereas Latin indices run from 1 to 3. Vectors in 3-space are denoted via
their components (e.g. ki) or with bold letters (e.g. k). Sometimes components of
three vectors will be denoted with the letter corresponding to the axis in a Cartesian
reference; when this is done it is implied that kx = k1, ky = k2 and kz = k3. The
Levi-Civita symbol is such that ϵ0123 = 1. Contracted indices are intended to be
summed over, and they are also denoted with a dot, e.g. v ·w = vµw

µ =
∑3

µ=0 vµw
µ

and l : m = lµνm
µν =

∑3
µ,ν=0 lµνm

µν .

Operators are denoted with a wide hat T̂µν and versors with a smaller hat t̂.
An exception to this rule is the Dirac field operator, which is simply Ψ. The trace
on the Hilbert space is denoted with a capital T, i.e. Tr, whereas traces on finite-
dimensional spaces are simply tr. Other notation is introduced when needed in the
text.
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Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit den Spin-Eigenschaften quantenmechani-
scher relativistischer Flüssigkeiten und versucht, einige Beobachtungen im sog.
Quark-Gluon-Plasma (QGP) zu erklären. Das QGP ist ein in Schwerionenkollisio-
nen erzeugter Zustand extrem heißer und dichter stark wechselwirkender Materie,
der sich als quantenmechanische Flüssigkeit beschreiben lässt. Die Energiedichte in
diesen Kollisionen ist derart hoch, dass die beteiligten Nukleonen schmelzen, sodass
das resultierende Fluid, welches das extremste in der Natur bekannte darstellt, aus
deren Konstituenten, den Quarks und Gluonen, besteht. Die Wissenschaft ist sich
weitgehend einig, dass die Materie in unserem Universum kurz nach dem Ur-knall im
Zustand eines QGP war, sodass die hier durchgeführten Studien auch einen Beitrag
zur Physik des frühen Universums leisten können.

In peripheren Kollisionen wird das QGP mit einem nichtverschwindenden Bahn-
drehimpuls erzeugt. Während sich die Flüssigkeit ausdehnt, abkühlt, und schließlich
zu Teilchen hadronisiert, wird erwartet, dass der Bahndrehimpuls des Fluids in
Spin der emittierten Teilchen umgewandelt werden kann. Diese Vermutung wurde
bestätigt, als die STAR Collaboration die Polarisation der Λ-Hyperonen gemessen
hat. Diese Polarisation als Funktion der Kollisionsenergiedichte (die sog. globale Po-
larisation) verschwindet nicht, und konnte gut mit einem Modell beschrieben wer-
den, das auf dem lokalen Gleichgewicht basiert. In diesem Modell geht die sog. ther-
mische Vortizität, welche als die antisymmetrische Ableitung der Vierer-Temperatur
definiert ist, als Quelle der Polarisation ein, sodass das QGP als das am schnellsten
rotierende jemals erzeugte Fluid angesehen werden kann. An diesem Punkt muss
angemerkt werden, dass der Polarisationsvektor zu diesem Zeitpunkt nur bis zur
führenden Ordnung in der thermischen Vortizität berechnet werden konnte.

Überraschenderweise war die Polarisation als Funktion des Azimutwinkels bei
festgehaltener Energiedichte (auch lokale Polarisation genannt) mit dieser Art Mod-
ell nicht vereinbar. Der Unterschied zwischen Theorie und Experiment war derart,
dass zwischen der theoretischen Vorhersage und den experimentellen Daten gerade
ein Vorzeichenunterschied bestand, weswegen sich für dieses Problem der Name po-
larization sign puzzle etabliert hat. Dieses Resultat sorgte für Aufruhr unter den
beteiligten Wissenschaftlern, sodass viel Arbeit in die Aufklärung dieses Wider-
spruchs investiert wurde. Die Notwendigkeit einer Lösung war die Hauptmotivation
für die vorliegende Arbeit.

Das QGP wird mit großem Erfolg als ein Fluid modelliert, welches sich quasi im
Gleichgewicht befindet. Aus diesem Grund wurden in dieser Arbeit relativistische
Flüssigkeiten im lokalen und globalen Gleichgewicht studiert. Insbesondere wurde
das Dirac-Feld im globalen Gleichgewicht mit nichtverschwindender thermischer Vor-
tizität analysiert, mit der Zielsetzung, einen exakten Ausdruck für die Polarisation
zu finden. Um dieses Ziel zu erreichen, war es notwendig, eine neue Methode zur
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Berechnung von Erwartungswerten in einem Gleichgewicht mit nichtverschwinden-
der thermischer Vortizität anzuwenden, basierend auf einer iterativen Methode für
die Berechnung des Erwartungswertes des Teilchenzahloperators â†s(p)ât(p

′). Dieser
Operator kann als eine Reihe von Funktionen ausgedrückt werden und erlaubt, jede
thermische Zweipunktfunktion in der freien Feldtheorie zu berechnen. Auf diese
Weise kann die exakte Wignerfunktion bestimmt werden, welche eine Hilfsfunktion
für die Berechnung von Erwartungswerten wie z.B. des Energie-Impuls-Tensors,
des Vektor- und Axialvektorstroms, sowie des Polarisationsvektors darstellt. Es
war möglich, die genannten Größen für masselose Teilchen mit Hilfe einer Reg-
ularisierung names analytischer Destillation zu bestimmen, welche darin besteht,
den analyti-schen Teil einer Reihe von Funktionen zu extrahieren. Im Zuge dessen
wurden asymptotische Reihenentwicklungen von Funktionenreihen gefunden, welche
Anwendungen in der mathematischen Physik haben könnten. Die analytische Des-
tillation reproduziert die aus der Literatur bekannten Ergebnisse, wurde aber auch
auf bisher nicht untersuchte Fälle angewandt. So war es beispielsweise möglich, einen
Gleichgewichts-zustand zu untersuchen, in dem Beschleunigung undWinkelgeschwin-
digkeit nicht orthogonal zueinander stehen, und so die Abhängigkeit bspw. der En-
ergiedichte vom Skalarprodukt der Winkelgeschwindigkeit und der Beschleunigung
zu bestimmen.

Schließlich wurde dank der iterativen Methode ein analytischer Ausdruck für die
Polarisation von Dirac-Fermionen im globalen Gleichgewicht gefunden. Diese neue
Formel enthält eine Funktion, welche als eine Verallgemeinerung der Fermi-Dirac-
Verteilung für nichtverschwindende Vortizität aufgefasst werden kann. Die Formel
wurde mit den experimentellen Daten zur globalen Polarisation verglichen, um die
Bedeutung von Korrekturen höherer Ordnung in der thermischen Vortizität für die
Physik der Polarisation zu verstehen. Allerdings hat sich herausgestellt, dass die
thermische Vortizität, welche sich in Schwerionenkollisionen entwickelt, zu gering
für einen nennenswerten Einfluss von Korrekturen höherer Ordnung ist. Mit ähn-
lichen Techniken war es möglich, die exakte Polarisation für Teilchen mit beliebigem
Spin zu berechnen, wobei die lineare Näherung für fast alle Anwendungen ausre-
ichend ist. Diese Untersuchungen waren dennoch notwendig um zu zeigen, dass
die Vernachlässigung von Korrekturen höherer Ordnung nicht die Ursache für das
polarization sign puzzle war.

Weiterhin wurde die Physik des lokalen Gleichgewichts untersucht, welches das
globale Gleichgewicht verallgemeinert. Der Hauptunterschied zwischen globalem
und lokalem Gleichgewicht liegt darin, dass in letzterem die symmetrische Ableitung
der Vierer-Temperatur nicht verschwinden muss: diese Größe wird als thermischer
Schertensor bezeichnet. Nun stellt sich die Frage, ob dieser Tensor, der in Schwer-
ionenkollisionen von der gleichen Größenordnung wie die thermische Vortizität ist,
zur Polarisation beitragen kann. Tatsächlich wurde herausgefunden, dass dies in der
Tat der Fall ist: sowohl die thermische Vortizität als auch die thermische Scherung
beeinflussen die Polarisation von Teilchen.

Nach der Berechnung einer neuen Quelle für die Polarisation war es notwendig,
die neuen theoretischen Vorhersagen zu überprüfen. Diese Analyse wurde mittels
einer Simulation der Entwicklung des QGP unter Verwendung von 3+1 dimension-
alen hydrodynamischen Codes durchgeführt, die zunächst so eingestellt wurden, dass
bekannte experimentell messbare Größen korrekt reproduziert werden konnten. Ein
Resultat war, dass die thermische Scherung bei der Lösung des polarization sign puz-
zle hilft. Weiterhin beeinflusst die Geometrie der sog. Freeze-Out-Hyperfläche die
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Ergebnisse stark: in Schwerionenkollisionen wird erwartet, dass diese Hyperfläche
isotherm ist, da das chemische Potential vernachlässigt werden kann. Unter dieser
Näherung kann die thermische Scherung das polarization sign puzzle lösen.

Weitergehende theroretische Untersuchungen sowie größere Datenmengen, beson-
ders für Kollisionen niedriger Energie, werden benötigt, um das polarization sign
puzzle ein für alle Mal zu lösen. Vom theoretischen Standpunkt aus sollte die
Wichtigkeit des Anfangszustandes für die Physik der Polarisation bestimmt wer-
den. Vorläufige Studien suggerieren, dass die Volumenviskosität eine Rolle spielen
könnte, sodass sich thermische Vortizität und Scherung länger im Nichtgleichgewicht
befinden können.
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Introduction

The standard model of particle physics describes the Universe using a dozen matter
particles and three fundamental interactions: the electromagnetic, weak and strong
forces. The latter is responsible for interactions between hadrons and, more funda-
mentally, between quarks. The model describing the strong interaction is an SU(3)
gauge theory, where Dirac fields describe the quarks, whereas the gluons, which are
the quanta of the SU(3) gauge field, mediate the interaction. This theory is known
as Quantum Chromo-Dynamics (QCD).

QCD exhibits many remarkable phenomena depending on the energy scale. At
the scales we experience in everyday life, strongly interacting particles are tightly
packed into hadrons. This behaviour is called “confinement”. In such a regime,
perturbation theory is unreliable because the coupling constant of the strong inter-
action is too large. Therefore one has to use non-perturbative methods to study
confinement. The strong interaction also exhibits asymptotic freedom [1]. Namely,
the QCD coupling constant becomes smaller as we increase the energy scale. In the
high-energy regime, perturbation theory is applicable, and its results are reliable.
This behaviour testifies to how different the same theory can look at different energy
scales, and is opposite compared to quantum electrodynamics.

One of the most compelling ways to study QCD is by colliding heavy ions at
relativistic energies to probe the theory in extreme conditions. Particle colliders
such as the Large Hadron Collider (LHC, at Geneva) and the Relativistic Heavy Ion
Collider (RHIC, Brookhaven) have been built to this end. By colliding nuclei, the
outcome of countless interactions among nucleons is observed in the form of particles
that fly to the experimental detectors after the collision. These kinds of experiments
were able to discover a new phase of QCD matter. The new state of matter was
predicted to be well described as a relativistic fluid of strongly interacting particles
and was named Quark-Gluon Plasma (QGP) [2].

The QGP is a phase of hadronic matter, in the same sense as the water vapour is
a phase of water. Soon after the Big Bang, QGP was the dominant form of matter
in our Universe [3] and investigating this exotic QCD plasma can shed some light
on early Universe phenomena. The study of phase transition from hadronic matter
to QGP is a very active field of research. In the small-baryon-density regime, lattice
gauge theory is used quite successfully, and the phase transition appears to be a
cross-over. At higher densities lattice QCD stops being reliable due to the infamous
“sign problem”, which makes calculations unfeasible. Some speculations suggest
that, for larger densities, the phase transition changes its character turning into a
first-order phase transition. It is conjectured that, at some intermediate density, a
critical point should appear where the order of the phase transition changes from
cross-over to second-order before turning to first-order. The search for the critical
point is one of the most active research areas in heavy-ion physics, both theoretically
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and experimentally. Indeed, many new facilities, such as NICA (Dubna, Russia) and
FAIR (Darmstadt, Germany), will soon start to probe the QGP in the baryon density
range where the critical point is expected.

Furthermore, due to the high energy involved in the collision, topological gauge
configurations with non-vanishing winding number may emerge in the QGP via
sphaleron transitions. If this is the case, a fluctuating axial chemical potential
could be measured experimentally, for example, via the chiral magnetic effect [4].
The chiral magnetic effect and its experimental detection represent another vibrant
research area.

The QGP evolution is described successfully using quasi-ideal hydrodynamics,
where the ratio of shear viscosity η to entropy density s is the smallest ever observed
in Nature. Indeed, it is remarkably close to the theoretical limit of η/s ∼ 1/4π, de-
rived from the AdS/CFT correspondence [5]. Soon after its creation, the QGP ex-
pands, cooling down and rarefying until it eventually decays into new hadrons. This
stage is called hadronization or freeze-out. After the freeze-out, particles produced
fly towards the detectors, where they are measured.

The droplets of QGP formed experimentally, especially in non-central heavy-
ion collisions, can carry a significant amount of orbital angular momentum, that
should be taken into account in the theoretical description of the QGP and should be
detectable experimentally [6]. One may surmise that a fraction of the orbital angular
momentum will be transferred in the form of spin to the hadrons once they are
formed during the freeze-out stage. This effect implies hadrons produced at freeze-
out to have their spin polarized. Spin is a fundamental quantum number describing
the internal angular momentum of particles. It plays a crucial role in classifying
particles in bosons (integer spin) and fermions (half-integer spin) and dictating their
properties via the spin-statistics theorem. Heavy-ion collisions provide a unique
opportunity to study spin in the relativistic realm. The first theoretical calculations
predicted spin polarization of particles produced at freeze-out to be driven by the
thermal vorticity tensor, which is related to the angular velocity and the acceleration
experienced by the fluid [7].

Such an effect was first detected in 2017 by the STAR experiment at RHIC,
which measured for the first time a non-vanishing spin polarization of the Λ particle
[8]. The experiment showed a signal of global polarization, which is the average
spin of the Λ hyperon as a function of the collision energy. The reason why the
Λ hyperon plays a prominent role in polarization physics is that it decays weakly
into proton p and pion π: the weak interaction violates parity which causes the
spin of the Λ to be mainly in the direction of the daughter proton. This finding
was in agreement with the theoretical calculations and was a further success of the
fluid-dynamic description of the QGP.

This milestone measurement stirred the community as it opened a new avenue
of research in heavy-ion phenomenology: spin physics. After the first measurement,
experiments collected more and more data, disclosing interesting phenomena and
posing many intriguing challenges to theorists. The first to appear was the depen-
dence of the polarization vector of the Λ particle on transverse momentum and the
azimuthal angle, the so-called local polarization. The data show that the projection
of the polarization vector predicted theoretically along the beam axis differs by a
sign compared to the experimental measurements. Such inconsistency has since been
known in the literature as the polarization sign puzzle. A massive theoretical effort
was made to try to explain such a disagreement, and the present thesis is part of it.
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Furthermore, novel spin-related phenomena have been observed experimentally.
One such example is the so-called spin alignment for spin-one particles (in particular,
of the ϕ and K∗ mesons)[9]. The vorticity of the fluid cannot explain the magnitude
(nor the sign) of the signal measured, which suggests that the origin of alignment
has to be different. Even more recently, the evidence of alignment for a charmonium
state such as the J/ψ has been reported.

From the theoretical standpoint, a density operator can be used to describe a
quantum-relativistic fluid such as the QGP. The formalism of the non-equilibrium
density operator, introduced by Zubarev [10] and reworked by other authors later
[11], represents an ideal tool for this goal. The non-equilibrium density operator
allows to describe a system close to (or at) a state of global equilibrium. Additionally,
it provides a clear-cut distinction between dissipative and non-dissipative effects and
allows deriving Kubo-like formulae for near-equilibrium corrections [12].

For relativistic systems, global equilibrium includes the familiar case of a static
fluid at equilibrium with a constant temperature as well as less trivial examples that
are more relevant to the physics of heavy-ion collisions. For example, global equi-
librium can describe rigidly rotating and accelerating systems, where the values of
angular velocity and acceleration are encoded into the (constant) thermal vorticity
tensor, which was identified as the source of polarization. Computing thermal ex-
pectation values in systems at equilibrium with non-vanishing thermal vorticity has
proved a formidable problem. Typically, it is tackled by solving the field equations
in a curvilinear system of coordinates.

To calculate expectation values at global or local equilibrium an ancillary func-
tion can be used: the Wigner function. The reason why it is convenient to use it is
that the Wigner function is a quantum generalisation of the familiar concept of the
distribution function used in kinetic theory. Once the Wigner function is known, all
other expectation values, such as the energy-momentum tensor, particle currents and
the spin vector, can be calculated by integrating it. In the trivial case of equilibrium
with constant temperature and vanishing thermal vorticity, the Wigner function has
long been known. The form of the Wigner function at general global equilibrium
with non-vanishing vorticity is one of the subjects of this thesis [13, 14].

In the case of local equilibrium, expectation values can rarely be computed ex-
actly, the task being possible only if some symmetry is assumed [15]. However, we
can use linear response theory to get corrections to the global equilibrium case. With
the density-operator formalism, first-order corrections to the Wigner function, which
are linear in the gradients of thermodynamic quantities (e.g. temperature, chemical
potentials, and so on), can be systematically calculated. With this technique, novel
contributions to the spin vector have been found that can provide the solution to the
long-standing spin puzzle [16, 17]. With the density operator formalism, it is possi-
ble to show that a symmetric tensor, called thermal shear, produces a non-vanishing
polarization.

This thesis is organized as follows. In chapter 1 we review Zubarev’s formalism
for systems at global and local equilibrium. We summarize the group-theoretical
description of the Dirac field, which will be used in later chapters, and we introduce
the Wigner function for such a field. Moreover, we brush up on the concept of spin
in a relativistic field theory, both for massive and massless particles, and we obtain
formulae expressing its expectation value in terms of the Wigner function for a gas
of fermions.

Chapter 2 is devoted to a phenomenological description of the QGP. After a
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brief historical introduction, we discuss the phase diagram and the current under-
standing of the evolution of matter in a heavy-ion collision. Then, we delve into
the phenomenology of spin, describing the spin sign puzzle and a smattering of
alignment physics, which is relevant for particles with spin larger than one-half.

The calculation of expectation values at global equilibrium is the main topic of
chapter 3. We start by obtaining some asymptotic formulae for series of functions.
These will be of capital importance for a new technique developed to compute ex-
pectation values at global equilibrium: the analytic distillation. To calculate mean
values at global equilibrium, we use an iterative method to obtain the expectation
value of the number operator and use this result to express the Wigner function for
Dirac fermions at general global equilibrium with non-vanishing thermal vorticity.
Finally, the expectation value of quantities such as the energy-momentum tensor,
and axial and vector currents for massless fermions are obtained at equilibrium with
acceleration, with rotation, and with both rotation and acceleration. The definition
of a distribution function from the Wigner function in a chiral theory and mass
corrections to the expectation values is also discussed.

In chapter 4, we apply the results of the previous chapter to polarization physics.
We obtain the exact formula for the polarization vector of Dirac fermions at global
equilibrium and we discuss its phenomenological importance. Lastly, we compute
the exact spin density matrix and the spin vector for a gas of relativistic particles
with any spin.

The last chapter, chapter 5, is devoted to local equilibrium physics and the
study of thermal shear in phenomenological applications. Using linear response
theory, we find the contribution of thermal shear to the polarization vector and we
compare the prediction of the new formula with experimental data using realistic
3+1 hydrodynamics simulations. Our results show that the thermal shear can solve
the polarization sign puzzle.
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Chapter 1

Quantum statistical mechanics

In this chapter, the basic tools of relativistic quantum statistical mechanics are
introduced. The formalism presented here will be employed throughout this work.
First, we will review the quantum-mechanical meaning of the density operator and its
properties. Then we will proceed by revising the formalism of the non-equilibrium
density operator, introduced by Zubarev and co-authors [10] and later reworked
by Van Weert [11], and discuss the global and local equilibrium and the case of
dissipative fluids. After a quick review of the theory of the Dirac field from a group-
theoretical perspective, the Wigner function for such a field will be introduced.
We will disclose its properties and, after some discussion about spin physics in the
relativistic regime, we will conclude this chapter by providing formulae connecting
the Wigner function to the average spin of fermions.

1.1 Density operator

The density operator is a useful concept when dealing with statistical systems. Sup-
pose we have a macroscopic system of which we do not know the precise micro-state
[18]. What we mean by “the system” is actually an element of an ensemble of sys-
tems all prepared in the same way. Each sub-system can be in different micro-states
ψλ so that the knowledge of the system cannot be complete, and we can only know
the probability of the system being in the micro-state |ψλ⟩ (for the moment we
assume that these probabilities are somehow given). In this case, our system will
not be a pure state but a statistical mixture. To describe a statistical mixture, the
concept of state vector has to be generalized by introducing the density operator:

ρ̂ =
∑
λ

Pλ|ψλ⟩⟨ψλ|,
∑
λ

Pλ = 1. (1.1)

In the above formulae, Pλ are real positive numbers, that are interpreted as the
probability to observe the micro-state |ψλ⟩*. It is easy to realize that the density
operator is hermitian, positive semi-definite and its trace is unitary, i.e. Tr (ρ̂) = 1.
Moreover, since the density operator is expressed in terms of the quantum states
of the system, it follows that it is constant in the Heisenberg picture of quantum
mechanics, which will be employed throughout this work:

dρ̂

dt
= 0. (1.2)

*If λ is a continuous degree of freedom, the summation is to be intended as an integral.

1



Chapter 1

The density operator is very useful when dealing with expectation values. The
expectation value of an operator Ô on one of the micro-states of the system is given
by ⟨ψλ|Ô|ψλ⟩, and since the system is in the state ψλ with probability Pλ, the
expectation value of the operator Ô on the macro-state of the system is given by:

⟨Ô⟩ =
∑
λ

Pλ⟨ψλ|Ô|ψλ⟩.

Choosing any basis |ei⟩ of the Hilbert space and using the completeness relation∑
i |ei⟩⟨ei| = I, we have:

⟨Ô⟩ =
∑
λ,i

Pλ⟨ψλ|Ô|ei⟩⟨ei|ψλ⟩ =
∑
i

⟨ei|

(∑
λ

Pλ|ψλ⟩⟨ψλ|Ô

)
|ei⟩,

therefore:

⟨Ô⟩ = Tr
(
ρ̂Ô
)
. (1.3)

This formula will be used extensively in this work as it is very simple and also
suitable for perturbative calculations.

Until now we have assumed that the micro-states and their relative probability
are somehow given to us, and a procedure to identify the density operator shall be
introduced. Commonly, the density operator is inferred by an axiomatic method
that does not rely on the definition (1.1), but on assigning an a priori probability
for the system to be in one of the possible micro-state. This is done by maximising
the so-called Von-Neumann entropy, defined as:

Ŝ = −ρ̂ ln ρ̂. (1.4)

It is well-known that the entropy operator assigns a number to our “ignorance”
about the system or, in other words, to the amount of lacking information. By
this interpretation, as well as from explicit calculation, the density operator max-
imising the entropy is the one associated with a system where all micro-states are
equiprobable, which corresponds to the maximal lack of a priori knowledge about
the system.

Luckily, often times we have access to some properties that can help to better
identify the density operator. For example, we may know the mean energy and/or
the mean value of some conserved charge of the system. In such a case, the maxi-
mization of the entropy is a problem of maximisation of a function with additional
constraints, where the method of Lagrange multipliers can be used. In the above-
mentioned example of a system with fixed expectation values of energy and charge,
one has to maximise the functional:

F [ρ̂, β, ζ, ℓ] = −ρ̂ ln ρ̂− β
[
Tr
(
ρ̂Ĥ
)
− E0

]
+ ζ

[
Tr
(
ρ̂Q̂
)
−Q0

]
+ ℓ (Tr (ρ̂)− 1) ,

where Ĥ is the Hamilton operator, Q̂ is the charge operator and β, ζ and ℓ are
Lagrange multipliers. Notice how setting the derivative with respect to the Lagrange
multipliers to zero enforces the constraint of fixed mean energy, mean charge and
unitary trace.

The density operator maximising such a functional is

ρ̂ =
1

Z
e−βĤ+ζQ̂, (1.5)
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where Z is the partition function required by normalization:

Z = Tr
(
e−βĤ+ζQ̂

)
. (1.6)

and the physical interpretation of the Lagrange multipliers β and ζ is β = T−1 and
ζ = µ/T , where T and µ are the temperature and the chemical potential of the
system.

These concepts are well known in non-relativistic quantum statistical mechanics.
For the rest of this manuscript, we will be studying the case of relativistic fluids not
necessarily at equilibrium. The generalization of the density-operator formalism to
this physical situation will be the subject of the next section.

1.2 Relativistic-quantum statistical mechanics

The formalism of the so-called relativistic non-equilibrium density operator was first
introduced by Zubarev in 1979 and reworked by Van Weert in a later work [10, 11]
(see also [19] for a modern perspective and derivation). It allows describing a rela-
tivistic fluid out of equilibrium, although it is often implied that we are not far from
the equilibrium state. This formalism can be used to derive Kubo formulae for trans-
port coefficients, both dissipative [12, 20–23] and non-dissipative (the latter some-
times called the thermodynamic susceptibilities) [24–28]. Furthermore, Zubarev’s
formalism allows a clear-cut distinction between dissipative and non-dissipative ef-
fects. In this section, we will first review the general theory of the non-equilibrium
density operator, and then consider the cases of global and local equilibrium. The
procedure to obtain Kubo formulae for the dissipative and non-dissipative transport
coefficients will also be addressed.

1.2.1 Non-equilibrium density operator

Let us consider a macroscopic continuum medium, for which a relativistic description
is compulsory. Similarly to the non-relativistic case, where the state of the system
was characterized by using the energy and a conserved charge, we may use densities
such as the energy-momentum tensor and in some conserved current� to describe
the state of the medium at hand. These densities are interpreted as the result of the
thermal quantum average of the respective operator:

Tµν
true = Tr

(
ρ̂T̂µν

)
, jµtrue = Tr

(
ρ̂ĵµ
)
. (1.7)

The energy-momentum tensor and the conserved current operators fulfil:

∂µT̂
µν = 0, ∂µĵ

µ = 0.

Here and in what follows, operators are always assumed to be in the Heisenberg
representation. It is worth spending some words on the definition of the energy-
momentum tensor. In fact, in field theory, the energy-momentum and the angular
momentum tensors are not univocally defined [29]. For example, the Noether theo-
rem provides the so-called canonical energy-momentum tensor, whereas varying the

�Although one can consider more than one current, we will restrict ourselves to the treatment
of a single one. The generalization is straightforward.
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Lagrangian with respect to the metric yields the Belinfante energy-momentum ten-
sor. Other notable examples of different definitions are the Hilgevoord-Wouthuysen
and the de Groot-van Leeuwen-van Weert tensors [30, 31]. Although these ten-
sors differ in general, they yield the same global charge (i.e. the four-momentum
operator): this ambiguity in the choice of the energy-momentum tensor is called
pseudogauge. The choice of a pseudogauge also affects the spin tensor Ŝµ,νρ, which
is defined from

Ĵµ,νρ = xν T̂µρ − xρT̂µν + Ŝµ,νρ,

where Ĵµνρ is the total angular momentum density. A pseudogauge transformation
of these tensors reads:

T̂
′µν =T̂µν +

1

2
∇α

(
Φ̂α,µν − Φ̂µ,αν − Φ̂ν,αµ

)
,

Ŝ
′µ,νρ =Ŝµ,νρ − Φ̂µ,νρ +∇αẐ

µν,ρα.

where the following properties hold:

Φ̂µ,νρ = −Φ̂µ,ρν , Ẑµν,ρσ = −Ẑνµ,ρσ = −Ẑµν,σρ.

Despite yielding the same global charges, thermal expectation values at local equi-
librium appear to be different if computed in different pseudogauges, and the choice
of the “correct” pseudogauge is an open problem in the community [32]. Here, unless
explicitly stated, we will use the energy-momentum tensor in the Belinfante pseu-
dogauge, so that the energy-momentum tensor is symmetric and the spin tensor is
identically vanishing.

In practice, the full knowledge of T̂µν and ĵµ is neither required nor possible,
and the state of the system can be specified equally well by using a subset of such
densities: the energy density, the momentum flux and the charge density. To define
these quantities, we have to introduce the mathematical concept of a space-time foli-
ation [33]. Given a function τ(x), which is not necessarily the proper time of a given
observer, such that space-time can be decomposed into disjoint space-like hypersur-
faces defined by different constant values of τ , the collection of these hypersurfaces
is called a foliation of space-time and each hypersurface is a level-hypersurface. Let
nµ(x) be the future-oriented time-like vector normal to the unique level-hypersurface
in the foliation containing the point x, and ∆µν

n = gµν −nµnν the tangent projector
at such a point. The vector nµ can be identified with a four-velocity so that the
choice of a foliation is equivalent to the choice of a reference frame. Given these defi-
nitions, the energy density, the momentum flux and the charge density are expressed
as:

ε(x) = Tµνnµnν , (1.8a)

wµ(x) = ∆µαTανn
ν , (1.8b)

ρ(x) = nµj
µ. (1.8c)

If the state of the system is specified only by the above densities, we do not need the
full energy-momentum and current density, but only their projection with respect
to the hypersurface at hand. In other words, we do not need to specify the density
operator satisfying Eq.(1.7), but only a density operator that reproduces (1.8). No-
tice that such a density operator is not uniquely defined, as different Tµν and jµ
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may share the same relevant projections. Using the principle of maximum entropy
on the hypersurface Στ of the foliation, the generalised density operator reads:

ρ̂ =
1

Z
exp

[
−
∫
Στ

dΣµ

(
T̂µνβν − ζĵµ

)]
. (1.9)

Here βµ and ζ are Lagrange multipliers, and they are interpreted physically as the
ratio between the four-velocity and the proper temperature and the ratio between
the chemical potential and the proper temperature [11]:

βµ =
uµ

T
, T =

1√
β · β

, ζ =
µ

T
. (1.10)

Their values can be obtained, at least in principle, by solving the five constraints
equations:

nµ(x)T
µν(x) = nµ(x)⟨T̂µν(x)⟩, (1.11a)

nµ(x)j
µ(x) = nµ(x)⟨ĵµ(x)⟩, (1.11b)

where nµ(x) is the normal vector to Στ . Z is the partition function of the system,
defined as:

Z = Tr

(
exp

[
−
∫
Στ

dΣµ

(
T̂µνβν − ζĵµ

)])
, (1.12)

and it is such that the trace of the density operator is one, Tr (ρ̂) = 1.
Notice that the density operator (1.9) is not stationary, as it depends on time

through the operators and the space-time foliation. In fact, Eq. (1.9) is sometimes
called local-equilibrium density operator and it describes an ideal fluid in a non-
equilibrium state. The reason why the fluid is ideal will be clarified at the end of
the section, and by non-equilibrium we mean that the system is not in a global
equilibrium state. On the other hand, the true density operator must be constant
in the Heisenberg representation. If the system is in a state of local equilibrium
at some initial time τ0, then the true non-equilibrium density operator is simply
expressed by:

ρ̂true =
1

Z
exp

[
−
∫
Στ0

dΣµ

(
T̂µνβν − ζĵµ

)]
. (1.13)

It is interesting to notice that both (1.9) and (1.13) depend on a particular hyper-
surface in space-time, so expectation values computed with these operators may also
depend thereon.

Equation (1.13) defines the true, stationary, non-equilibrium density operator
describing the fluid. In most cases, however, the use of Eq. (1.13) is out of our reach
since very little is known about the hypersurface at τ0, whereas it is easier to use
Eq. (1.9) on a more convenient hypersurface. Using the Gauss theorem:

ρ̂true =
1

Z
exp

[
−
∫
Στ0

dΣµ

(
T̂µνβν − ζĵµ

)]

=
1

Z
exp

[
−
∫
Στ

dΣµ

(
T̂µνβν − ζĵµ

)
+

∫
Ω
dΩ

(
T̂µν∇µβν − ĵµ∇µζ

)]
,

(1.14)
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where Ω is the volume encompassed by Στ and Σ0 and in full generality we used ∇,
the covariant derivative.

Equation (1.14) shows that the difference between the true density operator and
the local equilibrium one is given by an integral over the volume Ω bounded by Στ0

and Στ . Interestingly, this difference is responsible for entropy production. It is
possible to prove, that given the entropy:

S = −Tr (ρ̂ ln ρ̂) =

∫
dΣµs

µ, (1.15)

then:
∇µs

µ = (Tµν
true − ⟨T̂µν⟩LE)∇µβν + (jµtrue − ⟨ĵµ⟩LE)∇µζ, (1.16)

where ⟨•⟩LE is computed using the density operator (1.9) whereas Tµν
true and j

µ
true are

true values appearing in the constraints (1.7). We refer the reader to Refs. [11, 19]
for the proof of equation (1.16).

The above equation shows clearly what is dissipative and what is not: using Eq.
(1.9) to compute expectation values in Eq. (1.7) we will obtain non-equilibrium
results for an ideal fluid as there is no entropy production, whereas if we use Eq.
(1.13) dissipative effects are taken into account. This is the reason why Eq. (1.9) is
called local-equilibrium density operator: it does not produce entropy.

1.2.2 Global equilibrium

A state of global equilibrium is defined not only by the requirement that the entropy
production (1.16) vanishes but also by imposing that the density operator is globally
defined, such that the dependence on the hypersurface Σ disappears. In other words,
and referring to Eq. (1.14), the volume integral should vanish for any volume for ρ̂
to be independent on Σ. Given that we are using a symmetric energy-momentum
operator, this condition is met if:

∇µβν +∇νβµ = 0, ∇µζ = 0, (1.17)

therefore the equilibrium state of the fluid is achieved if the four-temperature is a
Killing vector and if the ratio of chemical potential over temperature is (covariantly)
constant.

We will now focus our analysis on the Minkowski space-time in Cartesian coor-
dinates, where the covariant derivative is equivalent to the partial derivative. In this
case, global equilibrium is described by a constant ratio of chemical potential over
temperature, whereas the most general expression for the four-temperature vector
is:

β(x)µ = bµ +ϖµνxν , ϖµν = −1

2
(∂µβν − ∂νβµ) . (1.18)

In the previous equation, bµ is a constant four-vector and ϖµν is a constant antisym-
metric tensor called thermal vorticity. If we plug these expressions into the operator
(1.9), we readily obtain:

ρ̂ =
1

Z
e−P̂ ·b+

ϖ
2
:Ĵ+ζQ̂, (1.19)

where only global charges appear: the four-momentum operator P̂ , the angular
momentum-boost operator Ĵ , and the global charge Q̂:

P̂µ =

∫
dΣν T̂

νν , Ĵµν =

∫
dΣρ

(
xµT̂ ρν − xν T̂ ρµ

)
, Q̂ =

∫
dΣµĵ

µ. (1.20)

6



Relativistic-quantum statistical mechanics

We can see that, disregarding the global charge Q̂ for a moment, Eq. (1.19) is the
exponential of the generators of the Poincaré group. This observation will be useful
for the purposes of Chapter 3.

One may wonder about the physical meaning of the thermal vorticity. First of
all, since ϖ is an antisymmetric tensor, it is possible to decompose it along the
four-velocity uµ as follows:

ϖµν = ϵµνρσwρuσ + (αµuν − ανuµ), (1.21)

where the components are:

wµ = −1

2
ϵµνρσ, ϖνρuσ αµ = ϖµνuν . (1.22)

To make an analogy with the electro-magnetic tensor Fµν , here wµ plays the role
of the magnetic field, and αµ is the electric field. It will be sufficient to give an
interpretation to wµ and αµ to understand the meaning of the thermal vorticity. To
give such an interpretation, we consider the case ζ = 0 and discuss some notable
examples of global equilibrium:

� bµ = ( 1
T0
,0), ϖµν = ω

T0
(gµ1gν2 − gµ2gν1).

In this case, defining r2 = x2 + y2, the four-temperature, the scalar tempera-
ture, the four-velocity and the vector wµ read:

βµ =
1

T0
(1,−ωy, ωx, 0), T = γT0,

uµ = γ(1,−ωy, ωx, 0), wµ =
γ

T0
(0, 0, 0, ω). (1.23)

with γ = (1−ω2r2)−1/2. From the four-velocity uµ, it can be realized that we
are describing a fluid at equilibrium rigidly rotating around the z axis with a
constant angular velocity ω. The value of wµ makes it clear that wµ is nothing
but the ratio between the angular velocity ωµ and the proper temperature:

wµ =
ωµ

T
. (1.24)

� bµ = ( 1
T0
,0), ϖµν = a

T0
(gµ3gν0 − gµ0gν3).

In this case, we have:

βµ =
1

T
(1 + az, 0, 0, at) , T = γT0,

uµ = γ (1 + az, 0, 0, at) , αµ =
γa

T0
(at, 0, 0, 1 + az). (1.25)

where γ =
[
(1 + az)2 − a2t2

]−1/2
. To give a physical meaning to the parameter

a we consider an observer comoving with the fluid, who measures as the proper
temperature T = T0. This observer moves along the trajectory (1 + az)2 −
a2t2 = 1. If we compute the four-acceleration experienced by such an observer:

Aµ = u · ∂uµ =
a

T0
(at, 0, 0, 1 + az) = T0α

µ, A2 = −a2, (1.26)

so we can interpret a as the proper acceleration experienced by the observer
moving with the fluid cells such that T = T0. In this case, we can see that α
is the ratio between four-acceleration and proper temperature:

αµ =
Aµ

T
. (1.27)
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This analysis shows that the presence of non-vanishing thermal vorticity allows
the description of non-trivial equilibria, where the fluid is rigidly rotating, or expe-
riences a non-vanishing acceleration. Many systems can be described by this kind of
equilibrium. Examples in astrophysics include rapidly rotating neutron stars, or even
accretion disks around black holes (although to describe these systems a general-
relativistic treatment is required). More relevant to our aim is the QGP produced
in heavy-ion collisions, where the extreme violence of the collision produces a fluid
with extremely large acceleration and angular velocity.

1.2.3 Local equilibrium and linear response theory

In this section, we come back to the study of the more general case of a fluid at
local equilibrium described by the operator (1.9). Notice that the definition of local
equilibrium adopted here differs from the one commonly used in kinetic theory. In
kinetic theory, a system is said to be in local equilibrium if the distribution function
is such that the collision term of the Boltzmann equation vanishes, although the
equation itself would not in general be satisfied by such a distribution [34, 35]. The
operator (1.9) can, on the other hand, describe a system where interactions may or
may not be present, and no mention of their vanishing is made.

Although the local equilibrium density operator is an approximated form of
the true non-equilibrium density operator, computing expectation values at local
equilibrium represents a formidable challenge. It can be done exactly only if we
assume some additional symmetries for the hypersurface Στ , such as in the case of
a boost-invariant fluid [15]. In more general cases, the exact calculation is simply
not possible, and some approximation is needed.

One of the difficulties connected to the calculations of expectation values with the
local-equilibrium density operator lies in the fact that the operators in the exponent
are not globally defined, but are evaluated on the hypersurface Στ (from now on, the
subscript τ will be dropped). For the reader’s convenience, we repeat the definition
of the local equilibrium density operator, which we will denote from now on as ρ̂LE
to avoid confusion:

ρ̂LE =
1

Z
exp

[
−
∫
Σ
dΣµ

(
T̂µνβν − ζĵµ

)]
. (1.28)

If one deals with the expectation values of local operators, an approximation can be
found to cope with this difficulty. Let Ô(x) be a local operator, and consider the
expectation value:

⟨Ô(x)⟩LE = Tr
(
ρ̂LEÔ(x)

)
. (1.29)

The approximation we are going to use is the so-called hydrodynamic approximation.
The hydrodynamic regime is defined by the value of the Knudsen number Kn, that
is the ratio between microscopic ℓ and macroscopic L length-scales of the system,
Kn = ℓ/L. In the hydrodynamic limit one has Kn ≪ 1, so microscopic processes
happen on a much smaller scale compared to macroscopic ones. The microscopic
length scale can be identified with the mean free path between collisions in a kinetic
approach, or with the correlations lengths in a quantum system. On the other hand,
the typical macroscopic length-scale is given by the scale on which gradients are
non-negligible.

In the hydrodynamic regime, we expect the main contribution to the expectation
value of Ô(x) to come from the thermodynamic fields at the very same point x. In

8
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other words, we anticipate thermodynamic fields to vary on a much larger scale
compared to the relevant correlation and interaction lengths. Therefore, we can
Taylor-expand the thermodynamic quantities around the point x:

Tr
(
ρ̂LEÔ(x)

)
≃ 1

ZLE
Tr

(
exp

[
−
∫
Σ
dΣµ T̂

µν(y)[βν(x) + ∂λβν(x)(y − x)λ]

− ĵµ(y)[ζ(x) + ∂λζ(x)(y − x)λ]
]
Ô(x)

)
=

1

ZLE
Tr

(
exp

[
−βν(x)

∫
Σ
dΣµ T̂

µν(y)− ∂λβν(x)

∫
Σ
dΣµ (y − x)λT̂µν(y)

+ζ(x)

∫
Σ
dΣµ ĵ

µ + ∂λζ(x)

∫
Σ
dΣµ (y − x)λĵµ

]
Ô(x)

)
=

1

ZLE
Tr
(
exp

[
−βν(x)P̂ ν + ζ(x)Q̂

−∂λβν(x)
∫
Σ
dΣµ (y − x)λT̂µν(y) + ∂λζ(x)

∫
Σ
dΣµ (y − x)λĵµ

]
Ô(x)

)
. (1.30)

Notice that this expansion does not use any additional assumption other than the
hydrodynamic hypothesis: this means that it is quite general, but may not be the
best approximation of the statistical operator for some specific applications (see
Chapter 5).

The first part of the approximated local-equilibrium density operator is essen-
tially the same as the global-equilibrium density operator describing an equilibrium
at constant b and ζ (see Eq. (1.19)), the only difference being that the thermo-
dynamic fields have local values β(x) and ζ(x). The remainder is a correction to
such operator proportional to gradients of the four-temperature and chemical poten-
tial over temperature. In the zeroth-order approximation, one could neglect these
gradient corrections completely, so that the expectation value would be:

Tr
(
ρ̂LEÔ(x)

)
≃ 1

Zβ(x),ζ(x)
Tr
(
e−β(x)·P̂+ζ(x)Q̂(x)Ô(x)

)
≡ ⟨Ô(x)⟩β(x),ζ(x), (1.31)

where we introduced the notation ⟨•⟩β(x),ζ(x) to indicate an expectation value com-
puted at global equilibrium with local values of β and ζ, as in the above equation.
The above equation shows that a rough estimate of expectation values at local equi-
librium is given by the expectation values at global equilibrium but with x-dependent
thermodynamic fields.

To carry out calculations beyond this level of approximation, we have to rely
once more on the hydrodynamic hypothesis. Given the fact that the gradients in
Eq. (1.30) are small, we can expand the exponential itself but we have to proceed
with some care as the operators in the exponent do not commute. To cope with this
difficulty, we use the identity [11, 36]:

eÂ+zB̂ = eÂ

(
I+

∞∑
n=1

znB̂n

)
, (1.32)

where

Bn =

∫ 1

0
dλ1

∫ λ1

0
dλ2 · · ·

∫ λn−1

0
dλnB̂(λ1) · · · B̂(λn), B̂(λ) = e−λÂB̂eλÂ. (1.33)
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This formula allows expanding the density operator in Eq. (1.30) to any order in
gradients. For the purposes of this work, however, we shall only keep the first-order
expansion which leads to:

ρ̂LE ≃ 1

Z
e−β(x)·P̂+ζ(x)Q̂(x)

(
I− ∂λβν(x)

∫ 1

0
dz

∫
Σ
dΣµ (y − x)λT̂µν(y − izβ(x))

+∂λζ(x)

∫ 1

0
dz

∫
Σ
dΣµ (y − x)λĵµ(y − izβ(x))

)
(1.34)

where we used the fact that P̂ is the generator of translations to write:

ezβ(x)·P̂ T̂µν(y)e−zβ(x)·P̂ = T̂µν(y − izβ(x)),

ezβ(x)·P̂ ĵµ(y)e−zβ(x)·P̂ = ĵµ(y − izβ(x)).

Notice that also the partition function should be expanded accordingly and its
expansion in terms of gradients will be such that the correlators are the connected
ones, as commonly happens in field theory [24]. For our purposes, it suffices to
remind the reader that the connected two-point function is defined as:

⟨ÂB̂⟩c = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩, (1.35)

and will be denoted with a subscript “c”, as shown in the above formula.

Finally, the first-order correction in ∂λβν and ∂λζ to thermal expectation values
at local equilibrium is given by:

⟨Ô(x)⟩LE ≃⟨Ô(x)⟩β(x),ζ(x)

− ∂λβν(x)

∫ 1

0
dz

∫
Σ
dΣµ (y − x)λ⟨T̂µν(y − izβ(x))Ô(x)⟩c,β(x),ζ(x)

+ ∂λζ(x)

∫ 1

0
dz

∫
Σ
dΣµ (y − x)λ⟨ĵµ(y − izβ(x))Ô(x)⟩c,β(x),ζ(x). (1.36)

We have been able to map the calculation of expectation values at local equilibrium
to the one of correlators between Ô and T̂µν and ĵµ at global homogeneous equilib-
rium, significantly simplifying the task. These kinds of Kubo-like relations describe
the response of the fluid to the presence of small gradients, that put it slightly off
equilibrium. Notice however that, the striking difference between the relation (1.36)
and the usual Kubo formulae, is that the former is non-dissipative as in a system de-
scribed by the local equilibrium density operator the entropy production is vanishing
according to equation (1.16).

The same approximation can be used to compute dissipative transport coef-
ficients, as we briefly report here. In such a case we have to use the true non-
equilibrium density operator (1.14) (in flat space-time for simplicity). Approximat-
ing the local equilibrium part at zeroth-order, we have:

ρ =
1

Z
exp

[
−β(x) · P̂ + ζ(x)Q̂+

∫
dΩ

(
T̂µν∂µβν − ĵµ∂µζ

)]
. (1.37)

Notice that we are including the integral over the volume Ω, which is the only
difference between the true density operator (1.13) and the local-equilibrium one
(1.28). Therefore, according to Eq. (1.16), the entropy production is not zero
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and this is the reason why in this case linear-response theory provides dissipative
corrections.

If the evolution of the system is hydrodynamic throughout the volume Ω, we can
proceed exactly like before, obtaining:

⟨Ô(x)⟩LE ≃⟨Ô(x)⟩β(x),ζ(x)

−
∫ 1

0
dz

∫
dΩ ∂µβν⟨T̂µν(y − izβ(x))Ô(x)⟩c,β(x),ζ(x)

+

∫ 1

0
dz

∫
dΩ ∂µζ(x)⟨ĵµ(y − izβ(x))Ô(x)⟩c,β(x),ζ(x). (1.38)

This equation, with some additional manipulations [12, 19] can be cast in the form
of the standard Kubo relations. The above formula can be used to compute the
dissipative correction to the expectation value of the local operator Ô(x), leading
for example to the Kubo formulae for the shear and bulk viscosities η and ζ in the
case of Ô = T̂µν .

This kind of linear response theory is very general and will be used in the later
chapters to study polarization in relativistic fluids at local equilibrium.

1.3 Free Dirac field in the group-theory formalism

This work will be focused on the Dirac field and its properties at global and local
equilibrium. Therefore, before undertaking such a study and especially for the pur-
poses of Chapter 3, it is useful to review some key concepts. The quantum theory of
the Dirac field has been extensively studied, and can be found in any quantum field
theory textbook [37–39]. In this section, we will follow the construction due to S.
Weinberg [40–42], which heavily uses the theory of the Lorentz group. Additional
details concerning the group theory of the Lorentz group are relegated to Appendix
A.

The free Dirac field in flat space-time can be expanded as:

Ψ(x) =
1

(2π)3/2

1/2∑
s=−1/2

∫
d3p

2ε

[
âs(p)us(p)e

−ip·x + b̂†s(p)vs(p)e
ip·x
]
. (1.39)

Here âs(p) and its adjoint â†s(p) are the annihilation and creation operator for par-
ticle states of momentum p and spin state s. The analogues for antiparticle states
are denoted as b̂s(p) and b̂

†
s(p). This expansion is completely general, and the quan-

tum number s can describe either the spin or the helicity of the field. The in-
tegration variable is the on-shell momentum, and ε is the corresponding energy
ε =

√
p2 +m2. Creation and annihilation operators in the expansion (1.39) fulfil

the anti-commutation rules:

{âs(p), â†t(p′)} = 2ε δst δ
3(p− p′),

{b̂s(p), b̂†t(p′)} = 2ε δst δ
3(p− p′),

where all other possible anti-commutators vanish. The field expansion (1.39) can
be written in a compact form by arranging the 4× 1 column-spinors us(p) and the
annihilation operators âs(p) into vectors as:

U(p) = (u1/2(p), u−1/2(p)) Â(p) =

(
â1/2(p)

â−1/2(p)

)
. (1.40)
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Using this notation both for us(p)âs(p) and vs(p)̂b
†
s(p), the field expansion reads:

Ψ(x) =
1

(2π)3/2

∫
d3p

2ε

[
U(p)Â(p) e−ip·x + V (p)B̂†(p) eip·x

]
. (1.41)

Since U(p)Â(p) is a multiplication of a 4×2 matrix by a 2×1 one, this is effectively
just a compact way to express the sum over s in Eq. (1.39).

The interesting feature of the spinors U(p) and V (p) is that they are related
to the so-called standard Lorentz transformation, which is used to construct one-
particle states in relativistic quantum mechanics. Indeed, the standard procedure
to build the basis of the Fock space starts by constructing a “standard” state, with
momentum p, |p, σ⟩ where σ refers e.g. to the spin of the state. Then, a standard
transformation, which we denote as [p] is defined such that it transforms the standard
four-momentum p into the four-momentum p, i.e., pµ = [p]µνpν . The Fock space
of particles with momentum p is built using the unitary representation of such a
transformation |p, σ⟩ = U([p])|p⟩. This construction can be made both for massive
and massless particles, although the standard vector p and transformation [p] differ
in form in the two cases, as we will discuss later.

The form of the spinor in terms of the standard Lorentz transformations is fixed
by requiring that the field Ψ(x) transforms as the irreducible representation (0, 1/2)⊕
(1/2, 0) of the orthochronous Lorentz group SO(1, 3)↑ [42]. Therefore, the spinor in
the frame where the particle has momentum p can be obtained from the one in
the standard frame (where the particle momentum is p) by acting on it with the
(0, 1/2)⊕ (1/2, 0) representation of [p] (see Appendix A):

U(p) =

(
D([p]) 0

0 D([p])†−1

)
U(p), V (p) =

(
D([p]) 0

0 D([p])†−1

)
V (p),

(1.42)

where D( ) is the 2-dimensional (0, 1/2) representation D(0,1/2) of SO(1, 3)↑. In
general, a Lorentz transformation in the (0, 1/2) ⊕ (1/2, 0) representation is given
by:

S(Λ) =

(
D(Λ) 0
0 D(Λ)†−1

)
, (1.43)

and matrices of this kind are used to transform the Dirac field Ψ. The generators
of SO(1, 3)↑ in the (0, 1/2)⊕ (1/2, 0) representations are:(

D(0,1/2)(Jµν) 0

0 D(1/2,0)(Jµν)

)
=
i

4
[γµ, γν ] ≡ Σµν ,

where the γ matrices are in the so-called Weyl representation:

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
I 0
0 −I

)
, (1.44)

and σµ = (I, σ1, σ2, σ3), σµ = (I,−σ1,−σ2,−σ3), with σi being the Pauli matrices
and σµ = gµνσν . A generic Lorentz transformation, like the one in Eq. (1.43), can
be written as:

S(Λ) = exp

[
−iϕ

µν

2
Σµν

]
. (1.45)
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Free Dirac field in the group-theory formalism

In the standard frame, the spinors U(p), V (p) are given by:

U(p) = N

(
p
⌣
⌢
p

)
, V (p) = N

(
p
⌣
C−1

⌢
p C

)
. (1.46)

Here, N is a normalization factor and C = iσ2
�; the arcs attached to the four-

momentum p represent the mapping of the vector p from the Minkowski space to
the space of 2× 2 hermitian matrices. A matrix with a lower arc is given by:

X
⌣

≡ Xµσµ , (1.47)

whereas the one with the upper arc is:

⌢
X= Xµσµ . (1.48)

These definitions are commonly used to construct the SL(2,C)−SO(1, 3)↑ morphism
[43]. See also Appendix A.

Up until now the discussion has been quite general and applies both to massive
and massless fields. The differences between the two cases lie in the standard vector
p, the standard Lorentz transformation [p] and the normalization factor N . In the
massive case, one can choose pµ = (m,0), N = 1/

√
m and we have:

U(p) =
√
m

(
I
I

)
,

where I the 2 × 2 identity matrix. On the other hand, in the massless case, the
standard vector is usually chosen to be pµ = (κ, 0, 0, κ), where κ > 0 is some fixed
energy value. In this case, N = 1/

√
2κ and the spinor U(p) reads:

U(p) =
1√
2κ


2κ 0
0 0
0 0
0 2κ

 =
√
2κ


1 0
0 0
0 0
0 1

 .

Notice that, because of the above form, if we consider the column spinor of the
massless field with helicity +1/2, which is the first column of the matrix U(p) and
will be denoted as u+(p), then only its upper two components are non-vanishing.
For the spinor u−(p), in contrast, only the lower two components can be non-zero.

By construction, and by looking at the equations (1.40) and (1.46), it is apparent
that the spinors depend on the choice of the standard vector p and of the standard
Lorentz transformation [p], which are in principle arbitrary. However, also the cre-
ation and annihilation operators will depend on that choice [44] and the construction
is such that the field operator is independent of such a choice.

The Dirac field obeys the Dirac equation(
i/∂ −m

)
Ψ = 0, (1.49)

which in terms of the spinors reads:

(/p−m)U(p) = 0, (/p+m)V (p) = 0,

�The appearance of the matrix C in the V spinor is dictated by the transformation properties
of the Â and B̂ operators under charge conjugation.
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with /p = γµpµ. Using Eqs. (1.44), (1.47), and (1.48), /p reads:

/p =

(
0 p

⌣
⌢
p 0

)
.

In the group formalism employed by Weinberg, the fact that spinors obey such
relation is a by-product of requiring the S-matrix to be Lorentz invariant, and one
can prove that the spinors in Eq. (1.42) identically fulfil the equation by taking into
account the SL(2,C) − SO(1, 3)↑ correspondence (see Appendix A for the proof).
Quoting his words: “a free-field equation is nothing but an invariant record of which
components are superfluous” [41].

Usually, some choices for the standard vector and the standard Lorentz boost
are favoured compared to others, and they can lead to useful relations. For example
in the massive case, choosing pµ = (m,0) and [p] to be the pure boost taking p to p
one has:

U(p) =
1√

2(ε+m)
(/p+m)

(
I
I

)
.

Similarly, in the massless case, one chooses pµ = (κ, 0, 0, κ) and [p] to be the
composition of a Lorentz boost along the z axis and a rotation taking ẑ into p̂ with
axis ẑ× p̂. In such a case it is possible to show (for the proof of these relations, see
for example, Ref. [34]):

U(p) =
1√
2p · q/

pγ0U(p),

where q = (κ, 0, 0,−κ) is the parity conjugate of p. Using these relations, or alterna-
tively by explicit calculations from Eq. (1.42), it can be checked that both massive
and massless spinors fulfil the following relations:

U(p)U(p) = 2mI, U(p)U(p) = /p+m, U(p)γµU(p) = 2pµI, (1.50)

V (p)V (p) = −2mI, V (p)V (p) = /p−m, V (p)γµV (p) = −2pµI,

where the Dirac conjugate of the spinor is defined as U = U †γ0. Similarly, one
defines Ψ = Ψ†γ0 for the field itself.

To conclude this section, we introduce a matrix C = iγ2, which proves useful to
deal with the V (p) spinors, as it is related to charge conjugation. Indeed, one has:

V (p) = CU(p)∗.

This matrix is also involved in the relations:

γ0CS(Λ)TCγ0 = S(Λ)−1, γ0CγµTCγ0 = −γµ. (1.51)

1.4 The Wigner function

When concerned with the calculation of expectation values at local and global equi-
librium two different approaches can be used: either one proceeds on a case-by-case
study, computing each expectation value when needed, or uses the Wigner-function
formalism. Indeed, one can express all expectation values in terms of integrals and
traces of the Wigner function associated with the field. In this sense, although with
some noteworthy differences, the Wigner function can be regarded as a quantum
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analogue of the classical distribution function. Here, we will focus on the case of the
free Dirac field, for which the covariant Wigner function reads [34]:

WAB(x, k) = − 1

(2π)4

∫
d4y e−ik·y Tr

(
ρ̂ : ΨA

(
x− y

2

)
ΨB

(
x+

y

2

)
:
)
. (1.52)

The normal ordering, expressed with the colons : • :, is used to regularize expectation
values by subtracting the vacuum contribution. We recall that Ψ = Ψ†γ0 is the Dirac
conjugate of the field, and here A, B are spinor indices.

Notice that the Wigner function (1.52) is a 4× 4 matrix which is not hermitian,
but satisfies:

W †(x, k) = γ0W (x, k)γ0.

It should also be stressed that in the definition (1.52) the variable k has the dimen-
sions of momentum but it is in general not on-shell.

Being a 4×4 matrix, sometimes the Wigner function is decomposed with respect
to the elements of the Clifford algebra {I, γ5, γµ, γµγ5,Σµν} as:

W =
1

4

(
F + Pγ5 + Vµγ

µ +Aµγ
5γµ + 2SµνΣ

µν
)
, (1.53)

where the components are given by:

F = tr(W ) (scalar),

P = tr(Wγ5) (pseudo-scalar),

Vµ = tr(Wγµ) (vector),

Aµ = tr(Wγµγ5) (axial-vector),

Sµν = tr(WΣµν) (antisymmetric tensor).

Such a decomposition is often used to simplify the study of the Wigner function,
especially in the context of kinetic theory [45–47].

We can expand the Wigner function in terms of creation and annihilation oper-
ators by plugging the field expansion (1.39) into Eq. (1.52), whence we find:

W (x,k) =
1

(2π)3

∑
s,t

∫
d3p

2ε

d3p′

2ε′

{
eix·(p

′−p)
[
⟨â†t(p′)âs(p)⟩us(p)ut(p′)δ4

(
k − p+p′

2

)
+

−⟨̂b†s(p′)̂bt(p)⟩vs(p′)vt(p)δ4
(
k + p+p′

2

)]
−
[
ei(p+p′)·x⟨̂b†t(p′)â†s(p)⟩vt(p′)us(p)+

+e−i(p+p′)·x⟨ât(p)̂bs(p′)⟩ut(p)vs(p′)
]
δ4
(
k − p−p′

2

)}
.

(1.54)

From this expansion, we identify unambiguously particle-, antiparticle-, and space-
like components of the Wigner function as:

W (x, k) = θ(k2)θ(k0)W+(x, k) + θ(k2)θ(−k0)W−(x, k) + θ(−k2)WS(x, k), (1.55)

and each component can be singled out by multiplying the Wigner function W (x, k)
by the appropriate combination of Heaviside θ functions.

Using the Dirac equation (1.49) and integrating by parts, one can show that W
is a solution of the so-called Wigner equation, which for free Dirac fermions and
restoring ℏ reads: (

iℏ
2
/∂ + /k −m

)
W (x, k) = 0. (1.56)
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This equation can be used as the starting point of a semi-classical expansion in ℏ
(which is in fact an expansion in the gradients of the Wigner function) to provide
quantum corrections to the Boltzmann equation [45, 48, 49]. The Wigner equation,
however, is a consequence of the definition of the Wigner function and the Dirac
equation, therefore any sensible Wigner function for free fermions will solve it. In
other words, Eq. (1.56) does not provide any information on the density operator
describing the state of the system. In this respect, the Wigner equation should
rather be regarded as a constraint.

As mentioned before, using the Wigner function it is possible to express expec-
tation values of local operators by means of integral relations involving the pseudo-
momentum variable k. Considering the vector and axial current, and the canonical
energy-momentum tensor, one has:

jµ(x) ≡ ⟨: ĵµ(x) :⟩ = ⟨: Ψ(x)γµΨ(x) :⟩ = tr

(
γµ
∫

d4kW (x, k)

)
, (1.57a)

jµA(x) ≡ ⟨: ĵµA(x) :⟩ = ⟨: Ψ(x)γµγ5Ψ(x) :⟩ = tr

(
γµγ5

∫
d4kW (x, k)

)
, (1.57b)

Tµν
C (x) ≡ ⟨: T̂µν

C (x) :⟩ = ⟨: i
2
Ψ(x)γµ

↔
∂νΨ(x) :⟩ = tr

(
γµ
∫

d4k kνW (x, k)

)
, (1.57c)

where
↔
∂ν =

→
∂ν −

←
∂ν and the trace is on the spinor indices.

These expressions show that, once the Wigner function is known, it is possible to
recover other relevant expectation values. For this reason, one would be tempted to
draw an analogy between the Wigner function and the classical distribution function
f(x, p), but some differences prevent us from a direct identification. As we have
pointed out, the Wigner function of the Dirac field is a non-hermitian matrix, and
its momentum variable is not on-shell. Nonetheless, we can attempt to identify the
distribution function as some integral of the Wigner function. To do so, we proceed
like in Ref. [13], and study the vector current. The procedure proposed therein does
in fact yield a definition of the distribution function in terms of the Wigner function
for scalar fields. Confining ourselves to the particle part of the Wigner function,
easily obtainable by using the decomposition (1.54), and using the Eq. (1.57a), we
have:

jµ+(x) =
1

(2π)3

∑
s,t

∫
d3p

2ε

d3p′

2ε′
ei(p

′−p)·x⟨â†t(p′)âs(p)⟩ut(p′)γµus(p). (1.58)

To identify the distribution function, we should be able to express Eq. (1.58) as
the integral of pµf(x, p), like in kinetic theory. One can express the particle current
(1.58) as the integral of a vector field depending on both momentum and space-time
point:

jµ+(x) =

∫
d3p

ε
J µ(x, p). (1.59)

The vector J is not directed along the momentum p in general. We can define the
distribution function f(x, p) to be the component of J µ(x, p) along the momentum,
so that:

J µ(x, p) = pµf(x, p) +Nµ(x, p), N · p = 0.

To obtain such a relation in the massive case, one can simply employ the Gordon
identity [39]. Although it is possible to find a similar decomposition also in the

16



Spin: the Pauli-Lubanski vector

massless case [14], the interpretation is not so straightforward because pµ is orthog-
onal to itself so components of the distribution function can be found also in Nµ.
This problem will be addressed in Section 3.7.

However, the difficulty in the identification of a properly-called distribution func-
tion is not really a problem, as one can compute mean values using Eq. (1.57), as
we will do in Chapter 3.

1.5 Spin: the Pauli-Lubanski vector

One of the main topics of recent years’ research in heavy-ion physics has been spin.
As explained in the Introduction, the average spin polarization of Λ particles is ac-
cessible experimentally, and one of the objectives of this work is to give a theoretical
description of the related phenomenology.

In special relativity, the concept of spin finds its covariant generalisation in the
Pauli-Lubanski operator, which is defined as:

Ŵµ = −1

2
ϵµνρσĴνρP̂σ, (1.60)

where Ĵµν is the angular momentum-boost operator, and P̂µ is the four-momentum
operator. By construction, we can see that the Pauli-Lubanski operator is orthogonal
to the four-momentum operator, Ŵ · P̂ = 0. The Pauli-Lubanski operator plays a
significant role in the theory of the Lorentz group, as it is the generator of the little
group of the four-momentum p, that is the subgroup of Lorentz transformations
that leave p invariant, Λp = p. Indeed, if we consider the action of a transformation
generated by Ŵµ on pµ, and we consider its infinitesimal expansion, we have:(

e−iϕ·W
)µ

ν
pν =

(
I+

i

2
ϕαϵ

αβρσJβρpσ

)µ

ν

pν = pµ +
1

2
ϕαϵ

αβρσδµρ gβνpσp
ν = pµ,

(1.61)
where we used the definition of the generators of Lorentz transformations in the
four-vector representation:

(Jαβ)
µ
ν = i

(
δµαgβν − δµβgαν

)
. (1.62)

Notice that since we are dealing with continuous transformations, the fact that an
infinitesimal transformation leaves p invariant suffices to prove that also a finite
transformation cannot change the four-momentum. From the Lie algebra of the
Poincaré group, it is possible to infer the commutation rules of the Pauli-Lubanski
operator:

[Ŵµ, P̂ν ] =0, (1.63a)

[Ŵµ, Ĵαβ] =i
(
gµβŴα − gµαŴβ

)
, (1.63b)

[Ŵµ, Ŵν ] =− iϵµνρσŴ
ρP̂ σ. (1.63c)

From the commutation rule with P̂µ, one sees that Ŵµ is invariant under trans-
lations, whereas from the commutation rule with Ĵµν we realize that Ŵµ transforms
as a vector operator under Lorentz transformations. The latter property implies that
Ŵ 2 is a Lorentz invariant and as such it commutes with Jµν , much like P̂ 2 does.
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Since Ŵ 2 commutes also with P̂µ, one sees that Ŵ 2 commutes with all generators
of the Poincaré group, and therefore is a Casimir operator [43].

Given the Eqs. (1.63a) and (1.63c) , it is possible to diagonalize simultaneously
the four-momentum operator and one component of the Pauli-Lubanski vector. To
begin with, one can restrict the action of Ŵ on the space with fixed momentum p:

Ŵµ|p⟩ = Ŵµ(p)|p⟩, (1.64)

Where Ŵ (p) is simply:

Ŵµ(p) = −1

2
ϵµνρσĴνρpσ. (1.65)

Since:

Ŵ (p) · p = 0, (1.66)

we can decompose the Pauli-Lubanski operator along directions orthogonal to the
four-momentum and for this purpose, we have to treat separately massive and mass-
less particles. For massive particles, one can identify three space-like vectors ni(p),
satisfying;

ni(p) · p = 0, ni(p) · nj(p) = −δij . (1.67)

These vectors can be defined in the standard frame of the particle, which for massive
particles coincides with the rest frame where p = p = (m, 0), as the versors of
the x, y and z axis. Their expression in a generic frame is obtained by boosting
them with the same standard boost [p] defined by pµ = [p]µνpν . Explicitly one has
nµi (p) = [p]µνni(p)

ν . Consequently, the Pauli-Lubanski vector can be written as:

Ŵµ(p) =

3∑
i=1

nµi (p)Ŵi(p), Ŵi = −Ŵ (p) · ni(p). (1.68)

In this case, it is possible to define the spin operator as:

Ŝi(p) =
Ŵi(p)

m
. (1.69)

These operators are in fact the generators of the SO(3) group, as they obey:

[Ŝi(p), Ŝj(p)] = iϵijkŜk(p). (1.70)

This is of course a consequence of the fact that SO(3) is the little group of massive
particles (see Appendix A and, for example, Ref. [43]). In the rest frame of the
particle, we can choose the basis of the physical Hilbert space in such a way that
Ŝ3(p) is diagonal:

Ŝ3(p)|p, s⟩ = s|p, s⟩, (1.71)

and the eigenvalue s is interpreted as the spin of the particle in the particle’s rest
frame. Indeed, computing Ŝ(p) using the definition (1.60), one realizes that the
components Ŝ(p) are just the generators of the rotation group, i.e., Ŝ(p)x,y,z = Ĵx,y,z.

Turning to the case of massless particles, the decomposition of the Pauli-Lubanski
operator can involve a component along the momentum pµ itself, as p · p = 0. In
this case, the decomposition reads:

Ŵµ(p) = ĥ(p)pµ + Ŵ1(p)n
µ
1 (p) + Ŵ2(p)n

µ
2 (p), (1.72)
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where ni·p = 0. We can define the standard frame as the frame where pµ = (κ, 0, 0, κ)
and nµi = δµi , with i = 1, 2. Notice, however, that these vectors do not form a
basis of the Minkowski space-time. To amend this, it is convenient to define an
additional light-like vector qµ = (κ, 0, 0,−κ). Notice that this vector is orthogonal
to the space-like nµ1,2(p) vectors, but not to pµ. As in the previous case, in the
frame where the particle momentum is pµ, nµ1,2(p) and q

µ are defined via the same
standard transformation [p], that this time is taken as a boost along the z axis times
a rotation along the axis ẑ× p̂, where p̂ is the direction of the spatial part of pµ. It is
known that any vector can be decomposed using {p, q, n1, n2} as a basis, and for the

Pauli-Lubanski vector the component along q is vanishing by virtue of Ŵ (p) · p = 0.
The components of the decomposition (1.72) are now given by:

ĥ(p) =
1

q · p
Ŵ (p) · q, Ŵ1,2(p) = −Ŵ (p) · n1,2(p). (1.73)

In this case, the operators obey the algebra:

[ĥ(p), Ŵ1(p)] = iŴ2,

[ĥ(p), Ŵ2(p)] = −iŴ1,

[Ŵi(p), Ŵj(p)] = 0.

The fact that an abelian sub-algebra exists is well known and comes together with a
problem: if we allow the operators Ŵi(p) to have non-zero eigenvalues on the physi-
cal Hilbert space, then it is possible to prove that they have a continuous spectrum
of eigenvalues. This means that massless particles would be characterized by a con-
tinuous degree of freedom, at variance with experimental observations. The solution
to this puzzle is to require the physical Hilbert space to be such that Ŝi(p)|p⟩ = 0
always. Notice, however, that this constraint has to be inserted by hand and it does
not need to be satisfied for off-shell states.

In conclusion, we can construct the Hilbert space by diagonalizing just ĥ(p):

ĥ(p)|p, h⟩ = h(p)|p, h⟩. (1.74)

The eigenvalues h(p) represent the helicity of the particle.

Now that we have introduced the Pauli-Lubanski operator, we are interested
in calculating its thermal expectation value. For this purpose, we will follow the
theoretical derivation of Ref. [50].

Since to be interpreted as spin (or helicity) of a particle with momentum p the

Pauli-Lubanski operator has to be evaluated at fixed momentum Ŵ (p), we have to
compute the expectation value on a spin-only Hilbert space. In this case, we will use
the spin-density operator Θ̂(p), which can be seen as the standard density matrix
where the momentum space has been traced out via a partial trace. As any other
density operator, the spin density operator ought to be hermitian and with trace
equal to one, and the mean Pauli-Lubanski vector is then computed as:

Wµ(p) = Trs

(
Ŵµ(p)Θ̂(p)

)
, (1.75)

where with Trs we emphasize that the trace is to be computed only on spin degrees
of freedom.
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Let us start by considering the mean spin vector for massive particles of spin S.
Recalling Ŝµ = Ŵµ/m and using Eq. (1.68) and the completeness of the Hilbert
space, we have:

Sµ(p) =
∑
s

⟨p, s|Ŝµ(p)Θ̂(p)|p, s⟩ =
∑
s,t

∑
i

⟨p, s|Ŝi(p)|p, t⟩⟨p, t|Θ̂(p)|p, s⟩nµi (p).

(1.76)
By virtue of Eq. (1.70), the matrices ⟨p, s|Ŝi(p)|p, t⟩ are the spin-S representation
of the generators of the SO(3) group, which we will denote as D(S)

(
J i
)
. Therefore,

defining the spin density matrix as:

Θrs(p) = ⟨p, r|Θ̂(p)|p, s⟩, (1.77)

we have:
Sµ(p) =

∑
i

tr
(
D(S)

(
J i
)
Θ(p)

)
nµi (p), (1.78)

where the trace is no longer on the Hilbert space but only on matrix indices. Re-
calling that nµi (p) = δµi and nµi (p) = [p]µνnνi (p), we find:

Sµ(p) =
∑
i

[p]µitr
(
D(S)

(
J i
)
Θ(p)

)
, (1.79)

where we have been able to express the mean spin vector in terms of the generators
of rotations, the standard Lorentz transformation [p] and the spin density matrix.

For massless particles, we can proceed in the same fashion but, instead of the
spin-operator (1.69), we have to deal directly with the Pauli-Lubanski vector. In
place of Eq. (1.76) we have:

Wµ(p) =
∑
s

⟨p, s|Ŵµ(p)Θ̂(p)|p, s⟩ = pµ
∑
s,t

⟨p, s|ĥ(p)|p, t⟩⟨p, t|Θ̂(p)|p, s⟩

+
∑
s,t

2∑
i=1

nµi ⟨p, s|Ŵi(p)|p, t⟩⟨p, t|Θ̂(p)|p, s⟩. (1.80)

If we now enforce Ŵ1,2(p) to act trivially on the Hilbert space, as dictated by ex-
perimental observations, we end up with the very simple formula:

Wµ(p) = pµ
∑
s=±h

sΘss(p), (1.81)

which shows that the physical states of massless particles can only be polarized
in the direction of their momentum. Furthermore, interestingly, only the diagonal
components of the spin-density matrix participate in the average Pauli-Lubanski
vector.

Both expressions (1.79) and (1.81) depend on the spin density matrix. For
distinguishable particles, as we have mentioned, it can be defined as the partial
trace of ρ̂:

Θ̂rs = Trp (ρ̂)rs = ⟨p, r|ρ̂|p, s⟩. (1.82)

If we consider quantum fields, however, its definition is taken to be:

Θrs(p) =
Tr
(
ρ̂ â†s(p)âr(p)

)
∑

tTr
(
ρ̂ â†t(p)ât(p)

) =
⟨â†s(p)âr(p)⟩∑
t⟨â
†
t(p)ât(p)⟩

, (1.83)
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where â†s(p) and âs(p) are the creation and annihilation operators of the quantum
field, and Θ is clearly hermitian and has unitary trace. As has been discussed in the
previous section, given the fact that the spin density matrix is expressed in terms of
field operators, we expect that it would be possible to write the Eq. (1.83) in terms
of the Wigner function, as will be done explicitly in the next section.

1.6 Spin vector and the Wigner function

The aim of this section is to write the spin vector for massive and massless particles
in terms of the Wigner function. The procedure to obtain this connection has been
established in Ref. [50] for massive fermions. Here we will repeat it, providing an
extension for massless fermions.

Let us first prove a general property of the Wigner function of free fields, namely:

kµ∂µW±(x, k) = 0. (1.84)

The proof is completely general and holds for massive and massless particles. Con-
sider the particle part of the Wigner function expanded as in Eq. (1.54). We have:

kµ∂µW+(x, k) ∝

∝
∫

d3p

ε

d3p′

ε′
kµ(p′ − p)µδ

4
(
k− p+p′

2

)∑
st

⟨â†t(p′)âs(p)⟩us(p)ut(p′)eix·(p
′−p)

∝
∫

d3p

ε

∫
d3p′

ε′
(p′2 − p2)δ4

(
k− p+p′

2

)∑
st

⟨â†t(p′)âs(p)⟩us(p)ut(p′)eix·(p
′−p)

= 0,

where we used the δ-function to set 2kµ = pµ + p′µ and the fact that both p and p′

are on the mass-shell. It is easy to see that the same argument applies also for the
antiparticle and for the space-like component WS of the Wigner function and the
identity (1.84) is proved.

This property is very important, as it implies the integral∫
Σ
dΣµk

µW (x, k).

to be independent of the hypersurface Σ where it is computed, as long as suitable
boundary conditions are fulfilled. The above integral is, in this respect, a global
quantity. Assuming this is the case, let us consider the integral over a surface of
constant time t = t0. Using Eq. (1.54) we find§:∫

t=t0

d3xk0W (x, k) =

= k0
∑
s,t

∫
d3p

2ε

d3p′

2ε′

{
δ3(p− p′)

[
⟨â†t(p)âs(p)⟩us(p)ut(p)δ4 (k − p)+

−⟨̂b†s(p)̂bt(p)⟩vs(p)vt(p)δ4 (k + p)
]
− δ3(p+ p′)

[
e2iεt⟨̂b†t(−p)â†s(p)⟩vt(−p)us(p)+

+e−2iεt⟨ât(p)̂bs(−p)⟩ut(p)vs(−p)
]
δ(k0)δ3 (k + p)

}
.

§In the integral, by −p we intend −p, as creation and annihilation operators only depend on the
space-components of the momentum. The energy constrained by the on-shell condition.
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Due to the presence of a term k0δ(k0), the space-like part of the Wigner function
does not contribute to the integral and we end up with:∫

Σ
dΣµ k

µW (x, k) =
δ(k2 −m2)

2

∑
st

θ(k0)⟨â†t(k)âs(k)⟩us(k)ut(k)

−θ(−k0)⟨̂b†s(−k)̂bt(−k)⟩vs(−k)vt(−k), (1.85)

where we switched back to a generic hypersurface Σ on the left-hand side of the
equation, thanks to the property (1.84).

In practice, integrating kµW (x, k) over any hypersurface sets the variable k
on-shell. Therefore one can define an on-shell version of the particle and of the
antiparticle part of the Wigner function, denoted w+(k) and w−(k), as:

1

2ε
δ(k0 − εk)w+(k) =

∫
Σ
dΣµ k

µW+(x, k),

1

2ε
δ(k0 + εk)w−(k) =

∫
Σ
dΣµ k

µW−(x, k). (1.86)

Confining ourselves to the particle part, using Eq. (1.85) we find:

w+(p) =
1

2

∑
st

⟨â†t(p)âs(p)⟩us(p)ut(p). (1.87)

We can already see that this expression highly resembles the spin density matrix
(or at least its numerator) as defined in Eq. (1.83). Our task is now to invert the

above equation to obtain the two-point function ⟨â†t(p)âs(p)⟩ in terms of the on-shell
Wigner function.

The relations proved until now hold both in the case of massive and massless
fermions, but for the inversion of Eq. (1.87) we have to take two different approaches.
Let us start with the case of massive particles. By taking the trace of Eq. (1.87),
using the cyclicity of the trace and the normalization of the spinors, Eq. (1.50), we
have:

tr (w+(p)) =
1

2

∑
st

⟨â†t(p)âs(p)⟩tr (us(p)ut(p)) = m
∑
s

⟨â†s(p)âs(p)⟩. (1.88)

Moreover, multiplying Eq. (1.87) by spinors with definite spin index r, l:

ur(p)w+(p)ul(p) = 2m2⟨â†l (p)âr(p)⟩. (1.89)

Therefore the spin density matrix can be expressed as:

Θrs(p) =
1

2m

ur(p)w+(p)us(p)

tr(w+(p))
=

1

2m

∫
dΣ · p ur(p)W+(x, p)us(p)∫

dΣ · p tr (W+(x, p))
. (1.90)

By noticing that, as a consequence of Eq. (1.87), the on-shell Wigner function obeys
the Dirac equation:

(/p−m)w+(p) = 0, (1.91)

the spin density matrix can also be cast into the form:

Θrs(p) =

∫
dΣ · p ur(p)W+(x, p)us(p)∫
dΣ · p tr

(
W+(x, p)(/p+m)

) , (1.92)
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as was originally found in Ref. [50]. We can write the spin density matrix also using
the 4× 2 spinors introduced in Section 1.3:

Θ(p) =
1

2m

∫
dΣ · p U(p)W+(x, p)U(p)∫

dΣ · p tr (W+(x, p))
. (1.93)

From this expression and using equation Eq. (1.79) and the Clifford algebra, one
can finally write the thermal expectation value of the spin vector in terms of the
Wigner function. The derivation is rather tedious and will not be repeated here, for
further details we refer the reader to Ref. [50]. The final result reads:

Sµ(p) =
1

2m

∫
dΣ · p tr (γµγ5W+(x, p))∫

dΣ · p tr (W+(x, p))
, (1.94)

so that the mean spin operator is given by the integral over some space-like hyper-
surface of the axial component of the Wigner function.

It is worth dwelling a little longer on this formula. We have expressed the spin-
density matrix and the spin vector in terms of the Wigner function, but the equation
is quite unusual compared to Eq. (1.57): the Wigner function appears twice, and the
integration is on the spacelike variable x and not on the pseudo-momentum. This
latter difference poses a question regarding what hypersurface to choose for practical
calculations. From the derivation above, it would seem that there are no special
requirements that the hypersurface must fulfil, but we have to take into account
that the derivation holds for free Dirac fields. In an idealized setting where we deal
with a gas of non-interacting Dirac fermions, the hypersurface is indeed arbitrary,
but in real systems the former is just an approximation. To clarify this point, let us
consider a typical example of an application of this formula: the calculation of the
polarization of Λ hyperons in heavy-ion collisions. Equation (1.94) represents the
spin vector of the Dirac field, whence the spin polarization of a particle with spin S
is defined as:

Pµ(p) =
Sµ(p)

S
, (1.95)

so that the magnitude of polarization is between −1 and 1. For Dirac fermions such
as the Λ particle one has Pµ = 2Sµ. In heavy-ion collisions, the Λs are generated
when the Quark-Gluon Plasma (QGP) stops behaving as a fluid and hadronizes,
meaning that quarks and gluons recombine in hadrons. Before this moment the
Λ particles do not exist, so it is obvious that the hypersurface cannot be taken
in the QGP phase. On the same footing, if we wait too long the Λ particles will
have time to interact and even decay, and their description as free fields would
not be applicable. Therefore, for heavy-ion applications, the best choice for the
hypersurface of integration in Eq. (1.94) is the freeze-out hypersurface itself.

In the case of massless particles, the same procedure can be applied up until Eq.
(1.87):

w+(p) =
1

2

∑
st

⟨â†t(p)âs(p)⟩us(p)ut(p).

In contrast, we should find a different way to extract the spin density matrix from
this equation because in this case:

tr(w+(p)) = us(p)w+(p)ur(p) = 0. (1.96)

We can overcome this difficulty by noticing that in Eq. (1.81) only the diagonal
components of the spin density matrix appear. Using Eqs. (1.81) and (1.83), the
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polarization vector in the massless case expressed in terms of the field operators
reads:

W (p) = pµ
∑

s=±h s⟨â
†
s(p)âs(p)⟩∑

t=±h⟨â
†
t(p)ât(p)⟩

. (1.97)

Now let us compute the following trace:

tr(w+(p)γ
µ) =

1

2

∑
h

⟨â†l (p)âh(p)⟩tr(uh(p)ul(p)γ
µ)

=
1

2

∑
hl

⟨â†l (p)âh(p)⟩ul(p)γ
µuh(p) = pµ

∑
h

⟨â†h(p)âh(p)⟩, (1.98)

where we used the cyclicity of the trace, along with the property ulγ
µuh(p) = 2pµδlh

(see Eqs. (1.50)). Notice how this trace is just the denominator of the formula
(1.97), multiplied by the four-momentum pµ. We can extract the denominator of
(1.97) simply by multiplying Eq. (1.98) by some vector ℓµ, provided that it is not
orthogonal to p, i.e. p · ℓ ̸= 0. In fact, decomposing ℓµ along the basis {p, q, n1, n2}
we see that only the component along q is physically relevant, as from Eq. (1.98) it
follows tr(w+(k)/p) = tr(w+(k)/n1,2) = 0. We find:

∑
h

⟨â†h(p)âh(p)⟩ =
tr(w+(k)/q)

p · q
. (1.99)

Similarly, we can compute:

tr(w+(p)γ
µγ5) = 2pµ

∑
h

h⟨â†h(p)âh(p)⟩.

where we used the fact that, for massless particles, chirality is twice the helicity and
the equation γ5uh(p) = 2huh(p) holds. With the same reasoning presented before,
we have: ∑

h

h⟨â†h(p)âh(p)⟩ =
tr(w+(p)/qγ5)

2p · q
. (1.100)

Using these results we can express the expectation value of the Pauli-Lubanski
vector as:

Wµ(p) =
pµ

2

tr(/qγ5w+(p))

tr(w+(p)/q)
, (1.101)

and using Eq. (1.86) to give the spin vector in terms of the Wigner function, we
have:

Wµ(p) =
pµ

2

∫
dΣ · p tr(/qγ5W+(x, p))∫
dΣ · p tr(W+(x, p)/q)

. (1.102)

This formula is the massless analogue of Eq. (1.94).

Notice that in the massless case the denominator of the formula involves the
vector part of the Wigner function and not the scalar one. This is necessary as
the scalar part of the massless Wigner function vanishes. Furthermore, the Pauli-
Lubanski vector is directed only along the momentum of the particle, as one would
expect, and any additional components are projected out thanks to the presence
of the vector qµ. In fact, this projection is required to get rid of the unphysical
components of the Pauli-Lubanski vector. In essence, it enforces the constraint that
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Ŵ1,2 vanish on physical states, which was otherwise not employed in the derivation.
This is a very subtle point, that has gone unnoticed so far in the literature.

The connection between the spin vector and the Wigner function will be used in
later chapters to compute the polarization of Dirac fermions in relativistic fluids at
local and global equilibrium.
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Phenomenology of the
Quark-Gluon Plasma

In this chapter, we discuss the phenomenology of the Quark-Gluon Plasma (QGP)
produced in heavy-ion collisions [51]. The QGP is a phase of the QCD matter that is
produced at high temperatures and is believed to resemble, on a much smaller scale,
our own Universe microseconds after the Big Bang. We start with a brief overview
about the history of the discovery of the QGP, and the observables that allow for
its detection experimentally. After placing the QGP in the broader QCD phase
diagram, we schematically describe the stages of a typical heavy-ion collision, where
droplets of QGP are produced in the controlled setting of a laboratory. Finally, we
discuss spin physics in this context, including the experimental challenges involved
in the measurements, with a particular focus on the polarization of the Λ hyperon
and the puzzles that it brought to the physics community.

2.1 A brief history of the most perfect fluid

The theory of strong interactions presents a peculiar characteristic compared to
quantum electrodynamics: asymptotic freedom. The name asymptotic freedom
refers to the strength of the interaction, which becomes weaker and weaker as the
energy grows, or equivalently if particles (e.g. quarks) are put close to each other.
On the other hand, in the low-energy regime, QCD should describe the confinement
of quarks and gluons inside hadrons.

The existence of asymptotic freedom discovered by Gross, Politzer and Wilczek
[1, 52, 53] in 1973 led people to think that, under extreme conditions, a state of
matter where quarks and gluons are not bound into composite particles could be
formed. The first location where such a “quark soup”, as the authors referred to it,
was surmised to be present were astrophysical objects, such as the cores of neutron
stars, exploding black holes, and the early Universe [3].

Even before the discovery of asymptotic freedom, Hagedorn put forth a model
called “statistical bootstrap” [54]. In this model, denoting with ρ(m)dm the number
of particles with a mass between m and m+ dm, the mass spectrum function ρ(m)
is found to have an asymptotic behaviour for large mass given by:

lim
m→∞

ρ(m) = mαe
m
T0 ,

where α is a negative parameter depending on the details of the model. The mass
spectrum grows exponentially, and this leads to a divergence of the partition function
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Figure 2.1: The energy deposition in the CMS calorimeter as a function of pseudora-
pidity and azimuthal angle. The difference in energy between the two jets suggests
that one of the two lost a large fraction of its energy by interacting with the QGP.
The figure is taken from Ref. [67].

at the temperature T = T0. At the time, such a divergence was interpreted as the
presence of a limiting temperature, which the system of hadrons cannot surpass.
In 1975 it was realized by Cabibbo and Parisi [55] that such a divergence can be
interpreted as the onset of a second-order phase transition from hadrons to a state
where “quark liberation” happens. It was the first time that the phase diagram of
QCD was addressed.

In later years many authors studied the collective and thermodynamic properties
of this novel state of matter [56–62], which we call nowadays the Quark-Gluon
Plasma (QGP), a name coined by Shuryak in 1978 [2].

Experimentally, the production of the QGP can be investigated via different
probes. Here we list some of the most important [63–65]:

� Strangeness enhancement: it is expected that if the locally equilibrated
QGP with temperature T ∼ 2ms is formed in heavy-ion collisions (ms being
the strange quark mass), the number of strange-antistrange quarks would be
higher compared to nucleon-nucleon collisions. The threshold temperature in
the equilibrated system causes a more abundant production of strange and
multi-strange hyperons, which are experimentally measurable [66]. This effect
is compatible with the creation of a thermal hadronic gas.

� Jet quenching: jets of hadrons are produced by high-pT partons via frag-
mentation. Interacting with the QCD medium, a parton can lose a significant
fraction of its transverse momentum before fragmentation. This implies that
in a pair of jets there can be an energy asymmetry if one of the jets interacts
more with the QGP. A measurement of this effect is shown in Figure 2.1.

� Hydrodynamics: in non-central heavy-ion collisions, the shape of the QGP
is of an ellipsoidal form due to the non-perfect overlap between the nucleons.
This shape is commonly referred to as “almond shape”. Such an anisotropy
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Figure 2.2: The elliptic flow of pions, kaons and protons as measured by the PHENIX
experiment [68], compared with hydrodynamic simulation based on Ref. [70]. The
figure is taken from Ref. [68].

in the initial state is reflected in the subsequent evolution. If we assume the
evolution of the plasma to be described by relativistic hydrodynamics, the
larger pressure exerted by the fluid in the reaction-plane direction implies
that more particles are produced in rather than out-of-plane. This effect is
quantified by the anisotropic flow coefficients vn, which define the azimuthal
expansion of the momentum spectrum of particles:

dN

d2pTdy
=

dN

2πp2TdpTdy

[
1 + 2

∑
n

vn cos (n(ϕ−ΨRP ))

]
, (2.1)

where pT is the transverse momentum, y is the rapidity y = atanh
(pz

ε

)
, z

being the beam direction and ε the energy of the particle. The azimuthal
angles ϕ and Ψ denote the angles of the particle and of the reaction plane,
respectively. Given the ellipsoidal shape of the fluid, the dominant contribution
is given by v2, which is called the elliptic flow. The elliptic flow is now a
well-established experimental observable, and the data are well described by
quasi-ideal hydrodynamics, as shown in Figure 2.2 [68, 69]. Interestingly, to
match the elliptic-flow data, the equilibration time of the QGP should be less
than 1 fm/c.

� Quarkonium suppression: in the QCD plasma, like in the electromagnetic
one, there is a characteristic length scale above which the interaction becomes
ineffective, the so-called Debye screening length. Bound states of heavy quarks
(mostly charmed particles like J/ψ, ψ′...) are sensitive to this screening length,
that in the QGP can become smaller than the size of the particle itself. This
leads to the melting of quarkonia in the QGP. This effect, however, can be
very small as antagonist mechanisms also exist: quarkonium recombination
and threshold enhancement [71].

29



Chapter 2

Figure 2.3: A schematic representation of the phase diagram of QCD is shown in the
temperature-baryon chemical potential plane. The figure is taken from the NSAC
2015 Long Range Plan for Nuclear Physics.

2.2 The QCD phase diagram

The QGP represents one of the phases of QCD matter, the hadronic one being the
most common and familiar. Here we give a very schematic description of the rest of
the phase diagram of QCD, which is much richer than Cabibbo and Parisi originally
believed [72–74].

The phase diagram of QCD is usually represented in terms of the baryon chemical
potential and the temperature in a (µB, T ) plot like Figure 2.3. Our knowledge about
the phase diagram is most firm in the region µB ≪ T , where lattice QCD (LQCD)
is fully applicable. In this regime, it is known that the transition from hadronic
matter to QGP is a cross-over, happening at a temperature around 155 MeV. This
temperature is measured, for example, from the inflexion point of the chiral con-
densate ⟨ΨΨ⟩ or the peak of the chiral susceptibility χ = T/V ∂2 logZ/∂m2, where
ψ, m, T and V are the quark field, mass, temperature and volume, respectively.
Notice that the above-mentioned quantities are associated with the restoration of
the chiral symmetry of QCD at high temperatures and not to deconfinement itself.
In fact, the true order parameter for the deconfinement transition in QCD is not
known. This is in contrast with the pure SU(3) gauge theory, where confinement
and deconfinement are distinguishable, for example, using the Polyakov loop, which
vanishes if the system is in the confined phase; in QCD the Polyakov loop is only
an approximate order parameter for deconfinement [75]. It is possible that chiral
restoration and deconfinement happen at the same temperature [76], even if a se-
quential transition with an intermediate state is not excluded [77]. We conclude this
paragraph by mentioning that, in the regime µB ≪ T , LQCD can also provide a
reliable equation of state for QCD matter, which is necessary to solve the system of
relativistic hydrodynamic equations describing the QGP (see next section).

As the chemical potential increases, the transition is expected to switch to a
first-order phase transition, possibly with a critical point in the region µB ∼ T .
In this region of the phase diagram, LQCD gives less reliable results due to the
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Figure 2.4: The stages of a typical heavy-ion collision, identified by different colours,
are sketched. After a pre-equilibrium phase, the hydrodynamic evolution sets in.
Once the fluid becomes too rarefied and cold, new hadrons are produced at the
chemical freeze-out, and their elastic interaction ceases at the thermal freeze-out.
After that, free hadrons can be observed in the detectors.

infamous sign problem. This problem originates from the presence of a real chemical
potential in the action, that breaks hermiticity and leads to a complex-valued Dirac
determinant which is very hard to calculate numerically. The techniques used to
tackle this problem, which often rely on the analytic continuation of the chemical
potential to imaginary values, fail or become incredibly expensive computationally
if the chemical potential is too large. This region of the phase diagram, and in
particular the location of the critical point, is one of the most actively researched
topics in QCD physics, both theoretically and experimentally [78–83].

Another phase transition happens at much lower temperatures (T ∼ 0−20 MeV)
and for a chemical potential µB ∼ 924 MeV. This value of the baryon chemical po-
tential represents the threshold where nuclei start being produced. This nuclear
phase transition is first order, characterized by a coexistence of hadronic and nu-
clear matter, and as the temperature rises it ends in a critical endpoint, where the
transition becomes of second order.

Finally, the large chemical potential region is characterized by the colour-su-
perconducting phase [74]. The existence of this phase can be rigorously proven in
the limit µB ≫ ΛQCD, where, due to asymptotic freedom, the coupling constant is
small. Such a phase could present itself inside neutron stars’ cores, which provide
an extraordinary setting, where the density of baryonic matter is much higher than
the one achievable experimentally.

2.3 Stages of heavy-ion collisions

Here we describe the time evolution of the system once the collision takes place [51].
There are several stages after the collision until finally new hadrons are produced
and can be detected experimentally. A schematic depiction is given in Figure 2.4.

In the very early stage of the collision, the highly coherent wave function of
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the nuclei evolves into an incoherent distribution of quarks and gluons. The three
main (and alternative) mechanisms proposed to describe this process are the QCD
string breaking, the parton cascade and the colour glass condensate models. In
the latter model, the density of gluons inside hadrons rises as a function of the
parton’s momentum fraction shared by gluons, up to a saturation scale. When such
a momentum fraction is small, gluons are tightly packed inside hadrons and their
interaction is weak. Once the Lorentz-contracted hadrons, in practice two sheets of
gluons, collide and pass through each other, the gluonic field permeates the collision
region producing the so-called glasma, which subsequently decays in the QGP. The
time scale of this process is much less than 1 fm/c.

At this point, the QGP thermalizes to a state of local equilibrium and the subse-
quent evolution can be modelled with relativistic viscous hydrodynamics. Hydrody-
namics is the effective theory describing the conservation of energy, momentum and
charge. The corresponding densities, the energy-momentum tensor and the charge
current, have vanishing four-divergence:

∂µT
µν = 0,

∂µj
µ = 0.

In dissipative hydrodynamics in the so-called Landau frame, the energy-momentum
tensor and the current are parametrized as:

Tµν = ρuµuν − (P +Π)∆µν + πµν , (2.2a)

jµ = nuµ + vµ. (2.2b)

In the above equations, ρ, P and n are the energy density, the pressure and the
charge density of the fluid, whereas Π, πµν and vµ are the Bulk pressure, the shear
stress and the diffusion current. The latter three quantities can be inferred from
microscopic theories such as kinetic theory, and obey relaxation-type equations to
make the hydrodynamic evolution causal [84–87]. The equations (2.2) are five equa-
tions, but the unknowns are six, namely uµ, P , ρ and n: three components of the
four-velocity (the fourth being fixed by u2 = 1), the pressure, the energy and charge
density. To solve the system of differential equations, an equation of state expressing
the pressure as a function of temperature and chemical potential is required. For
heavy-ion applications, the equation of state can be inferred from lattice QCD, so
that the effective hydrodynamic description of the plasma takes directly into account
fundamental QCD calculations.

During the hydrodynamic evolution, the QGP cools down and rarefies, eventu-
ally dissolving to form once again hadronic matter in the hadronization stage. At
hadronization, particles can still be strongly interacting and are described by hy-
drodynamics until, eventually, they decouple. This last stage is called freeze-out.
The freeze-out stage can be further divided into chemical and thermal freeze-out.
This distinction is because inelastic interactions cease to be effective before the
elastic ones. The chemical freeze-out is the moment when the last inelastic inter-
action takes place and the ratios of hadrons abundances are fixed from this point
on. Nonetheless, elastic interactions can still take place and hadrons can exchange
momentum. When the characteristic timescale of the collisions becomes comparable
to or larger than the expansion timescale of the plasma, elastic collisions become
ineffective too and particles are free to fly to the detectors: this stage is the thermal
freeze-out. We can give an estimate of the time between two consecutive elastic
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collisions by using the mean free path, whereas the expansion time of the fluid is
given by one over the four-divergence of the four-velocity. The thermal freeze-out
takes place when:

τcoll ∼
1

nσ
≥ 1

∂µuµ
∼ τexp.

In practice, different models can be used to identify the freeze-out hypersurfaces. In
hydrodynamic codes, the evolution is halted once some condition is met, for example
when the local energy density or the local temperature reaches a critical value. The
condition ρ(x) = ρcrit defines a 3D hypersurface which is identified with the chemical
freeze-out hypersurface. After this stage, kinetic codes can be used as afterburners
to further scatter the produced hadrons until the condition for thermal freeze-out is
met.

Thermodynamic properties of the fluid are frozen on the freeze-out hypersurface,
which therefore has a prominent role. For example, the spectrum of particles is
calculated using the Cooper-Frye formula [88]:

ε
dN

d3p
=

∫
ΣFO

dΣµp
µ f(p · β(x), ζ(x)),

where the distribution function f can be taken as the Bose-Einstein, the Fermi-Dirac
or the Boltzmann distribution depending on the particle studied. The integral has
to be computed numerically over the hypersurface produced by, for example, a
hydrodynamic code. The polarization of fermions is also expressed as an integral
over the freeze-out hypersurface, as we have seen in the previous chapter.

2.4 Polarization in the Quark-Gluon Plasma and the
sign puzzle

If two nuclei collide with a finite impact parameter, it is natural to expect that the
QGP is created with a sizeable angular momentum. In the early 2000s, it was real-
ized that the orbital angular momentum can be transformed into spin polarization
via spin-orbit coupling [6, 9], and that this effect could be detected by measuring
particles produced at freeze-out.

The spin polarization of fermions is an observable of great phenomenological rel-
evance. The most renowned example is the polarization of the Λ hyperon, although
recently also the (global) polarization of Ω and Ξ has been measured [89, 90]. An-
other spin-related observable is the spin alignment of vector mesons, which will be
discussed in the next section.

The first quantitative formula for the expectation value of spin of particles has
been found in Ref. [7], and reads:

Sµ(p) = − 1

8m
ϵµνρσpσ

∫
dΣ · p ϖνρnF (1− nF )∫

dΣ · p nF
. (2.3)

Here nF is the Fermi-Dirac distribution nF = [exp(p · β − ζ) + 1]−1 and ϖ is the
thermal vorticity (1.18). Both the thermal vorticity and the temperature are space-
time dependent, and they must be integrated on the freeze-out hypersurface like for
the Cooper-Frye formula (see also the discussion in Section 1.6).
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The STAR experiment at RHIC was the first one performing polarization mea-
surements for Λ hyperons in Au-Au collisions. According to the local-equilibrium
model of the QGP, all Dirac fermions generated at freeze-out are expected to be
polarized according to Eq. (2.3), but not all of them are measurable. Polarization
can be measured for “self-analysing” particles, which decay via the weak interaction,
and the Λ particle is the most abundant particle produced in heavy-ion collisions to
do so.

The polarization of Λ is measured via the decay Λ → p+ π. In this process, the
proton tends to be emitted in the direction of the polarization vector of the Λ in
the hyperon’s rest frame. Denoting θ∗ the angle between the proton’s momentum
and the polarization vector of the Λ particle in the Λ’s rest frame P , the angular
distribution of protons reads:

dN

d cos θ∗
=

1

2
(1 + αH |PH | cos θ∗) , (2.4)

where H can represent the Λ or Λ hyperon, αH is the decay parameter, that has the
numerical value αΛ = −αΛ = 0.732± 0.14 [91]. In Eq. (2.4), PH is the polarization
averaged over momenta, therefore it is called global polarization.

After the first results, which put an upper bound on global polarization [92], a
sizeable polarization was measured in 2017 [8]. Polarization was found to be of the
order of some percent and from it the vorticity of the QGP could be inferred. This
measurement showed that the QGP is the most vortical fluid in Nature, spinning
with the astonishing angular velocity of ω ≃ 1022 s−1. Global polarization is defined
as the polarization vector averaged over the spectrum of Λ particles produced at
freeze-out and it can be expressed by the equation:

Pµ =

∫ d3p
ε P

µ(p)
(
ε dN
d3p

)
∫ d3p

ε

(
ε dN
d3p

) . (2.5)

Recalling that for Dirac fermions Pµ(p) = 2Sµ(p) (see Eq. (1.95)), and using the
expression of the Lorentz-invariant spectrum of Dirac fermions

ε
dN

d3p
= 2

∫
dΣ · p nF , (2.6)

ε =
√
m2 + p2 being the energy, the global polarization simply reads:

Pµ = 2

∫ d3p
ε S

µ(p)
(∫

dΣ · p nF
)∫ d3p

ε

∫
dΣ · p nF

, (2.7)

where Sµ(p) is the spin vector, as given by Eq. (2.3). By symmetry, the global
polarization must be directed along the global angular momentum of the QGP,
which identifies the −ŷ direction in the reference frame used experimentally.

Figure 2.5 reports the experimental results of the STAR and ALICE experiments
[8, 92, 94, 95] together with different model predictions. In all these models, Eq. (2.3)
is used to compute the spin vector, and they differ in how the thermal vorticity is
calculated. All the hydrodynamic and transport codes are tuned to reproduce other
observables (e.g. anisotropic flow). It can be seen that Eq. (2.3) can describe the
data very well, regardless of the code used to simulate the QGP. It is interesting to
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Figure 2.5: Figure taken from Ref. [93]. The experimental measurement of global
polarization for Λ and Λ hyperons produced at midrapidity is shown at different
collision energies, together with different model predictions using Eq. (2.3).

see that the polarization of Λ and Λ has the same sign, which is a clear indication
of the hydrodynamic origin of the effect.

After the successful measurement of global polarization, a more detailed study
of the properties of the Λ polarization was performed at 200 GeV by the STAR
experiment. These measurements, commonly referred to as the local-polarization
measurements, probe the dependence of polarization on the transverse momentum
pT and the azimuthal angle ϕ, and raised some important questions and challenges.
The most puzzling results came from the azimuthal dependence of P J(ϕ) and P z(ϕ),
which are the projections of the polarization vector along the angular momentum of
the fluid and the beam axis respectively*.

Figure 2.6 shows the comparison between the experimental results and the hydro-
dynamic model calculations of local polarization. Concerning the polarization along
the angular momentum P J , it can be seen that the hydrodynamic model predicts
a maximum polarization along the direction of the angular momentum, whereas
polarization has a minimum along the reaction plane’s direction. Strikingly, the
experimental results show exactly the opposite behaviour. A similar discrepancy
occurs for the polarization along the beam axis P z, where the hydrodynamic model
suggests an oscillation pattern opposite in sign compared with the experimental
observation. All theoretical models shown in Figure 2.5 lead to similar conclusions.

The unexpected failure of Formula (2.3) to reproduce correctly the local polar-
ization of the Λ particle, despite its excellent description of the global polarization
has been known in the literature as the polarization sign puzzle. More recently, also
the ALICE experiment was able to measure the second-order harmonic of the polar-
ization along the beam direction ⟨P z sin(2ϕ− 2Ψ2)⟩, where ϕ is the azimuthal angle
and Ψ2 is the elliptic-flow plane angle. ALICE results lead to the same conclusion:
Eq. (2.3) predicts the wrong sign for P z.

*These directions correspond to the −y- and the z-axis in the reference frame employed experi-
mentally.
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Figure 2.6: The results of a typical hydrodynamic simulation are compared to exper-
imental data. The upper panels show the dependence of polarization on transverse
momentum, for P j (left) and P z (right). The lower panels show the azimuthal-angle
dependence of the same components of polarization, once they are integrated over
pT .

The attempts to solve the spin sign puzzle have been many. It has been proved
that feed-down corrections are unable to explain the change of sign [96, 97]. Besides
that, investigation on post-hadronization interactions and rescattering [98, 99], the
role of the spin tensor and the spin potential [100–102], and dissipation in spin
hydrodynamics [48, 103–108] have been undertaken. Moreover, the dependence on
the initial-state configuration of hydrodynamics seems to play an important role in
polarization physics [109, 110].

Other possible explanations concern Eq. (2.3) itself. This equation is only an
approximation up to first order in thermal vorticity and higher-order corrections
can affect the result. Even if it is unlikely that the quantitative modification will be
so dramatic as to change the sign of Pz, since the vorticity is

√
ϖ : ϖ < 1 on the

freeze-out hypersurface [17, 93], this possibility has not been thoroughly explored.
On top of that, Eq. (2.3) might neglect some contributions to polarization, and the
inclusion of other terms of first order in gradients may solve the puzzle.

2.5 Spin alignment

Other than polarization, another important spin-related observable is the spin align-
ment [9]. This observable is very important for particles with spin greater than 1/2,
the most important observations concerning vector mesons, i.e., spin-one particles.

The fact that alignment is only relevant for S > 1/2 particles comes directly
from the spin density matrix. The spin density matrix being a (2S + 1)× (2S + 1)
hermitian matrix with unit trace, it can be described completely through 4S(S +
1) real numbers. For S = 1/2 particles, three numbers suffice, and they are the
three independent components of the spin vector (keeping in mind that Sµpµ = 0
constrains the remaining component). For S = 1 we need 8 = 3 + 5 real numbers,
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which are the components of the polarization vector and 5 numbers describing a
symmetric 3 × 3 matrix with vanishing trace. For higher spin, additional tensor
structures appear, whose physical significance is yet to be discovered.

The spin alignment is defined from the spin density matrix Θ. If there is no
preferred spin state in the fluid, the spin density is proportional to the 3×3 identity
matrix, that is Θ = 1/3I. The spin alignment is defined as the deviation of the
00-component� of the spin density matrix from that expectation:

Θ00 −
1

3
. (2.8)

This quantity is accessible experimentally from the angular distribution of the decay
products of the vector mesons, which after integrating out the azimuthal angle reads
[111]:

dN

d (cos θ∗)
∝ 1−Θ00 + (3Θ00 − 1) cos2 θ∗, (2.9)

where θ∗ is the angle between the polarization axis and the direction of the momen-
tum of one of the decay products, as seen in the rest frame of the vector meson.

In this context, the most studied particles are the ϕ and K∗ mesons [112–115],
and more recently also the charmonium state J/ψ [116, 117]. Experimentally, the
results show some puzzling behaviour. In particular, the measurements at STAR for
energies

√
sNN ≤ 200 GeV show that Θ00 > 1/3 for ϕ but Θ00 ≲ 1/3 for K∗. On the

other hand, the measurements performed at 2.76 TeV indicate Θ00 ≲ 1/3 for both ϕ
and K∗. At the same energy, J/ψ seems to have Θ00 ≳ 1/3. This kind of behaviour
is difficult to explain in a local-equilibrium framework, as one would expect similar
results for different particles. Moreover, the change in sign of the alignment of the
ϕ particle from 200 to 2760 GeV is puzzling in itself.

The contribution of vorticity to the spin alignment comes only at second order
and in a rotating fluid one has [118]:

Θ00(p) ∼
1

3
+

1− 3(p̂ · ω̂)2

18

ω2

T 2
. (2.10)

This formula is not able to explain the experimental observations: not only the
deviation from 1/3 is too small compared to the measurements, but ϕ, K∗ and J/ψ
are predicted to behave in the same way.

Other models attempting to explain the alignment include quark-coalescence
models [119] with intermediate fields [120, 121] and kinetic theory [122–124], but a
definitive explanation of this effect is still missing.

�Here the components of the spin density matrix are labelled with indices ranging from −1 to 1.
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Exact thermal expectation
values at global equilibrium
with rotation and acceleration

In this chapter, we address the calculation of thermal expectation values for non-
interacting particles at global equilibrium with non-vanishing thermal vorticity using
a new technique, which has been devised and employed in Refs. [13, 14]. The
proposed procedure does not require the use of curvilinear coordinates and can
be applied for equilibrium with any vorticity. This scheme consists of two main
steps. The first one is the factorization of the density operator and its analytic
continuation to an element of the Poincaré group [13, 50]. Thereafter, using group
theory, it is possible to obtain recurrence relations for n-point functions of creation
and annihilation operators and to express expectation values (including the Wigner
function) as series of functions. Finally, we use a mathematical operation, dubbed
analytic distillation, to extract from a series of functions only the analytic part,
which is the physical result of the expectation value.

Since the mathematical tools are somewhat disconnected from the rest of the
chapter, we will start by introducing them. Then, the method itself will be put
forward for Dirac fermions, and the results will be presented. The analogue for
the scalar field has been studied in Ref. [13], and will not be discussed here. This
chapter is largely based on Ref. [14].

3.1 Mathematical tools: asymptotic power series

This section is devoted to the derivation of asymptotic power series of particular
series of functions, which are essential to obtain the results of this chapter. A sum∑N

n f(n, x) is said to be an asymptotic sum of a given function g(x) if, for fixed N :

lim
x→x0

∣∣∣∣∣g(x)−
N∑
n

f(n, x)

∣∣∣∣∣ = 0.

The series associated to the sum is the asymptotic series of g(x), which can be in
general divergent. The symbol ∼ is used to denote asymptotic equality: g(x) ∼∑

n f(n, x) [125]. A particular kind of asymptotic series is the asymptotic power
series, in the form

∑
n an(x − x0)

n. Notice that, at least in principle, it is always
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possible to find the asymptotic power series of a given function, identifying an with
the value of the limits:

an = lim
x→x0

g(x)−
∑n−1

k=Nmin
ak(x− x0)

k

(x− x0)n
.

Asymptotic power series can be divergent too, and can involve negative powers
like in Laurent series. A typical example is

g(x) =

∫ ∞
x

dt
ex−t

t
, g(x) ∼

N∑
n=1

(−1)nn!

xn+1
,

which is a divergent series with negative powers that approximates the exponential
integral g(x) for large values of x.

The tool enabling us to obtain asymptotic series for the series of functions we are
interested in is the generalized Mellin transform, and the procedure was originally
proposed by D. Zagier in the case of non-alternating series of functions [126, 127].
Here, this scheme will be generalized to alternating series, and for series which
involve the sum on odd numbers only.

Before doing that, it is useful to review some general features of the Mellin
transform. Further details can be found in Refs. [126, 127]. The Mellin transform
of a function φ(x) is defined as:

{Mφ}(s) =
∫ ∞
0

dt φ(t) ts−1. (3.1)

From this definition, one can show the important property

{Mφ(λx)}(s) = λ−s{Mφ}(s), λ ∈ R>0 . (3.2)

According to the behaviour of the function φ(x), the analytical structure of {Mφ}
changes. If φ(x) decays to zero rapidly both at infinity and zero, then the Mellin
transform is a holomorphic function on the complex plane, otherwise the region
where {Mφ} is holomorphic is smaller. For example, suppose φ(t) ∼ t−A for A ∈ R
as t → ∞. In such a case the integral is convergent as long as ℜ(s) < A, so
that {Mφ} is a holomorphic function only in that region. If, on the other hand,
φ(t) ∼ t−B with B ∈ R as t → 0, then the Mellin transform is holomorphic in
the region ℜ(s) > B. If both behaviours are present, the region where the Mellin
transform is holomorphic is the strip B < ℜ(s) < A. In all the discussed cases,
however, a meromorphic continuation of {Mφ} can be provided out of the region
where the integral (3.1) converges.

For instance, consider a function φ decaying rapidly at infinity, and whose asymp-
totic behaviour as x→ 0 is:

φ(x) ∼
∑
n=0

anx
n. (3.3)

From the above discussion, it follows that {Mφ} is only defined in the region ℜ(s) >
0. To give a continuation to the Mellin transform outside of the range of validity of
Eq. (3.1), we consider, for N > 0

{Mφ}(s) =
∫ 1

0
dt

(
φ(t)−

N−1∑
n=0

ant
n

)
ts−1 +

N−1∑
n=0

an
n+ s

+

∫ ∞
1

dt φ(t)ts−1. (3.4)

40



Mathematical tools: asymptotic power series

In the above line, we have split the integral into two intervals, from 0 to 1 and from
1 to ∞, and added and subtracted the asymptotic behaviour of φ about 0 in the first
integral. Now the integral of the function between parenthesis converges for s = 0.
In fact, with this simple trick we have been able to extend the Mellin transform
to the larger portion of the complex plane ℜ(s) > −N , as the function between
parenthesis in the first integral has asymptotic behaviour tN for t→ 0. Even more,
we have found that such a continuation is a meromorphic function with simple poles
at every negative integer s = −n, and residues an. The inverse statement is also
true: if the generalized Mellin transform of a function φ is meromorphic, with poles
at s = −n, then the residues represent the coefficients of the asymptotic expansion
around x = 0 of φ.

With the above machinery, we can proceed to the calculation of the asymptotic
power series of particular series of functions. We will study three cases separately.

Series of f(nx)

Let us start by reviewing the original proof by Zagier, for which we refer the reader
to Refs. [126, 127].

Consider a function f with asymptotic expansion about x = 0 given by

f(x) ∼
∞∑

k=−M,̸=−1
akx

k, (3.5)

with M a positive integer. Then the series of functions:

g(x) =

∞∑
n=1

f(nx) (3.6)

has the asymptotic power expansion for x→ 0

g(x) ∼
If
x

+

∞∑
n=0

anζ(−n)xn, If ≡
∫ ∞
0

dt

(
f(t)−

−2∑
k=−M

akt
k

)
. (3.7)

Here, ζ is the Riemann zeta function:

ζ(s) =

∞∑
n=1

1

ns
. (3.8)

The inclusion of the k = −1 term in the expansion (3.5) presents some additional
difficulties which will be tackled later.

To prove Eq. (3.7), first, we remove the negative-power terms from f , defining:

f̃(x) = f(x)−
−2∑

k=−M
akx

k.

It follows that:

g(x) =

∞∑
n=1

f̃(nx) +

∞∑
n=1

−2∑
k=−M

akn
kxk ≡ g̃(x) +

∞∑
n=1

−2∑
k=−M

akn
kxk, (3.9)

where we have introduced g̃ to define the series of the f̃ functions.
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The second term in the above equation is the series of a polynomial, and each
term is convergent. Therefore it can be summed trivially by exchanging the order
of the series and the finite sum:

∞∑
n=1

−2∑
k=−M

akn
kxk =

−2∑
k=−M

∞∑
n=1

akn
kxk =

−2∑
k=−M

ζ(−k)akxk. (3.10)

To compute the asymptotic expansion of g̃, let us consider its Mellin transform.
From the property (3.2), it follows:

{Mg̃}(s) =
∞∑
n=1

{Mf̃(nt)}(s) =
∞∑
n=1

n−s{Mf̃}(s) = ζ(s){Mf̃}(s). (3.11)

We can now infer the analytic structure of {Mg̃}. Given the asymptotic behaviour
of f̃ , {Mf̃} is a meromorphic function with poles at the non-positive integers (i.e.,
s = −n = 0,−1,−2...), and residue an. It implies that {Mg̃} also has the same
poles, with residues ζ(s)an = ζ(−n)an. Moreover, the ζ-function has a pole at
s = 1, which in turns implies that {Mg̃} has a pole at s = 1, so that the residue
{Mf̃}(1) = If as defined in Eq. (3.7). Thus, the discussion presented earlier in this
section implies that the asymptotic power expansion of g̃ is given by:

g̃(x) ∼
If
x

+

∞∑
n=0

ζ(−n)anxn. (3.12)

Adding up all the terms in Eq. (3.9), we find that:

g(x) ∼
If
x

+

∞∑
n=−M,̸=−1

anζ(−n)xn, (3.13)

which proves the result. □
It is also interesting to study the case where the asymptotic expansion includes

the term k = −1, although it will not be used in this chapter. Suppose:

f(x) ∼
∞∑

k=−1
akx

k, (3.14)

where the terms with k < −1 have been removed for sake of simplicity, as they can
be summed as explained above. The ζ-function is singular in 1, and we ought to
regularize the function f before we can compute the asymptotic series of g. Let us
define the function:

h(x) = f(x)− a−1
e−x

x
, (3.15)

which is regular at x = 0. We can compute:

g(x) =
∑
n=1

f(nx) =
∑
n=1

h(nx) + a−1
∑
n=1

e−nx

nx
. (3.16)
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The asymptotic expansion of g is found using the result (3.13) for the series of
h(nx), whereas the second sum can be computed exactly*

g(x) ∼ 1

x
I∗ +

∞∑
n=0

hnζ(−n)xn − a−1
x

ln

(
ex − 1

ex

)
,

I∗ =

∫ ∞
0

dt

(
f(t)− a−1

e−t

t

)
,

and from the definition of h(x) one can see that the coefficients hn are

hn = an − a−1
(−1)n+1

(n+ 1)!
.

We can cast the result into the form:

g(x) ∼ 1

x
I∗ +

∞∑
n=0

anζ(−n)xn − a−1

∞∑
n=0

(−1)n+1

(n+ 1)!
ζ(−n)xn +

a−1
x

ln

(
ex

ex − 1

)
,

where we used the properties of the logarithm to switch the numerator and the
denominator in the last term. To further simplify the result, we have to rework the
logarithm:

1

x
ln

(
ex

ex − 1

)
= −1

x
lnx+ 1 +

1

x
ln

(
x

ex − 1

)
. (3.17)

It is possible to express the last logarithm on the right-hand side as a power series
defining a function l(x) and integrating the power expansion of its derivative as
follows:

l(x) = ln

(
x

ex − 1

)
⇒ l′(x) =

1

x

(
1− xex

ex − 1

)
= −

∞∑
r=0

Br+1(1)

(r + 1)!
tr

⇒ l(x) = −
∞∑
r=0

Br+1(1)

(r + 1)!(r + 1)
tr+1,

where the integration constant has been fixed requiring l(0) = 0 and we used the
definition of the generating function of the Bernoulli polynomials Br(s):

xesx

ex − 1
=

∞∑
r=0

Br(s)

r!
tr.

Since Br+1(1) = −ζ(−r)(r + 1) for r ≥ 0, the asymptotic power expansion of g(x)
reads:

g(x) ∼ 1

x
(I∗ − a−1 lnx) +

∞∑
n=0

anζ(−n)xn + a−1

(
1 +

∞∑
n=0

1− (−1)n+1

(n+ 1)!
ζ(−n)xn

)
.

(3.18)
But ζ(−2n) = 0 for n > 0, and one sees that the last term in parenthesis is vanishing.

The final result reads:

g(x) ∼ 1

x
(I∗ − a−1 lnx) +

∞∑
n=0

anζ(−n)xn. (3.19)

*If also negative coefficients from −M to −2 appear in the expansion of f , they must be sub-
tracted in the integral to ensure convergence, like in Eq. (3.7).
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Series of (−1)n+1f(nx)

Let us turn to the case of alternating series of functions, which is relevant for
fermionic statistics. We will use a similar notation as in the previous subsection.

Consider the function f(x) on the real axis, such that its asymptotic power series
about x = 0 is given by:

f(x) ∼
∞∑

k=−M
akx

k, (3.20)

and consider the function g(x) defined by the series:

g(x) =
∞∑
n=1

(−1)n+1f(nx). (3.21)

Then the asymptotic power series of g(x) about zero reads:

g(x) ∼
∞∑

n=−M
anη(−n)xn, (3.22)

where η(s) is the Dirichlet η-function, defined as:

η(s) =

∞∑
n=1

(−1)n+1

ns
= (1− 21−s)ζ(s). (3.23)

Notice that in this case the term k = −1 in the asymptotic series does not yield any
additional complications as the alternating series

∑∞
n=1(−1)n+1/n is convergent. To

prove the formula, we proceed like in the previous section.
Once again, we realize that the negative powers in the asymptotic series (3.20)

yield a convergent series and we can consider them separately and they result in a
finite sum:

g(x) = g̃(x) +

−1∑
k=−M

akη(−k)xk. (3.24)

The calculation of the asymptotic series of g boils down to the one of g̃, where we
define:

f̃(x) = f(x)−
−1∑

k=−M
an x

k, g̃(x) =
∞∑
n=1

(−1)n+1f̃(nx).

Thus, the Mellin transform of g̃ is:

{Mg̃}(s) =
∞∑
n=1

(−1)n+1{Mf̃(nx)} =
∞∑
n=1

(−1)n+1n−s{Mf̃}(s) = η(s){Mf̃}(s).

(3.25)

Again we use the properties of the Mellin transform: {Mf̃} is a meromorphic func-
tion, has simple poles at each non-positive integer and the residue in each pole is an.
This implies that {Mg̃} is a meromorphic function, with the simple poles located in
all the non-positive integers, and residue η(−n)an. The important difference with
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respect to the non-alternating case is that the η-function, in contrast with the ζ is
holomorphic in the complex plane, so that there is no additional singularity at s = 1.

Therefore we have

g̃(x) ∼
∞∑
n=0

anη(−n)xn. (3.26)

Combining this result with Eq. (3.24)

g(x) ∼
∞∑

n=−M
anη(−n)xn, (3.27)

we have proved the formula (3.22). □

Series of f((2n+ 1)x)

The two above results can be combined to obtain the asymptotic power expansion
of a series of functions where the summation is performed only on odd numbers.
This result will not be used in this work but might be interesting for mathematical
physics. To obtain such a formula, it suffices to consider:

∞∑
n=1

(−1)n+1f(nx) =
∞∑
n=0

(−1)2n+1f(2nx) +
∞∑
n=0

(−1)2n+2f((2n+ 1)x), (3.28)

where we have split the series into the even-n and odd-n series. Now, using the
asymptotic power series just derived, if the asymptotic expansion of f is given by
(3.5) we have:

∞∑
n=0

f((2n+ 1)x) ∼
∞∑

n=−M
anη(−n)xn +

If
2x

+

∞∑
n=−M
n̸=−1

an2
nζ(−n)xn. (3.29)

If the term k = −1 is included in the asymptotic expansion of f :

∞∑
n=0

f((2n+ 1)x) ∼
∞∑

n=−M
anη(−n)xn +

1

2x
(I∗ − a−1 ln 2x) +

∞∑
n=−M
n̸=−1

an2
nζ(−n)xn.

(3.30)

□

3.2 Analytic distillation

The reason why it is important to know the asymptotic power expansion of these
series of functions will become clear in the next sections: they are paramount to
extracting analytic results from the Wigner-function formalism via a mathematical
operation dubbed analytic distillation.

The analytic distillation has been defined in Ref. [13] as follows:

Definition. Let f(z) be a function on a domain D of the complex plane and z0 ∈ D
(D being the closure of D) a point where the function may not be analytic. Suppose
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that the asymptotic power series of f(z) in z− z0 exist in subsets Di ⊂ D such that
∪iDi = D:

f(z) ∼
∑
n

a(i)n (z − z0)
n

where n can take integer negative values. If the series formed with the common
coefficients in the subsets Di restricted to n ≥ 0 has a positive radius of convergence,
the analytic function defined by this power series is called analytic distillate of f(z)
in z0 and it is denoted by distz0f(z).

In practice, the definition prescribes a way to retain the analytic part of a func-
tion. One has to find a power expansion for the given function and remove coefficients
in such a way that the new expansion is globally defined in the domain D, possibly
the complex plane. The fact that asymptotic series may differ in different sectors
of the complex plane is known as the Stokes phenomenon, and it is relevant in the
theory of resurgence and trans-series [128–130]. Furthermore, one has to demand
the series to be convergent and remove n < 0 terms so that, in practice, what is left
is the analytic part of the original function.

In other words, the coefficients of the analytic distillate of a function f at a point
z0 are given by:

an ≡

{
a
(i)
n if a

(i)
n = a

(j)
n , ∀i, j and n ≥ 0

0 otherwise
distz0f(z) ≡

∑
n=0

an(z − z0)
n, (3.31)

where i, j denote different regions of the domain D. Notice that, if f is an analytic
function at z0, then the distillate yields the function itself, whereas if the function is
not analytic the result is vanishing. If the asymptotic expansion of f admits negative
exponents, those are removed by the distillate.

As a simple example of analytic distillate, consider the function:

f(x) =
e−x

x
+ |x|.

The asymptotic power expansion of f is given by:

f(x) ∼
∞∑
n=0

(−1)n

n!
xn−1 + |x|.

Since the absolute value has two different coefficients depending on the sign of x, it
must be removed from the distillation. Moreover, the series has a negative power,
that should also be removed. We find that the analytic distillate of f(x) at x = 0 is
given by:

dist0f(x) =
∞∑
n=1

(−1)n

n!
xn−1 =

e−x − 1

x
,

which is analytic at x = 0. This procedure will be employed in the forthcoming
sections in order to extract the exact expectation values computed recursively in the
Wigner-function formalism, for a free field theory.
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3.3 Factorization of the density operator at global equi-
librium

Other than the asymptotic power series and the analytic distillation, there is another
mathematical step which is critical for the calculation of exact thermal expectation
values at global equilibrium: the factorization of the density operator.

The global equilibrium density operator, as discussed in Section 1.2.2, reads:

ρ̂ =
1

Z
e−P̂ ·b+

ϖ:Ĵ
2 , (3.32)

where b is a constant vector and ϖ the constant thermal vorticity, an antisymmetric
tensor. As we have discussed in Section 1.2.2, the density operator is the exponential
of the generators of the Poincaré group, P̂ being the generator of translations and
Ĵ of boosts and rotations.

The density operator would be far easier to handle were it factorized as the
product of a complex translation times a complex Lorentz transformation, i.e.:

ρ̂ =
1

Z
e−b

′·P̂ e
ϖ′:Ĵ

2 ,

for some values of b′ and ϖ′.
This factorization is always possible, as it was shown in Refs. [13, 50]. In

particular, it is possible to factorize the density operator as:

ρ̂ =
1

Z
exp

[
−bµP̂µ +

ϖµν

2
Ĵµν

]
=

1

Z
exp

[
−b̃µ(ϖ)P̂µ

]
exp

[ϖµν

2
Ĵµν

]
, (3.33)

where the tilde transform of a vector is defined as:

b̃µ(ϖ) =

∞∑
k=0

ik

(k + 1)!
(ϖµ

α1
ϖα1

α2
. . . ϖ

αk−1
αk︸ ︷︷ ︸

k times

)bαk . (3.34)

Notice how the tilde transformed vector b̃ is in general not real if the vorticity is
real, whereas it becomes real for imaginary vorticity. In the aforementioned ref-
erences, the proof was put forth using the properties of translations and Lorentz
transformations. However, it was also stated that the factorization just depends on
the group structure and the Lie algebra of the Poincaré group, thus it is obtainable
also via the Baker–Campbell–Hausdorff (BCH) formula. In this section, we will use
this formalism to prove the factorization of the density operator.

The BCH formula allows us to express the product of the exponentials of two
non-commuting operators as the exponential of a single operator given by a series
of commutators. Explicitly, one has [131]:

log(eXeY ) =
∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

[Xr1Y s1Xr2Y s2 · · ·XrnY sn ]

(
∑n

j=1(rj + sj)) ·
∏n

i=1 ri!si!
, (3.35)

where:

[Xr1Y s1Xr2Y s2 · · ·XrnY sn ] = [X, [. . . [X︸ ︷︷ ︸
r1 times

, [Y [. . . [Y︸ ︷︷ ︸
s1 times

, [X, [. . .︸ ︷︷ ︸
r2 times

, [Y [, . . .︸ ︷︷ ︸
s2 times

], . . . ]. (3.36)
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Notice that since [Y, Y ] = 0, it follows that sn = 1. Furthermore, if sn = 0, which
implies rn > 0 the result vanishes for [X,X] = 0. For our purposes, we define:

X = −bαP̂α Y =
ϖµν

2
Ĵµν . (3.37)

To prove Eq. (3.33), we aim at finding an operator A such that:

eX+Y = eAeY .

Multiplying by the inverse Lorentz transform e−Y and using Eq. (3.35), the operator
A can be written as:

A =

∞∑
n=1

(−1)n−1

n

∑
r1+s1>0

...
rn+sn>0

[(X + Y )r1(−Y )s1 · · · (X + Y )rn(−Y )sn ]

(
∑n

j=1(rj + sj)) ·
∏n

i=1 ri!si!
, (3.38)

where to compute the commutators we have to use the algebra of the Poincaré group
[42]:

[Ĵµν , P̂α] =i
(
gανP̂µ − gαµP̂ ν

)
, (3.39a)

[P̂µ, P̂ ν ] =0. (3.39b)

To help with the calculation, we can first prove an auxiliary result. Given the
definitions of X and Y as Eq. (3.37), we can show that for any N :

[Y, [Y, . . . [Y︸ ︷︷ ︸
N timse

, X] = −iN
(
ϖµν1ϖ

ν1ν2 . . . ϖνN−1νN

)︸ ︷︷ ︸
N times

bνN P̂µ (3.40)

Proof: The proof is done by induction. First consider N = 1:

[Y,X] = −bα
ϖµν

2
[Ĵµν , P̂α] = −ibα

ϖµν

2

(
gανP̂µ − gαµP̂ ν

)
= −iϖµνb

νP̂µ.

This simple line proves that the formula holds for the first step. Now, inductively,
we assume the formula to hold for the N -th step, and prove that if this is the case
the step N + 1 also holds. If we consider N + 1 commutators, we find:

[Y, [Y, . . . [Y︸ ︷︷ ︸
N times

, X] = −iN
(
ϖρν1ϖ

ν1ν2 . . . ϖνN−1σ

)︸ ︷︷ ︸
N times

bσ[Y, P ρ]

= −iNϖµν

2

(
ϖρν1ϖ

ν1ν2 . . . ϖνN−1σ

)︸ ︷︷ ︸
N times

bσ[Ĵµν , P̂ ρ] =

= −iN+1ϖµν

2

(
ϖρν1ϖ

ν1ν2 . . . ϖνN−1σ

)︸ ︷︷ ︸
N times

bσ
(
gρνP̂µ − gρµP̂ ν

)
,

and finally:

[Y, [Y, . . . [Y︸ ︷︷ ︸
N times

, X] = −iN+1 (ϖµν1ϖ
ν1ν2 . . . ϖνNσ)︸ ︷︷ ︸

N+1 times

bσP̂µ.

We have proven that the step N = 1 holds and that if the step N holds it follows
that the step N + 1 holds as well, and this concludes the proof by induction. □
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After this intermediate result, it is easy to compute the series (3.38). Let us
consider each fixed n term of the series:

A = A(1) −
1

2
A(2) + · · ·+ (−1)n−1

n
A(n) . . .

where each of the A(n) is given by:

A(n) =
∑

r1+s1>0
...

rn+sn>0

[(X + Y )r1(−Y )s1(X + Y )r2(−Y )s2 · · · (X + Y )rn(−Y )sn ]

(
∑n

j=1(rj + sj)) ·
∏n

i=1 ri!si!
(3.41)

Starting with A(1), and since necessarily sn = 1, we find:

A(1) =

∞∑
r1=0

r1 times︷ ︸︸ ︷
[X + Y, [X + Y, [. . . , [X + Y ,−Y ] . . . ]

(r1 + 1)!
.

On the other hand, since [X,Y ] ∝ X all the terms like [X, [. . . , [X, [X,−Y ]] vanish
due to [P̂µ, P̂ ν ] = 0, and we are left with:

A(1) =
∞∑

r1=0

r1−1 times︷ ︸︸ ︷
[Y, [Y, [. . . , [Y , [X,−Y ] . . . ]

(r1 + 1)!
=
∞∑

r1=0

r1 times︷ ︸︸ ︷
[Y, [Y, [. . . [Y, [Y ,X] . . . ]

(r1 + 1)!
.

Using equation Eq. (3.40), we find:

A(1) = −
∞∑
k=0

ik

(k + 1)!
(ϖµν1ϖ

ν1ν2 . . . ϖνk−1νk)b
νk P̂µ. (3.42)

Now we turn to the A(n>1) terms, and we show that they vanish identically.
Consider A(2) :

A(2) =
∑

r1+s1>0

∞∑
r2=0

(−1)s1

r1 + s1 + r2 + 1

[(X + Y )r1 , Y s1 , (X + Y )r2 ,−Y ]

s1!r1!r2!
=

=

∞∑
r2=0

∑
r1+s1>0

(−1)s1

r1 + s1 + r2 + 1

[Y r1 , Y s1 , Y r2 , X]

s1!r1!r2!
,

where we removed the terms like [X, [X, . . . [X,Y ] . . . ] as they vanish. The sum takes
place on fixed values of r1 + s1, so, changing variable N = r1 + s1, we write:∑

r1+s1>0

(−1)s1

r1 + s1 + r2 + 1

[Y r1 , Y s1 , Y r2 , X]

s1!r1!r2!

=
∞∑

N=1

[Y N+r2 , X]

r2!(N + r2 + 1)

∞∑
s1=0

(−1)s1

s1!(N − s1)!
.

As s1 grows, the factor N − s1 eventually becomes negative. The term (N − s1)! in
the second series becomes the factorial of a negative integer, which is infinite due
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to the properties of the Euler Γ-function, the analytic continuation of the factorial.
Therefore, the second series reduces to a finite, vanishing sum:

∞∑
s=0

(−1)s

s!(N − s)!
=

N∑
s=0

(−1)s

s!(N − s)!
=

1

N !

N∑
s=0

(
N
s

)
1N−s(−1)s =

(1− 1)N

N !
= 0

and we have shown that A(2) = 0.
The same steps can be applied to the other terms of Eq. (3.38), which turn out to

be all vanishing. This is a very peculiar fact, characteristic of the Poincaré algebra.
It is due to the fact that the commutator [Ĵµν , P̂α] only results in combinations of
the generators of translations P̂ , which form an abelian algebra.

Thus we finally have:

A = A(1) = −
∞∑
k=0

ik

(k + 1)!
(ϖµν1ϖ

ν1ν2 . . . ϖνk−1νk)b
νk P̂µ = −b̃(ϖ) · P̂ ,

and the density operator can be factorized as shown in Eq. (3.33).

3.4 Recurrence method for expectation values

The procedure needed to calculate exact expectation values, as has been mentioned
at the beginning of the chapter, consists of two steps. The first one is to use the fac-
torized version of the global-equilibrium density operator, which has been addressed
in the previous section. The operator (3.33) resembles the product of a translation
and a Lorentz transformation, and this analogy can be made even more explicit by
performing the analytic continuation:

ϖµν 7→ −iϕµν . (3.43)

This mapping will be very important to compute expectation values, as now the
problem can be tackled by taking advantage of the properties of the Poincaré group.
The analytic continuation of the density operator (3.33) is expressed as a product of
the unitary representations of a (complex) translation and a Lorentz transformation,
both acting on the Hilbert space:

ρ̂ =
1

Z
exp

[
−b̃µ(−iϕ)P̂µ

]
exp

[
−iϕµν

2
Ĵµν

]
≡ 1

Z
exp

[
−b̃µ(−iϕ)P̂µ

]
Λ̂,

where we have defined Λ ≡ exp[−iϕ : Ĵ/2].
We can also allow for a chemical potential coupled to a conserved charge, say

the electric charge, so that the density operator is:

ρ̂ =
1

Z
eζQ̂ exp

[
−b̃µ(−iϕ)P̂µ

]
Λ̂. (3.44)

One of the key ingredients to compute any expectation value is the two-point
function of creation and annihilation operators ⟨â†s(p)ât(p′)⟩, which we are now go-
ing to compute using group theory. The technique used here can be applied also for
n-point functions involving more than two creation and annihilation operators, for
example ⟨â†s(p)ât(p′)â†l (q)âm(q′)⟩. In this respect, it can be used also to compute ex-

act correlators of operators bilinear in the fields such as ⟨T̂µν T̂ ρσ⟩. In full generality,
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for the purpose of this section, we consider particles with spin S, whose spin state
is labelled by the integer or half-integer number s ranging from −S to S in steps of
one . It is intended that the creation and annihilation operators obey commutation
rules if the spin is integer and anticommutation rules if it is a half-integer. It is well
known that the creation operator for a particle with spin S transforms under the
Lorentz transformation Λ̂ as [42]:

Λ̂â†s(p)Λ̂
† =

∑
r

DS(W (Λ, p))rsâ
†
r(Λp), (3.45)

where W (Λ, p) = [Λp]−1Λ[p]. This matrix is an element of the little group of the
standard vector p, as it transforms p to p, then to Λp and finally back to p. We recall
that DS stands for the (0, S)-th finite-dimensional representation of the Lorentz
group [42, 43].

As we have seen in Chapter 1, for massive particles one chooses as the standard
vector the momentum of the particle in its rest frame p = (m,0). In such a case,
it is straightforward to see that the little group is made of all rotations in three
dimensions, SO(3) and the W (Λ, p) matrix is called Wigner rotation.

Equation (3.45) holds also for massless particles, although some care is necessary.
In the case of massless particles, the usual choice for the standard momentum is
p = (κ, 0, 0, κ), for some constant κ > 0. In Section 1.5 we established that two of
the three generators of the little group must act trivially on the Hilbert space, and
this requirement reduces the transformation D(W (Λ, p)) in Eq. (3.45) to a phase:
D(W (Λ, p))rs = e−irθ(Λ,p)δrs [42–44]. Therefore, we realize that in both massive
and massless cases, the matrix W (Λ, p) = [Λp]−1Λ[p] involved in the transformation
(3.45) is unitary (see also Appendix A for further details).

To calculate exactly ⟨â†s(p)ât(p)⟩ we start by using the transformation rule (3.45)
and the cyclicity of the trace. Using the operator (3.44):

⟨â†s(p)ât(p′)⟩ =
1

Z
eζTr

(
e−b̃·P̂ Λ̂â†s(p)ât(p

′)
)

=
1

Z
eζ
∑
r

DS(W (Λ, p))rsTr
(
e−b̃·P̂ â†r(Λp)Λ̂ât(p

′)
)

=eζ
∑
r

DS(W (Λ, p))rse
−b̃·Λp⟨ât(p′)â†r(Λp)⟩.

Finally, using the (anti)commutation rules of â†s(p) and ât(p), we find:

⟨â†s(p)ât(p′)⟩ =(−1)2Seζ
∑
r

DS(W (Λ, p))rse
−b̃·Λp⟨â†r(Λp)ât(p′)⟩+

+ 2eζε e−b̃·ΛpDS(W (Λ, p))tsδ
3(Λp− p′),

(3.46)

where the factor (−1)2S originates from the use of commutation or anticommutation
rules, depending on the spin of the particle. To solve Eq. (3.46) we can proceed iter-
atively. When dealing with equations to be solved iteratively, the solution consists
of a particular solution of the inhomogeneous equation and a homogeneous solution,
much like in the case of differential equations. It has been shown, however, that
the homogeneous solution of equations like (3.46) is in general non-analytic for van-
ishing vorticity; since we anticipate thermal expectation values to be analytic when
no vorticity is present, the homogeneous solution will be disregarded [13]. Also the
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particular solution that we are about to find will contain non-analytic components,
and those will be removed using the analytic distillation introduced in the previous
section.

As the first step of the iterative procedure, we approximate the solution of Eq.
(3.46) by the rightmost term, the one proportional to the δ-function:

⟨â†s(p)ât(p′)⟩ ∼ 2eζε e−b̃·ΛpDS(W (Λ, p))tsδ
3(Λp− p′),

Now, we can plug this approximation back into the right-hand side of Eq. (3.46), so
to obtain an updated version of the solution:

⟨â†s(p)ât(p′)⟩ ∼2e2ζε (−1)2S×∑
r

DS(W (Λ, p))rsD
S(W (Λ,Λp))tre

−b̃·(Λp+Λ2p)δ3(Λ2p− p′)

+ 2eζε e−b̃·ΛpDS(W (Λ, p))tsδ
3(Λp− p′).

The product of the two elements of the little group can be simplified:

DS(W (Λ,Λp))DS(W (Λ, p)) = DS([ΛΛp]−1Λ[Λp][Λp]−1Λ[p]) = DS(W (Λ2, p)),

where we used the well-known property of representations DS(A)DS(B) = DS(AB).
We obtain:

⟨â†s(p)ât(p′)⟩ ∼2e2ζε (−1)2SDS(W (Λ2, p))tse
−b̃·(Λp+Λ2p)δ3(Λ2p− p′)+

+ 2eζε e−b̃·ΛpDS(W (Λ, p))tsδ
3(Λp− p′).

If we keep this process going up to infinity, the result is given by the series:

⟨â†s(p)ât(p′)⟩ = 2ε′
∞∑
n=1

(−1)2S(n+1)δ3(Λnp− p′)DS(W (Λn, p))tse
−b̃·

∑n
k=1 Λ

kp+nζ .

(3.47)

The expectation value ⟨̂b†s(p)̂bt(p′)⟩ can be computed likewise, and the result would
be just:

⟨̂b†s(p)̂bt(p′)⟩ = 2ε′
∞∑
n=1

(−1)2S(n+1)δ3(Λnp− p′)DS(W (Λn, p))tse
−b̃·

∑n
k=1 Λ

kp−nζ .

(3.48)

Since the global-equilibrium density operator cannot change the number of par-
ticles in a given state, applying this procedure to â†s(p)â

†
t(p
′), âs(p)ât(p

′), âs(p)̂bt(p)
and alike combinations yields vanishing results. Indeed, those expectation values
are computed with a homogeneous equation, which has only non-analytic solutions.

As a sanity check of the result, we can consider the case of vanishing thermal
vorticity ϖ = 0, where the results are well-known. A vanishing thermal vorticity
implies ϕ = 0 and Λ = I, and Eq. (3.47) gives:

⟨â†s(p)ât(p′)⟩ =2ε′
∞∑
n=1

(−1)2S(n+1)δ3(p− p′)δts e
−nb·p+nζ

=2ε δ3(p− p′)δts
1

eb·p−ζ + (−1)2S+1
,
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where the series converges as long as b · p > ζ ⇒ m > µ and correctly reproduces
the Bose-Einstein and the Fermi-Dirac distributions for integer and half-integer S
respectively. Given this result, one can interpret the series in n as the quantum
statistics expansion, the n > 1 terms being corrections to the Boltzmann statistics,
which in turn can be described by truncating the series at n = 1.

The results obtained here are series of δ-functions. In most of the cases, however,
the two-point functions computed above will appear in momentum integrals, so that
the δ-function will be integrated away. Furthermore, the result (3.47) makes sense
only with the imaginary vorticity ϕ, but the physical mean value should be computed
for the real vorticity ϖ. This continuation is not feasible in Eq. (3.47), because of
the presence of the delta functions, but it will be made possible after the momentum
integration and analytic distillation.

3.4.1 The Wigner function of Dirac fermions at general global equi-
librium

Using the results of the previous section, we can calculate the exact Wigner function
of the Dirac field for a system at global equilibrium with non-vanishing vorticity.
Feeding Eq. (3.47) for S = 1/2 into Eq. (1.54), using the notation D(•) = D(1/2)(•)
and recalling that at global equilibrium the space-like part of the Wigner function
vanishes (see discussion after Eq. (3.48)), we get:

W (x, k) =
1

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−ix·(Λ
np−p)e−b̃·

∑n
k=1 Λ

kp+nζ

×
∑
rs

[
enζur(Λ

np)D(W (Λn, p))rsus(p)δ
4
(
k − Λnp+p

2

)
−e−nζvr(p)D(W (Λn, p))srvs(Λ

np)δ4
(
k + Λnp+p

2

)]
,

(3.49)

or, with the compact 4× 2 spinor notation (1.40):

W (x, k) =
1

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−ix·(Λ
np−p)e−b̃·

∑n
k=1 Λ

kp×[
enζU(Λnp)D(W (Λn, p))U(p)δ4

(
k − Λnp+p

2

)
−e−nζV (p)D(W (Λn, p))TV (Λnp)δ4

(
k + Λnp+p

2

)]
.

(3.50)

We can simplify the above expression by using the transformation rules of spinors
under the Lorentz group (see Appendix A):

U(Λp)D(W (Λ, p)) = U(Λp)D(W (Λ, p))†
−1

= S(Λ)U(p),

where S(Λ) is the Lorentz transformation Λ in the Dirac representation (0, 1/2) ⊕
(1/2, 0) as given by Eq. (1.45), and in the second step we used the fact that both
in the massive and the massless case (the latter by physical requirement) the little
group consists of unitary matrices only. Equation (3.50) can be worked out using
the Eq. (1.50) along with:

S(Λn) = S(Λ)n,

thus:
U(Λnp)D(W (Λn, p))U(p) = S(Λ)nU(p)U(p) = S(Λ)n(/p+m).
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The antiparticle’s component can be put into a similar form. Keeping in mind that
V ∗ = CU (see Section 1.3):

V (p)D(W (Λn, p))TV (Λnp) =−
(
γ0CU(Λnp)W (Λn, p)U(p)Cγ0

)T
=− γ0C(m+ /p

T )S(Λ)nTCγ0 = −(m− /p)S(Λ)
−n,

where we have used the relations (1.51). Therefore, we can express the Wigner
function as:

W (x, k) =
1

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−ix·(Λ
np−p)e−b̃·

∑n
k=1 Λ

kp×[
enζS(Λ)n(m+ /p)δ

4

(
k − Λnp+ p

2

)
+ e−nζ(m− /p)S(Λ)

−nδ4
(
k +

Λnp+ p

2

)]
.

(3.51)

Notice that the properties used to derive the expression (3.51) hold both for massive
and massless particles. Consequently, setting m = 0 in Eq. (3.51) immediately
yields the Wigner function for massless particles. We can also easily recover the
Wigner function for vanishing thermal vorticity by setting ϕ = 0 and Λ = I:

W (x, k) =
δ(k2 −m2)

(2π3)

[
θ(k0)(m+ /p)nF (b · p− ζ) + θ(−k0)(m− /p)nF (b · p+ ζ)

]
(3.52)

We are now in the position to show that Eq. (3.51) is a solution of the Wigner
equation for free Dirac fermions (1.56):(

i

2
/∂ + /k −m

)
W (x, k) = 0. (3.53)

We will confine ourselves to the particle part of the Wigner function since the cal-
culations can be easily repeated for antiparticles. The action of the partial derivative
on the Wigner function is trivial, as the only dependence on the space-time point x
is in the exponent. We can write:

i

2
/∂ 7→ 1

2
( /Λnp− /p) = /Λnp− /k,

where we have taken advantage of the δ-function to write /p = 2/k − /Λnp. We can

now use the Lorentz transformation rules of the matrices p
⌣

and
⌢
p which, denoting

the transformation D(Λ) = Λ for brevity, read:

Λp
⌣
Λ† = Λp

⌣
, Λ†−1

⌢
p Λ−1 =

⌢
Λp,

and the identity p
⌣

⌢
p= m2 (see appendix A), to work out the matrix product:

/ΛnpS(Λ)n(m+ /p) =

 0 Λnp
⌣

⌢
Λnp 0

( Λn 0

0 Λn†−1

)(
m p

⌣
⌢
p m

)

=

(
0 Λn p

⌣

Λn†−1 ⌢
p 0

)(
m p

⌣
⌢
p m

)

=

(
Λnm2 mΛn p

⌣

mΛn†−1 ⌢
p m2Λn†−1

)
= mS(Λ)n(m+ /p).
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In conclusion, we have:
i

2
/∂W+ = (m− /k)W+,

which proves that Eq. (3.51) is indeed a solution of the Wigner equation (1.56).

The form in Eq. (3.51) can be further simplified. Defining the tilde transform of
β as in Eq. (3.34)

β̃(ϖ) =
∞∑
k=0

ik

(k + 1)!
(ϖµ

α1
ϖα1

α2
. . . ϖ

αk−1
αk︸ ︷︷ ︸

k times

)βαk , (3.54)

where we recall that β in global equilibrium is given by Eq. (1.18)

βµ(x) = bµ +ϖµνxν ,

and taking advantage of two identities proved in Ref. [13], namely:

n∑
k=1

Λ−k b̃(ϖ) = nb̃(−nϖ)

and

−ix · (Λnp− p)− nb̃(−nϖ) · p = −nβ̃(−nϖ) · p, (3.55)

we can rewrite Eq. (3.51) as:

W (x, k) =
1

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·p×[
enζS(Λ)n(m+ /p)δ

4

(
k − Λnp+ p

2

)
+ e−nζ(m− /p)S(Λ)

−nδ4
(
k +

Λnp+ p

2

)]
,

(3.56)

where we have used, as we will from now on, the shorthand notation:

β̃n ≡ β̃(−nϖ).

Equation (3.56) is the final result for the covariant Wigner function of the free Dirac
field in global equilibrium with non-vanishing thermal vorticity. As stated above,
the result holds both for massive and massless particles once we set the mass m to
zero. Similarly to the expression (3.47), the Wigner function (3.56) is only valid for
imaginary vorticity. However, expectation values like (1.57) involve the integration
over k and the result of such integration will be suitable to be continued analytically
back to the real vorticity.

3.5 Currents at global thermodynamic equilibrium

Let us now consider the currents obtained from Eqs. (1.57) as integrals of the Wigner
function. Thanks to the integration, the singular delta functions are removed from
expectation values, and it will be possible to continue the final results back to the
physical case of real thermal vorticity.
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We start by studying the vector current jµ(x). Plugging the Wigner function
(3.56) into Eq. (1.57a) we obtain:

jµ(x) =
1

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·p×[
enζtr

(
γµS(Λ)n/p

)
− e−nζtr

(
γµ/pS(Λ)

−n)] .
(3.57)

The first term is the particle contribution, whereas the second term is the antiparticle
one.

As a sanity check, we can compute the vector current in the case of vanishing
chemical potential ζ = 0, when the total current is bound to be zero. In fact, it
is instructive to see how this comes about. The antiparticle contribution can be
worked out using the properties of the γ0C matrix (1.51) and of the trace:

tr(γµ/pS(Λ)
−n) =tr((γµ/pS(Λ)

−n)T ) = tr
(
S(Λ)nT

−1
/p
TγµT

)
=tr

(
γ0CS(Λ)nCγ0γ0C/pCγ0γ0CγµCγ0

)
= tr(γµS(Λ)n/p)

. (3.58)

We see that particles and antiparticles contribute equally to the vector current, yet
with opposite signs, so when ζ = 0 the overall current vanishes.

In the case of non-vanishing chemical potential, this is no longer true, and one
can employ Eq. (3.58) to write the current (3.57) as:

jµ(x) =
2

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·ptr
(
γµS(Λ)n/p

)
sinhnζ. (3.59)

Using the commutation rules of the gamma matrices, the trace in Eq. (3.59) can
be written as:

tr
(
/pγ

µS(Λ)n
)
= pµtr (S(Λ)n) + 2ipνtr (Σ

µνS(Λ)n) , (3.60)

and the vector current reads:

jµ(x) =
2

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·p [pµtr (S(Λ)n) + 2ipνtr (Σ
µνS(Λ)n)] sinhnζ,

(3.61)
From this expression, we can see that the current density is no longer aligned with the
four-momentum p as in kinetic theory, but quantum effects give rise to contributions
orthogonal to p (see the discussion at the end of Section 1.4 and in Section 3.7).

Similarly, we can derive the series corresponding to the mean axial current
(1.57b). In this case, it is possible to prove that the traces associated with par-
ticles and anti-particles contribute to the axial current with the same magnitude
and sign, so that the total axial current can be non-vanishing even in the case of
ζ = 0. Using Eq. (3.56), we obtain the axial current:

jµA(x) =
2

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·ptr
(
γµγ5S(Λ)

n
/p
)
coshnζ.

Like in Eq. (3.60) the trace can be split:

tr
(
/pγ

µγ5S(Λ)
n
)
= pµtr (γ5S(Λ)

n) + 2ipνtr (Σ
µνγ5S(Λ)

n) .
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It is convenient to introduce a compact notation, defining:

Aµν(n) = tr (γνγµS(Λ)n) = gµνtr (S(Λ)n) + 2itr (ΣµνS(Λ)n) , (3.62)

Aµν
5 (n) = tr (γνγµγ5S(Λ)

n) = gµνtr (γ5S(Λ)
n) + 2itr (Σµνγ5S(Λ)

n) . (3.63)

The vector and axial current can now be written as:

jµ(x) =
2

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·ptr
(
γµS(Λ)n/p

)
sinhnζ

=
2

(2π)3

∞∑
n=1

(−1)n+1

n
Aµν(n) sinhnζ

(
− ∂

∂β̃νn

)∫
d3p

2ε
e−nβ̃n·p, (3.64)

jµA(x) =
2

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·ptr
(
γµγ5S(Λ)

n
/p
)
coshnζ

=
2

(2π)3

∞∑
n=1

(−1)n+1

n
Aµν

5 (n) coshnζ

(
− ∂

∂β̃νn

)∫
d3p

2ε
e−nβ̃n·p, (3.65)

where we have written the four-momentum p as the derivative with respect to β̃n of
the exponential function. The operations of integral and series have been exchanged
because, as long as the vorticity is imaginary, the series is uniformly convergent [13].

From now on, we will focus on the massless case, where the result of the integral
is: ∫

d3p

2ε
e−nβ̃n·p =

∫
d3p

2ε
e−n

√
β̃2
nε = 2π

∫ ∞
0

dp p e−n
√

β̃2
n p =

2π

n2β̃n · β̃n
, (3.66)

where to compute the integral we used the Lorentz invariance of the measure to go

to the frame where β̃n =

(√
β̃2n,0

)
and we used the relation ε = p =

√
p2 which

holds for massless particles.
For massless particles, Eqs. (3.64) and (3.65) become:

jµ(x) =
1

π2

∞∑
n=1

(−1)n+1

n3
β̃nν

(β̃n)4
Aµν(n) sinhnζ, (3.67)

jµA(x) =
1

π2

∞∑
n=1

(−1)n+1

n3
β̃nν

(β̃n)4
Aµν

5 (n) coshnζ. (3.68)

where (β̃n)
4 = (β̃n · β̃n)2.

We can also obtain the series associated with the canonical energy-momentum
tensor. By using Eq. (3.56) in the definition (1.57c), one has:

Tµν
C =

∫
d4k kνtr (γµW (x, k)) =

=

∞∑
n=1

(−1)n+1

(2π)3

∫
d3p

2ε
e−nβ̃n·p

[
enζ
(
Λnp+ p

2

)ν

tr
(
γµS(Λ)n/p

)
+ e−nζ

(
Λnp+ p

2

)ν

tr
(
γµ/pS(Λ)

−n)]
= 2

∞∑
n=1

(−1)n+1

(2π)3
coshnζ

∫
d3p

2ε
e−nβ̃n·p

(
Λnp+ p

2

)ν

tr
(
γµS(Λ)n/p

)
,
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where we used once again the identity (3.58). As we did before, we express the
four-momentum as the derivative with respect to β̃n of the exponential and, using
the shorthand notation (3.62), we have:

Tµν
C =

∞∑
n=1

(−1)n+1 coshnζ

(2π)3n2
×(

Aµα(n)
∂

∂β̃nν

∂

∂β̃αn
+ (Λn)νρA

µα(n)
∂

∂β̃nρ

∂

∂β̃αn

)∫
d3p

2ε
e−nβ̃n·p.

In the massless case, using the integral (3.66), the above formula reduces to:

Tµν
C =

∞∑
n=1

(−1)n+1

2π2
coshnζ

n4β̃4n

[
Aµ

γ(n)∆
γν

β̃n
+ (Λn)νρA

µ
γ(n)∆

γρ

β̃n

]
, (3.69)

where:

∆µν

β̃n
= 4

β̃νnβ̃
γ
n

β̃2n
− gνγ . (3.70)

We have been able to express the basic expectation values (1.57) as series of
functions of the vorticity and chemical potential for massless Dirac fermions. The
computation of the integral in k allowed us to get rid of the δ-function, providing
non-singular results. These series, however, are convergent only as long as the
vorticity is imaginary, and they become divergent in the physical case. The goal
of the next section is to associate a finite result to these series, which should also
be analytic when the vorticity is zero in order to allow for a smooth limit to the
standard Fermi-Dirac statistics results.

3.6 Exact mean values of currents at global thermody-
namic equilibrium

We will now study the series obtained in the previous section in three notable ex-
amples of global equilibrium: with acceleration, with rotation, and with both ac-
celeration and angular velocity parallel to each other. From the latter case, we will
obtain by covariance arguments formulae holding for any angular velocity and ac-
celeration. To get finite results, we will use the asymptotic formula (3.22) and the
analytic distillation procedure as introduced in Section 3.1. We will always consider
the massless Dirac field.

3.6.1 Acceleration

As extensively studied elsewhere [24, 25, 27, 28, 132–134], and briefly recalled in
Section 1.2.2, a system at equilibrium with a constant acceleration along the z-axis
is characterized by the following thermal vorticity and four-temperature:

ϖµν =
a

T0
(g3µg0ν − g0µg3ν), βµ =

1

T0
(1 + az, 0, 0, at) . (3.71)

This is the easiest case where to apply the techniques of Section 3.1. An important
simplification is given by the fact that one can calculate all mean values of scalar
operators at t = z = 0 and their expression at a generic space-time point is recovered
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by the simple substitution β(0) → β(x), as was discussed in Ref. [13]. For imaginary
thermal vorticity, setting ϕ = ia/T0, the series (3.54) yields:

nβ̃µn(t = 0, z = 0) =

(
sinh(nϕ)

T0ϕ
, 0, 0,

1− cosh(nϕ)

T0ϕ

)
, (3.72)

hence:

β(0)2 =
1

T 2
0

, n2β̃2n = β(0)2
4 sinh2

(
nϕ
2

)
ϕ2

.

From the above definition of ϖ and ϕ, the Lorentz transformations Λ and S(Λ) from
(1.45) and the traces Aµν and Aµν

5 , Eqs. (3.62), (3.63), read:

(Λn)
µ
ν=


coshnϕ 0 0 sinhnϕ

0 1 0 0
0 0 1 0

sinhnϕ 0 0 coshnϕ

,

S(Λ)n =


enϕ/2 0 0 0
0 e−nϕ/2 0 0
0 0 e−nϕ/2 0
0 0 0 enϕ/2

 ,

Aµν=


4 cosh nϕ

2 0 0 −4 sinh nϕ
2

0 −4 cosh nϕ
2 0 0

0 0 −4 cosh nϕ
2 0

4 sinh nϕ
2 0 0 −4 cosh nϕ

2

,

Aµν
5 =


0 0 0 0

0 0 4i sinh nϕ
2 0

0 −4i sinh nϕ
2 0 0

0 0 0 0

 .

(3.73)

These expressions have to be fed into Eqs. (3.67), (3.68) and (3.69). We start
from the energy-momentum tensor at xµ = 0 and, for simplicity, consider the case
of vanishing chemical potential first. Denoting, from now on, the series with imagi-
nary acceleration ϕ with an additional subscript I, the 00-component of the energy-
momentum tensor reads:

T 00
C (0)I =

3

8π2
1

β4

∞∑
n=1

(−1)n+1ϕ4
sinhnϕ

sinh5
(
nϕ
2

) . (3.74)

The series uniformly converges when ϕ has a non-vanishing real part, however, if
we try to use the real acceleration a in place of ϕ the series becomes divergent:
the function to be summed is not decreasing for increasing n. Since we expect the
result of the expectation value to be analytic in ϕ = 0, the analytic distillation can
be applied to get a finite result. The asymptotic power series of the functions in
T 00
C (0)I can be found from Eq. (3.22). We proceed explicitly for the sake of clarity.

To begin with, we obtain the power expansion of the function in the series. This is
a Laurent series:

sinhϕ

sinh5 ϕ
2

=
32

ϕ4
− 4

3ϕ2
− 17

180
+
∞∑
n=1

anϕ
2n,

where we have split the terms of order n ≤ 0, and the ones with n > 0. The above
function is an even function of ϕ, which implies that all the powers of ϕ are even,
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including the positive ones. Under these circumstances, the formula (3.22) yields a
polynomial:

ϕ4
∞∑
n=1

(−1)n+1 sinhnϕ

sinh5
(
nϕ
2

) ∼ ϕ4
(
32η(4)

ϕ4
− 4η(2)

3ϕ2
− 17η(0)

180

)
,

because the η-function is vanishing for negative even numbers. The above formula is
accurate to the order of O(ϕN ) for any N , which means that the difference between
the series and the polynomial is a function that is non-analytic at ϕ = 0. Therefore,
the analytic distillation simply reads:

distϕ=0T
00
C (0)I = distϕ=0

 3

8π2
ϕ4

β4

∞∑
n=1

(−1)n+1 sinhnϕ

sinh5
(
nϕ
2

)


=
7π2

60β4
− ϕ2

24β4
− 17ϕ4

960π2β4
.

We can use the same procedure for the other components, and we find:

distϕ=0T
off diag
C = 0,

distϕ=0T
11;22;33
C =

1

3
distϕ=0T

00 =
7π2

180β4
− ϕ2

72β4
− 17ϕ4

2880π2β4
.

The components of the energy-momentum tensor result in polynomials in ϕ, which
can be easily continued to real vorticity. This is simply done by replacing ϕ→ ia/T0.

We can decompose the energy-momentum tensor along the four-velocity uµ =
βµ/

√
β2 and the four-acceleration over temperature αµ = ϖµνuν [13, 134]:

Tµν
C = ρuµuν − p(gµν − uµuν) +Aαµαν ,

After setting ϕ 7→ ia/T0, we find:

ρ =
7π2

60β4
− α2

24β4
− 17α4

960π2β4
,

p =
7π2

180β4
− α2

72β4
− 17α4

2880π2β4
,

A =0,

(3.75)

where we used the covariant notation α2 = αµαµ = −a2/T 2
0 . These results have

been calculated in the origin, but as remarked above they hold for all space-time
points once we allow the four-temperature and α to be coordinate dependent.

Now that the case with ζ = 0 has been solved, we can tackle the case of a non-
vanishing chemical potential. The series associated with the 00-component of the
energy-momentum tensor reads:

T 00
C (0)I =

3

8π2
1

β4

∞∑
n=1

(−1)n+1ϕ4
coshnζ sinhnϕ

sinh5
(
nϕ
2

) . (3.76)

The asymptotic expansion of the function associated with this series is more
challenging to obtain, as it is not a series of f(nϕ) alone, but of f(nϕ)g(nζ). We
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can cope with this problem with a simple trick. We write ζ in terms of ϕ as, for
example, ζ = ϕ/L. We have:

T 00
C (0)I =

3

8π2
1

β4

∞∑
n=1

(−1)n+1 lim
L→ϕ/ζ

ϕ4
cosh

(
n ϕ
L

)
sinhnϕ

sinh5
(
nϕ
2

) (3.77)

In the domain where it converges (L > 2/3), the above series is a uniformly conver-
gent series of continuous functions, so we are allowed to exchange the limit and the
series:

T 00
C (0)I = lim

L→ϕ/ζ

3

8π2
1

β4

∞∑
n=1

(−1)n+1ϕ4
cosh

(
n ϕ
L

)
sinhnϕ

sinh5
(
nϕ
2

) . (3.78)

Now the same procedure as before can be applied since we expressed the series as
a series of functions of nϕ only and L is regarded as a constant parameter. Without
repeating the full derivation, we obtain the following results for the components of
the energy-momentum tensor:

T 00
C (0)I =

7π2

60β4
− ϕ2

24β4
− 17ϕ4

960π2β4
+

ϕ2

2β4L2
+

ϕ4

4π2β4L4
− ϕ4

8π2β4L2
, (3.79)

T off diag
C (0)I = 0, (3.80)

T 11;22;33
C (0)I =

1

3
T 00, (3.81)

and after taking the limit and performing the analytic distillation and continuation
of the result to the real thermal vorticity we have:

ρ =
7π2

60β4
− α2

24β4
− 17α4

960π2β4
+

ζ2

2β4
+

ζ4

4π2β4
− α2ζ2

8π2β4
, (3.82)

p =
1

3
ρ, (3.83)

A = 0. (3.84)

The results (3.75) and (3.82) are in agreement with the perturbative expansion to
second-order in the acceleration of Refs. [24, 25] and to fourth-order of Refs. [26–
28]. In the case of vanishing chemical potential, the results also agree with the
expectation from the Unruh effect, as they are vanishing at the Unruh tempera-
ture TU = a/2π [28, 133]. This is because we used the exact Wigner function,
therefore the results are improved with respect to those of Ref. [135], where only
an approximated version of the Wigner function at equilibrium was used. Such an
approximation led to the puzzling result that the expectation value of the energy
density vanishes at T0 = a/π instead of the Unruh temperature a/2π. In contrast,
the exact Wigner function is fully consistent with the Unruh effect, and it is possible
to show that this is a general feature of expectation values obtained from the exact
Wigner function and analytic distillation [13, 14].

For what concerns the vector and axial current, we have:

j0(0)I =
ϕ3

2π2β3

∞∑
n=1

(−1)n+1 sinhnζ

sinh3
(
ϕ
2

)3 , (3.85)

j1,2,3(0)I = 0, (3.86)

jµ5 (0)I = 0. (3.87)
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The axial current vanishes identically and the vector current is:

jµ =
ζ√
β2

(
1

3β2
+

ζ2

3π2β2
− α2

4π2β2

)
uµ, (3.88)

which again is consistent with Refs. [24, 25]. These results show that there are no
higher-order corrections in acceleration and chemical potential to currents and to
the energy-momentum tensor with respect to the results (3.82) and (3.88).

3.6.2 Rotation

We now turn to the global thermodynamic equilibrium with pure rotation. The
thermal vorticity and the four-temperature are:

ϖµν =
ω

T0
(gµ1gν2 − gµ2gν1), βµ =

1

T0
(1,−ωy, ωx, 0), (3.89)

where ω is the constant angular velocity. Thus, the density operator of rotational
thermodynamic equilibrium reads:

ρ̂ =
1

Z
exp

[
− Ĥ

T0
+
ω

T0
Ĵz

]
, (3.90)

where Ĵ is the three-vector of the generators of rotations. The tilde-transformed
four-temperature vector for imaginary angular velocity (i.e., ω/T0 = −iϕ) is:

nβ̃(inϕ) =

(
n

T0
, ix(cos(nϕ)− 1) + iy sin(nϕ), iy(cos(nϕ)− 1)− ix sin(nϕ), 0

)
,

and we have:

n2β̃2n =
n2

T 2
0

+ 4r2 sin2
(
nϕ

2

)
, (3.91)

where r2 = x2 + y2. From Eqs. (1.45), (3.62), (3.63) and (3.89), we obtain:

(Λn)µν=


1 0 0 0
0 cosnϕ − sinnϕ 0
0 sinnϕ cosnϕ 0
0 0 0 1

 ,

S(Λ)n =


e−inϕ/2 0 0 0

0 einϕ/2 0 0
0 0 e−inϕ/2 0
0 0 0 einϕ/2

 ,

Aµν=


4 cos(nϕ2 ) 0 0 0

0 −4 cos(nϕ2 ) 4 sin(nϕ2 ) 0

0 −4 sin(nϕ2 ) −4 cos(nϕ2 ) 0

0 0 0 −4 cos(nϕ2 )

 ,

Aµν
5 =


0 0 0 4i sin nϕ

2
0 0 0 0
0 0 0 0

−4i sin nϕ
2 0 0 0

 .

(3.92)

We start again by computing the energy-momentum tensor, considering an equi-
librium state with a non-vanishing chemical potential. We choose to compute the
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Belinfante energy-momentum tensor, which for the Dirac field has a simple relation
with the canonical one:

Tµν
B (x) =

1

2

(
Tµν
C (x) + T νµ

C (x)
)
, (3.93)

and it is thus easy to derive it from Eq. (3.69). Let us consider the 00-component.
Using Eqs. (3.91) and (3.92) in Eq. (3.69) we obtain:

T 00
B (x)I =

1

2π2

∞∑
n=1

(−1)n+18T 4
0 cos

(
nϕ
2

)
coshnζ[3n2 + 2r2T 2

0 (cosnϕ− 1)](
n2 + 4r2T 2

0 sin2
(
nϕ
2

))3 . (3.94)

Like in the case of equilibrium with acceleration, the series is convergent for real ϕ,
but it becomes divergent if ϕ has a non-vanishing imaginary part: the denomina-
tor has infinitely many zeroes so that the series becomes densely divergent on the
imaginary axis.

Additionally, the case of equilibrium with rotation presents another complication.
The series (3.94) is a series of functions of nϕ and nζ, and on top of that, there
are also n2 terms. Similarly to what we did with the chemical potential in the
previous section, to put the series in a form where the asymptotic expansion (3.22)
is applicable we introduce another auxiliary real parameter B, so that the series
(3.94) can be written as:

T 00
B (x)I =

4T 4
0

π2

∞∑
n=1

lim
B→ϕ
L→ϕ/ζ

1(
n2ϕ2 + 4r2B2T 2

0 sin2
(
nϕ
2

))3×
(−1)n+1B4 cos

(
nϕ

2

)
cosh

(
n
ϕ

L

)
[3n2ϕ2 + 2r2B2T 2

0 (cosnϕ− 1)].

We exploit once more the fact that, as long as ϕ is real, the series is a uniformly
convergent series of continuous functions to exchange the limit with the sum and
obtain a series which is now suitable for the application of the formula (3.22):

T 00
B (x)I = lim

B→ϕ
L→ϕ/ζ

4B4T 4
0

π2

∞∑
n=1

1(
n2ϕ2 + 4r2B2T 2

0 sin2
(
nϕ
2

))3×
(−1)n+1 cos

(
nϕ

2

)
cosh

(
n
ϕ

L

)
[3n2ϕ2 + 2r2B2T 2

0 (cosnϕ− 1)].

Using the asymptotic formula (3.22) we end up with a polynomial in ϕ, with L- and
B-dependent coefficients:

T 00
B (x)I ∼ lim

B→ϕ
lim

L→ϕ/ζ

7π2B4T 4
0

60ϕ4
(
1 +B2r2T 2

0

)3 − 7π2B6r2T 6
0

180ϕ4
(
1 +B2r2T 2

0

)3
+

7B6r2T 6
0

36ϕ2
(
1 +B2r2T 2

0

)4 − B8r4T 8
0

72ϕ2
(
1 +B2r2T 2

0

)4
− B4T 4

0

8ϕ2
(
1 +B2r2T 2

0

)4 +
17B10r6T 10

0

2880π2
(
1 +B2r2T 2

0

)5
+

247B8r4T 8
0

2880π2
(
1 +B2r2T 2

0

)5 − 137B6r2T 6
0

576π2
(
1 +B2r2T 2

0

)5 +
B4T 4

0

64π2
(
1 +B2r2T 2

0

)5
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+
1

L2

(
− B8r4T 8

0

6ϕ2
(
1 +B2r2T 2

0

)
4
+

B6r2T 6
0

3ϕ2
(
1 +B2r2T 2

0

)
4
+

B4T 4
0

2ϕ2
(
1 +B2r2T 2

0

)
4

− B10r6T 10
0

24π2
(
1 +B2r2T 2

0

)
5
+

13B8r4T 8
0

24π2
(
1 +B2r2T 2

0

)
5

+
5B6r2T 6

0

24π2
(
1 +B2r2T 2

0

)
5
− 3B4T 4

0

8π2
(
1 +B2r2T 2

0

)
5

)

+
1

L4

(
− B10r6T 10

0

12π2
(
1 +B2r2T 2

0

)
5
+

B8r4T 8
0

12π2
(
1 +B2r2T 2

0

)
5
+

5B6r2T 6
0

12π2
(
1 +B2r2T 2

0

)
5

+
B4T 4

0

4π2
(
1 +B2r2T 2

0

)
5

)
.

(3.95)

Now, one can take the limits L → ϕ
ζ and B → ϕ, obtaining a function which

implicitly provides the asymptotic power series of the original function (3.94) about
ϕ = 0. Indeed, all coefficients are analytic in B, so they can be always expressed as
a power series. After the analytic distillation and the analytic continuation ϕ 7→ iω
we obtain:

T 00
B (x) =

(
4γ2 − 1

)
γ4
(
7π4 + 30π2ζ2 + 15ζ4

)
T 4
0

180π2

+

(
24γ4 − 16γ2 + 1

)
γ4
(
π2 + 3ζ2

)
T 2
0ω

2

72π2

+

(
960γ6 − 1128γ4 + 196γ2 + 17

)
γ4ω4

2880π2
,

where we defined:

γ =
1√

1− r2ω2
.

The calculations for the other components will not be reported, but the results are
listed in Appendix B.

We can decompose the energy-momentum tensor in terms of an orthogonal set
of vectors. We introduce a tetrad of orthogonal non-normalized vectors that can be
defined starting from the four-temperature and its derivatives:

uµ =
βµ√
β2
, αµ = ϖµνuν , wµ = −1

2
ϵµνρσϖνρuσ, lµ = ϵµνρσwναρuσ. (3.96)

Using these vectors, the variables T0, ω and r2 can be expressed in terms of Lorentz
invariants:

β2 =
1

γ2T 2
0

, α2 = −(γ2 − 1)
ω2

T 2
0

, w2 = −γ2 ω
2

T 2
0

, l2 = −α2w2.

The tetrad introduced can be used to decompose the energy-momentum tensor as:

Tµν
B (x) =ρ uµuν− p∆µν+W wµwν+Aαµαν+Gl lµlν

+G(lµuν+ lνuµ)+ A(αµuν+ ανuµ) +Gα(lµαν+ lναµ)

+W(wµuν+ wνuµ)+Aw(αµwν+ ανwµ)+Gw(lµwν+ lνwµ) .

(3.97)
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It should be mentioned that the decomposition of the symmetric Belinfante tensor
now involves 11 scalar quantities, and not 10 as one would expect. This happens
because the tetrad (3.96) is not a basis on the rotation axis r = 0, as αµ = lµ = 0
and some degeneracy has to be introduced to amend this problem [13].

Such an ambiguity reflects in an ambiguous identification of pressure, as we will
only be able to identify its combinations with other coefficients. In Refs. [13, 14]
the fact was used that l2 = −α2w2 to fix the pressure from the relation:

Tµν
B

lν
l2
lµ
l2

= Gll2 − p.

However, this procedure produces a pressure which does not satisfy the equation
p = ρ/3, expected for massless particles. This is again a consequence of the 11-
components decomposition of the energy-momentum tensor. Here we choose to fix
the pressure to p = ρ/3 (notice that only p, W , A and Gl suffer from this ambiguity,
the other coefficients are unambiguously identifiable), to obtain agreement with the
expectations for conformal fluids.

With this prescription, we find:

ρ =
7π4 + 30π2ζ2 + 15ζ4

60π2β4
−
α2
(
π2 + 3ζ2

)
24π2β4

− 17α4

960π2β4
−
w2
(
π2 + 3ζ2

)
8π2β4

+
23α2w2

1440π2β4
+

w4

64π2β4
,

p =
ρ

3
,

Gl =− 2

27π2β4
,

G =
π2 + 3ζ2

18π2β4
− 31α2

360π2β4
− 13w2

120π2β4
,

W =− α2

27π2β4
,

A =− w2

27π2β4
,

A =W = Gα = Gw = Aw = 0.

(3.98)

The energy-momentum tensor obtained is the same as the one obtained in Refs. [136–
138] by solving the Dirac equation in cylindrical coordinates. In Ref. [138], the same
series as those in Eq. (3.94) and in Appendix B with ζ = 0 were obtained, and they
were regularized with different methods. Notice that if we set w = 0 in the above
coefficients, the energy-momentum tensor boils down to the case of equilibrium with
acceleration only.

We conclude this section by reporting the exact mean value of the vector and
axial current. The series (3.67) and (3.68) for the massless field can be studied for
imaginary vorticity in the same way as the ones for the energy-momentum tensor.
Further details can be found in Appendix B, here we only give the final result after
analytic distillation:

jµ =
ζ√
β2

(
π2 + ζ2

3π2β2
− α2

4π2β2
+

w2

4π2β2

)
uµ − ζ√

β2
1

6π2β2
lµ, (3.99a)

jµA =
1

β2

(
1

6
+

ζ2

2π2
− w2

24π2
− α2

8π2

)
wµ√
β2
. (3.99b)
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Again, these results are in agreement with the previous literature, both with per-
turbative [24, 25, 139] and exact [136, 137, 140] results. Note that the time-reversal
symmetry prevents the axial current to be directed along the acceleration vector,
and parity prevents the vector current to be directed along the angular velocity.

The presence of an axial current directed along the angular velocity is a well-
established effect, known as Axial Vortical Effect [141]. Such current is expected
to be non-vanishing both for massless and massive particles [25] and has the inter-
esting feature of containing coefficients which are independent of the axial chemical
potential and that are not constrained by the chiral anomaly [142]. This is different
from the vector current, which vanishes identically if the chemical potential is set to
zero.

It should be mentioned that the results obtained by analytic distillation in the
case of equilibrium with rotation, although finite, have a more difficult interpretation
compared with the case of equilibrium with acceleration. In fact, without imposing
boundary conditions on the field to ensure causality, i.e., ωr < 1, the operator
Ĥ − ωĴ3 in the density operator is not bounded from below, leading to unphysical
divergences [13, 14].

3.6.3 Thermodynamic equilibrium with rotation and acceleration

After having successfully reproduced the known results in the literature for equilib-
rium with acceleration and with rotation, we can tackle the more general case when
both rotation and acceleration are present. This will be a useful ground to test the
analytic distillation method, as it is very hard to tackle such a density operator with
the curvilinear coordinates approach. This challenge has only recently been coped
with in the Anti-De Sitter space-time [143].

We will study the particular case where acceleration and rotation are both di-
rected along the z-axis, and express expectation values in terms of the covariant com-
binations of the vectors of the tetrad {uµ, αµ, wµ, lµ} defined in Eq. (3.96). Written
in this way, the result will hold for any angular velocity and acceleration.

The vorticity and the four-temperature of a system at equilibrium with acceler-
ation and angular velocity parallel to the z-axis are given by:

ϖµν =
ω

T0
(gµ1gν2 − gν1gµ2) +

a

T0
(gµ3gν0 − gν3gµ0), βµ =

1

T0
(1 + az,−ωy, ωx, at).

Using the above-defined vorticity and four-temperature, one can see that the
tilde-transformed temperature reads:

nβ̃n =

it(cos(anT0
)− 1) +

(1 + az) sin
(
an
T0

)
a

,

− y sinh
(
nω
T0

)
+ ix

(
cosh

(
nω
T0

)
− 1
)
, x sinh

(
nω

T0

)
+ iy

(
cosh

(
nω
T0

)
− 1
)
,

t sin
(
an
T0

)
+
i(1 + az)

(
cos
(
an
T0

)
− 1
)

a

 ,
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the additional matrices required for expectation values read:

Λµ
ν=


coshnΦ 0 0 sinhnΦ

0 cosnϕ − sinnϕ 0
0 sinnϕ cosnϕ 0

sinhnΦ 0 0 coshnΦ

 ,

S(Λ)n =


en(Φ−iϕ)/2 0 0 0

0 e−n(Φ−iϕ)/2 0 0

0 0 e−n(Φ+iϕ)/2 0

0 0 0 en(Φ+iϕ)/2

 ,

Aµν=
4 cos(nϕ

2
)cosh(nΦ

2
) 0 0 −4 cos(nϕ

2
)sinh(nΦ

2
)

0 −4 cos(nϕ
2
)cosh(nΦ

2
) 4 sin(nϕ

2
)cosh(nΦ

2
) 0

0 −4 sin(nϕ
2
)cosh(nΦ

2
) −4 cos(nϕ

2
)cosh(nΦ

2
) 0

4 cos(nϕ
2
)sinh(nΦ

2
) 0 0 −4 cos(nϕ

2
)cosh(nΦ

2
)

,
Aµν

5 =
−4i sin nϕ

2
sinh nΦ

2
0 0 4i sin nϕ

2
cosh nΦ

2

0 4i sin nϕ
2

sinh nΦ
2

4i cos nϕ
2

sinh nΦ
2

0

0 −4i cos nϕ
2

sinh nΦ
2

4i sin nϕ
2

sinh nΦ
2

0

4i sin nϕ
2

cosh nΦ
2

0 0 4i sin nϕ
2

sinh nΦ
2

,
(3.100)

where we performed the continuation a/T0 → −iΦ, ω/T0 → −iϕ.
Once again, we address the Belinfante tensor for a system of massless fermions.

For this kind of equilibrium, the procedure of distillation is extremely long and
tedious, therefore it is only briefly sketched in Appendix C. Here we just report the
coefficients of the decomposition (3.97). We can define the tetrad {uµ, αµ, wµ, lµ}
like we did in Eq. (3.96), however in this case the scalar product α ·w = −aω/T 2

0 is
non-vanishing. Imposing p = ρ/3 for the pressure, we find:

ρ =
7π4 + 30π2ζ2 + 15ζ4

60π2β4
−
α2
(
π2 + 3ζ2

)
24π2β4

− 17α4

960π2β4
−
w2
(
π2 + 3ζ2

)
8π2β4

+
23α2w2

1440π2β4
+

w4

64π2β4
+

11(α · w)2

720π2β4
,

p =
ρ

3
,

Gl =− 2

27π2β4
,

G =
π2 + 3ζ2

18π2β4
− 31α2

360π2β4
− 13w2

120π2β4
, (3.101)

W =− α2

27π2β4
,

A =− w2

27π2β4
,

Aw =
α · w
27π2β4

,

A =W = Gα = Gw = 0.

These coefficients are consistent with the ones found in the case of equilibrium with
pure-rotation, Eq. (3.98). For this equilibrium, we have an additional dependence
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of the energy density and pressure on the scalar α · w, which was vanishing in both
the previous cases. On top of that, the coefficient Aw is non-vanishing, and it is
proportional to α·w. One can also study the vector and axial currents at equilibrium
with acceleration and rotation. In this case, they turn out to be precisely equal to the
ones obtained in equilibrium with rotation, Eq. (3.99), with no extra dependence on
α ·w. For a discussion about the series involved in this calculation, see Appendix C.

3.7 Massless particles and chiral kinetic theory

In recent times, the kinetic theory of massless fermions, known as chiral kinetic the-
ory, has attracted much attention [144–147]. Usually, when addressing quantum
corrections to classical kinetic theory, one performs a semi-classical expansion in ℏ of
the Wigner equation, leading to Boltzmann-like equations for the distribution func-
tion. Now that the exact Wigner function at global equilibrium has been provided,
we can try to infer the distribution function of massless Dirac fermions from it.

We focus on the particle part of the current, Eq. (1.58), and since different
helicities do not mix in the massless case, we have:

jµ+(x) =
1

(2π)3

∑
λ

∫
d3p

2ε

d3p′

2ε′
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩uλ(p′)γµuλ(p), (3.102)

where λ is the helicity, taking values −1/2 and 1/2.
One can identify the phase-space current-density J µ(p, x) as defined in Eq.

(1.59) by reworking the integrand in Eq. (3.102). In principle, this can be done
by calculating explicitly the value of uλ(p

′)γµuλ(p) (see Ref. [14]). Alternatively,
we can proceed in a geometrical fashion, projecting J along the tetrad {p, q, n1, n2}
employed in Section 1.5 for massless particles.

To begin with, we define the vector Lµ = uλ(p
′)γµuλ(p) and we observe that it

is a light-like vector for massless particles, as can be checked by explicit calculation.
Denoting for brevity Nµ the vector space spanned by n1 and n2, the decomposition
of Lµ is:

Lµ =
L · q
q · p

pµ +
L · p
q · p

qµ +Nµ(p, q, L)

(this can be seen as the definition of N). Using the Dirac equation it is easy to see
that L · p = 0, therefore:

uλ(p
′)γµuλ(p) =

uλ(p
′)/quλ(p)

q · p
pµ +Nµ.

Now we can plug this decomposition into the current (3.102), obtaining:

jµ+(x) =
1

(2π)3

∑
λ

∫
d3p

ε
pµ
∫

d3p′

2ε′
uλ(p

′)/quλ(p)

2q · p
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩

+
1

(2π)3

∑
λ

∫
d3p

ε
Nµ

∫
d3p′

4ε′
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩.

This equation defines the phase space current-density

J µ = pµ
∫

d3p′

2ε′
uλ(p

′)/quλ(p)

2q · p
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩

+Nµ

∫
d3p′

4ε′
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩.
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The decomposition depends on the choice of the vector q, but the current itself is
independent thereof. In other words, the components and the decomposition of any
vector depend on the chosen basis, but the vector is fixed in space-time. In chiral
kinetic theory, the distribution function is given by the component along pµ of the
phase space density of the current. We can identify a q−dependent distribution
function fλ(x, p)(q) for particles with helicity λ as the coefficient of pµ in J µ(p, x):

fλ(x, p)(q) ≡
1

(2π)3

∫
d3p′

2ε′
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩

uλ(p
′)/quλ(p)

2q · p
. (3.103)

Using uλ(p
′)/quλ(p) = tr(/quλ(p)uλ(p

′)), and introducing the projectors:

Pλ =
I+ 2λγ5

2
, (3.104)

that select spinors with helicity λ we can write:

fλ(x, p)(q) =
1

(2π)3

∫
d3p′

2ε′
ei(p

′−p)·x⟨â†λ(p
′)âλ(p)⟩

tr(/quλ(p)uλ(p
′))

2q · p

=
1

(2π)3

∫
d3p′

2ε′
ei(p

′−p)·x

2q · p
∑
s,t

tr
(
/qPλ⟨â†t(p′)âs(p)⟩us(p)ut(p′)P−λ

)
=

1

(2π)3
1

2q · p
tr

(
/qPλ

∫
d3p′

2ε′
ei(p

′−p)·x
∑
s,t

⟨â†t(p′)âs(p)⟩us(p)ut(p′)

)
,

where we used the anticommutation rules of γ5 together with γ5uλ(p) = 2λuλ(p),
where 2λ is the chirality. Also notice that (2λ)2 = 1.

The same product ⟨â†t(p′)âs(p)⟩us(p)ut(p′) appears also in Eq. (1.54) and has
been dealt with in Section 3.4.1. The same calculations yield:

∫
d3p′

2ε′
ei(p

′−p)·x
∑
s,t

⟨â†t(p′)âs(p)⟩us(p)ut(p′) =
∞∑
n=1

(−1)n+1e−nβ̃n·pS(Λ)n(/p+m).

Plugging this result in the trace above, we have:

fλ(x, p)(q) =
1

(2π)3
1

2p · q
∑
n=1

(−1)n+1e−nβ̃n·ptr

(
I+ 2λγ5

2
S(Λ)n/p/q

)
.

The distribution function fλ(x, p)(q) can be further simplified using the algebra of
the γ-matrices to rewrite /p/q, finally obtaining:

fλ(x, p)(q) = distϖ=0

∞∑
n=1

(−1)n+1

2(2π)3
e−nβ̃(−nϖ)·p×{

tr

(
I + 2λγ5

2
exp

[
n
ϖρσ

2
Σρσ

])
+

2iqµpν
q · p

tr

(
I + 2λγ5

2
Σµν exp

[
n
ϖρσ

2
Σρσ

])}
,

(3.105)

where we have reintroduced the physical thermal vorticity, together with the opera-
tion of analytic distillation to regularise the series. This expression of the distribution
function is in agreement with the general form (3.61), considering the more subtle
decomposition of the current density in the massless case.
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Notice how Eq. (3.105) differs from the usual ansatz of the equilibrium distribu-
tion function [47, 146–149], mostly for the exponential factor and for the absence of
the frame vector in favour of the light-like vector q. The vector q has a geometrical
origin, as it identifies the only light-like direction non-orthogonal to p sharing the
same space-like orthogonal space.

3.8 Massive Dirac fermions

This chapter has been mostly concerned with massless particles. However, the
Wigner function has been computed exactly also in the massive case so that we
can, in principle, compute exact expectation values also for m ̸= 0. This task ap-
pears much more difficult than in the massless case. Here we will comment on the
matter, focusing on the vector and axial currents. Up until Eqs. (3.64) and (3.65),
the relations found hold both for massive and massless particles. However, the value
of the integral in those equations changes depending on the mass. Indeed, in the
massive case we have:∫

d3p

2ε
e−nβ̃n·p = 2π

∫ ∞
0

dp
p2√

m2 + p2
e−n

√
β2
n

√
m2+p2 =

2πmK1(mn
√
β2n)

n
√
β2n

,

where to compute the integral we used the Lorentz invariance of the measure to boost
β̃n to the frame where it has only the time component. Here K1 is the modified
Bessel function of second kind [150]:

Kn(z) =
2nn!

(2n)!

1

zn

∫ ∞
z

dy(y2 − z2)n−1/2e−y.

Computing the derivative in Eqs. (3.64) and (3.65), the vector and axial current
read:

jµ(x) =
m2

2π2

∞∑
n=1

(−1)n+1

n
Aµ

ν sinh(nζ)
β̃νn
β2n
K2(mn

√
β2n), (3.106a)

jµ5 (x) =
m2

2π2

∞∑
n=1

(−1)n+1

n
A5

µ
ν cosh(nζ)

β̃νn
β2n
K2(mn

√
β2n). (3.106b)

In the limiting case of vanishing mass, given the asymptotic behaviour of the Bessel
function:

lim
z→0

Kn(z) =
2n−1(n− 1)!

zn
, for n > 0,

these formulae reproduce Eqs. (3.67) and (3.68) as expected.
From the above expressions, we can see that the direction of the massive currents

is given by the contraction of β̃n and Aµν
(5), exactly like the massless case. Therefore,

the components of the currents that were vanishing in the massless case will be
vanishing also in the massive one.

The exact calculation of the analytic result of these series is, unfortunately, out
of our reach at this point: the expansion of the modified Bessel function in terms of
the thermal vorticity is too complicated. Nonetheless, it is possible to compute the
mass corrections order by order expanding the Bessel function in terms of m. This
will allow us to compare with the previous literature.

70



Massive Dirac fermions

We focus on the first relevant mass correction. Using, for n ∈ N+:

Kn(z) ∼
2n−1(n− 1)!

zn
− 2n−2(n− 2)!

zn−3
,

we find that the leading-order mass correction to the currents reads:

δmj
µ(x) =− m2

4π2

∞∑
n=1

(−1)n+1

n
Aµ

ν sinh(nζ)
β̃νn
β2n
, (3.107)

δmj
µ
5 (x) =− m2

4π2

∞∑
n=1

(−1)n+1

n
A5

µ
ν cosh(nζ)

β̃νn
β2n
. (3.108)

The procedure to extract the results from these series has already been discussed in
the previous sections, here we report only the results.

For equilibrium with acceleration the axial current is identically zero, whereas
the mass correction to the vector current is:

δmj
µ = −m

2ζ

2π2
uµ√
β2
. (3.109)

For equilibrium with rotation, as well as for equilibrium with rotation and acceler-
ation, we find:

δmj
µ =− m2ζ

2π2
uµ√
β2
, (3.110)

δmj
µ
5 =− m2

4π2
wµ√
β2
. (3.111)

These results are in agreement with the previous literature [24, 143, 151, 152]. In
principle, we could get higher order corrections in mass further expanding the Bessel
function, but we do not pursue such an improvement here. The full summation of
the series (3.106) is postponed to future studies.
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Spin physics in global
equilibrium

In the previous chapter, we introduced a new method to compute expectation values,
in particular the Wigner function. Using the latter we can study the polarization
vector to all orders in vorticity, which is the aim of the present chapter.

We begin by obtaining the expressions of the spin density matrix and the spin
vector for Dirac fermions in global equilibrium, showing that they are consistent
with the previous literature. Both quantities are expressed as series of functions,
which we sum to obtain an analytic expression for the spin vector of spin-12 fermions.
We compare the predictions of the exact formula with the experimental data and
with the linear approximation usually employed in polarization studies, showing that
higher-order corrections in the thermal vorticity cannot solve the sign puzzle.

We end the chapter by studying polarization for any spin and expressing the
spin vector as a series of functions which can be summed for particles with generic
spin S. The small-vorticity and the Boltzmann-statistics limits of our result agree
with the previous literature.

4.1 Polarization of Dirac fermions

At this point of the present work, the most convenient way to compute spin-related
effects for Dirac fermions in global equilibrium is to use the results of the previous
chapter, together with the expressions of the spin density matrix and the spin vector
(massive or massless) in terms of the Wigner function. For the free Dirac field, these
relations read (see Eqs. (1.93), (1.94) and (1.102)):

Θm(p) =
1

2m

∫
dΣ · p U(p)W+(x, p)U(p)

tr2
(∫

dΣ · p W+(x, p)
) , (4.1)

Sµ(p) =
1

2

∫
dΣ · p tr(γµγ5W+(x, p))∫

dΣ · p tr(W+(x, p))
, (4.2)

Wµ(p) =
pµ

2

∫
dΣ · p tr(/qγ5W+(x, p))∫
dΣ · p tr(/qW+(x, p))

, (4.3)

In this chapter, where global-equilibrium is considered, Σ is an arbitrary space-like
hypersurface. Indeed, due to its very definition, global-equilibrium quantities do
not depend on the hypersurface they are computed on, as the equilibrium state is
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globally defined. We have also used the subscript m to make clear that the spin
density matrix in Eq. (4.1) is in the massive case.

The Wigner function in global equilibrium has been found in the previous chap-
ter, and is given by Eq. (3.56):

W (x, k) =
1

(2π)3

∫
d3p

2ε

∞∑
n=1

(−1)n+1e−nβ̃n·p×[
enζS(Λ)n(m+ /p)δ

4

(
k − Λnp+ p

2

)
+ e−nζ(m− /p)S(Λ)

−nδ4
(
k +

Λnp+ p

2

)]
,

where Λ = exp
[
−iϕ2 : J

]
, and the tilde-transformed four-temperature β̃n reads:

β̃n =
∞∑
k=0

nk

(k + 1)!
(ϕµα1

ϕα1
α2
. . . ϕ

αk−1
αk︸ ︷︷ ︸

k times

)βαk .

We recall that Λ is the Lorentz transformation with parameter ϕ corresponding to
the analytic continuation of the density operator through the map ϖ 7→ −iϕ. In
this respect, ϕ can be considered as an imaginary thermal vorticity (see the previous
chapter for details). All results obtained from these formulae have to be eventually
continued back to the real physical vorticity ϖ.

Choosing t = 0 as an integration surface, the integral of the Wigner function
over d3x yields (here, we set ζ = 0 for simplicity):∫

Σ
dΣµk

µW+(x, k) = δ(k0 − εk)
1

2

∞∑
n=1

(−1)n+1e−nb̃(inϕ)·kS(Λ)n(m+ /k)δ3(Λnk − k),

(4.4)
which makes k manifestly on-shell, as expected from Eq. (1.87). From this result,
we can evaluate Eqs. (4.1), (4.2) and (4.3).

Considering massive particles to begin with, and using Eq. (4.4), the spin density
matrix reads:

Θm(p) =
1

2m2

∑∞
n=1(−1)n+1e−nb̃(inϕ)·pU(p) exp[−inϕ : Σ/2]U(p)δ3(Λnp− p)

tr2

(∑∞
n=1(−1)n+1e−nb̃(inϕ)·p exp[−inϕ : Σ/2]δ3(Λnp− p)

) ,

(4.5)
where the Dirac equation for the spinors U , /pU(p) = mU(p), has been used. Simi-
larly, the spin vector for massive particles (4.2) at global thermodynamic equilibrium
is:

Sµ(p) =
1

2m

∑∞
n=1(−1)n+1e−nb̃(inϕ)·ptr

(
γµγ5 exp[−inϕ : Σ/2]/p

)
δ3(Λnp− p)∑∞

n=1(−1)n+1e−nb̃(inϕ)·ptr (exp[−inϕ : Σ/2]) δ3(Λnp− p)

=
1

2m

∑∞
n=1(−1)n+1e−nb̃(inϕ)·ppνA

µν
5 (n, ϕ)δ3(Λnp− p)∑∞

n=1(−1)n+1e−nb̃(inϕ)·ptr (exp[−inϕ : Σ/2]) δ3(Λnp− p)
,

(4.6)

where we used the shorthand notation of Aµν
5 (n, ϕ) = tr

(
γνγµγ5 exp

[
−inϕ2 : Σ

])
,

which was defined in Eq. (3.63). Notice that both Eqs. (4.5) and (4.6) are consistent
with the Unruh effect. Indeed, for the global equilibrium with pure acceleration,

74



Polarization of Dirac fermions

described in Subsection 3.6.1, we have:

e−inϕ:Σ/2 =


enϕ/2 0 0 0

0 e−nϕ/2 0 0

0 0 e−nϕ/2 0

0 0 0 enϕ/2

 ,

Aµν
5 =


0 0 0 0

0 0 4i sinh nϕ
2 0

0 −4i sinh nϕ
2 0 0

0 0 0 0

 .

If we now set ϕ = i aT = 2iπ, which corresponds to the Unruh temperature, the
Lorentz transformation becomes exp [−inϕ : Σ/2] = (−1)nI and the A5 tensor van-
ishes, so that the spin density matrix is proportional to the identity matrix and the
mean spin vector is zero.

For massless particles, the spin vector (4.3) reads:

Wµ(p) = pµ
1

2

∑∞
n=1(−1)n+1e−nb̃(inϕ)·ppνqρA

ρν
5 (n, ϕ)δ3(Λnp− p)∑∞

n=1(−1)n+1e−nb̃(inϕ)·ptr
(
exp[−inϕ : Σ/2]/p/q

)
δ3(Λnp− p)

(4.7)

and it is also consistent with the Unruh effect, for the same reason as before.

The results of the series (4.5), (4.6) and (4.7) look very difficult to compute
exactly, as they are ratios of series of δ-functions; this problem will be tackled in the
next section. For the time being, we consider the small-vorticity limit of the spin
vectors (4.6) and (4.7), comparing with the previous literature. For this purpose,
also the δ-function has to be expanded. Up to linear order, and using ϕ 7→ iϖ, one
has:

A5 = tr
(
γµγ5S(Λ)

n
/p
)
∼ −nϖαβpνϵ

µαβν +O(ϖ2), e−nb̃(−nϖ)·p ∼ e−b·p +O(ϖ),

and only the 0-th order expansion of δ3(Λnp − p) ∼ δ3(0) has to be taken into
account. Summing the series in n, the result is:

Sµ(p) ∼− 1

8m
ϵµαβνϖαβpν

nF (b · p)(1− nF (b · p))δ3(0)
nF (b · p)δ3(0)

=− 1

8m
ϵµαβνϖαβpν(1− nF (b · p)), (4.8)

Wµ(p) ∼− pµ

8p · q
ϵραβνϖαβpνqρ

nF (b · p)(1− nF (b · p))δ3(0)
nF (b · p)δ3(0)

=
pµ

8p · q
ϵαβνρϖαβpνqρ(1− nF (b · p)), (4.9)

where nF is the Fermi-Dirac distribution function

nF (b · p) =
1

eb·p + 1
. (4.10)

The polarization of massive fermions (4.8) is in agreement with the local-equilibrium
expression found in Ref. [7], whereas the massless one depends on the vector qµ: this
is required to assign the physical meaning of helicity to the mean Pauli-Lubanski
vector as argued in Section 1.6. Equation (4.9) differs from the spin vector of massless
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particles usually reported in the literature, which in global equilibrium would read
[149]:

Wµ(p) = − 1

8p · u
ϵµαβνϖαβpν(1− nF (b · p)), (4.11)

but the above vector has unphysical components not aligned with pµ.
It is interesting to rework the massless spin vector, computing explicitly the

contraction of the Levi-Civita symbol with p and q. First of all, from the fact that
in the standard frame qµ = (κ, 0, 0,−κ) is the parity conjugate of pµ = (κ, 0, 0, κ),
it is possible to show that qµ = [p]µνqν = κ2(1/ε,−p/ε2), where ε = |p| and we
recall pµ = [p]µνpν . Also, since p · q is a Lorentz invariant, we can compute the
scalar product in the standard frame to find p ·q = 2κ2. Thus, keeping the covariant
notation (i.e. pi = giµp

µ):

ϵαβνρϖαβ
pνqρ
p · q

= ϵαβν0ϖαβ
pνq0
2κ2

+ ϵαβνiϖαβ
pνqi
2κ2

=
1

2ε
ϵαβi0ϖαβpi − ϵαβ0iϖαβp0

pi
2ε2

=
1

ε
ϵαβi0ϖαβpi = −2w · p̂, (4.12)

with

wµ = −1

2
ϵµνρ0ϖνρ =

(
0
w

)
, p̂µ =

pµ

ε
=

(
1
p̂

)
. (4.13)

Therefore, the spin vector of massless particles at first order in vorticity can be
written as:

Wµ(p) =
pµ

4
w · p̂(1− nF (b · p)), (4.14)

where the scalar product in the three-space is used. Notice how the vector q no
longer explicitly appears.

4.2 Exact polarization of Dirac fermions at global equi-
librium

We are now in the position to compute exactly the polarization of massive and
massless particles, using Eq. (4.6) and (4.7).

We start by considering the massive case with ζ = 0, but we will see that
the massless case can be treated similarly. The spin vector for massive particles,
according to Eq. (4.6), is:

Sµ(p) =
1

2m

∑∞
n=1(−1)n+1e−nb̃(inϕ)·ppνA

µν
5 (n, ϕ)δ3(Λnp− p)∑∞

n=1(−1)n+1e−nb̃(inϕ)·ptr (exp[−inϕ : Σ/2]) δ3(Λnp− p)
.

The above expression is the ratio of two series of δ-functions. It looks quite daunting.
However, one ought to consider how this ratio comes about, and for this purpose, it
is useful to revise the definition of the spin density matrix together with the value of
⟨â†s(p)âr(p′)⟩, which was obtained with the iterative method resulting in Eq. (3.47).

The spin density matrix has been defined via the ratio:

Θrs(p) =
Tr
(
ρ̂ â†s(p) âr(p)

)
∑

tTr
(
ρ̂ â†t(p) ât(p)

) , (4.15)
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and it involves the expectation value of the number operator of particles with mo-
mentum p. The denominator is such that the trace of the spin density matrix is
one. The numerator of the spin density matrix has been calculated in Section 3.4,
where the inhomogeneous solution of Eq. (3.46) was found. We recall that the ho-
mogeneous solutions of such an equation are non-analytic functions at ϕ = 0, and
are therefore ignored. We can use Eq. (3.47) to evaluate the numerator of the spin
density matrix:

Tr
(
ρ̂ â†s(p) âr(p)

)
= 2ε

∞∑
n=1

(−1)2S(n+1)δ3(Λnp− p)DS(W (Λn, p))rse
−b̃·

∑n
k=1 Λ

kp.

(4.16)

This expression shows that the expectation value of the number operator is zero
unless Λnp = p. We can look for solutions to this equation for a specific n ̸= 1 or if
Λp = p, in which case the equation also holds for any n > 1. In the first instance,
Λ is not generated by a continuous parameter, and the whole analytic continuation
process would be debatable: we will disregard this set of solutions. Consequently,
we focus on the case where between the Lorentz transformation Λ and the four-
momentum of the particle p the relation Λp = p holds so that the expectation value
(4.16) is not zero. Notice that, if this is not the case, the definition of the spin-density
matrix becomes singular; if Λp ̸= p there cannot be a non-zero average number of
particles with momentum p and polarization cannot be generated.

The constraint given by Λp = p requires Λ to be in the little group of p (as
p is left invariant under the action of Λ), and it is satisfied provided that ϕ, the
parameter generating Λ = exp[−iϕ : J/2], obeys ϕµνpν = 0. The general solution

can be expressed in terms of a vector θ
(ϕ)
µ as:

ϕµν = ϵµνρσθ(ϕ)ρ

pσ
m
, θ(ϕ)

ρ
= − 1

2m
ϵρµνσϕµνpσ. (4.17)

If we use ϕ as in the above equation, the Lorentz transformation Λ can be cast into
the form:

Λ = exp

(
− i

2
ϕ : Ĵ

)
= exp

(
iθ(ϕ) · Ŝ(p)

)
,

and we see that the vector θ(ϕ) directly couples to the spin operator

Ŝµ =
Ŵµ

m
= − 1

2m
ϵµνρσĴνρpσ.

We have shown is that the constraint equation Λp = p allows polarization to develop
only if Λ, which comes the density operator at imaginary vorticity, is generated by
the Pauli-Lubanski vector.

Coming back to the calculation of the spin vector, if we consider Λ such that Eq.
(4.17) is satisfied, then the δ-functions reduce to infinite constants that simplify in
the ratio:

Sµ(p) =
1

2m

∑∞
n=1(−1)n+1e−nb̃(inϕ)·ppνA

µν
5 (n, ϕ)δ3(0)∑∞

n=1(−1)n+1e−nb̃(inϕ)·ptr (exp[−inϕ : Σ/2]) δ3(0)

=
1

2m

∑∞
n=1(−1)n+1e−nb̃(inϕ)·ppνA

µν
5 (n, ϕ)∑∞

n=1(−1)n+1e−nb̃(inϕ)·ptr (exp[−inϕ : Σ/2])
.
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The parameterization (4.17) yields more simplifications, which are essential to
provide the analytic form of the polarization vector. First of all, the scalar product
b̃(inϕ) · p gives:

b̃(inϕ) · p =
∞∑
k=0

(−n)k

(k + 1)!
pµ(ϕ

µ
α1
ϕα1

α2
. . . ϕ

αk−1
αk︸ ︷︷ ︸

k times

)bαk = b · p, (4.18)

which is only the k = 0 term, as terms with k > 0 always involve ϕµνpν which
vanishes in view of Eq. (4.17).

To compute the traces that appear in the series, we resort to the techniques used
in Ref. [153]. We define the auxiliary variables:

z =
ϕ : ϕ

2
+ i

ϕ : ϕ̃

2
, z =

ϕ : ϕ

2
− i

ϕ : ϕ̃

2
, (4.19)

where

ϕ̃µν =
1

2
ϵµνρσϕρσ

is the dual of the vorticity. It is possible to show that the following identities hold
[153]:

tr(Σµν(ϕ : Σ)2k+1) =(ϕµν + iϕ̃µν)zk + (ϕµν − iϕ̃µν)zk,

tr(γ5Σ
µν(ϕ : Σ)2k+1) =(ϕµν + iϕ̃µν)zk − (ϕµν − iϕ̃µν)zk,

tr(Σµν(ϕ : Σ)2k) =0,

tr(γ5Σ
µν(ϕ : Σ)2k) =0.

The above equations allow us to compute the traces we need for the spin vector.
For example one has:

tr(exp[−inϕ : Σ/2])) =
∑
k=0

nk(−i)k

2kk!
ϕµνtr(Σ

µν(ϕ : Σ)k−1)

=
∑
k=−1

n2k+2(−i)2k+2

22k+2(2k + 2)!
ϕµνtr(Σ

µν(ϕ : Σ)2k+1)

=
∑
k=−1

n2k+2(−1)k+1

22k+1(2k + 2)!
(zk+1 + zk+1)

= 2 cos

(
n
√
z

2

)
+ 2 cos

(
n
√
z

2

)
.

Similarly:

tr(γ5 exp[−inϕ : Σ/2])) = 2 cos

(
n
√
z

2

)
− 2 cos

(
n
√
z

2

)
,

tr(Σµν exp[−inϕ : Σ/2]) = −i(ϕµν + iϕ̃µν)
sin
(
n
√
z

2

)
√
z

− i(ϕµν − iϕ̃µν)
sin
(
n
√
z

2

)
√
z

,

tr(γ5Σ
µν exp[−inϕ : Σ/2]) = −i(ϕµν + iϕ̃µν)

sin
(
n
√
z

2

)
√
z

+ i(ϕµν − iϕ̃µν)
sin
(
n
√
z

2

)
√
z

.
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These formulae hold for any ϕ, and in general z and z are complex numbers.
However, from Eq. (4.17), it follows that:

ϕ̃µν = θ(ϕ)
ν pµ

m
− θ(ϕ)

µ pν

m
,

whence:

ϕ : ϕ = −2θ(ϕ)
µ
θ(ϕ)µ = −2θ(ϕ)

2
, ϕ : ϕ̃ = 0, (4.20)

so that z = z = −θ(ϕ)2 ∈ R+. Notice that, since θ(ϕ) · p = 0 from Eq. (4.17), θ(ϕ)
µ

is a space-like vector, and ϕ : ϕ ≥ 0.
The above traces simplify, and one has:

tr(exp[−inϕ : Σ/2])) = 4 cos

(
n
√
−θ(ϕ)2

2

)
, (4.21a)

tr(γ5 exp[−inϕ : Σ/2])) = 0, (4.21b)

tr(Σµν exp[−inϕ : Σ/2]) = −2iϕµν
sin

(
n
√
−θ(ϕ)2
2

)
√

−θ(ϕ)2
, (4.21c)

tr(γ5Σ
µν exp[−inϕ : Σ/2]) = 2ϕ̃µν

sin

(
n
√
−θ(ϕ)2
2

)
√
−θ(ϕ)2

. (4.21d)

We can use these relations to compute the traces in the polarization vector.
Finally, recalling Aµν = tr(γνγµ exp[−inϕ : Σ/2]), we find:

Aµν =4gµν cos

(
n
√

−θ(ϕ)2

2

)
+ 4ϕµν

sin

(
n
√
−θ(ϕ)2
2

)
√

−θ(ϕ)2
, (4.22a)

Aµν
5 =4iϕ̃µν

sin

(
n
√
−θ(ϕ)2
2

)
√
−θ(ϕ)2

. (4.22b)

This is all we need to address the series for the exact spin vector of massive Dirac
fermions in global equilibrium. Reintroducing the chemical potential ζ = µ/T , the
spin vector reads:

Sµ(p) =
1

2m

∑∞
n=1(−1)n+1e−nb·p+nζpνA

µν
5 (n, ϕ)∑∞

n=1(−1)n+1e−nb·p+nζtr (exp[−inϕ : Σ/2])

=
iϕ̃µνpν

2m
√
−θ(ϕ)2

∑∞
n=1(−1)n+1e−nb·p+nζ sin

(
n
√
−θ(ϕ)2
2

)
∑∞

n=1(−1)n+1e−nb·p+nζ cos

(
n
√
−θ(ϕ)2
2

)
Both series are convergent if b · p− ζ > 0, in which case the result is:

Sµ(p) =
iϵµνρσϕρσpν

4m
√

−θ(ϕ)2

sin

(√
−θ(ϕ)2
2

)
cos

(√
−θ(ϕ)2
2

)
+ e−b·p+ζ

. (4.23)
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Figure 4.1: Plot of the dependence of the SF (x, y) on its variables.

This is the final result of our calculation with imaginary thermal vorticity, and can
be easily mapped to the physical case. Defining:

θµ = − 1

2m
ϵµνρσϖνρpσ, (4.24)

it is easy to see that mapping ϕ 7→ iϖ implies θ(ϕ) 7→ iθ. Therefore the physical
result reads:

Sµ(p) = − 1

4m
ϵµνρσϖνρpσ

1√
−θ2

sinh
(√
−θ2
2

)
cosh

(√
−θ2
2

)
+ e−b·p+ζ

. (4.25)

Much like the case of the series associated with the Fermi-Dirac distribution function,
the result is analytic in its variables, and we can analytically continue Sµ(p) making
the above expression hold even when b · p− ζ > 0 is not satisfied. Furthermore the
physical thermal vorticity is not required to satisfy the constraint as ϕ, as there is
no dependence on it in the final result.

The polarization can be also expressed solely in terms of θµ, which points in the
direction of the mean spin vector:

Sµ(p) =
1

2

θµ√
−θ2

sinh
(√
−θ2
2

)
cosh

(√
−θ2
2

)
+ e−b·p+ζ

=
1

2

θµ√
−θ2

SF

(√
−θ2, b · p− ζ

)
. (4.26)

In the above equation we have introduced the function:

SF (x, y) =
sinhx

coshx+ e−y
, (4.27)

which describes how much particles are polarized. Its behaviour is shown in Figure
4.1. The function is monotonically increasing both as a function of x and y, and
eventually, saturates to an asymptotic limit, 1 for fixed y and tanhx for fixed x.
Notice that, for x ≥ 0, 0 ≤ SF ≤ 1 so that SF is the percentage of polarization
along the versor θ̂µ = θµ/

√
−θ2.

The limiting behaviours of the spin vector can be inferred from the ones of SF .
It is easy to show that:

lim
x→∞

SF (x, y) = 1, lim
x→0

SF (x, y) =
x

2
(1− nF (y)). (4.28)

Using these formulae in the limiting cases
√
−θ2 ≫ 1 and

√
−θ2 ≪ 1 we find:

lim√
−θ2→∞

Sµ(p) =
1

2

θµ√
−θ2

,

lim√
−θ2→0

Sµ(p) =
θµ

4
(1− nF (b · p− ζ)),
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where the second limit is in perfect agreement with the literature. It should be
mentioned that the physical meaning of the first limit is dubious, as it describes a
fluid experiencing an infinite angular velocity and/or acceleration.

The massless case can be tackled likewise, but some subtleties deserve to be
commented on. The constraint equation Λp = p imposes that the parameter ϕ
associated to the imaginary thermal vorticity is parametrized as:

ϕµν = ϵµνρσhρ
pσ
p · q

, (4.29)

Inverting such an equation in the massless case, to obtain hρ in terms of ϕ is a bit
more challenging. Let us start by computing the dual of ϕ:

ϕ̃µν =
1

2
ϵµναβϕαβ =

1

p · q
(hνpµ − hµpν).

We can decompose hµ along the tetrad {p, q, n1, n2}, but, as it will turn out, only
the component of hµ along qµ is of physical relevance. Let us therefore write:

hµ = H(ϕ)qµ + hµ⊥, (4.30)

where the orthogonal space h⊥ is generated by n1,2. One realizes that:

H(ϕ) =
1

2(p · q)
ϵµναβϕαβpνqµ =

ϕ̃µνqµpν
p · q

, ϕ : ϕ = 2
(h · p)2

(p · q)2
= 2H(ϕ)2.

(4.31)
Reworking Eq. (4.3), keeping in mind the simplifications provided by ϕµνp

ν = 0,
one obtains (here we have set ζ = 0):

Wµ(p) = pµ
1

2

∑∞
n=1(−1)n+1e−nb·ppνqρtr(γ

νγργ5 exp[−inϕ : Σ/2])∑∞
n=1(−1)n+1e−nb·ppλqσtr(γλγσ exp[−inϕ : Σ/2])

. (4.32)

Using the identities (4.22) one obtains:

Wµ =
pµ

2|H(ϕ)|
iϕ̃αβqαpβ
p · q

∑∞
n=1(−1)n+1e−nb·p sin

(
n|H(ϕ)|

2

)
∑∞

n=1(−1)n+1e−nb·p cos
(
n|H(ϕ)|

2

) . (4.33)

Summing the series, which converges for b · p > 0, one finds:

Wµ(p) =
pµ

2

iH(ϕ)

|H(ϕ)|

sin
(
|H(ϕ)|

2

)
cos
(
|H(ϕ)|

2

)
+ e−b·p

. (4.34)

The result can now be extended to real vorticity simply mapping H(ϕ) 7→ iH
where

H =
1

2(p · q)
ϵµνρσϖµνpσ. (4.35)

One gets:

Wµ(p) = −p
µ

2

H

|H|

sinh
(
|H|
2

)
cosh

(
|H|
2

)
+ e−b·p

, (4.36)
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and using the parity of the hyperbolic functions, sinhx = − sinh(−x) and coshx =
cosh(−x), we can also write

Wµ(p) = −p
µ

2

sinh
(
H
2

)
cosh

(
H
2

)
+ e−b·p

. (4.37)

As we have shown in the previous section, in Eq. (4.12), H = −w · p̂ and the
mean Pauli-Lubanski vector can be written as:

Wµ(p) =
pµ

2
SF

(
w · p̂
2

, b · p
)
, (4.38)

where we made use of the function SF . The limits of very large and very small
thermal vorticity, are easily obtained from Eq. (4.28):

lim
|w·p̂|→∞

Wµ =
pµ

2
sgn(w · p̂), (4.39)

lim
|w·p̂|→0

Wµ =
pµ

4
w · p̂(1− nF (b · p)), (4.40)

and the limit of small vorticity is in agreement with Eq. (4.14).

4.3 Exact polarization in heavy-ion collisions

Now that a formula to exactly compute the spin vector of massive fermions has been
derived, one may check whether it yields significant corrections to the polarization
in relativistic heavy-ion collisions.

To this end, we study the global polarization of the Λ hyperon. We take ex-
perimental data points from Ref. [8] and use them to estimate the vorticity of the
QGP, comparing the predictions of the linear approximation and the exact formula
for polarization.

For the comparison, other than assuming that the QGP at freeze-out can be
described as a fluid in global equilibrium, we work in the idealized hypothesis that
the vorticity is only given by a uniform rotation along the−y-axis, which corresponds
to the direction of the global angular momentum in the reference frame employed
in experiments. Considering particles at midrapidity, with four-momentum pµ =

(ε, px, py, 0) and ε =
√
m2 + p2x + p2y, we have:

ϖµν =
ω

T0
(gµ1gν3 − gµ3gν1) , θµ = − ω

mT0
(py, 0, ε, 0), −θ2 = ω2

T 2
0m

2
(ε2−p2y).

(4.41)
Experimentally, the polarization vector in the rest frame of the particle is mea-

sured. The component of the θ vector along the y direction in the rest frame of the
Λ particle is:

θ0y = − ω

mT0

(
ε−

p2y
m+ ε

)
. (4.42)

This is the only component of θ0 that yields a non vanishing integral over d3p. The
spectrum of particles is:

ε
dN

d3p
= 2

∫
dΣµp

µnF = 2εV nF , (4.43)

82



Exact polarization in heavy-ion collisions

where the integral has been computed on a constant-time hypersurface of volume
V , due to the global-equilibrium hypothesis and nF is the Fermi-Dirac distribution
function:

nF =
1

e
ε−µ
T + 1

. (4.44)

Finally, the global polarization can be computed using Eq. (2.7), where we
consider only particles at midrapidity:

PL/E
y (

√
sNN ) =

∫ d3p
2ε δ(pz)ε

dN
d3p

2S
L/E
y∫ d3p

2ε δ(pz)ε
dN
d3p

= − ω

mT0

∫
d2p nF 2

(
ε− p2y

ε+m

)
fL/E∫

d2p nF
.

(4.45)

In the above formula, polarization depends on collision energy through the temper-
ature and chemical potential. The function fL/E are defined from the linearised and

exact formula for the spin vector through S
L/E
y = θyf

L/E . Explicitly:

fL =
1− nF

4
, fE =

SF

2
√
−θ2

, (4.46)

as dictated by Eqs. (4.8) and (4.26) respectively. The integrals in the linear and
exact case read:

PL
y = − ω

mT0

∫
d2p nF

(
ε− p2y

ε+m

)
1−nF

2∫
dp nF

, (4.47)

PE
y = −

∫
d2p nF

(
ε− p2y

ε+m

) SF(
ω

mT0

√
ε2−p2y ,

ε−µ
T0

)
√

ε2−p2y∫
dp nF

. (4.48)

The dependence on the collision energy
√
sNN of chemical potential and tem-

perature in Eq. (4.45) are taken from Ref. [154], and read:

µB (
√
sNN ) = 2.06

ln
√
sNN(√

sNN

)1.13 [GeV],

T (
√
sNN ) =

(
0.1675− 0.1583µ2B (

√
sNN )

)
[GeV],

where
√
sNN is in GeV.

To assess the impact of the exact formula compared to the linear one, we compute
the integrals (4.47) and (4.48), changing the value of the constant angular velocity
ω. Our goal, is to establish for which ω the formulae yield the central value of the
global polarization data of the Λ particle from Ref. [8]. We will not consider the
experimental uncertainties due to the very rough estimate we are after.

The vorticities resulting from this analysis are reported in Table 4.3. It can be
seen that the relative difference between the values of vorticity obtained from the
linear and the exact formulae is at most 10−3, which is very small. The reason for
this is that the thermal vorticity is itself small in relativistic heavy-ion collisions. In
fact, restoring ℏ and for ω ∼ 1022s−1, T0 ∼ 150 MeV, one has:

ωℏ
2T0

∼ 0.02. (4.49)
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√
sNN [GeV] PΛ[%] ωL[×1022s−1] ωE [×1022s−1] (ωE − ωL)/ωE

7.7 1.8 2.1101 2.1122 1× 10−3

11.5 1.19 1.4347 1.4354 4× 10−4

14.5 1.17 1.4252 1.4258 4× 10−4

19.6 0.84 1.0325 1.0327 2× 10−4

27 0.93 1.1499 1.1502 2× 10−4

39 0.45 0.5586 0.5586 1× 10−4

62.4 1.2 1.4933 1.4939 4× 10−4

200 0.1 0.1247 0.1247 < 10−4

Table 4.1: Estimates of the QGP’s angular velocity for a given collision energy and
experimentally measured polarization. The experimental polarization of the Λ par-
ticle is taken from Ref. [8]. The subscript L and E refer to the linear approximation
and the exact formula respectively.

In conclusion, we have found that the exact formula for polarization leads only
to very small corrections at low energies for what concerns the global polarization,
and it is indistinguishable from the linear approximation in heavy-ion physics within
experimental uncertainties. On the other hand, it is hard to fathom a significant con-
tribution in the local-polarization sector; we can definitively state that higher-order
contributions in vorticity cannot solve the sign puzzle of polarization. The linear
formula for the spin vector should be sufficiently accurate in almost all applications.

4.4 Spin physics in global equilibrium for any spin

Using the results of the previous chapter and the discussion of Section 4.2, we can
evaluate the spin vector of a field with generic spin S. In this case, we avoid using
the Wigner function, as this would require a generalization of Eq. (1.93) to any
spin. Using the definition of the spin density matrix (1.83) and the exact two-point
function (3.47), the spin density matrix can be straightforwardly written as:

Θrs(p) =

∑∞
n=1(−1)2S(n+1)e−b̃(inϕ)·pWrs(Λ

n, p)δ3(Λnp− p)∑∞
n=1(−1)2S(n+1)e−b̃(inϕ)·ptr(W (Λn, p))δ3(Λnp− p)

. (4.50)

Given the discussion of Section 4.2, the Dirac δ-function constrains the imaginary
vorticity ϕ such that ϕµνp

ν = 0. Focusing on massive particles first, this means that
Λ, as well its continuation to real vorticity, is the exponential of the generators of
rotations because the Pauli-Lubanski vector generates SO(3) for massive fields. In
such a case, the Wigner rotation W (Λ, p) = [Λp]−1Λ[p] can be simplified. Indeed,
it is possible to show that if Λ is a rotation, then the Wigner rotation is the same
rotation as Λ, i.e. W (Λn, p) = D(S)(Λn) where we are considering a generic S-
representation of the rotation group [42]. Therefore

Θ(p) =

∑∞
n=1(−1)2S(n+1)e−nb·pD(S)(Λn)∑∞

n=1(−1)2S(n+1)e−nb·ptr(D(S)(Λn))
,

where we have simplified b̃(inϕ) · p = nb · p, see Eq. (4.18). All possible spin
observables can be derived from this matrix. For instance, the spin polarization
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vector of a spin-S field is given by Eq. (1.79):

Sµ(p) =
∑
i

[p]µitr(Θ(p)J
(S)
i ), (4.51)

J
(S)
i being the i-th generator of the rotation group in the S-representation. Such

a trace can be computed for any representation using the character χ(S) of the
representation, that is the trace of an element of the representation.

Let us start by rewriting exp
(
−inϕ:J

2

)
in terms of the generators of rotations.

Using the notation of section 4.2, we write:

e−in
ϕ:J
2 = einθ

(ϕ)·S = einθ
(ϕ)
0 ·J(S)

= exp[−in(θ(ϕ)0 xJx + θ
(ϕ)
0 yJy + θ

(ϕ)
0 zJz)], (4.52)

where we used Lorentz invariance to write the rotation in the standard frame, where
p→ p = (m,0) and θ → θ0, and the components of the spin vector boil down to the
generators of rotationsW i = mJ i (see Section 1.5). This transformation corresponds

to a rotation of an angle n

√
−θ(ϕ)0

2
around the axis θ̂

(ϕ)
0

µ
= θ

(ϕ)
0

µ
/

√
−θ(ϕ)0

2
. The

trace of such a rotation in a spin-S representation is given by [43]:

χ(S) = tr
(
D(S)(Λn)

)
=

sin

[
n
(
S + 1

2

)√
−θ(ϕ)0

2
]

sin

(
n

√
−θ(ϕ)0

2

2

) . (4.53)

To compute the polarization vector from Eq. (4.51) we can write:

tr
(
einθ0·JJ (S)

x,y,z

)
=
i

n

∂

∂θ
(ϕ)
0 x,y,z

tr
(
einθ

(ϕ)
0 ·J

)
=
i

n

∂

∂θ
(ϕ)
0 x,y,z

χ(S),

and the explicit derivation yields:

tr(D(S)(Λn)J (S)
x,y,z) =i

θ
(ϕ)
0 x,y,z

2

√
−θ(ϕ)0

2
csc2

n
√

−θ(ϕ)0

2

2

×

[
S sin

(
n(1 + S)

√
−θ(ϕ)0

2
)
− (1 + S) sin

(
nS

√
−θ(ϕ)0

2
)]

.

(4.54)

The calculation of the spin vector is now straightforward; the standard boost in Eq.

(4.51) is such that θ
(ϕ)
0 is boosted to θ(ϕ) and we use Lorentz invariance to write

θ
(ϕ)
0

2
= θ(ϕ)

2
. Therefore, the polarization vector for a massive field of generic spin

S reads:

Sµ(p) =
iθ(ϕ)

µ

2
√

−θ(ϕ)2
1∑∞

n=1(−1)2S(n+1)e−nb·pcsc

(
n
√
−θ(ϕ)2
2

)
sin
(
n
(
S + 1

2

)√
−θ(ϕ)2

)
×
∞∑
n=1

(−1)2S(n+1)e−nb·p
S sin

(
n(1 + S)

√
−θ(ϕ)2

)
− (1 + S) sin

(
nS
√

−θ(ϕ)2
)

sin2
(

n
√
−θ(ϕ)2
2

) .

(4.55)
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Notice that the case S = 1/2 yields, after using some elementary trigonometric
identities:

Sµ(p) =
−iθ(ϕ)µ

2
√
−θ(ϕ)2

∑∞
n=1(−1)n+1e−nb·p sin

(
n
√
−θ(ϕ)2
2

)
∑∞

n=1(−1)n+1e−nb·p cos

(
n
√
−θ(ϕ)2
2

)

=
−iθ(ϕ)µ

2
√
−θ(ϕ)2

sin

(√
−θ(ϕ)2
2

)
cos

(√
−θ(ϕ)2
2

)
+ e−b·p

,

which precisely reproduces Eq. (4.23).
After performing the summation it is possible to map the parameter ϕ back to

the real vorticity via ϕ 7→ iϖ. Here, however, we do not pursue such goal. We
confine ourselves to a comparison of our results and the previous literature. For

example, it is easy to check that in the limit of small
√
−θ(ϕ)2 the spin vector reads:

Sµ(p) =− iθ(ϕ)
µS(S + 1)

3

∑∞
n=1(−1)2S(n+1)e−nb·pn∑∞
n=1(−1)2S(n+1)e−nb·p

=− iθ(ϕ)
µS(S + 1)

3
(1− (−1)2SnF/B(b · p)),

such that after the continuation to real vorticity:

Sµ(p) 7→ θµ
S(S + 1)

3
(1− (−1)2SnF/B(b · p)) (4.56)

which is in agreement with expectations [97, 155].
Furthermore, we can consider the case of Boltzmann statistics, which consists in

truncating the series to the n = 1 term. The result is:

Sµ(p) =
−iθ(ϕ)µ

2
√

−θ(ϕ)2
csc

(√
−θ(ϕ)2

2

)
×[

S sin
(
(1 + S)

√
−θ(ϕ)2

)
− (1 + S) sin

(
S
√
−θ(ϕ)2

)]
sin
((
S + 1

2

)√
−θ(ϕ)2

) ,

which, after the continuation, can be written in terms of the character:

Sµ(p) =
θµ√
−θ2

χ′
(√

−θ2
)

χ
(√

−θ2
) , (4.57)

where with χ′ we denote the derivative of χ with respect to
√
−θ2. This expression

is consistent with the results of Refs. [118, 156].
Similarly, we can take on the polarization of massless particles. Using the defi-

nition of the Pauli-Lubanski vector (1.60) and Eqs. (4.29), (4.30) and (4.31) we can
write:

exp

(
−inϕ : Ĵ

2

)
= exp

(
in

hρ
p · q

Ŵ ρ

)
= exp

(
in
h · p
q · p

ĥ

)
= exp

(
inH(ϕ)ĥ

)
, (4.58)
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where H(ϕ) = ϵµναβϕαβpνqµ/(2p · q) and, since only the component of the Pauli-

Lubanski vector along pµ is physically relevant, we used Ŵµ = ĥpµ. Now, taking
into account Eq. (1.74), and that only two helicity states(+h and −h) are possible
for massless particles, it is easy to see:

Wµ(p) = pµ
∑

s=±h sΘss∑
s=±hΘss

= ipµh

∑∞
n=1(−1)2h(n+1)e−b·p sin

(
nH(ϕ) h

)∑∞
n=1(−1)2h(n+1)e−b·p cos

(
nH(ϕ) h

) , (4.59)

where with h we denote the helicity of the particle (i.e., h = 1/2, 1, 3/2 . . . ).
The above series can be straightforwardly summed, and after mapping ϕ 7→ iϖ

and H(ϕ) 7→ iH it yields:

Wµ(p) = −pµh sinh (H h)

cosh (H h)− (−1)2he−b·p
. (4.60)

This formula reproduces Eq. (4.37) for h = 1/2.
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Chapter 5

Local-equilibrium spin
polarization

This chapter delves deeper into the phenomenology of polarization in relativistic
fluids. The goal we pursue here is to explain the measurements of the polariza-
tion of the Λ produced in heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) in Brookhaven and the Large Hadron Collider (LHC) in Geneva. The QGP
produced in the collisions is believed to hadronize not in global equilibrium, but
in a state of local equilibrium. Thus, the results of the previous section have to
be generalized. In this chapter, we linger on the difference, to first order in gradi-
ents, between global and local equilibrium, namely on the fact that the symmetric
derivative of the four-temperature vector can be non-vanishing. Such a tensor is
called thermal shear. We compute explicitly the thermal expectation value of the
spin vector of the Dirac field using the local-equilibrium density operator and show
that the thermal shear yields a non-vanishing contribution to polarization. Finally,
after discussing an improved approximation for linear-response theory suitable for
high-energy heavy-ion collisions, we perform realistic hydrodynamic simulations to
compare the predictions of the newly found formula to experimental data.

This chapter is based on Refs. [16, 17].

5.1 Thermal shear in relativistic fluids at local equilib-
rium

If we consider a fluid described by the local-equilibrium density operator (1.28),
such as the QGP appears to be, the Killing condition (1.17) does not hold. In such
circumstances, the symmetric derivative of the four-temperature may be non-zero.
Such a tensor is called the thermal shear and it is defined as:

ξµν =
1

2
(∂µβν + ∂νβµ) . (5.1)

The thermal shear is an out-of-equilibrium property of the fluid, as the Killing
equation in the equilibrium conditions (1.17) makes ξµν vanish. Therefore, we expect
that the closer the fluid is to a state of global equilibrium, the smaller the thermal
shear will be.

In the previous chapter, our focus was on the properties of systems in global equi-
librium with non-vanishing thermal vorticity. As we have extensively discussed, the
thermal vorticity informs us about the angular velocity and acceleration experienced
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by the fluid. One may wonder what is the physical interpretation of the thermal-
shear tensor. To answer this question, we devise some particular four-temperature
vectors, taking the shear tensor as a constant (which is in general not the case). To
begin with, let us study a fluid where the thermal shear is proportional to the metric
tensor:

ξµν =
X
T0
gµν . (5.2)

This shear is generated by the four-temperature vector:

βµ(x) = bµ +
X
T0
xµ. (5.3)

Assuming bµ = 1
T0
(1,0), the invariant temperature and the four-velocity of the fluid

are given by:

T =
T0√

(1 + X t)2 −X 2x2
, uµ =

1√
(1 + X t)2 −X 2x2

(1 + X t,Xx). (5.4)

Similarly to what we have done for the vorticity in Section 1.2.2, we can consider
an observer who measures T0 as the proper temperature. Such an observer moves
on the trajectory defined by (1 + X t)2 −X 2x2 = 1, so that T = T0. The expansion
scalar computed on this curve is given by:

θ = ∂ · u = 4X . (5.5)

We see that X is nothing but the constant expansion scalar measured by this ob-
server.

We can also consider a non-diagonal thermal shear, for example:

ξµν =
Q
T0

(δ1µδ
2
ν + δ2µδ

1
ν). (5.6)

This particular tensor yields:

βµ(x) = bµ +
Q
T0

(gµ1y + gµ2x), (5.7)

and the proper temperature and velocity are:

T =
T0√

1−Q2(x2 + y2)
uµ =

1√
1−Q2(x2 + y2)

(1,−Qy,−Qx, 0). (5.8)

The fluid shear tensor is defined as:

σµν =
1

2
(∇µuν +∇νuµ)− 1

3
∆µνθ, (5.9)

where ∆µν = gµν − uµuν and ∇µ = ∆µν∂ν . If we compute the shear tensor in the
origin, where T = T0 we find:

σxy|xµ=0 = Q, (5.10)

and all other components vanish. We showed that a non-diagonal thermal shear
indicates the presence of the properly-called shear tensor in the fluid.
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5.2 Local-equilibrium density operator to first order in
gradients

Since not only the thermal vorticity but also the thermal shear is present in local
equilibrium, it is compulsory to estimate the effects of the latter on expectation
values. In the next section, we will compute the polarization coming from gradients
of temperature in local equilibrium, accounting for both the thermal vorticity and
the thermal shear and show that the latter indeed yields a non-vanishing polarization
[16, 17]. We will employ the density-operator formalism as developed in the previous
chapters, although different approaches also lead to similar (yet different) conclusions
[157, 158].

Before venturing into the calculations, it is useful to study the role of thermal
vorticity and thermal shear in the density operator itself. We start by recalling once
again the local-equilibrium form of the density operator:

ρ̂LE =
1

Z
exp

[
−
∫

dΣµT̂
µνβν

]
. (5.11)

For applications to heavy-ion collisions, one can choose the integration hypersur-
face to be the freeze-out, or decoupling, hypersurface. In fact, the statistical-
hadronization model provided countless indications supporting the picture that the
quark-gluon plasma freezes out close to thermal equilibrium.

In this section, we will not discuss the effects of chemical potential and its gradi-
ents. It is known that they contribute to the polarization via the so-called spin-Hall
effect [157, 159, 160], but they are expected to be significant at low collision energy,
which we will not consider here.

Expanding the β field up to first order in gradients, following the hydrody-
namic approximation, we can identify three different terms, two being familiar from
global-equilibrium studies, involving P̂µ and Ĵµν , and one being present only out of
equilibrium and depending on a new operator Q̂µν :

ρ̂LE ≃ 1

ZLE
exp

[
−
∫
Σ
dΣµ T̂

µν(y)[βν(x) + ∂λβν(x)(y − x)λ]

]
≃ 1

ZLE
exp

[
−β(x) · P̂ +

1

2
ϖνλ(x)Ĵ

νλ
x − 1

2
ξνλQ̂

νλ
x

]
,

where ϖ and ξ are the thermal vorticity and thermal shear:

ϖµν = −1

2
(∂µβν − ∂νβµ), ξµν =

1

2
(∂µβν + ∂µβν). (5.12)

These two tensors couple to similar, but fundamentally different operators. On the
one hand, the thermal vorticity couples with the angular-momentum boost operator
(centred at the point x), exactly as in global equilibrium:

Ĵλν
x =

∫
Σ
dΣµ

[
(y − x)λT̂µν(y)− (y − x)ν T̂µλ(y)

]
=

∫
Σ
dΣµ Ĵ µ,λν . (5.13)

The density of angular momentum Ĵ µ,λν is conserved, therefore Ĵλν does not depend
on the integration hypersurface.

On the other hand, the thermal shear couples to the tensor:

Q̂λν
x ≡

∫
Σ
dΣµ

[
(y − x)λT̂µν(y) + (y − x)ν T̂µλ(y)

]
=

∫
Σ
dΣµ Q̂µ,λν . (5.14)
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Graphically, the difference between Ĵµν and Q̂µν is just a sign, which may look like
a small difference. However, it has a dramatic consequence: Q̂µ,λν is not conserved,

∂µQ̂µ,λν = ∂µ

(
(y − x)λT̂µν(y) + (y − x)ν T̂µλ(y)

)
= 2T̂ λν(y). (5.15)

Therefore, it ensues that the Q̂µν operator depends on the integration hypersur-
face. As a consequence, Q̂µν is not a tensor operator, since if we act on it with a
Lorentz transformation we have:

Λ̂Q̂λν
x Λ̂−1 = Λ−1

λ
ρΛ
−1ν

σ

∫
ΣΛ

dΣµ

[
(y − Λx)ρT̂µσ(y) + (y − Λx)σT̂µρ(y)

]
̸= Λ−1

λ
ρΛ
−1ν

σQ̂
ρσ
Λx,

where the last inequality follows from the fact that the operator calculated on the
Lorentz-transformed hypersurface ΣΛ is not the same as the one computed on Σ
due to Eq. (5.14). We anticipate that all thermal expectation values arising from
the thermal shear will unavoidably depend on the decoupling hypersurface, thus
breaking covariance.

The previous statement may sound disquieting, but given the form of the local-
equilibrium density operator, it should not come as a surprise. Indeed, let V̂ µ

be a vector operator, meaning that Λ̂V̂ µΛ−1 = Λ−1
µ
ν V̂

ν . The local-equilibrium
expectation value of V̂ µ transforms as:

Λµ
ν⟨V̂ ν⟩LE,β =Tr

(
ρ̂Λ̂−1V̂ µΛ̂

)
= Tr

(
Λ̂ρ̂Λ̂−1V̂ µ

)
=

1

Z LE
Tr

(
exp

[
−
∫
ΣΛ

dΣµT̂
µν(x)Λνρβ

ρ(x)

]
V̂ µ

)
̸= ⟨V̂ µ⟩LE,Λβ

(5.16)

and it is therefore not a vector since the integration hypersurface has changed. This
is a feature of the local-equilibrium density-operator formalism, and it is neither
avoidable nor a problem.

5.3 Spin and thermal shear tensor

To compute the polarization at local equilibrium, it is convenient to use Eq. (1.94)
to express the spin vector of particles in terms of the particle part of the Wigner
function:

Sµ(k) =
1

2

∫
Σ dΣ · k tr

[
γµγ5W+(x, k)

]∫
Σ dΣ · k tr [W+(x, k)]

. (5.17)

Here, as pointed out in Section 1.6, the integration happens on the freeze-out surface,
where considering hadronic fields as free is a good approximation. We can introduce
a Wigner operator Ŵ in such a way that the Wigner function is its expectation
value. Comparing with Eq. (1.54), the particle component of the Wigner operator
is:

Ŵ+
ab(x, k) = θ(k0)θ(k2)

1

(2π)4

∫
d4s e−ik·s : Ψb(x+ s/2)Ψa(x− s/2) : , (5.18)

where Ψ is the free Dirac field (the effective hadronic field in heavy ion applica-
tions), the colons : • : denote the normal ordering and θ is the Heaviside step
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function. To calculate the corrections to polarization arising from the gradients of
temperature, we can compute the same corrections for the Wigner operator using

the local-equilibrium density operator (5.11) W+
ab(x, k) = Tr

(
ρ̂LEŴ

+
ab(x, k)

)
. Since

the Wigner operator is a local operator, we can employ the hydrodynamic approx-
imation to obtain Kubo-like formulae for the response of the Wigner function to
gradients of the four-temperature, as discussed in Section 1.2.3. Using Eq. (1.36)
for the Wigner operator we find:

⟨Ŵ+
ab(x, k)⟩LE ≃ ⟨Ŵ+

ab(x, k)⟩β(x) +∆W+
ab(x, k), (5.19)

with:

∆W+
ab(x, k) = −

∫ 1

0
dz

∫
Σ
dΣλ(y)∆βρ(x, y)⟨Ŵ+

ab(x, k)T̂
λρ(y − izβ(x))⟩c,β(x), (5.20)

where we are using the short-hand notation ∆βρ(x, y) = ∂αβρ(y−x)α. The subscript
c stands for the connected part of the two-point function and β(x) denotes the
thermal expectation value computed with the density operator:

ρ̂0 =
1

Z
exp[−β(x) · P̂ ].

The 0-th order in gradients of the Wigner function can be read from Eq. (3.52)
replacing b with β(x):

W+
0 (x, k) = ⟨Ŵ+(x, k)⟩β(x) = (m+ /k) δ(k2 −m2)θ(k0)

1

(2π)3
nF (β(x) · k) ,

and is used to compute the denominator of Eq. (5.17).
The calculation of the first-order correction (5.20) in temperature gradients can

be carried out as follows. First, we write the Belinfante energy-momentum tensor
in terms of the Wigner operator. Using the relation between the Wigner function
and the mean energy-momentum tensor (1.57c) together with the expression for the
Belinfante tensor of the Dirac field in terms of the canonical one (3.93), we have:

T̂ λρ(y) =
1

2

∫
d4k′

(
k′ρtr

[
γλŴ (y, k′)

]
+ k′λtr

[
γρŴ (y, k′)

])
,

hence Eq. (5.20) becomes

∆W+
ab(x, k) =− 1

2

∫ 1

0
dz

∫
Σ
dΣλ(y)∆βρ(x, y)×∫

d4k′
∑
cd

(
k′ργλdc + k′λγρdc

)
⟨Ŵ+

ab(x, k)Ŵcd(y − izβ(x), k′)⟩c,β(x),

(5.21)

where a, b, c, and d are spinor indices. Therefore, we only need to calculate the
correlator between two Wigner functions to find the correction (5.20)

To compute this correlator, we express the Wigner operator in terms of the Dirac
fields. From Eq. (1.54) we find:

Ŵ+
ab(x, k) =

1

(2π)3

∑
τ,τ ′

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+p′

2

)
×

e−ix·(p
′−p)uτ ′(p

′)auτ (p)bâ
†
τ (p)âτ ′(p

′).
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Furthermore, the connected part of the thermal expectation value of four creation
and annihilation operators is easily computable using Wick’s theorem:

⟨â†1â2â
†
3â4⟩c = ⟨â†1â2â

†
3â4⟩ − ⟨â†1â2⟩⟨â

†
3â4⟩ = ⟨â†1â4⟩⟨â2â

†
3⟩,

where â†1 and â2 come from the first Wigner operator and â†3 and â4 from the second
one. The two-point functions involving â and â† are well-known quantities, and they
can also be recovered from Eq. (3.47) in the case of homogeneous equilibrium:

⟨â†τ (k)âσ(q)⟩β(x) =δτσ2εqδ3(k − q)nF (k),

⟨âτ ′(k′)â†σ′(q
′)⟩β(x) =δτ ′σ′2εq′δ

3(k′ − q′)(1− nF (k
′)),

Using the property ∑
σ

uσ(p)uσ(p) = /p+m,

the correlator of two Wigner operators turns out to be:

⟨Ŵ+
ab(x, k)Ŵcd(y − izβ(x), k′)⟩c,β(x) =

1

(2π)6

∫
d3p

2εp

d3p′

2εp′
δ4
(
k − p+ p′

2

)
δ4
(
k′ − p+ p′

2

)
× (/p

′ +m)ad(/p+m)cbe
i(p−p′)·(x−y)e−z(p−p

′)βnF (p)(1− nF (p
′)).

Plugging this expression into Eq. (5.21) we find:

∆W+
ab(x, k) =−

∫ 1

0
dz

∫
Σ
dΣλ(y)∆βρ(x, y)

1

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+ p′

2

)
×

T λρ(p, p′)ab e
i(p−p′)·(x−y)e−z(p−p

′)βnF (p)(1− nF (p
′)),

(5.22)

where T is

T λρ(p, p′)ab =
1

4

[
(/p
′ +m)γλ(/p+m)

]
ab
(pρ+p′ρ)+

1

4

[
(/p
′ +m)γρ(/p+m)

]
ab
(pλ+p′λ).

(5.23)
Writing explicitly ∆β we have:

∆W+
ab(x, k) =−

∫ 1

0
dz

∫
Σ
dΣλ(y)∂κβρ

(y − x)κ

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+ p′

2

)
× T λρ(p, p′)ab e

i(p−p′)·(x−y)e−z(p−p
′)βnF (p)(1− nF (p

′)).

(5.24)

To evaluate Eq. (5.24), we use the Gauss theorem to move the integral from the
freeze-out hypersurface to a constant-time hypersurface, which we denote by ΣB. In
addition, also a 4D integral over the region encompassed by the two hypersurfaces
will be considered, see Fig. 5.1. The correction to the spin vector can be written
as the sum of a term coming from the volume Ω and another one coming from the
hypersurface ΣB

Sµ(k) ≃ Sµ
∂β,Ω(k) + Sµ

∂β,B(k) =
1

2

∫
Σ dΣ · k tr

[
γµγ5∆ΩW

+(x, k)
]∫

Σ dΣ · k tr
[
W+

0 (x, k)
]

+
1

2

∫
Σ dΣ · k tr

[
γµγ5∆BW

+(x, k)
]∫

Σ dΣ · k tr
[
W+

0 (x, k)
] , (5.25)
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Figure 5.1: Sketch of a heavy-ion collision with the hypersurfaces mentioned in the
text. Σeq represents the hypersurface where the true density operator (1.13) should
be computed, and ΣFO is the freeze-out hypersurface. The integration domain of the
local-equilibrium density operator should be ΣFO together with the hypersurfaces
σ±, but their contribution would be negligible. The hypersurface ΣB and the 4D
region Ω are also shown in the figure.

where:

∆ΩW
+
ab(x, k) =−

∫ 1

0
dz

∫
Ω
d4y

∂κβρ(x)

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+ p′

2

)
× T ρκ(p, p′)abe

i(p−p′)·(x−y)e−z(p−p
′)βnF (p)(1− nF (p

′)),

and

∆BW
+
ab(x, k) =−

∫ 1

0
dz

∫
ΣB

dΣλ(y)∂κβρ(x)
(y − x)κ

(2π)6

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+ p′

2

)
× T λρ(p, p′)abe

i(p−p′)·(x−y)ez(p−p
′)βnF (p)(1− nF (p

′)).

Let us start with the 4D integral. Assuming that the region Ω is large enough in
space, we can use the approximation:∫

Ω
d4y ei(p−p

′)·(x−y) ≃ δt(2π)3δ3
(
p− p′

)
,

where δt is the temporal extent of the region Ω. Thus:

∆ΩW
+
ab(x, k) =− δt ∂κβρ(x)

1

(2π)3

∫
d3p

4ε2p
δ4 (k − p) T ρκ(p, p)abnF (p)(1− nF (p)).

(5.26)

Given the definition of T , Eq. (5.23), and using the fact that the trace

tr
[
γµγ5(/p

′ +m)γλ(/p+m)
]
= 4iϵµλτσpτp

′
σ,
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we readily find that
tr
[
γµγ5∆ΩW

+(x, k)
]
= 0,

so that there is no contribution to the polarization vector coming from the volume
integral. This result was expected for the part coupling with the angular-momentum
boost operator because it is conserved and therefore independent of the integration
hypersurface. For the term coupling with Q̂x this is not obvious, and in fact, it is a
consequence of the hypersurfaces and the volume considered, and of the observable,
the spin vector.

We are left with:

Sµ(k) ≃ 1

2

∫
Σ dΣ · k tr

[
γµγ5∆BW

+(x, k)
]∫

Σ dΣ · k tr
[
W+

0 (x, k)
] , (5.27)

We write down this contribution explicitly. The numerator of Eq. (5.27) reads:

N µ ≡
∫
Σ
dΣ · k tr

[
γµγ5∆BW

+(x, k)
]

=
−2

(2π)6

∫
Σ
dΣ · k

∫ 1

0
dz

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+ p′

2

)
×∫

ΣB

dΣλ(y)∂κβρ(x)(y − x)κe−z(p−p
′)βnF (p)(1− nF (p

′))×

ei(p−p
′)·(x−y)

[
iϵµλτσpτp

′
σk

ρ + iϵµρτσpτp
′
σk

λ
]

and the denominator is simply:

D ≡
∫
Σ
dΣ · k tr

[
W+

0 (x, k)
]
=

4m

(2π)3

∫
dΣ · k δ(k2 −m2)θ(k0)nF (k).

If we assume the hypersurface ΣB to be much larger compared to the other scales,
we can approximate it as a hyperplane. In such a case we recover a Dirac delta
function and its derivative:∫

ΣB

dΣλ(y)(y − x)κei(p−p
′)·(x−y) =

∫
ΣB

d3y t̂λ(y − x)κei(p−p
′)·(x−y)

≃− it̂λ∆
κ
κ′(2π)3

∂

∂p′κ′
δ3(p− p′) + t̂λt̂

κ(2π)3∆tδ3(p− p′),

(5.28)

where t̂ = (1,0) is the unit vector normal to ΣB, corresponding to the time direction
in the QGP frame of Fig. 5.1, and ∆µν = gµν − t̂µt̂ν , ∆t = (y − x) · t̂ and y · t̂ is
constant in ΣB by definition. The second term in Eq. (5.28), much like the volume
contribution, contains a δ3(p − p′), which implies once again that its contribution
to the polarization vector is vanishing, much like it happened for ∆WΩ.

We are left with:

N µ ≃ − 2

(2π)3

∫
Σ
dΣ · k

∫ 1

0
dz

∫
d3p

2εp

∫
d3p′

2εp′
δ4
(
k − p+ p′

2

)
∂κβρ(x)

× t̂λ∆
κ
κ′

∂

∂p′κ′
δ3(p− p′)

[
ϵµλτσpτp

′
σk

ρ + ϵµρτσpτp
′
σk

λ
]
e−z(p−p

′)βnF (p)(1− nF (p
′)).

Given that the square bracket is vanishing for p = p′, the integration by parts yields:

N µ =
1

(2π)3

∫
Σ
dΣ · k ∂κβρ(x)

∫
d3p

2ε2p
δ4(k − p)nF (p)(1− nF (p))

× t̂λ∆
κ
κ′

[
ϵµλτσpτ

∂pσ
∂pκ′

kρ + ϵµρτσpτ
∂pσ
∂pκ′

kλ
]
.
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We can then integrate over p getting:

N µ =
1

(2π)3

∫
Σ
dΣ · k ∂κβρ(x)θ(k0)δ(k2 −m2)nF (k)(1− nF (k))

× t̂λ∆
κ
κ′
∂kσ
∂kκ′

kτ
εk

[
ϵµλτσkρ + ϵµρτσkλ

]
.

We have to be careful in computing the derivatives: due to the presence of the
projector, κ is a spatial index and the derivatives are only with respect to the spatial
components of the momentum k. But since k is now on-shell, the k0 component has
a non-trivial dependence on ki=1,2,3. Therefore:

∂kσ
∂kκ′

= ∆ κ′
σ − t̂σ

kκ
′

εk
.

Using this expression, it is easy to see:

∂κβρt̂λ∆
κ
κ′
∂kσ
∂kκ′

= ∂σβρt̂λ − kκ

ε
∂κβρt̂λt̂σ,

and we can compute explicitly:

∂κβρt̂λ∆
κ
κ′
∂kσ
∂kκ′

[
ϵµλτσkρ + ϵµρτσkλ

]
=

(
∂σβρt̂λ − kκ

ε
∂κβρt̂λt̂σ

)[
ϵµλτσkρ + ϵµρτσkλ

]
= ∂σβρt̂λk

ρϵµλτσ + εϵµρτσ∂σβρ − ∂κβρt̂λk
κϵµρτλ

= εϵµρτσ∂σβρ + (∂σβρ + ∂ρβσ)t̂λk
ρϵµλτσ,

where in the last step we have changed the name of the indices and used the prop-
erties of the Levi-Civita symbol. Using the definitions of the thermal vorticity and
the thermal shear (5.12), we can write:

∂κβρt̂λ∆
κ
κ′
∂kσ
∂kκ′

[
ϵµλτσkρ + ϵµρτσkλ

]
= −εϵµρστϖρσ − 2ξσρt̂λk

ρϵµλστ ,

so that we can identify the contribution coming from thermal vorticity and the one
from thermal shear. For the thermal vorticity we have:

N µ
ϖ =

−1

(2π)3

∫
Σ
dΣ · k θ(k0)δ(k2 −m2)nF (k)(1− nF (k))ϵ

µνστϖνσkτ ,

whence:

Sµ
ϖ(k) = − 1

8m
ϵµνστkτ

∫
Σ dΣ · k nF (1− nF )ϖνσ∫

Σ dΣ · k nF
, (5.29)

which is the well-known expression (2.3) for polarization. Similarly for the thermal
shear:

N µ
ξ =− 2

(2π)3

∫
Σ
dΣ · k θ(k0)δ(k2 −m2)nF (k)(1− nF (k))ϵ

µνστkτ t̂νξσρ
kρ

εk
,

and we have an additional contribution to polarization:

Sµ
ξ (p) = − 1

4m
ϵµνστ

pτp
ρ

ε

∫
Σ dΣ · p nF (1− nF )t̂νξσρ∫

Σ dΣ · p nF
, (5.30)
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which is, in general, non-vanishing. This term represents a non-dissipative, non-
equilibrium contribution to the spin polarization vector in local thermodynamic
equilibrium, and it should be added to Eq. (5.29) so that the total polarization in
local equilibrium up to first order in gradients of the four-temperature reads:

Sµ
LE(k) = − 1

8m
ϵµνστkτ

∫
Σ dΣ · k nF (1− nF )

(
ϖνσ + 2t̂νξσρ

pρ

ε

)
∫
Σ dΣ · k nF

. (5.31)

The most remarkable difference between Eqs. (5.29) and (5.30) is that the latter
depends on a particular vector t̂µ, and thus breaks covariance. This is, however, to be
expected because the local-equilibrium density operator itself depends on the choice
of the integration hypersurface. To linear order in gradients, the Q̂µν operator,
to which the thermal shear couples, makes this dependence explicit as it is not
conserved, but the dependence would still be present at higher orders, as has been
discussed in Section 5.2. The vector t̂µ should be interpreted as an approximation
of the unit vector perpendicular to the hypersurface ΣFO.

5.4 High energy heavy-ion collisions and isothermal lo-
cal equilibrium

The newly found formula for polarization should be tested numerically and its pre-
dictions compared with experimental data. For such a comparison, we have in mind
a particular experimental setting: very high-energy heavy-ion collisions. Indeed, the
most reliable measurements of local polarization have been performed at 200 GeV
and above, whereas for lower collision energies the statistics are still poor. It is
worth asking if Eq. (5.31) is the most appropriate formula to describe polarization
in high-energy heavy-ion collisions. The formula (5.31) has been derived under the
very general assumption of hydrodynamic regime, and we have not used any addi-
tional hypothesis to simplify or improve the formula. In fact, if we aim at computing
polarization in high-energy nuclear collisions we can do better.

If the heavy ions collide at very high energy, it is well known that the chemical
potentials are vanishing with very good approximation, and the only relevant inten-
sive thermodynamic parameter is the temperature T . This observation has a very
important consequence. Consider the expanding QGP created in a high-energy colli-
sion: we know that at a certain point the QGP will stop behaving as a fluid, crossing
the freeze-out hypersurface. It is very reasonable to assume that the parameteri-
zation of the decoupling hypersurface can be given in terms of the thermodynamic
variables characterising the QGP, but for sufficiently high collision energy the only
parameter at our disposal is the temperature. Thus, any parameterization of the
decoupling hypersurface boils down to T (x) = Tdec for some constant value of the
decoupling temperature Tdec.

With this in mind, let us consider the local-equilibrium density operator. As we
have stressed above, if the collision energy is high enough, the freeze-out hypersurface
in the local-equilibrium operator is just a constant-temperature hypersurface:

ρ̂LE =
1

Z
exp

[
−
∫
ΣFO

dΣµ

(
T̂µνβν − ζĵµ

)]
≃ 1

Z
exp

[
−
∫
T=Tdec

dΣµT̂
µνβν

]
,

where the chemical potential is negligible. Furthermore, since βµ = uµ/T , uµ being
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the four-velocity, the isothermal local-equilibrium density operator reads:

ρ̂ILE =
1

Z
exp

[
− 1

Tdec

∫
T=Tdec

dΣµT̂
µνuν

]
. (5.32)

We have shown that, in the conditions described above, the local-equilibrium den-
sity operator naturally reduces to the isothermal local-equilibrium density operator
(5.32). Although ρ̂LE and ρ̂ILE are precisely equivalent in an isothermal decoupling
scenario, the linear-response theory results differ depending on whether we use one
or the other. The reason is that in linear-response theory we have employed so far,
the expansion was made in terms of the gradients of the four-temperature vector βµ,
thus involving both the gradients of temperature and of the four-velocity. Notice
that, despite the decoupling hypersurface being parametrized by a constant temper-
ature, the gradients of temperature are not zero, but are directed in the orthogonal
direction to the hypersurface. Therefore, the gradients of temperature would play
a role in such an expansion, as it can be readily seen in Eq. (5.31). In contrast,
since the temperature is a constant in the operator (5.32), the linear-response theory
formulae applied to this operator would involve only the gradients of uµ.

If the mean spin vector could be computed exactly independently of the hyper-
surface, then the hypothesis of isothermal decoupling could be used both at the
beginning of the calculation (i.e., when choosing between ρ̂LE and ρ̂ILE) or at the
end, and the result would be the same. But having to resort to linear-response
theory, it is paramount to choose the best density operator before computing the
gradient expansion. In the case of high-energy nuclear collisions, the best choice is
(5.32).

Without repeating the full calculation, it is easy to see what the result of po-
larization at linear order of gradients would be had we used the density operator
(5.32). It suffices substitute in Eq. (5.31)*:

∂µβν 7→ 1

Tdec
∂µuν .

Defining the kinematic vorticity ωµν and shear Ξµν as:

ωµν = −1

2
(∂µuν − ∂νuµ), Ξµν =

1

2
(∂µuν + ∂νuµ), (5.33)

the spin-polarization vector corresponding to an isothermal local equilibrium reads:

Sµ
ILE(k) = − 1

8m
ϵµνστkτ

∫
Σ dΣ · k nF (1− nF )

(
ωνσ + 2t̂νΞσρ

pρ

ε

)
Tdec

∫
Σ dΣ · k nF

. (5.34)

Notice that Eq. (5.31) does not reduce to Eq. (5.34) if we integrate on the isothermal
freeze-out hypersurface. The reason is that Eq. (5.31) includes the gradients of
temperature, which are non-vanishing in the orthogonal direction to the hypersurface
and contribute to polarization. In Eq. (5.34) such gradients are absent.

From the above discussion, we expect SILE (5.34) to give better results than SLE
(5.31) for high-energy collisions. On the other hand, and for the same reasons, we
expect SLE to perform better at lower collision energy, but a better approximation
than Eq. (5.31) might be worked out also in that case.

*We would like to stress that this is just an effective replacement, and the gradients of temper-
ature are not zero neither in Eq. (5.31) nor in Eq. (5.34).
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Figure 5.2: The components of the polarization vector along the angular-momentum
direction P J and the beam axis P z. The upper and lower panels show respectively
the calculations using only thermal vorticity and only thermal shear.

5.5 Polarization in Au-Au collisions at 200 GeV

As shown in the previous section, the thermal shear does contribute to polarization
and cannot be neglected for a reliable prediction of polarization of Λ particles.

Formulae (5.31) and (5.34) require the use of a viscous-hydrodynamic code for
the evaluation of the gradients of the four-temperature (or velocity) and numerical
integration over the freeze-out hypersurface.

The chain of calculations used in this work is the following. The initial state
is an averaged entropy-density profile, from a Monte-Carlo Glauber model gener-
ated by Glissando v. 2.702 [161]. For the simulation of the hydrodynamic stage
of the evolution of the QGP, we used vHLLE� [163]. In particular, the branches
“polarization dbeta dec2021 noTgrad” and “polarization dbeta dec2021” are used.
These branches produce a file containing the relevant variable on the freeze-out hy-
persurface: the former stores the gradients of the four-velocity, the latter of the
four-temperature. Finally, the freeze-out files are fed into a code called “particliza-
tionCalc” that computes the integral over the hypersurface�, yielding either the
result of Eq. (5.34) or (5.31) depending on the branch of vHLLE used.

The formulae obtained in the previous chapter are used in the final step of the
chain, and here we test their results compared to experimental data for Au-Au

�There have been some changes in how the initial state is fed into the hydrodynamic code after
the publication [17], that’s why the results presented here do not match exactly those of that paper.
The modifications of vHLLE are briefly described in Ref. [162]

�link to the repository https://github.com/yukarpenko/particlizationCalc
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Figure 5.3: Polarization along the angular momentum direction P J and the beam
axis P z as predicted by Eq. (5.31).

collision at 200 GeV. The initial state is generated by averaging 2 × 104 Glissando
events, and the centrality range is set to 20-60% to match the measurements [164,
165]. The shear viscosity over entropy density is set to η/s = 0.08 and we assume the
bulk viscosity is vanishing. When not stated otherwise, the critical energy density
used to identify the freeze-out hypersurface is εcrit = 0.32 GeV/fm3, corresponding
to a decoupling temperature of about 155 MeV.

We start by calculating polarization with Eq. (5.31). Figure 5.2 shows in the
upper panel the polarization coming from the thermal vorticity (5.29) and in the
lower one the polarization from the thermal shear (5.30). The upper panel exhibits
the typical behaviour which gave rise to the sign puzzle: the polarization along the
beam direction is first negative and then positive measuring the azimuthal angle
rotating counter-clockwise from the reaction plane, and the polarization along the
angular momentum is maximal along the angular-momentum direction. Both these
results are at variance with experimental data, as already discussed. Promisingly,
the lower panel shows the opposite trend, which agrees with the experimental data.

The total polarization is given by formula (5.31), where both the thermal vor-
ticity and the thermal shear are taken into account. The results of the calculation
of Eq. (5.31) are shown in Fig. 5.3, where we can see that the total polarization is
still incompatible with experimental data: P J is almost constant, and P z has the
wrong sign.

However, as argued in the previous section, Eq. (5.31) might not be the best ap-
proximation for high-energy heavy-ion collisions. Therefore, we evaluate the results
of the isothermal-equilibrium approximation and Eq. (5.34). We can see, in Fig. 5.4,
that again the contribution to polarization coming from the kinematic vorticity has
the wrong sign compared to the experimental data, whereas the polarization from
shear is consistent with them. Furthermore, if the isothermal freeze-out prescription
is used, the contribution originating from the kinematic shear is slightly larger than
the one from the kinematic vorticity.

The upper panel of Fig. 5.5 shows the total isothermal local-equilibrium polar-
ization, computed using Eq. (5.34). The plots show qualitative agreement with the
data, as the polarization along the angular momentum is maximal along the reaction
plane and the pattern of the polarization along the beam axis is consistent with the
experimental findings.

To give a more quantitative statement, we compare the prediction of Eq. (5.34)
with the local-polarization data from the STAR experiment [164, 165]. The lower
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Figure 5.4: The components of the polarization vector along the angular momentum
direction P J and along the beam axis P z in the isothermal freeze-out scenario.
The upper and lower panels show respectively the calculations using only kinematic
vorticity and only kinematic shear.

panel of Fig. 5.5 shows the azimuthal dependence of the polarization along the
angular-momentum direction P J and the beam axis P z. To show the azimuthal
dependence, the pT spectrum of particles is also integrated over the range pT 0.5−6
GeV, which is the same range of integration as the data. We can see that the
agreement with experimental data is restored for a decoupling temperature of about
155 MeV. Polarization, in particular along the beam direction, exhibits a strong
dependence on the decoupling temperature, as shown in the lower-right panel of Fig.
5.5. For a too high decoupling temperature, the oscillation is too large, whereas if
the decoupling happens at temperatures as low as Tdec = 130 MeV, the sign-puzzle
presents itself once again. For what concerns P J , we can see that its temperature
dependence is much milder and, although it is now predicted to be maximal along
the reaction plane, its dependence on ϕ is flatter compared to the data.

Furthermore, it is important to notice that the addition of the thermal shear does
not spoil the agreement with the data for what concerns the global polarization, as
has been shown for example in Ref. [166].

Thus, the contribution of thermal shear to polarization, alongside the isothermal-
decoupling prescription, is able to restore agreement between the hydrodynamic
model of heavy-ion collisions and experimental data. This finding further supports
the idea that the QGP behaves like a locally equilibrated fluid at hadronization,
even in the spin sector. On the other hand, the quantitative impact of dissipative
corrections is still to be investigated.
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Figure 5.5: Top panel: total polarization along the angular-momentum direction
P J and the beam axis P z in the isothermal freeze-out scenario, as predicted by Eq.
(5.34). Bottom panel: Azimuthal dependence of the polarization along the angular-
momentum direction (left) and the beam axis (right). Data points are taken from
Refs. [164] and [165]. For P z(ϕ), to convert from the experimentally measured
⟨cos θ∗p⟩ to polarization, we used αH = 0.732 and ⟨(cos θ∗)2p⟩ = 1/3.
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Conclusions

The spin physics of relativistic quantum fluids has been studied in detail, focusing
on Dirac fermions. The tool used in our analysis has been Zubarev’s density oper-
ator, which allows for a fully quantum description of the statistical system. Both
the cases of global and local equilibrium have been considered. In the former, we
have developed a new technique to compute thermal expectation values based on
an iterative procedure and the regularization of particular series of functions using
analytic distillation. For the distillation of our results, we derived two new asymp-
totic power expansions of series of functions using the method of the generalized
Mellin transform. The iterative procedure allowed us to obtain an exact expression
of the Wigner function in global equilibrium, the mean energy-momentum tensor,
and the vector and axial currents in the case of massless fermions in equilibrium
with a generic non-vanishing vorticity. With the same technique, we have studied
mass corrections to the expectation values of currents up to the leading order. The
calculation of exact expectation values with the analytic distillation proves quite
challenging for massive particles, and more work is needed in this respect.

We have computed the exact polarization vector for particles with any spin in
global equilibrium using the iterative method proposed to calculate expectation val-
ues. The formula extends the results of the previous literature to all order in thermal
vorticity. We have estimated the quantitative importance of the exact polarization
formula in heavy-ion phenomenology by studying the global polarization and com-
paring it to STAR data. Our results show that the correction to the linear approxi-
mation, which has been exclusively used in polarization studies so far, is negligible:
the two formulae are indistinguishable within experimental uncertainties. Therefore
we conclude that corrections of higher-order terms in thermal vorticity cannot ex-
plain the discrepancy between the theoretical predictions and the experimental data
for the local polarization.

The polarization of massless particles has also been addressed. We have provided
a general formula connecting the Pauli-Lubanski vector of massless Dirac fermions
to the Wigner function. This formula differs from the ones proposed in the literature
in that the formula derived here predicts the polarization vector to be directed only
along the particle’s momentum. Indeed, this is a characteristic feature of massless
particles, which can only have the spin parallel or anti-parallel to their momentum.
We have also provided an analytical expression for the polarization vector of massless
particles with any helicity in global equilibrium.

Finally, we have investigated fluids in local equilibrium. In this framework, the
importance of the thermal shear tensor, which is vanishing in global equilibrium,
has been realized. We have computed the leading-order contribution of the thermal
shear to the polarization vector and showed that, alongside the thermal vorticity, it
provides an additional source of polarization. Thermal shear-induced polarization
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represents a non-dissipative non-equilibrium effect because it originates from the
local-equilibrium density operator. Furthermore, it breaks covariance, as the final
formula for polarization depends on the hypersurface where the fluid is in local
equilibrium. The thermal shear can have an impact on other phenomenological
observables in the locally equilibrated QGP, as its magnitude is comparable to, or
even larger than, the thermal vorticity on the freeze-out hypersurface.

The polarization of the Λ hyperon has been calculated numerically, including the
newly found thermal shear contribution. The QGP evolution has been simulated
using a 3+1 hydrodynamic code until the freeze-out stage, where another code was
used to compute the integrals relevant to polarization. The results show that the
geometry of the freeze-out hypersurface strongly affects the polarization. We have
studied two scenarios: a generic one, where no information about the freeze-out hy-
persurface is assumed, and an isothermal one, which should be a good approximation
for high-energy collisions. The former could not solve the sign puzzle for collisions at
200 GeV, but the latter performed much better. In the isothermal freeze-out scenario
the kinematic vorticity and shear are used in place of the thermal ones. This sce-
nario restores the agreement between experimental data and theoretical predictions
for a decoupling temperature very close to the chemical freeze-out temperature of
the Λ particles. Solving the spin-polarization sign puzzle using the local-equilibrium
density operator represents a further success of the quasi-ideal fluid paradigm of the
Quark-Gluon Plasma.
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Appendix A

Spinors and group theory

This appendix is a review of the spinor and Dirac formalism from a group-theoretical
perspective. We will focus on the spin-1/2 case, but the same construction can be
applied quite generally to fields of arbitrary spin [40, 41].

The Dirac field describes particles and antiparticles transforming under the
(0, 1/2) ⊕ (1/2, 0) projective representation of SO(1, 3)↑, the ortochronous compo-
nent of the Lorentz group. Therefore we start by reviewing these representations
individually. To begin with, we consider the one-to-one correspondence between
four-vectors and 2× 2 hermitian matrices, defined by:

x
⌣

= xµσµ = x0I+ x1σ1 + x2σ2 + x3σ3 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (A.1)

Here we use the same notation introduced in Section 1.3: σµ = (I, σ1, σ2, σ3) and
σµ = (I,−σ1,−σ2,−σ3), where σi are the Pauli matrices. Lorentz transformations
on this matrix space are represented by SL(2,C) matrices, which we denote as D(Λ),
acting on the four vector x

⌣
as:

Λx
⌣

= D(Λ)x
⌣
D(Λ)†,

This rule fixes the matrix D(Λ) up to a sign, defining a two-to-one correspondence
between SL(2,C) and SO(1, 3)↑.

The above equation describes the (0, 1/2) projective representation D(0,1/2) of
SO(1, 3)↑, where the generators of boosts and rotations are respectivelyD(0,1/2)(Ki) =
iσi/2 and D(0,1/2)(Ji) = σi/2. Explicitly:

D(Λ) = D(0,1/2)(Λ).

A different map between four vectors and hermitian matrices can be defined:

⌢
x≡ xµσµ = x0I− x1σ1 − x2σ2 − x3σ3 =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
.

The
⌢
x and x

⌣
matrices have the property:

⌢
x x

⌣
= x

⌣

⌢
x= (x0)2 − (x1)2 − (x2)2 − (x3)2 = x · xI = x2I. (A.2)

Since this product is Lorentz-invariant, we can infer the transformation rule of
⌢
x

from that of x
⌣
. For Eq. (A.2) to be valid in any reference frame, one needs:

⌢
Λx= D(Λ)†−1

⌢
x D(Λ)−1.
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The representation corresponding to this rule is the (1/2, 0) representation of SO(1, 3)↑.
Its generators are D(1/2,0)(Ki) = −iσi/2 for boosts and D(1/2,0)(Ji) = σi/2 for rota-
tions. Hence we have the relation:

D(1/2,0)(Λ) = D(0,1/2)(Λ)†
−1

= D(Λ)†
−1
.

We can apply this construction to one-particle states and their momentum. As we
have also remarked in the main text, the construction of one-particle states starts
from the definition of a standard vector p and a standard Lorentz transformation
[p] (depending on p and p) transforming the standard vector p to the momentum p.
In the (0, 1/2) and (1/2, 0) representations, this statement reads:

D([p])p
⌣
D([p])† = p

⌣
, D([p])†

−1 ⌢
p D([p])−1 =

⌢
p . (A.3)

Dealing with momentum vectors, Eq. (A.2) now gives the identity p
⌣

⌢
p= m2I, where

m is the mass of the particle.
The identification of p and [p] changes depending if the one-particle state is

massive or massless. For massive particles, it is more convenient to choose p =
(m,0), so that the standard momentum identifies the rest frame. In this case, the
standard transformation is a pure boost. For massless particles a typical choice is
p = (κ, 0, 0, κ), where κ > 0. The standard transformation is the product of a boost
along the z axis and a rotation around the ẑ × p̂ axis.

The subgroup of Lorentz transformations that leave the standard vector invari-
ant, called the little group, plays a crucial role in the transformation rules of particle
states and creation and annihilation operators. For massive particles, the little group
is given by the group of rotations in three dimensions, SO(3). Although this is al-
most obvious, it is instructive to check it in the (1/2, 0) representation. Using Eq.
(A.1) the standard momentum reads p

⌣
= mI, so that Lorentz transformations that

leave it invariant must obey D(Λ)†D(Λ) = I, meaning D(Λ) is unitary. Since the
generators of rotations are hermitian in this representation (the generators of boosts
are anti-hermitian), unitary matrices in SL(2,C) correspond to rotations.

On the other hand, for massless particles with p = (κ, 0, 0, κ), we have:

p
⌣

=

(
2κ 0
0 0

)
,

and transformations leaving this matrix invariant can be parametrized as:

D(Λ) =

(
e−iϕ/2 Ze−iϕ/2

0 eiϕ/2

)
. (A.4)

The real parameter ϕ is the rotation angle around the z-axis, whereas the complex
Z parameter corresponds to a translation in the Euclidean x-y plane [44].

Given a generic Lorentz transformation Λ, it is possible to build an element of
the little group of p as W (Λ, p) = [Λp]−1Λ[p]: this transformation maps p to p, then
to Λp and finally back to p, so that p is unchanged. Such a matrix, known as the
Wigner rotation, dictates how creation and annihilation operators transform under
Lorentz transformations. In fact, one has:

Λ̂âr(p)Λ̂
−1 =

∑
s

D(W (Λ, p))†rsâs(Λp), (A.5)
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where we denote Λ̂ as the representation of Λ on the Hilbert space. As we have
shown above, for massive particles W (Λ, p) is a unitary matrix (i.e., a rotation),
but this does not seem to be the case for massless particles (see Eq. (A.4)), unless
the parameter Z is set to zero. However, this is a physical requirement for repre-
sentations of physical states: known massless particle states transform according to
representations with Z = 0 [40, 43, 44]. Therefore, when acting on on-shell states,
the Wigner rotation can always be considered unitary.

We can now study the transformation rule of the Dirac field. To prove that it
transforms in the (0, 1/2)⊕ (1/2, 0) representation we should show:

Λ̂Ψ(x)Λ̂−1 = S(Λ)−1Ψ(Λx), (A.6)

where S(Λ) is given in the Eq. (1.43). We show this for the particle term only, using
the notation (1.41) with the spinors (1.42):

Ψ+(x) =
1

(2π)
3
2

∫
d3p

2ε
e−ip·xU(p)Â(p).

The transformation rule (A.5) in compact notation reads:

Λ̂Â(p)Λ̂−1 = D(W (Λ, p))†Â(Λp),

so that the field transforms as:

Λ̂Ψ+(x)Λ̂
−1 =

1

(2π)
3
2

∫
d3p

2ε
e−ip·xU(p)D(W (Λ, p))†Â(Λp).

Writing the spinor U(p) as Eq. (1.42), and using the invariance of p
⌣

under the

Wigner rotation, the transformation rule (A.3), and the unitarity of the Wigner
rotation, we have:

U(p)D(W (Λ, p))† =

(
D([p]) 0

0 D([p])†
−1

)(
p
⌣
D(W (Λ, p))†

⌢
p D(W (Λ, p))−1

)
=

=

(
D([p])D([p]−1Λ−1[Λp])p

⌣

D([p]†
−1

)D([p]†Λ†[Λp]†
−1

)
⌢
p

)
=

(
D(Λ−1) 0

0 D(Λ−1)†
−1

)
U(Λp)

= S(Λ)−1U(Λp),

so that changing the integration variable we see that:

Λ̂Ψ+(x)Λ̂
−1 = S(Λ)−1Ψ+(Λx)

in agreement with Eq. (A.6). For the antiparticle term, the proof is similar. From
this proof it also follows that the generators of the Lorentz group in the Dirac
representation can be written:

Σµν =

(
D(0,1/2)(Jµν) 0

0 D(1/2,0)(Jµν)

)
.

Writing the generators in terms of the Pauli matrices it can be seen that this form
coincides with the commutator (i/4)[γµ, γν ], where the γ matrices are in the so-called
Weyl representation (1.44).
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We can also show easily that the Dirac equation is satisfied. Considering the
state with standard momentum, and using Eq. (1.42), we have:

/pU(p) = N

(
0 p

⌣
⌢
p 0

)(
p
⌣
⌢
p

)
= Nm

(
mI
mI

)
,

N being a normalization factor. In the massive case p
⌣

=
⌢
p= mI, and in the massless

one
⌢
p p

⌣
= m2 = 0, so that the Dirac equation is satisfied for p = p. From the

transformation rules of the spinors:

U(p)D(W (Λ, p))† = S(Λ)−1U(Λp)

it follows that the equation is fulfilled for any p obtained from p by means of a
Lorentz transformation. The proof is identical for the V (p) spinors.
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Analytic distillation for pure
rotation

We report some intermediate steps for the calculation of the energy-momentum ten-
sor and the vector and axial currents of the massless Dirac field in global equilibrium
with rotation.

The matrices and tensors Λn, S(Λ)n, A and A5 are reported in Eq. (3.92) and
will be used to compute the expectation values.

Starting from the energy-momentum tensor, using Eq. (3.69) we find the series
corresponding to the exact canonical energy-momentum tensor, that is used in Eq.
(3.93) to find the exact Belinfante tensor. The latter is given by:

Tµν
B (x)I = lim

B→ϕ
lim

L→ϕ/ζ

1

2π2

∞∑
n=1

(−1)n+1 cosh
(
nϕ
L

)
(
n2ϕ2 + 4B2r2T 2

0 sin2
(
nϕ
2

))3Θµν
n (x),

where the tensor Θn(x) has the following components:

Θ00
n (x) = 8B4T 4

0 cos

(
nϕ

2

)
[3n2ϕ2 + 2B2r2T 2

0 (cosnϕ− 1)],

Θ11
n (x) = 8B4T 4

0 cos

(
nϕ

2

)(
n2ϕ2 + 4B2T 2

0

(
r2 − 4y2

)
sin2

(
nϕ

2

))
,

Θ22
n (x) = 8B4T 4

0 cos

(
nϕ

2

)(
n2ϕ2 + 4B2T 2

0

(
r2 − 4x2

)
sin2

(
nϕ

2

))
,

Θ33
n (x) = 8B4T 4

0 cos

(
nϕ

2

)(
n2ϕ2 + 4B2r2T 2

0 sin2
(
nϕ

2

))
,

Θ01
n (x) = 16iB5T 5

0 ynϕ sin

(
nϕ

2

)
(cos(nϕ) + 3),

Θ02
n (x) = −16iB5T 5

0 xnϕ sin

(
nϕ

2

)
(cos(nϕ) + 3),

Θ12
n (x) = 64B6T 6

0 xy sin

(
nϕ

2

)
sin(nϕ),

Θ03
n = Θ13

n = Θ23
n = 0.

Notice that the auxiliary real parameters L and B have been introduced in order to
make the series of functions of the form discussed in Sec. 3.1.
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One ought to proceed as outlined in Sec. 3.6.2: we obtain the asymptotic power
series associated with each component with B- and L- dependent coefficients, then
we perform the limits in B and L, to obtain an implicit asymptotic expansion of
the series of functions about ϕ = 0. Then, we compute the analytic distillate and
perform the mapping ϕ → iω/T0 back to real vorticity. The results of such a
procedure for the non-vanishing components of the energy-momentum tensor can
be cast as follows:

T 00
B =

(
960γ6 − 1128γ4 + 196γ2 + 17

)
γ4ω4

2880π2
+

(
24γ4 − 16γ2 + 1

)
γ4
(
3ζ2 + π2

)
T 2
0ω

2

72π2

+

(
4γ2 − 1

)
γ4
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0

180π2
,

T 11
B =

γ4
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0

180π2

+
γ4ω4

(
120γ4

(
24ζ2T 2

0 y
2 + 8π2T 2

0 y
2 + 1

)
− 8γ2

(
60ζ2T 2

0 y
2 + 20π2T 2

0 y
2 + 11

)
− 17

)
2880π2

+
γ4T 2

0ω
2
(
15ζ2

(
γ2
(
8ζ2T 2

0 y
2 + 4

)
− 1
)
+ 5π2

(
γ2
(
48ζ2T 2

0 y
2 + 4

)
− 1
)
+ 56π4γ2T 2

0 y
2
)

360π2

+
γ6
(
240γ4 − 132γ2 − 17

)
y2ω6

720π2
,

T 22
B =

γ4
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0

180π2

+
γ4ω4

(
120γ4

(
24ζ2T 2

0 x
2 + 8π2T 2

0 x
2 + 1

)
− 8γ2

(
60ζ2T 2

0 x
2 + 20π2T 2

0 x
2 + 11

)
− 17

)
2880π2

+
γ4T 2

0ω
2
(
15ζ2

(
γ2
(
8ζ2T 2

0 x
2 + 4

)
− 1
)
+ 5π2

(
γ2
(
48ζ2T 2

0 x
2 + 4

)
− 1
)
+ 56π4γ2T 2

0 x
2
)

360π2

+
γ6
(
240γ4 − 132γ2 − 17

)
x2ω6

720π2

T 33
B =

(
120γ4 − 88γ2 − 17

)
γ4ω4

2880π2
+

(
4γ2 − 1

)
γ4
(
3ζ2 + π2

)
T 2
0ω

2

72π2

+
γ4
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0

180π2
,

T 01
B = −

(
3γ2 − 1

)
γ6
(
3ζ2 + π2

)
T 2
0 yω

3

9π2

−
γ6
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0 yω

45π2
−
(
80γ4 − 64γ2 + 15

)
γ6yω5

240π2

T 02
B =

(
3γ2 − 1

)
γ6
(
3ζ2 + π2

)
T 2
0 xω

3

9π2
+
γ6
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0 xω

45π2

+

(
80γ4 − 64γ2 + 15

)
γ6xω5

240π2
,

T 12
B = −

(
6γ2 − 1

)
γ6
(
3ζ2 + π2

)
T 2
0 xyω

4

18π2

−
γ6
(
15ζ4 + 30π2ζ2 + 7π4

)
T 4
0 xyω

2

45π2
−
(
240γ4 − 132γ2 − 17

)
γ6xyω6

720π2
,

where γ = 1/
√
1− r2ω2. To obtain the Lorentz-invariant coefficients appearing

in the decomposition (3.97) we employ the tetrad (3.96), that in the case of pure
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rotation reads:

uµ =γ (1,−yω, xω, 0) , αµ =

(
0,−γxω

2

T0
,−γyω

2

T0
, 0

)
,

wµ =

(
0, 0, 0,

γω

T0

)
, lµ =

(
γ
(
γ2 − 1

)
ω2

T 2
0

,−γ
3yω3

T 2
0

,
γ3xω3

T 2
0

, 0

)
.

Using the relations

β2(x) =
1

T 2
0 γ

2
, α2(x) = −(γ2 − 1)

ω2

T 2
0

, w2(x) = −γ2 ω
2

T 2
0

,

we can write the results as in Eqs. (3.98).
The mean values of the vector and axial current are obtained similarly. In this

case, the only non-vanishing components of the series (3.67) and (3.68) are:

j0(x)I = lim
B→ϕ

lim
L→ϕ/ζ

4B3T 3
0

π2

∞∑
n=1

(−1)n+1
nϕ cos

(
nϕ
2

)
sinh

(
nϕ
L

)
(
n2ϕ2 + 4B2T 2

0 r
2 sin2

(
nϕ
2

))2 ,
j1(x)I = lim

B→ϕ
lim

L→ϕ/ζ

8iB4T 4
0 y

π2

∞∑
n=1

(−1)n+1
sin
(
nϕ
2

)
sinh

(
nϕ
L

)
(
n2ϕ2 + 4B2T 2

0 r
2 sin2

(
nϕ
2

))2 ,
j2(x)I = lim

B→ϕ
lim

L→ϕ/ζ
−8iB4T 4

0 x

π2

∞∑
n=1

(−1)n+1
sin
(
nϕ
2

)
sinh

(
nϕ
L

)
(
n2ϕ2 + 4B2T 2

0 r
2 sin2

(
nϕ
2

))2 ,
j3A(x)I = lim

B→ϕ
lim

L→ϕ/ζ
−4iB3T 3

0

π2

∞∑
n=1

(−1)n+1
nϕ sin

(
nϕ
2

)
cosh

(
nϕ
L

)
(
n2ϕ2 + 4B2T 2

0 r
2 sin2

(
nϕ
2

))2 .
Repeating the steps we performed for the energy-momentum tensor we find:

j0(x)I = dist0j
0(x)I

∣∣
ϕ=iω/T0

=
γ4ζ

(
ζ2 + π2

)
T 3
0

3π2
+

(
4γ2 − 1

)
γ4ζT0ω

2

12π2
,

j1(x)I = dist0j
1(x)I

∣∣
ϕ=iω/T0

= −
γ4ζ

(
ζ2 + π2

)
T 3
0 yω

3π2
−
(
4γ2 − 3

)
γ4ζT0yω

3

12π2
,

j2(x)I = dist0j
2(x)I

∣∣
ϕ=iω/T0

=
γ4ζ

(
ζ2 + π2

)
T 3
0 xω

3π2
+

(
4γ2 − 3

)
γ4ζT0xω

3

12π2
,

j3A(x) = dist0j
3
A(x)I

∣∣
ϕ=iω/T0

=

(
4γ2 − 3

)
γ4ω3

24π2
+
γ4
(
3ζ2 + π2

)
T 2
0ω

6π2
.

Decomposing the currents along the tetrad the vector and axial currents can be
written as Eqs. (3.99a) and (3.99b).
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Analytic distillation for rotation
and acceleration

This appendix collects some steps to achieve the distillation of the series for equi-
librium with rotation and acceleration, the results of which are reported in Section
3.6.3. The relevant tensors Λn, S(Λn), Aµν and Aµν

5 can be read off Eq. (3.100).
We start from the Belinfante energy-momentum tensor. First, we need to map

the acceleration and the angular velocity to imaginary values, a/T0 → −iΦ and
ω/T0 → −iϕ. Then, to obtain the asymptotic power expansion, we have to intro-
duce auxiliary parameters, some of which depend on the component of the energy-
momentum tensor. The Belinfante tensor reads:

Tµν
B (x)I = lim

B,C,D→B,C,D

∞∑
n=1

(−1)n+1 cosh (nζ)

2
(
B sinh2

(
nΦ
2

)
+ C sin2

(
nϕ
2

))3Θµν
n (x,B,C,D),

where (t, x, y, z are Cartesian coordinates and r2 = x2 + y2):

B = Φ2T 2
0 t

2 + (1− iΦT0z)
2, C = r2Φ2T 2

0 , (C.1)

and D is component-dependent:

D00 = (T0Φz + i), D11 = T0Φy, D22 = T0Φx, D33 = T0Φt. (C.2)

As already discussed, the limits and the series can be exchanged as the series are
uniformly convergent series of continuous functions of arguments B, C, D, as long
as ϕ and Φ are real*. The tensor Θ reads:

Θ00
n = −T 4

0Φ
4 cosh(nΦ2 ) cos(nϕ2 )

(
B sinh2(nΦ2 ) + C sin2(nϕ2 ) + 4D2

00 sinh
(
nΦ
2

))
,

Θ11
n = T 4

0Φ
4 cosh(nΦ2 ) cos(nϕ2 )

(
B sinh2(nΦ2 ) + C sin2(nϕ2 )− 4D2

11 sin(
nϕ
2 )
)
,

Θ33
n = T 4

0Φ
4 cosh(nΦ2 ) cos(nϕ2 )

(
B sinh2(nΦ2 ) + C sin2(nϕ2 )− 4D2

33 sinh
(
nΦ
2

))
,

Θ01
n = T 5

0Φ
5y(i+ T0Φz) sinh(

nΦ
2 ) sin(nϕ2 )(cosh(nΦ) + cos(nϕ) + 2),

Θ03
n = −T 5

0Φ
5t(i+ T0Φz) sinh(

nΦ
2 ) sinh(nΦ) sin(nϕ) csc(nϕ2 ),

Θ12
n = T 6

0Φ
6xy sinh(nΦ)csch(nΦ2 ) sin(nϕ2 ) sin(nϕ)

Θ13
n = T 6

0Φ
6ty sinh(nΦ2 ) sin(nϕ2 )(cosh(nΦ) + cos(nϕ) + 2),

Θ22
n = Θ11

n (y 7→ x), Θ02
n = Θ01

n (y 7→ −x), Θ23
n = Θ12

n (y 7→ −x).
*Indeed the series does not converge for B = 0, but since T0 > 0, B is always different from zero.
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Even with the introduction of the auxiliary parameters, we are dealing with series
of functions of nΦ, nϕ and nζ, which are all independent parameters. Our next
task is to express them as functions of a single one. We start by introducing polar
coordinates for Φ and ϕ:

Φ = ξ cos θ, ϕ = ξ sin θ. (C.3)

Now we can parametrize ζ = ξ/L as we did before, moving the limit out of the
series for the same reasons already discussed. After these steps, the series is a series
of functions of nξ, whereas θ and L are parameters, and we can finally use the
asymptotic expansion (3.22).

We sketch the steps for the 00-component of the Belinfante tensor:

T 00
B (x)I = lim

B,C,D→B,C,D
−T

4
0Φ

4

4π2

∞∑
n=1

(−1)n+1 cosh

(
nΦ

2

)
cos

(
nϕ

2

)
cosh (nζ)×

B sinh2
(
nΦ
2

)
+ C sin2

(
nϕ
2

)
+ 2(cosh(nΦ)− 1)D2(

B sinh2
(
nΦ
2

)
+ C sin2

(
nϕ
2

))3 ,

where B,C,D are given in Eqs. (C.1) and (C.2) (D = D00 and D = D00 is implied).
Parametrizing Φ and ϕ in polar coordinates as in Eq. (C.3), and writing ζ = ξ/L
we obtain a series of functions f(nξ):

T 00
B (x)I = lim

B,C,D→B,C,D
L→ξ/ζ

−T
4
0 ξ

4 cos4 θ

4π2

∞∑
n=1

(−1)n+1 cosh
(
nξ cos θ

2

)
cos
(
nξ sin θ

2

)
cosh

(
nξ
L

)
(
B sinh2

(
nξ cos θ

2

)
+ C sin2

(
nξ sin θ

2

))3 ×

(
B sinh2

(
nξ cos θ

2

)
+ C sin2

(
nξ sin θ

2

)
+ 2(cosh(nξ cos θ)− 1)D2

)
≡ lim

B,C,D→B,C,D
L→ξ/ζ

−T
4
0 ξ

4 cos4 θ

4π2
G(θ, ξ, B,C,D).

Using the results of Section 3.1, we can obtain an asymptotic series in powers of ξ:

G ∼ 1

720L4 (Bc2 + Cs2)5
{
−B2c4

[
c4
(
139CL4s2 − 120D2L2

(
L2s2 − 4

))
− 30c2

(
CL2s2

(
4− 5L2s2

)
+ 2D2

(
L4s4 − 24L2s2 + 16

))
+ 68c6D2L4

+Cs2
(
107L4s4 + 600L2s2 − 720

)]
+B3c6

[
30c2L2

(
L2s2 − 4

)
− 17c4L4 + 15

(
L4s4 − 24L2s2 + 16

)]
−Bc2Cs2

[
c4
(
107CL4s2 + 240D2L2

(
5L2s2 − 8

))
+ 664c6D2L4

+ 6c2
(
25CL2s2

(
L2s2 − 4

)
+ 4D2

(
33L4s4 − 80

))
+Cs2

(
139L4s4 + 120L2s2 − 720

)]
+ C2s4

[
15c4

(
CL4s2 + 40D2L2

(
L2s2 + 4

))
+ 364c6D2L4

+ 6c2
(
5CL2s2

(
L2s2 + 12

)
+ 2D2

(
9L4s4 + 120L2s2 + 80

))
+Cs2

(
−17L4s4 + 120L2s2 + 240

)]}
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− π2

18L2ξ2 (Bc2 + Cs2)4
{
B2c4

(
c2L2 + 3L2s2 − 12

)
+ 2B

[
c4
(
6D2

(
L2s2 − 4

)
− CL2s2

)
+ c2Cs2

(
L2s2 − 12

)
+ 2c6D2L2

]
−Cs2

(
3c2
(
CL2s2 + 4D2

(
L2s2 + 4

))
+ 20c4D2L2 + Cs2

(
L2s2 + 12

))}
+

7π4
(
Bc2 + 4c2D2 + Cs2

)
45ξ4 (Bc2 + Cs2)3

where

c = cos θ, s = sin θ.

Now that the asymptotic expansion of G in powers of ξ, which we will denote as
GA, has been computed, we can calculate the limits in the auxiliary parameters and
transform the variables ξ, θ back to Φ, ϕ. Hence:

dist0T
00
B (x)(ϕ,Φ)I = dist0

T 4
0Φ

4

4π2
GA(Φ, ϕ, ζ, B,C,D).

The last step consists of setting Φ → ia/T0 and ϕ → iω/T0, to finally obtain the
physical thermal expectation value:

T 00
B (x) = dist0

a4

4π2
GA(ia/T0, iω/T0, B,C,D),

where the arguments of B,C,D in Eqs. (C.1), (C.2) are also affected by the mapping
Φ → ia/T0 and ϕ→ iω/T0. Similarly, the other components can be computed. One
eventually finds that the decomposition (3.97) involves the coefficients in Eq. (3.101).

The tetrad (3.96) for equilibrium with rotation and acceleration along the z-axis
used to obtain Eq. (3.101) is given by:

uµ =γ (1 + az,−ωy, ωx, at) ,

αµ =
γ

T0

(
a2t,−ω2x,−ω2y, a(1 + az)

)
,

wµ =
γω

T0
(at, ax, ay, 1 + az) ,

lµ =
γ3ω(a2 + ω2)

T 2
0

(
ωr2(1 + az),−y((1 + az)2 − a2t2), x((1 + az)2 − a2t2), r2at

)
,

with:

β2 =
a2
(
z2 − t2

)
+ 2az − r2ω2 + 1

T 2
0

,

α2 = −
a4
(
z2 − t2

)
+ 2a3z + a2 + r2ω4

T 4
0 β

2
,

w2 = −
ω2
(
a2
(
r2 − t2 + z2

)
+ 2az + 1

)
T 4
0 β

2
,

l2 = −
r2ω2

(
a2(t2 − z2)− 2az − 1

)
(a2 + ω2)2

T 4
0 β

2
,

where γ =
(
(1 + az)2 − a2t2 − ω2r2

)−1/2
. The scalar product α · w = −aω/T 2

0 is
also non-vanishing.
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For what concerns the vector and axial currents, they are expressed as series via
Eqs. (3.67) and (3.68):

jµ(x)I = lim
B,C→B,C

Φ3T 3
0

2π2

∞∑
n=1

(−1)n+1 sinh (nζ)(
B sinh

(
nΦ
2

)
+ C sin

(
nϕ
2

))2Γµ
n,

jµA(x)I = lim
B,C→B,C

Φ3T 3
0

2π2

∞∑
n=1

(−1)n+1 cosh (nζ)(
B sinh

(
nΦ
2

)
+ C sin

(
nϕ
2

))2Υµ
n,

where B and C are the same as in Eqs. (C.1) and (C.2) and the vectors Υ and Γ
read:

Υ0 = −ΦtT0 sin

(
nϕ

2

)
sinh

(
nΦ

2

)
,

Υ1 = Υ0(t 7→ x),

Υ2 = Υ0(t 7→ y),

Υ3 = −(i+ΦT0z) sin

(
nϕ

2

)
sinh

(
nΦ

2

)
,

Γ0 = (1− iΦT0z) cos

(
nϕ

2

)
sinh

(
nΦ

2

)
,

Γ1 = iyΦT0 sin

(
ϕ

2

)
cosh

(
nΦ

2

)
,

Γ2 = Γ1(y 7→ −x),

Γ3 = −itΦT0 cos
(
nϕ

2

)
sinh

(
nΦ

2

)
.

Repeating the same steps as we did for the energy-momentum tensor, we find the
expressions (3.99a) and (3.99b), without any additional dependence on α · w.
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