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Pirfenidone is a small drug with marked antifibrotic activity approved

for the treatment of Idiopathic pulmonary fibrosis. Recently, its peculiar

pharmacological profile has attracted attention for its potential therapeutic

benefit for extra-pulmonary disorders characterized by pathological fibrosis,

such as kidney, liver, and cardiac failure. A major pitfall of pirfenidone is the

lack of consistent understanding of its mechanism of action, regardless of the

target. In addition to the increasing attention to the role of inflammation and its

mediators in several processes, a better knowledge of the variety of fibroblasts’

population, of signals controlling their activation and trans-di�erentiation, and

of crosstalk with other cell resident and non-resident cell types is needed for

prevention, treatment and possibly reverse of fibrosis. This review will focus on

pirfenidone’s pharmacological profile and its e�ects on cardiac fibroblasts.
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Introduction

Pirfenidone has been approved for the treatment of Idiopathic Pulmonary Fibrosis

in Japan, the European Union (EMA), Canada, and the United States (FDA). Recently,

due to its peculiar pharmacological profile and mechanism of action, this drug has

attracted attention and has been proposed for extra-pulmonary disorders characterized

by pathological fibrosis, such as chronic kidney, liver and cardiac diseases. This review

will focus on pirfenidone’s pharmacological profile and its effects on cardiac fibroblasts

while addressing previous systematic reviews for other areas of interest (1–3).
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Pharmaceutical and
pharmacokinetic properties of
pirfenidone

Drug characteristics

Pirfenidone (5-methyl-1-phenyl-2-1(H)-pyridone) is a

small molecule with a molecular weight of 185.23 g/mol.

Commercially, it is available as an orally administrative drug

under the trade names Pirespa (Shionogi), Esbriet (Roche),

and Etuary (GNI group) in the form of film-coated tablets or

capsules with different dosages.

The initial dose titration (1–7 days) is 267mg t.i.d (801

mg/day); the following week (8–14 days), this is increased to

534mg t.i.d. (1,602 mg/day) until a maintenance dosage of

801mg t.i.d (2.4 g/day) is reached after 15 days of treatment.

The administration of pirfenidone is suggested to occur in a

fed state to avoid adverse reactions such as nausea, vomiting,

gastroesophageal reflux, etc. If patients experience significant

adverse events (i.e., gastrointestinal, photosensitivity reaction,

rash), temporary dosage reductions or therapy interruptions

of pirfenidone should be considered to allow for resolution of

symptoms, otherwise discontinue, if symptoms persist despite

these interventions (1, 4). Pirfenidone is also used for topical

treatment of patients with skin ulcers, wounds, or burns,

showing continuous statistically significant scar regression,

without serious adverse events (5, 6).

Pharmacokinetic properties

The oral administration of pirfenidone is suggested in a

fed state to avoid the side effects such as nausea and vomiting,

although the presence of food can slightly diminish drug

bioavailability. In fact, a study reports that after administration

of a single oral dose of pirfenidone 801mg for a healthy

volunteer (aged 50–66 years), the area under the plasma

concentration-time curve (AUC) for pirfenidone in a fed state

was approximately 80–85% of the AUC for pirfenidone in a

fasted state. The lack of bioavailability after eating is related to

the reduction of Cmax (on average 50%) reached in 3.5 h, with

respect to a Tmax value of 0.5 h in a fasted state. In human beings,

the adsorbed pirfenidone binds for 50–58% to serum albumin,

while the remaining is solubilized in the plasma. In therapeutic

steady state, the apparent volume of distribution is about 70

L (1–4).

Metabolism and elimination

Pirfenidone is largely metabolized by the liver, mainly

via CYP1A2, into the pharmacologically active metabolite

5-carboxy-pirfenidone, which is in turn eliminated by

glomerular filtration (80%) within 24 h of oral administration.

The half-life and clearance of pirfenidone, after the

administration of a single dose of 801mg, are between the

2.4–2.9 h and 13.8–11.8 L/h respectively. In general, no dose

adjustment is required in the elderly, but careful titration

is required in those with mild hepatic insufficiency and is

contraindicated in patients with severe hepatic failure or

liver diseases. Attention should also be paid to drug–drug

interactions, especially with CYP1A2 inhibitors or substrates,

such as propafenone and amiodarone. Cigarette smokers may

have reduced bioavailability of pirfenidone, hence less efficacy,

due to CYP1A2 induction and increased drug metabolism

and clearance.

Pharmacological properties

The mechanism of action of pirfenidone has been clarified

only in part; nevertheless, a deeper understanding of its

molecular features is an essential premise to a wider indication

for diseases characterized by extensive fibrosis such as heart

failure and hypertrophic cardiomyopathy (7, 8). For this reason,

it is essential to have a brief excursus on the mechanisms

underpinning cardiac fibrosis.

Cellular and molecular mechanisms of
cardiac fibrosis

Cardiac fibrosis consists of the deposition of a collagen

matrix by fibroblasts (Figure 1). Reparative fibrosis is essential

for healing the injured myocardial tissue after infarction and

preventing fibroblast activation causes inefficient collagen

production and ventricular rupture (9). However, interstitial

fibrosis may diffuse amid cardiomyocytes and around

blood vessels and may generate a thick extracellular matrix,

which impairs normal cardiac function. Such fibrosis is

one of the consequences of maladaptation of the heart

to a variety of noxious stimuli, such as inflammation,

hypertension, mechanical stretch, circulating cytokines, altered

metabolism, and aging. Trans-differentiation of fibroblasts into

myofibroblasts (MyoFb) plays a major role in cardiac fibrosis,

since MyoFb are secretory cells, producing collagen and matrix

components that can form scar tissue but also cytokines in a

vicious circle that amplifies fibrosis. The most powerful trigger

of this process is transforming growth factor-beta (TGF-β)

(10). TGF-β1 acts as a paracrine factor released by cells of the

immune systems, in particular, macrophages, which appear

early when a protective or reparative response is required:

TGF-β1, in fact, also promotes numerous biological pathways

and holds anti-inflammatory properties. For its properties,

TGF-β1 is one of the targets of antifibrotic agents as monoclonal

antibodies (GC1008, LY2382770).
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FIGURE 1

Signals controlling fibroblast-to-myofibroblast transdi�erentiation and favoring cardiac interstitial fibrosis.

From an embryological point of view, cardiac fibroblasts

have no unique progenitors but mature cells possess specific

markers: discoidin domain-containing receptor 2 (DDR2),

platelet-derived growth factor receptor-α (PDGFR-α), and

transcription factor 21 (Tcf21) (11). During cardiogenesis, the

epicardium is a major source of non-myocardial cell types in

the heart and contributes to most of the fibroblast population;

other sources of fibroblasts are the endocardium (e.g., in the

interventricular septum) and the neural crest (e.g., in the

right atrium). Fibroblasts in the developing heart produce

periostin, not in the adult heart if quiescent; conversely, MyoFib

involved in cardiac remodeling express α-smooth muscle

actin (α-SMA) and periostin (12), a sort of de-differentiation

toward a fetal phenotype allowing for active proliferation and

matrix deposition.

Transforming growth factor-beta binds to the type I and

II receptors, which activate the so-called canonical Smad3/4

pathway, transcription factors essential for promoting the

synthesis of procollagen III and interstitial fibrosis; however,

it seems important for healing and premature inhibition of

reparative scar predisposes to dilation and rupture in infarcted

murine hearts (13). TGF-β also activates the non-canonical p-

TAK and type-4 NADPH oxidase (NOX4) pathways (Figure 2).

NOX4 activation (translocation) produces reactive oxygen

species (ROS), which possibly cooperate with p-TAK to promote

phosphorylation of downstream signaling such as c-JNK and p-

38. The final step consists of the increased trans-differentiation

into the proliferative phenotype, MyoFibs, expressing alpha-

smooth muscle actin (α-SMA) and secreting collagen and

connective tissue growth factor (CCN2) (14). Figure 2 shows the

expression of α-SMA in fibroblasts isolated from myectomies

of patients undergoing surgery for obstructive hypertrophic

cardiomyopathy (HCM), in the absence and presence of

exposure to TGF-β for 24 and 48 h. The possibility to test the

drug in patients’ derived cells might allow a comparison of its

properties in normal vs. diseased conditions.

Molecular targets of pirfenidone: In-vitro
models

In-vitro studies of fibroblasts and trans-differentiation have

partially elucidated the properties of pirfenidone.

Little experimental evidence based on the conventional

2D culture of rodent primary cardiac fibroblasts (15) has

demonstrated that pirfenidone dose-dependently decreases
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FIGURE 2

Immunocytochemistry of primary culture of fibroblasts isolated from human biopsies of patients undergoing cardiosurgery for obstructive

human hypertrophic cardiomyopathy; α-SMA is marked in red; DAPI is marked in blue.

markers of spontaneous fibroblast-to-myofibroblast trans-

differentiation, including cell proliferation, α-SMA expression,

and collagen contractility. Additionally, in the same context

pirfenidone reduces fibroblast migration ability as well as

synthesis and secretion of TGF-β1, thus substantially replicating

the effects observed or hypothesized in in-vivo studies.

Despite being informative, such an experimental approach

involving primary cardiac fibroblasts in culture does not

facilitate a deeper understanding of the mechanisms and

factors involved in cardiac fibrogenesis or in the protection

given by potential antifibrotic agents. In fact, cultured primary

fibroblast obtained from humans or animal models display

elevate phenotype plasticity and sensitivity to mechanical

stimuli, which intrinsically promote their trans-differentiation

into myofibroblast within a few hours of plating (16, 17). At least

part of this spontaneous phenotype switch is caused by marked

non-physiological conditions that are present in conventional

2D culture, including the elevated stiffness of plating surfaces

compared to native cardiac tissues and the occurrence of a

variety of pro-fibrotic stimuli arising from culture passaging.

Altogether, these conditions create a multitude of basal

fibrogenic responses in the model system, which hamper

physiologically pertinent studies, data reproducibility, and

translational values of results.

Recently, substantial advancements in 2D in-vitro models

of cardiac fibrosis have been obtained using human induced

pluripotent stem cells (hiPSCs), which overcome the limited

availability of human primary cardiac cells and the challenges

to propagate them long-term in-vitro. Taking advantage

of the ability of this cell source to appropriately model

healthy and diseased human heart tissues in-vitro, Zhang and

coworkers (18, 19) identified the conditions to differentiate

cardiac fibroblasts resembling primary human quiescent cardiac

fibroblasts at transcriptional, cellular, and functional levels.

Of note, the maintenance of quiescent fibroblasts is fully

controlled by constant inhibition of the TGF-β pathway, while

fibroblast-to-myofibroblast trans-differentiation is induced by

exposure to TGF-β. In this setting pirfenidone exhibits a

dose-dependent inhibitory effect on TGF-β-induced fibrotic

phenotype, demonstrating that, whatever the mechanism, it acts

as a functional antagonist of the pro-fibrotic effects induced by

TGF-β on quiescent cardiac human fibroblasts.
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A further step toward an integrated cardiac model

system comprising human fibroblasts and cardiomyocytes

is represented by the in-vitro model obtained by culturing

hiPSC-derived cardiomyocytes and non-myocytic cells (mostly

fibroblasts) (20). Upon exposure to TGF-β, the model shows

enhanced cardiac fibrotic extracellular matrix gene expression,

and decreased cardiac contractile/relaxation velocity, simulating

two typical pathologic responses of the fibrotic cardiac

tissue. In this model pirfenidone decreased fibrotic changes

induced by TGF-β and counteracted the transcription of genes

encoding for collagen I, collagen III, fibronectin, and matrix

metalloproteinases (MMP) type-2 (20), closely reflecting the

effects of the drug observed after in-vivo administration.

The effect occurred at high concentrations of the drug

(100–300µM), which is, however, in line with plasma levels

needed for therapeutic effects in pulmonary fibrosis. After

administration of the immediate release formulation, the plasma

peak concentration is approximately 10 mg/L, corresponding

to 50µM (21). Insights also came from studies in “organ-

on-a-chip” mimicking human cardiac fibrosis exploiting 3D

bioprinting (22). In brief, hiPSC-derived cardiomyocytes were

co-seeded with human cardiac fibroblasts, quiescent, or pre-

treated with TGF-β. In the latter case, the artificial tissue showed

increased stiffness, due to higher collagen deposition, collagen

type I to III ratio, and α-SMA-positive cells. Interestingly,

BNP production was also increased, suggesting an effect

on cardiomyocyte gene expression. Stiffness and collagen

deposition was reduced by pirfenidone in a 3-week treatment at

high concentrations (2.5mM), along with decreased expression

of fibrosis markers (periostin, CCN2). Pirfenidone also reduced

BNP expression with no effects on cardiomyocyte excitation and

contraction (22). Despite the evidence of pirfenidone activity

against TGF-β-mediated activation of the canonical pathway

SMAD in-vitro and consequent impairment of fibroblast

activation, proliferation and collagen deposition, the target of

this drug remains unclear and deserves further investigation.

A complex crosstalk controls fibroblast
activation

While TGF-β1 is the most reliable signal for MyoFib

trans-differentiation, other factors can induce fibrosis, i.e.,

collagen deposition, by fibroblasts eventually expressing

thrombospondin-4 (Thbs4) but not α-SMA (8). Vasoactive

peptides, such as angiotensin II (Ang-2) and endothelin-1

(ET-1), act through the mitogen-activated protein kinase

(MAPK) and Rho-associated protein kinase (ROCK) cascades.

By binding to G-protein binding receptors (AT1 and ETA,

respectively), these peptides are potent promoters of cardiac

fibroblast activation, and their effect is potentiated by TGF-β

(23). Aldosterone has been also indicated as a potent pro-

fibrogenic factor (24). Despite several pieces of evidence on the

antifibrotic effect of pirfenidone in animals chronically treated

with Ang-2, insights into the mechanistic pathways are more

uncertain. Both Ang-2 and TGF-β activate transient receptor

potential (TRP) channels, among which TRPC6 seems to be a

compelled step forMyoFib transdifferentiation in several tissues,

including the heart (25, 26). This is particularly interesting

because similar evidence came from our recent observations

in satellite skeletal cells exposed to Ang-2 (27). TRPC6 is a

mechanosensitive, non-selective ion channel whose expression

is upregulated by TGF-β through p38/MAPK pathway (28), and

pirfenidone inhibits p38 phosphorylation (29).

Atria are particularly exposed to mechanical stretch in

several conditions, promoting dilation and fibrosis and thus

atrial fibrillation. Of note, atrial levels of TGFβ 1 are increased

in heart failure before the onset of atrial fibrillation (AF) and

pirfenidone has proved to counteract fibrosis, i.e., the substrate

for the occurrence and chronicization of AF (30–32). A third but

no less important player is represented by oxidative stress; in

particular, the production of superoxide by NADP(H) oxidase

type-4 (NOX4) bursts in fibroblasts stimulated by TGF-β1

(33). Over-activated Nox 4 is a hallmark of several conditions,

including heart failure and hypertrophic cardiomyopathy (34,

35), likely due to the membrane translocation of the p47phox

subunit of the enzyme (36). That pirfenidone exerts antioxidant

activity is suggested by reduction of markers of oxidative stress

in patients (37) and animal models; however, it is uncertain

whether this is a primary effect or the consequence of its anti-

inflammatory activity. Therefore, even if the precise mechanism

of pirfenidone is unknown, its antifibrotic activity may reside

in the ability to interfere with upward stimuli, such as TGF-

β production and macrophagic activation, and/or with several

downstream steps. A general observation arises from all these

studies: pirfenidone hampers TGF-β activity on fibroblasts in

vitro, independently from the presence of inflammatory cells,

cardiomyocytes or circulating stimuli. While interference with

these players should not be ruled out, this observation allows

us to locate one or more key target(s) of pirfenidone in the

pathway between TGF-β receptor stimulation and the effectors

of MyoFib transdifferentiation. In a recent study exploiting

engineered cardiac tissues, pirfenidone could not counteract

all pro-fibrotic transcripts and proteins upregulated by TGF-

β1 stimulation (38). The authors inferred that the drug might

hinder the non-canonical TGF-β1 pathway more than the

canonical one; however, these data also suggest a cautious

extrapolation of the mechanisms underlying the antifibrotic

effect of pirfenidone from fibroblasts in-vitro to a more complex,

multicellular setting.

Insights from preclinical studies in-vivo

Pirfenidone has been proposed as an antifibrotic agent in

at least three target organs: lung, kidney, and heart (23, 39).

Heart failure with a reduced or preserved ejection fraction,
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hypertrophic cardiomyopathy, diabetic cardiomyopathy, and

doxorubicin-induced cardiac injury are some of the most

common diseases where extensive fibrosis represents a major

culprit for contractile and electrical abnormalities. At the same

time, reverse remodeling is particularly challenging and many

drugs effective in animal models failed in clinical trials, such as

ET-1 antagonists, anti-TNF-α, and MMP inhibitors. Drugs with

hemodynamic effects, such as ACE inhibitors and antagonists of

Ang-2 receptors (ARB), mineralocorticoid receptor antagonists

(spironolactone, eplerenone, canrenone), do have antifibrotic

effects (23), but in the context of a general cardiac reverse

remodeling. Also, mechanical unload by a left ventricular assist

device (LVAD) has no major impact on fibrosis and MyoFib

density in patients with severe heart failure, likely due to

persistent inflammation (40). Ranolazine, an antianginal drug

targeting the late sodium current and calcium overload, not only

blocks arrhythmogenic mechanisms but also reduces fibrosis in

an adult mouse model of HCM when administrated chronically

after birth (41).

Major advantages of pirfenidone reside in its specific anti-

fibrotic activity, which does not affect blood pressure or

electrolyte balance, and that it passed the clinical valuation for

lung diseases. This drug has been tested in several animal models

proxy for human cardiac disease. In myocardial hypertrophy,

due to pressure overload (29), and in myocardial infarction

(29, 42), pirfenidone reduced fibrosis. However, the latter case

is interesting for two reasons. First, the effect was accompanied

by a reduction of the arrhythmic burden, which is a major

consequence of cardiac fibrosis. Second, one cannot assume

that fibroblasts respond to the drug similarly, whatever their

organ or sub-organ localization: scars create a border zone

of the infarcted tissue and the interstitial matrix encompasses

cells with different molecular and functional properties in

response to stressors (8). Third, MyoFibs in the border zone are

electrically coupled to cardiomyocytes and modify excitability

and conduction, thus favoring reentry mechanisms (43). The

capability to form connections with cardiomyocytes is typical

of MyoFib, whose expression of connexin-43 is higher than in

fibroblasts (44).When coupled to CMs,MyoFbs reduced the CM

action potential duration and hyperpolarized the CM resting

membrane potential (44, 45). Whether pirfenidone reduces

connexin-43 expression and MyoFib-cardiomyocyte coupling

is unknown.

Conclusions and perspectives

Searching for new therapies against fibrosis is a priority

for many ill-treated conditions such as familial hypertrophic

cardiomyopathy and heart failure with preserved ejection

fraction (HFpEF) (46). Whether pirfenidone might be a

first-in-class drug against cardiac fibrosis is unknown: so

far, the evidence raises more questions than settling sound

answers and we can hardly infer efficacy and especially causal

mechanisms in the clinical settings. Also, it is worth recalling

that interstitial fibrosis can be boosted by different stressors and

cell populations, e.g., in the infarct border zone or dilated atria

(47). So far, in the interventional phase II trial PIRfenidOne in

patients with heart entric and preserved lEfT entricular Ejection

fraction (PIROUETTE), a 52-week treatment with pirfenidone

resulted in a significant reduction of extracellular volume, a

proxy of fibrosis (48). From a functional point of view, the

most relevant finding consisted of a small increase of the left

ventricular ejection fraction in the treatment group with respect

to placebo. A subsequent, exploratory mediation analysis, aimed

at gaining mechanistic insights and based on the participants’

functional data and biomarkers of PIROUETTE, failed to

demonstrate a causal relationship between reduced fibrosis and

improved LV function; however, regression of fibrosis correlated

with an increased 6-min walk test distance (49). Overall,

this preliminary evidence supports the benefit of reduced

myocardial fibrosis, but the underlying mechanisms deserve to

be investigated by appropriately powered trials. More generally,

the relevance of such a perspective is underscored by several

studies focused on pirfenidone and cardiac hypertrophy/fibrosis

in these years; for a more detailed summary of the evidence in

the literature, the reader can refer to a recent review paper (50).

Finally, pirfenidone has low potency and side effects that hamper

quality of life, and, recently, the analog mefunidone (51) has

been shown to exert antifibrotic activity with higher potency and

more favorable pharmacokinetics.
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