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(Sands et al. 2021). Kp is a gram-negative, encapsulated 
bacterium, belonging to the Enterobacteriaceae family, 
often found in a variety of environmental niches (Bagley 
1985). Kp produces several biomolecules that are essen-
tial for virulence, including fimbriae that aid in the initial 
colonization of the host and capsular polysaccharides that 
protect the organism from phagocytosis, complement and 
inhibit macrophage differentiation (Alcántar-Curiel et al. 
2013). Fimbriae are typically extracellular appendages with 
0.5–10 μm length and 2–8 nm width, which are encoded by 
the mrk gene cluster (mrkABCDF) that is comprised of five 
genes encoding the structural and assembly components 
of the appendages (Murphy and Clegg 2012). Two major 
adhesive fimbriae structures are responsible for adherence 
of Kp to eukaryotic epithelial cells: the mannose-sensitive 
type 1 fimbriae composed of a major fimbrial FimA subunit 
and a minor tip adhesin FimH; and the mannose-resistant 
type 3 fimbriae, composed of the major fimbrial subunit 
MrkA and the minor tip adhesin MrkD (Gerlach et al. 1988, 
1989; Old et al. 1985). The type 3 fimbriae are believed to 

Biological context

Neonatal sepsis is a major cause of death across low- and 
middle-income countries (LMICs) (Milton et al. 2022). 
These infections, occurring in newborns, are acquired both in 
communities and in health-care facilities (Zaidi et al. 2005). 
Klebsiella pneumoniae (Kp) has been identified by different 
surveillance networks as a leading cause of neonatal sepsis 
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Abstract
Klebsiella pneumoniae (Kp) poses an escalating threat to public health, particularly given its association with nosocomial 
infections and its emergence as a leading cause of neonatal sepsis, particularly in low- and middle-income countries 
(LMICs). Host cell adherence and biofilm formation of Kp is mediated by type 1 and type 3 fimbriae whose major fim-
brial subunits are encoded by the fimA and mrkA genes, respectively. In this study, we focus on MrkA subunit, which is a 
20 KDa protein whose 3D molecular structure remains elusive. We applied solution NMR to characterize a recombinant 
version of MrkA in which the donor strand segment situated at the protein’s N-terminus is relocated to the C-terminus, 
preceded by a hexaglycine linker. This construct yields a self-complemented variant of MrkA. Remarkably, the self-
complemented MrkA monomer loses its capacity to interact with other monomers and to extend into fimbriae structures. 
Here, we report the nearly complete assignment of the 13C,15N labelled self-complemented MrkA monomer. Furthermore, 
an examination of its internal mobility unveiled that relaxation parameters are predominantly uniform across the poly-
peptide sequence, except for the glycine-rich region within loop 176–181. These data pave the way to a comprehensive 
structural elucidation of the MrkA monomer and to structurally map the molecular interaction regions between MrkA and 
antigen-induced antibodies.
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be assembled using the chaperone/usher pathway used by a 
variety of fimbrial systems. In fact, exploring other fimbrial 
gene clusters MrkB and MrkC are recognized to belong to 
the family of periplasmic chaperones and scaffolding pro-
teins implicated in fimbrial assembly (Allen et al. 2012; 
Morrissey et al. 2012; Thanassi et al. 1998). In this assem-
bly pathway, fimbrial subunits are transported via the gen-
eral secretory pathway to the periplasm where a chaperone, 
in the case of type 3 fimbriae encoded by mrkB, forms a 
complex with the fimbrial subunit proteins. This complex is 
directed to the scaffolding protein MrkC, located at the outer 
membrane. Fimbrial assembly is accomplished by addition 
of MrkA subunits to the growing appendage and MrkD as 
its tip (Allen et al. 2012; Morrissey et al. 2012). Previous 
studies have indicated that MrkF may be randomly incorpo-
rated into the growing fimbrial appendage to confer stability 
or may serve as an adaptor protein for MrkD and MrkA; 
its precise location in the fimbriae is unknown (Huang et 
al. 2009; Murphy and Clegg 2012). MrkA, a 20 KDa pro-
tein with a high conserved amino acid sequence among the 
Enterobacteriaceae strains analyzed so far (Wang et al. 
2017), has been recognized as the common protein antigen 
expressed by the majority of Kp strains with the function 
of biofilm formation and establishment of infection (Bod-
dicker Jennifer et al. 2006; Langstraat et al. 2001; Schroll et 
al. 2010). To date, its 3D molecular structure is not known. 
Here we take the challenge to assign the NMR signals of 

this protein, as first step toward its more in-depth structural 
characterization. Such studies are essential to investigate 
this protein as a potential antigen and to look into its mecha-
nism of action. We assign the recombinant form of the pro-
tein, by generating a self-complemented variant of MrkA, 
which is extended at the C-terminus by a hexaglycine linker 
followed by a second copy of the MrkA donor strand (res-
idues 1–20 in wild-type (wt) MrkA). The donor strand is 
a key element for fimbrial proteins (Poole et al. 2007): it 
is reported that the elongation to a fimbriae is due to the 
interaction via donor strand complementation among the 
subunits, where the incomplete, immunoglobulin-like fold 
of each subunit is complemented by an N-terminal donor 
strand of the subsequent subunit (Walczak et al. 2014; Żyła 
et al. 2019).

Methods and experiments

Design, expression and purification of the self-
complemented MrkA monomer

The donor strand displacement strategy is applied to MrkA 
of Kp in order to obtain a self-complemented monomer not 
able to elongate to a fimbria Fig. 1. Specifically, the donor 
strand (first 20 aa in the mature protein after leader sequence 
cleavage) present at the N-terminus is moved to the 

Fig. 1  (a) Natural assembly of fimbrial monomers: the N-terminus 
donor strand (in orange) of a monomer is inserted in the acceptor cleft 
of the following monomer, forming a pearl necklace structure. (b) 
Schematic representation of the self-complemented MrkA monomer, 
in which the donor strand (in orange) is moved from the N-terminus 
to the C-terminus, preceded by a glycine stretch (in blue) inserted 

between the normal C-terminus and the complementing strand moved 
to the C-terminus. In our protein construct, the numbering of the pro-
tein is such that Ser 42, Gln 202 and the N-terminus stretch, Ala 23-Ser 
42, of the WT protein (P12267 · FM3_KLEPN), matches with Ser 15, 
Gln 175 and the C-terminus stretch, Ala 182-Ser 201, in our sequence 
construct.
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C-terminus and a hexaglycine linker is added between the 
normal C-terminus and the complementing strand moved to 
the C-terminus to let the donor strand to assume an antipar-
allel orientation within the beta sheet as it has been already 
observed for inter-molecular donor strand complementation 
in FimA polymers (Żyła et al. 2019).

The corresponding gene of self-complemented MrkA 
monomer (preceded by a methionine and a 10-histidine tag) 
is inserted into a pET29b (+) Twist Bioscience plasmid, 
resulting in a construct of 201 residues. The plasmid is used 
to transform E. coli BL21 (DE3) competent cells by Ther-
moFisher Scientific. Cell growth is performed in 15N and 
13C-15N ISOGRO medium by Sigma-Aldrich (5 g/L; addi-
tion of 100 g/L K2HPO4, 50 g/L KH2PO4, 50 g/L MgSO4 
and 37 g/L CaCl2) at 30 °C in order to obtain both mono-
labeled and double-labeled MrkA monomer. When the 
culture reaches an OD600 of 0.8–1, 1 mM IPTG is added 
to induce protein expression, and the cells are incubated 
at 20  °C overnight. Cells are harvested and lysed using 
CelLytic Reagent by Sigma-Aldrich, following the manu-
facturer’s instructions. After incubation, the lysate is cen-
trifuged and the supernatant containing the soluble protein 
fraction is diluted with 50 mM sodium phosphate, 500 mM 
NaCl, 30 mM imidazole pH 7.4, filtered using a 0.22 μm 
filter and then loaded in a HisTrap FF affinity chromatogra-
phy column by Cytiva. The column is then washed with an 

imidazole gradient and MrkA protein eluted with 500 mM 
imidazole, pH 7.4. A size exclusion chromatography step is 
finally performed to ensure the removal of aggregates from 
the final protein sample. A Superdex 75 Increase prepacked 
column by Cytiva has been chosen with an isocratic elution 
in 50 mM sodium phosphate, 100 mM NaCl pH 7.0. Peak 
fractions are pooled together and checked by SDS-PAGE 
gel analysis to confirm the monomeric form of the proteins 
and their purity (Fig. 2).

NMR spectroscopy

All NMR experiments used for resonances assignment of 
MrkA are recorded on a Bruker AVANCE 950 MHz spec-
trometer on 13C-15 N-labeled sample. Heteronuclear relax-
ation measurements, 15N- R1, 15N-R2 and 1H-15  N NOE 
are recorded on a Bruker AVANCE 500  MHz spectrom-
eter equipped with a triple resonance cryoprobe TXI on a 
15N-MrkA sample. For 1H-15 N NOE measurements, delays 
of 5s are used between repetitions of the pulse sequence. For 
15N- R1 and 15N -R2 3s of delay is used. Amide resonances 
are integrated using CARA software (Keller et al. 2006) 
and 15N- R1 and 15N-R2 values are obtained by fitting peak 
intensities using single exponential decay: 

Fig. 2  SEC profiles (a): elution with PBS. Separation of labelled MrkA monomer from aggregates (elution at 10 mL). Collection of the labelled 
MrkA monomer (elution at around 14 mL) is confirmed by SDS-PAGE analysis (b) of the purified 15N- and 13C-15 N MrkA samples
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15N-relaxation experiments

Reliable 15N R1, R2, and 1H-15 N NOE values, which provide 
information on internal mobility, are obtained for 181 of the 
196 assigned backbone NH resonances. Peaks are integrated 
using CARA software and the relaxation rates are calculated 
using EXCEL/ORIGIN software. R1, R2, and 1H-15 N NOE 
average values of MrkA are 1.41 ± 0.1 s− 1, 14.5 ± 0.73 s− 1, 
and 0.77 ± 0.06, respectively. The relaxation parameters 
are essentially homogeneous along the entire polypeptide 
sequence with exception of glycine stretch located in loop 
176–180 (Fig. 5). This is not surprising as it is the linker 
added to allow the donor strand to assume the correct ori-
entation within the beta sheet. The correlation time for mol-
ecule reorientation (τm), estimated from the R2/R1 ratio, 
is 10.2 ± 0.7 ns, as expected for a protein of this size in a 
monomeric state.

Conclusion

The complete assignment of the bacterial protein antigen is 
a key step in the full characterization of MrkA. Thanks to 
this preliminary work performed with solution NMR spec-
troscopy, we set the basis for solving the NMR solution 
structure of this antigen. In perspective, structural studies 
are essential to characterize and better design the protein as 
antigen in vaccinology.

I(t) = I0exp(−t/T1,2)

where I(t) is the peak intensity, t is the time, and I0 is the 
intensity at time 0 using ORIGIN software (Origin (Pro), 
Version 2023 OriginLab Corporation, Northampton, MA, 
USA). The analysis of the uncertainties of the 15N- R1 and 
15N-R2 values is carried out by comparing the peak heights 
on duplicate spectra at 10 ms (shortest value of relaxation 
delay). The heteronuclear steady-state and 1H-15  N NOE 
values are obtained from the ratios of peak intensities in the 
saturated spectrum to those in the unsaturated spectrum. The 
radio frequency pulses, carrier frequencies, acquisition and 
processing parameters of all the NMR experiments needed 
for the backbone and side-chain resonances assignment are 
reported in Table 1.

The NMR samples has a protein concentration of about 
400 µM for 13C-15 N-MrkA and 450 µM for 15N-MrkA in 
50 mM sodium phosphate, 100 mM NaCl pH 7.0 and 10% 
(v/v) D2O. All NMR spectra for resonances assignment are 
collected at 298  K, processed using the standard Bruker 
software Topspin (version 4.3) and analyzed through the 
CARA program (Keller et al. 2006).

Extent of assignments and data deposition

The 1H- 15 N HSQC spectra of MrkA show well-dispersed 
resonances indicative of an essentially folded protein 
(Fig.  3). The backbone resonance assignment is obtained 
from the analysis of the triple resonance spectra. 181 out 
of the expected 196 15N backbone amide resonances are 
assigned. The amide resonances are missing for residues 
Met 1, Gly 2, Ser 3, His 4- His 13, Gly 179 and Gly 180. 
The assignment of the aliphatic side chain resonances is 
performed through the analysis of 3D CC(CO)NH and (H)
CCH-TOCSY spectra, together with 15N-NOESY-HSQC 
and 13C-NOESY-HSQC spectra. The assignment of the 
aromatic spin systems is performed with 2D NOESY and 
TOCSY maps and a 3D 13C-NOESY-HSQC spectrum with 
the carrier centered in the aromatic region at 130 ppm. 
In total, the resonances of 81% of carbon atoms, 92% of 
backbone nitrogen atoms, and 92% of protons are assigned, 
leaving only Met 1, Gly 2, Ser 3, His 4–13 and Gly 179 
completely unassigned.

We determine the amino acid specific secondary struc-
ture properties of MrkA from the assigned backbone chemi-
cal shifts (HN, Cα, Cβ, CO, N); using TALOS-N program 
(Shen and Bax 2013) we reveal that the secondary structure 
of MrkA comprises three small α-helices and eight β-strands 
(Fig. 4).
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Fig. 3  2D 15N HSQC showing the 
complete backbone NH assign-
ments of MrkA at 298 K. For 
sequence numbering see legend 
of Fig. 1
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Fig. 4  Chemical shift-based prediction of the secondary structure elements by TALOS-N. Blue bars represent β-strands and red bars α-helices. For 
sequence numbering see legend of Fig. 1
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