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Abstract

Atrial fibrillation (AF) is the most common type of arrhythmia among the elderly and it

is characterized by a disordered electrical activity of the atria which causes ineffective

atrial contraction. The major riskes posed by AF are the occurrence of stroke, worsen-

ing heart failure, and dementia. Its pathophysiology is complex and multifaceted and

several aspects remain not completely understood. Our project aimed at exploring the

molecular characteristics of AF patients with an untargeted metabolomics approach fol-

lowed by a more in-depth analysis focused on the lipidomics profile, acylcarnitine and

amino acids concentrations. In parallel, patients’ frailty was evaluated with the tools

from the Geriatric Multidimensional Assessment and the CHA2DS2-VASc score, and

key markers of inflammation including IL-6 and OPG were measured to assess the link

between low-grade inflammation and AF development and progression. All these data

were analyzed and integrated to have a comprehensive understanding of the interplay

between all the factors included in the study. A difference in BMI between patients and

healthy controls emerged and this may represent a surrogate marker of sarcopenia.

With the cluster analysis applied to metabolomics data, a cluster with higher IL-6 lev-

els, higher CHA2DS2-VASc score, and lower physical function was detected, meaning

that metabolomics could group patients according to their overall clinical profile and

the subjects with the arrhythmia presenting the worse metabolic profile could represent

the frailest ones. An association between IL-6 and medium- long-chain acylcarnitines

emerged from the analysis shedding light on the complex interplay between low-grade

inflammation and acylcarnitines which can alter the heart electrophysiology and thus

contribute to the establishment of a favourable substrate for AF development. Addi-

tionally, a decrease in arginine levels according to age and progression of disease was

found and this could represent a marker of endothelial dysfunction. All these findings,

linking bench with bedside experience, could be useful to guide the clinical manage-

ment of patients with AF according to age. In particular, these data may help in the

choice between rate and rhythm control therapy of the arrhythmia and could be the

basis to understand the correlation between AF and frailty.
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1 INTRODUCTION

1.1 Sinus rhythm and the cardiac conduction system

The cardiac conduction system (CCS) is composed by a series of specialized tissues

which are responsible for the initiation and the coordination of the heartbeat. The main

components are the sinoatrial node (SAN), the atrioventricular node (AVN) and the

bundle of His with the associated Purkinje fibers (Fig. 1.1).

Figure 1.1: Anatomy of the heart and its cardiac conduction system.

The SAN, situated in the upper part of the right atrium, is the heart pacemaker and

is responsible for the initiation of the cardiac action potential. Once started, the ac-

tion potential propagates to the rest of the heart generating the heartbeat. Atria and

ventricles are separated by a fibrous tissue ring and thus the action potential can only
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pass through the AVN located at the base of the right atrium. The conduction of the ac-

tion potential through the AVN is slow as a delay between the atrial and the ventricular

contractions has to be introduced to allow the atria to first pump blood in the ventri-

cles, which then contract to deliver blood to the body. Additionally, the AVN works as a

back-up pacemaker in case of SANmalfunctioning and in cases when the atria beat too

rapidly, as it occurs in atrial fibrillation (see Section 1.2.1), the AVN limits the quantity

of action potentials reaching the ventricles1. Another main component of the CCS is

the bundle of His located in the ventricles. It is divided into two branches, one in the

right and one in the left side of the heart, each ending in a network of Purkinje fibers.

This system spreads the action potential rapidly to both ventricles to ensure their si-

multaneous contraction. A dysfunction in even just one of the components of the CCS

may lead to irregular heartbeats and interruptions of the propagation of the action po-

tential. When the system works properly, the regular, physiological heartbeat is called

sinus rhythm and is defined by the PQRST complex as shown in the electrocardiogram

(ECG) trace in Fig. 1.2. Each letter or group of letters indicates a specific phase of the

heartbeat. The P wave is produced by the SAN and indicates atrial depolarization; the

QRS wave is produced by the action potential after having crossed the AVN, represent-

ing ventricular depolarization. This is followed by the T wave which corresponds to the

ventricular repolarization phase.

Figure 1.2: Above: the heartbeat phases defined by the letters PQRST. Below: an ECG
trace showing regular sinus rhythm.
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1.2 Atrial fibrillation

1.2.1 Definition and classification

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia characterized by an unco-

ordinated atrial electrical activation with a consequent ineffective atrial contraction. AF

differs in its presentation, duration, and spontaneous termination, and a classification

based on these factors is adopted2 (Fig. 1.3):

• First diagnosed: AF that was not diagnosed before, regardless of its duration or

the presence and severity of symptoms;

• Paroxysmal: AF terminating spontaneously or with a medical intervention within

7 days;

• Persistent: AF that continues beyond 7 days, including the episodes terminated

by pharmacological or electrical cardioversion after more than 7 days;

• Long-standing persistent: AF lasting more than 12 months, for which a decition

to follow a rhythm control strategy was then adopted;

• Permanent: AF that is accepted by the patient and the physician and for which no

further attempts to restore or maintain the sinus rhythm will be undertaken. Per-

manent AF is thus a decision of the patients and the physicians, often motivated

by a pathophysiology hindering the possibility to restore a stable sinus rhythm.

If a rhythm control strategy is successfully adopted, then the arrhythmia will be

re-classified as long-standing persistent AF.
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Figure 1.3: Classification of AF types. From Camm et al. 2010.

AF is a multifaceted arrhythmia that presents variations in outcomes and can have an

impact on several aspects of the life of patients. For these reasons, the study of AF

requires an integrated, multidisciplinary approach.

1.2.2 Pathophysiology

Research efforts are being directed towards gaining information about AF pathophys-

iology to both understand the molecular mechanisms that lead to the onset of the ar-

rhythmia and to analyze its natural course in patients in order to highlight the most

effective treatments. AF, in fact, is the result of a complex interplay of triggers, per-

petuators, and the development of a substrate that together favour the occurence of

the arrhythmia. A favourable susbtrate is usually characterized by a dilation of the left

atrium and the presence of fibrosis, with a consequent delay in the electromechani-

cal conduction2. Several other factors may cause alterations of atrial function, such

as myocardium hypercontractility, inflammation, vascular remodelling, ischemia, ionic

channels dysfunctions, and instability of calcium levels. All these factors can contribute

to the formation of ectopic circuits that may lead to a dysruption of the heart impulse

conduction, thus increasing the propensity to the development of AF and facilitating the
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hypercoagulable state associated with AF2.

1.2.3 Epidemiology

AF is the most frequently sustained arrhythmia in the adult population worldwide. It

is known to especially affect the elderly population and, in 2016, its prevalence was

set to about 45 million people worldwide3. It is estimated that 2 to 4 % of the world

adult population is affected by AF, and some models demonstrated that this number is

destined to increase in the next years, due to the aging process of the population and the

improvement in overall diagnostic ability4–6. The risk of developing AF throughout one’s

life depends on several genetic and subclinical factors. However, the main risk factor

for the onset of AF remains advanced age. Common comorbidities are hypertension7,

diabetes mellitus8, heart failure, coronary artery disease, chronic kidney disease9, and

obsructive sleep apnea10 (for further details, see Section 1.2.4). Other risk factors,

such as diet and lifestyle, can be modified and a control over obesity and alcohol or

stimulants consumption helps reducing the risk of developing AF11. Therefore, changes

in lifestyle may prevent the onset of AF, slow its progression, and reduce hospitalization

and mortality due to cardiovascular diseases12.

1.2.4 Clinical aspects and complications

AF represents one of the major causes of morbidity and mortality associated with car-

diovascular diseases and the presence of AF increases the incidence of stroke, heart

failure, dementia, and hospitalizations. It is estimated that, overall, AF increases the

risk of stroke and systemic embolism about five times, according to the presence or

absence of other specific risk factors2,13. A tool to evaluate the probability of stroke on-

set for patients is the CHA2DS2-VASc score
14. The CHA2DS2-VASc is a clinical score

widely used to evaluate thromboembolic risk in patients with AF15 and oral anticoag-

ulant therapy recommendations are given based on this score16. This scoring system

gives a score from 0 to 9 according to the presence of certain risk factors that determine

the probabilty of the patients to experience a stroke. In particular:
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• C: Congestive heart failure - 1 point, if the patient presents heart failure or evi-

dence of left ventricular dysfunction or hypertrophic cardiomyopathy;

• H: Hypertension - 1 point, if the patient has hypertension or is following a therapy

for hypertension;

• A: Age 75 years or older - 2 points, if the patient is 75 years or older;

• D: Diabetes mellitus - 1 point, if the patient has diabetes, takes hypoglycemic

drugs, and/or insulin, or if has fasting glucose levels > 125 mg/dL (7 mmol/L);

• S: Stroke - 2 points, if the patient had previously experienced stroke, transitory

ischemic attacks or thromboembolic episodes;

• V: Vascular disease - 1 point, if the patient has coronary artery disease that is

relevant to angiography, had a myocardial infarction peripheral artery disease or

atherosclerosis;

• A: Age 65 - 74 years - 1 points, for patients aged between 65 and 74;

• Sc: Sex category - 1 point, if the patient is a woman, only if another risk factor is

present.

Figure 1.4: Age-specific rates of first ever AF-related incident ischaemic stroke and
systemic embolism (SE) in theOxford Vascular Study (2002-2012; N = 92728; 9 general
practices - about 100 family doctors)
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Beside being a major cause of morbility and mortality for cardiovascular causes, AF

also affects the overall patients’ quality of life (QoL). In fact, studies show that AF pa-

tients have a reduced QoL compared to healthy subjects and their level of QoL is com-

parable to that of patients with coronaropathies or those who experienced myocardial

infarction17. Furthermore, AF is demonstrated to have psychological effects on patients

which report an increase in anxiety and depression18. AF association with the proba-

bilty of experiencing cognitive decline and the onset of dementia is well known19,20.

Although AF and dementia share some common risk factors and are both associated

with ageing, AF seems to be independently associated with different forms of demen-

tia, including Alzheimer’s disease20. This link between AF and congnitive decline may

be a manifestation of micro and macro clots occuring as a consequence of the cardiac

dysfunction21. AF often comes with several comorbidities, some of which also affect

the cardiovascular system (Fig. 1.5). The most frequently encountered are:

• Hypertensive cardiopathy. At least 40 % of patients with AF present arterial

hypertension22. Hypertensive cardiopathy is characterized by left ventricular hy-

pertrophy caused by a pressure overload due to hypertension23, and diastolic

dysfunction in patients with arterial hypertension. The identification of this condi-

tion is crucial, because these types of patients are more prone to develop heart

failure, arrhythmias, myocardial infarction, and sudden death24.

• Coronary artery disease. Myocardial infarction increases the risk of developing

AF by 60-70 %25. The coexistence of AF and acute coronary syndrome (ACS)

is correlated with a worse prognosis and a suboptimal anticoagulant treatment

compared to patients with ACS but no AF26.

• Valvular heart disease. About 33 % of patients with AF have a form of valvu-

lopathy and almost any valvular lesion that leads to a significant level of stenosis

or valvular regurgitation is associated with the development of AF25.

• Heart failure (HF). Beside sharing many risk factors such as hypertension, dia-

betes, and valvular heart disease, AF andHF are intertwined so that HF begets AF

and vice versa. When they are both present, patients’ prognosis is worse27. HF

subtypes are classified according to the left ventricular ejection fraction (LVEF):
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HF with reduced EF (HFrEF) occurs when LVEF is≤ 40-45 %; HF with preserved

EF (HFpEF) presents LVEF ≥ 45-50 %; a third category has been established by

the European Society of Cardiology (ESC) for the “gray zone” with 41 % ≤ LVEF

≤ 49 % (HFmrEF, heart failure with mid-range ejection fraction). HF subtypes

affect left atrial (LA) remodelling differently: HFrEF causes greater eccentric LA

remodelling than HFpEF, but the latter increases LA stiffness28. Both modifica-

tions contribute to the setting of a favourable substrate for AF development. A

study showed that more than half of the subjects with HF had AF at some point

and AF was more likely to precede HF rather then developing afterwards; more

than one third of patients with AF had HF which mostly developed after AF29.

Figure 1.5: Ten most common chronic comorbid conditions among Medicare beneficia-
ries with AF. Beneficiaries > 65 y of age; N = 2.426.865. From Rich et al. 2016.

Other comorbidities are not cardiovascular diseases per se, but are linked to AF in

different ways. The most frequently observed in AF patients are the following:

• Obstructive sleep apnea (OSAS, Obstructive Sleep Apnea Syndrome). While

OSAS is a common condition, it remains frequently undiagnosed. It is charac-

terized by a partial or total obstruction of airways that may cause a physiolog-

ical disorder characterized by at least five episodes of apnea or hypopnea for

every hour of sleep. The prevalence of AF among patients with OSAS is 2-4

fold higher than in subjects without breathing sleep disorders25. According to the
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Sleep Heart Health Study carried out in 2006, OSAS is more prevalent in pa-

tients with AF compared to the general population30. AF and OSAS have several

risk factors in common, such as hypertension, obesity, and diabetes. Addition-

ally, OSAS favours inflammation, as demonstrated by higher levels of C-reactive

protein, interleukin-6, and tumor necrosis factor alpha (TNF-𝛼) in serum of pa-

tients with this breathing disorder; OSAS also leads to hemodynamic changes

that contribute to the enlargement of the atrial chamber, atrial fibrosis, and pul-

monary vases remodelling31. An adequate treatment of OSAS helps patients with

AF to achieve a better prognosis25.

• Chronic Obstructive Pulmonary Disease (COPD). Patients with COPD have

a higher incidence of AF and COPD is present in 10-15 % of patients with

AF32. COPD is one of the predictors of progression of AF from paroxysmal to

persistent forms33. The onset of AF in patients with COPD may significantly

worsen the symptoms at pulmonary level because of the irregular heartbeat and

the reduced filling of ventricles, which lead to a worse prognosis for the patient.

AF management in COPD patients is complex because drugs used to improve

pulmonary function may cause tachyarrhythmias and drugs to manage AF may

cause bronchospasm33.

• Chronic kidney disease (CKD). The incidence of CKD is correlated to AF

and, when they coexist, the patient’s prognosis is worsened. The possible

mechanisms by which CKD may affect AF onset involve the triggering of a

pro-inflammatory state and the activation of the renin-angiotensin-aldosterone

system that lead to atrial fibrosis as well as electrical and structural remodelling

that contribute to the development of a favourable substrate for AF25. However,

the relationship between AF and CKD is bidirectional, meaning that AF also

triggers CKD and patients with AF have an increased risk of developing CKD,

which is present in about 15 % of AF patients34.

• Inflammation. A chronic low-grade proinflammatory state is often developed with

age and this represents a risk factor for several co-existing pathologies (multimor-

bidity), physical and cognitive disability, frailty, and even death35,36. Given the

prominent role that inflammation seem to play in the development of age-related
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diseases, targeting inflammation may be a crucial step to promote healthy, suc-

cessful ageing37, which can be accomplished if the molecular, cellular, and phys-

iological mechanisms that contribute to the functional changes associated with

aging are well understood.

1.2.5 Diagnosis

Detecting AF is not always an easy task since silent AF episodes are fairly common.

The incidence of asymptomatic AF depends on the frequence of monitoring and the

burden of AF in the cohort of patients being examined38. As an example, a study re-

ported the presence of silent supraventricular arrhythmias in 58 % of patients that were

being monitored for other heart conditions39, while another found 39.7 % of patients

enrolled in the study to be asymptomatic40. Thus, when silent, AF can only be acciden-

tally diagnosed during heart screenings performed for other purposes. However, the

majority of AF patients experience symptoms which include palpitations, fatigue, and

dyspnea which can negatively affect the patient’s everyday life. Evaluating symptoms

is important for both choosing the most suitable therapy and for the diagnosis of AF

itself, as certain symptoms may reveal some underlying cardiovascular risk factors or

undiagnosed pathological conditions. For symptom evaluation, the scale proposed by

the European Heart Rhythm Association is widely used; with this method, the presence

and impact of symptoms is evaluated using a scale from 1 to 541. AF is defined “clini-

cal” when it presents symptoms or if it has been diagnosed with an electrocardiogram

(ECG). In order to diagnose a clinical AF, it is necessary to perform an ECG with one

lead indicating the presence of AF for at least 30 s or a 12-lead ECG2,42. When the

atrio-ventricular conduction is not compromised, the typical ECG profile of AF is char-

acterized by irregular R-R intervals, lack of distinct repeated P waves, and irregular

atrial activations (Fig. 1.6).
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Figure 1.6: Dynamics of atrial fibrillation.

1.2.6 Therapy and management

When dealing with an AF patient, a physician has to evaluate which route of intervention

is the most suitable. In particular, one important choice is to whether attempt to restore

the sinus rhythm or to focus on controlling the heart rate while leaving the heart rhythm

as it is. These two strategies are called rhythm control and rate control, respectively.

They both present advantages and disadvantages according to the clinical case and

both are supported by anticoagulant therapy.

• Rhythm control strategy: the sinus rhythm can be restored by electrical car-

dioversion (ECV) or pharmacological cardioversion (PCV) with antiarrhythmic

drugs (see Section 1.2.7). The rationale behind this choice is the possibility

to alleviate or eliminate the symptoms and to increase the patient’s tolerance

toward physical activity. Beside a better QoL, restoration of sinus rhythm also
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reduces the risk of stroke and increases the probability of survival, in case the

sinus rhythm is maintained over time43.

• Rate control strategy: this approach, often secondary, is usually adopted only

if the rhythm control strategy fails44. It represents an alternative that allows for

the control of the rate of the ventricular response to AF through the employment

of drugs that block the atrioventricular node or by ablation of the atrioventricu-

lar junction followed by the installation of a pacemaker45. This approach makes

the therapy simple and allows for the use of drugs that are less impacting than

antiarrhythmic drugs43.

Another important decision the physician has to make is to evaluate if the patient needs

oral anticoagulant therapy to prevent stroke or emboly. Two kinds of anticoagulants can

be prescribed:

• Vitamin K antagonists (VKA). An appropriate dosage of VKA reduces the risk of

stroke and systemic embolism by 64% and all-cause mortality by 26%7. VKA

are currently the only safe treatment for patients with mitral valve stenosis and/or

an artificial valve2. However, their use is limited by a quite narrow therapeutic

window that requires frequent monitoring of the INR (International Normalized

Ratio) and consequent adjustments of the dose46. An example of this type of

drug is warfarin.

• Novel oral anticolagulants (NOAC). A meta-analysis on NOAC showed a

favourable risk-benefit ratio with a significant decrease in stroke, intracerebral

hemorrhage, mortality, and bleeding levels comparable to warfarin except for the

gastrointestinal region where they appear to be more frequent47. Compared to

VKA, NOAC are more simple to use and the therapy is easier to follow thank to

their better pharmacokinetic profile48 and for their safety and efficacy, especially

in more vulnerable patients such as the elderly, those with kidney dysfunctions

or those that experienced a stroke49.
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The approach to AF requires an integrated and coordinated management of the patient,

where therapeutic options are discussed by an interdisciplinary team and personalized

according to the patient’s needs. The treatment of choice can then be modified in time

according to the evolution of AF, the onset of new risk factors or symptoms, and the

rise of new therapeutic strategies2. The involvment of the patients, their family and

caregivers is essential for an effective management of the pathology12.

Recently, a model called Atrial fibrillation Better Care (ABC) pathway has been

proposed19. This approach is based on three main goals:

• A: Avoid stroke. The prevention of stroke represents an absolute priority in the

management of AF. Strokes caused by the arrhythmic substrate of AF more

frequently have a fatal or imparing outcome compared to strokes with different

etiology7.

• B: Better symptom management. According to the symptoms, patient and

physician define the best strategy to reduce the impact of symptoms in the

everyday life of the patient, thus improving his QoL.

• C: Cardiovascular and other comorbidities. Control other pathologies, cardiovas-

cular and non-cardiovascular, that coexist with AF. In fact, part of the integrated

care of the patient consists in controlling risk factors and comorbidities, like blood

pressure, heart failure, diabetes, nocturnal apneas or cardiac ischemias, with the

goal of reducing the probability of stroke and cardiovascular burden12.

A multidisciplinary approach which includes risk factors and lifestyle management is

crucial to prevent the onset of AF in patients with predisposing factors (Fig. 1.5). Mod-

ifiable risk factors that can be controlled include:

• Hypertension. Studies show that long-term blood pressure control lowers the inci-

dence of new-onset AF, while an inadequate control of blood pressure in patients

≥ 65 years is linked with an increased risk of new-onset AF23. Thus, current
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guidelines recommend an appropriate control of blood pressure as a primary pre-

vention tool against AF50.

• Obesity. Individuals with a BMI > 30 kg/m2 have a higher risk of developing AF and

a study from the Framingham Heart Study highlighted that every unit increase in

BMI is associated with an increased risk by 4-5 %51. In case of subjects already

diagnosed with AF, it is demonstrated that obesity favours the progress of the

arrhythmia from paroxysmal to permanent52. This link between obesity and AF

can be explained as pericardial and epicardial fat contributes to build an arrhyth-

mogenic substrate by affecting ionic currents and thus reducing cellular action

potential53. For these reasons, long-term weight loss is associated with a reduc-

tion of AF burden and a possible reversion of the type and progression of AF54.

• Diabetes. The risk of developing AF is 3 % higher for each year of having dia-

betes, and this risk was demonstrated to negatively affect glycaemic control55.

For people with diabetes mellitus it is advised to screen for AF, as autonomic

dysfunction may favour silent AF episodes56.

• Alcohol. Chronic, heavy alcohol consumption results in a consistent linear in-

crease in the risk of AF57. Alcohol can trigger arrhythmias as it has a direct toxic

effect on cardiomyocites, but also involves mechanisms that may affect the auto-

nomic nervous system, cause metabolic electrolyte imbalances (like hypokalemia

and acidosis), and alter atrial electrical properties58.

• Physical activity. Intense sport activity increases the risk of AF, mostly due to

an enlargement of the left atrial diameter59. However, moderate physical activity

helps to prevent AF and, in particular, multicomponent training including aerobic,

muscle strenghtening, balance, stretching and coordination exercises seem to

give the most benefit25. Subjects already diagnosed with AF also benefit from this

type of exercise that can have an impact in the overall QoL. A study demonstrated

that 1 h of yoga twice a week helped improving patients’ symptoms, heart rate,

blood pressure, overall arrhythmia burden, as well as anxiety and depression

scores60.

• Smoke. Cigarette years appear to be directly proportional to an increased risk

of incident AF, with current smokers having a higher risk than former smokers
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with similar cigarette years61. Smoking also predisposes to AF as it is linked with

the development of conditions contributing to AF development, such as COPD,

myocardial infarction, and HF.

1.2.7 Cardioversion

Cardioversion, i.e. the restoration of sinus rhythm, can be achieved in two ways:

pharmacological cardioversion (PCV) with antiarrhythmic drugs (e.g. amiodarone),

and electrical cardioversion (ECV). ECV is performed under general anesthesia and a

cardioverter/defibrillator is used. Electric shocks are delivered through adhesive pads

placed in anteroposterior position. Several studies show that the efficacy of external,

monophasic direct-current cardioversion in patients is 80-85 %62. The efficacy is

even higher when using biphasic defibrillators, which apply both positive and negative

currents, require fewer shocks and less energy to deliver, and are less prone to cause

dermal injury63. An example of biphasic wave is shown in Fig. 1.7.

Figure 1.7: An example of a multipulse biphasic wave used for ECV. Adapted from
Fumagalli et al. 2009.

The benefits of the restoration of sinus rhythm not only involve the heart itself but have

a wider impact. In fact, with AF, several haemodynamic imbalances may develop, in-
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cluding the loss of atrial contractility and the atrio-ventricular coordination that affect the

ventricular filling and thus the cardiac output20. These hemodynamic imbalances have

an impact on the brain and studies show that the ECV with sinus rhythm restoration

improves brain perfusion and consequently reduces the risk of cognitive decline64.

1.3 Frailty and the Geriatric Multidimensional Assessment

Aging is frequently characterized by the coexistence of several comorbid conditions,

often reciprocally interacting to produce a negative impact on health status. These

changes, together with sub-clinical malnutrition and low-grade inflammation, are asso-

ciated with frailty development, a phenomenon tipically related to aging, which is char-

acterized by an increase in vulnerability to stressors and a decreased ability to main-

tain homeostasis65. Cardiovascular health is also importantly affected by the process

of aging, thus the management of cardiovascular diseases in the elderly represents a

challenge. In fact, AF onset in older subjects could be linked to the fast progression of

disability and frailty and the arrhythmia is considered by physicians as a marker of a frail

condition66. In AF patients, the CHA2DS2-VASc score can also be considered as an

indicator of frailty. In fact, it has been found that the CHA2DS2-VASc score correlates

with cognitive status, depressive symptoms, and physical performance of patients with

AF measured through the tools of the Geriatric Multidimensional Assessment (GMA)67.

A geriatric comprehensive assessment is essential to evaluate frail elderly people in a

medical setting. In fact, delineating a frail profile plays an important role in the identifi-

cation of high risk patients, their clinical management, and prognosis. For this reason,

researchers identified different multidimensional instruments to identify frailty consid-

ering the complexity of the geriatric patient, specifically focusing on physical function,

cognitive ability, and general mood68. The questionnaires that are mostly used are:

• Short Physical Performance Battery (SPPB). This test is a well-established

tool to assess lower extremity physical performance status and to evaluate the

functional capability and frailty condition of elderly individuals69. The SPPB is

based on three timed tasks: standing balance (ability to stand with feet side by
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side, in semi-tandem, and in tandem position), walking speed (time needed to

walk a 4-meter distance), and chair stand tests (time employed to stand 5 times

from a chair and return to the sitting position). The timed results from each task

are summed to obtain a score ranging from 0 to 12, with a score < 6 identifying

subjects at higher risk of disability and mortality70,71.

• Mini Mental State Examination (MMSE), an 11-item questionnaire that is used to

assess the cognitive status of patients. It explores subject’s memory, orientation,

attention, comprehension, language and calculating skills, and the ability of

performing more elaborate tasks, such as copying a complex drawing72. Scores

range from 1 to 30; a score < 24 is indicative of cognitive decline73.

• Geriatric Depression Scale - Short Form (GDS-SF), a 15-item screening and di-

agnostic tool to detect depressive symptoms in older subjects74. To each query,

patients can answer “yes” or “no” and a score > 5 suggests the presence of

depression75.

1.4 Metabolomics

Metabolomics is the field of life science that aims at characterizing metabolites from

cells, organs, tissues, or biofluids using advanced analytical chemistry techniques76.

A metabolite is defined as a small molecule with a molecular mass < 1,500 Da that

can be detected in a specific cell, organ, or organism77. Metabolites can be the prod-

ucts of endogenous catabolism or anabolism, such as lipids, sugars, amino acids, short

peptides, nucleic acids, alcohols, or organic acids. These are called primary metabo-

lites because they are encoded by the host genome and are essential for the devel-

opment and physiological functioning of the organism78. Certain primary metabolites,

like some essential amino acids and vitamins, are not produced by the organism and

therefore need to be acquired from the diet. Molecules that are not necessary for the

organism, but are still incorporated in the metabolism, are the secondary metabolites

which include, among others, food additives, drugs, pollutants, pesticides, and micro-
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bial byproducts. This collection of exogenous metabolites is also defined “exposome”

and it encompasses, at its most complete, the exposure to the environment through-

out the lifetime of an individual79. Researches in metabolomics have been highlighting

the role that small molecule metabolites play in many biological processes. In fact,

they are not merely the products of metabolism, but often have roles as signalling

molecules, immune modulators, or environmental sensors78. The metabolome varies

according to internal and external factors such as age, diet, circadian rhythm, envi-

ronment, geographical location, gender, and one’s own genetics80,81. Being so sen-

sitive to stimuli and signals, metabolites are considered “the canaries of the genome”

because a single DNA base change in a gene may lead to a 10,000-fold change in

the levels of endogenous metabolites82. This amplification effect is due to the fact

that metabolites are also the downstream products of genes, transcriptional activa-

tors, RNA transcripts, protein transporters, as well as enzymes83. This potential to

“read” what is happening in the organism is one of the reasons why metabolomics is

increasingly being applied in many types of exploratory physiological studies and, par-

ticularly, in biomedical research. Considering that a microbe, such Escherichia coli,

has more than 3,700 small molecules and that the metabolome of a yeast like Sac-

charomyces cerevisiae counts about 16,000 metabolites, it is believed that the human

metabolome probably consists of more than a million compounds84,85. These com-

pounds belong to several different chemical classes and this adds a layer of com-

plexity to the possibility of finding a unique method to measure all of them. This is

why metabolomics is approached with different methods and instruments depending

on the research question to be tackled and, in case of targeted metabolomics, on

the molecules of interest. Analytical tools generally used in metabolomics include nu-

clear magnetic resonance (NMR) spectrometers, mass spectrometers (MS), gas chro-

matography (GC), liquid chromatography (LC), ion mobility (IMS), and capillary elec-

trophoresis (CE) systems. These tools can all be coupled with MS, so we can have

gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spec-

trometry (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), ion mobility

spectrometry-mass spectrometry (IMS-MS), or LC-MS/NMR.

Mass spectrometry-based metabolomics provides qualitative and quantitative analyses
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with high selectivity and sensitvity, as well as the potential to identify metabolites. When

combined with a separation technique, metabolites are also separated in a time dimen-

sion, thus providing additional information on the molecules and their physico-chemical

properties. GC-MS has been labeled as the gold standard in metabolomics, mean-

ing that each new approach should be compared against this method with respect to

breadth, sensitivity, and specificity of metabolite detection86. This definition is due to the

several advantages that this technique presents. The combination of GC with electron

ionization MS (EI-MS) provides high chromatographic resolution, analyte-specific de-

tection and quantification of metabolites87. It also allows the identification of unknowns

as the rich and complex fragmentation pattern generated by EI helps increasing the

accuracy of mass spectral matching. Data about mass spectra and retention times ob-

tained under standardized conditions (70 eV electron ionization energy) have been col-

lected over the years in dedicated libraries, such as the NIST Mass Spectral Library col-

lection of the U.S. National Institute of Standards and Technology88, theWiley registry89,

the MassBank database90, and the Golm repository91. In order to be processed in GC-

MS a molecule needs to be volatile and thermally stable. Most metabolites have high

boiling points and therefore a derivatization step is required. The derivatizion method

mostly used in metabolomics analyses by GC-MS is trimethylsilylation92,93 which re-

moves acidic protons from hydroxyl, carboxyl, amino, or thiol groups (Fig. 1.8). One

disadvantage of this derivatization technique is that silylation is highly sensitive to mois-

ture. This is why the sample extract must be thoroughly dried before derivatization in

order to avoid hindering of the efficiency of the reaction or derivatives degradation87.

Figure 1.8: Silylation mechanism in derivatization with MSTFA. From Villas-Boas et al.
2011
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1.5 Lipidomics

Biological systems include molecular lipid species belonging to several different lipid

classes, which together are called the lipidome of an organism94 (Fig. 1.9). Each

molecular lipid species has biological properties that strongly depend on its chemical

structure. In general, the main roles of lipids in cellular systems include energy storage,

structural functions, and cellular signalling but, as it has become increasingly evident

within recent years, they also play a central role in cellular regulation processes95. In

fact, an imbalance in the lipid system can lead to pathophysiological conditions, includ-

ing diabetes, atherosclerosis, and chronic inflammation96,97. Lipidomics is the study

of lipids metabolism on a broad scale and can be used to understand the biochemical

mechanisms underlying lipids imbalances that may lead to disease states. Lipidomics

has greatly advanced in recent years, largerly due to developments in mass spectrom-

etry which is considered the method of choice for this kind of analyses98. In particular,

the coupling of mass spectrometry with liquid chromatography increases the ionization

efficiency and is regarded as better suited for quantifying low abundant and isomeric

lipid species99.
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Figure 1.9: An overview of lipid classes. From Hinterwirth et al. 2014

1.6 Acylcarnitines

Acylcarnitines (AC) are esters formed through the conjugation of fatty acids with L-

carnitine and are mainly employed in cellular energy metabolism pathways. In fact,

their main biological function is the transportation of acyl groups from the cytosol into

the mitochondria where 𝛽-oxidation occurs100. This process leads to the production of
7n-6 ATP molecule per AC (where ‘n’ is the number of acyl-carbons), thus providing

energy to sustain cellular activity101. The classification of AC is based on several char-

acteristics pertaining the chemical structure of the variable acyl moiety102. Usually, the

first parameter taken into account is the length of the carbon chain, according to which
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they can be divided into four groups:

• short-chain AC: C2-C5

• medium-chain AC: C6-C12

• long-chain AC (LCAC): C13-C20

• very long-chain AC: > C21

The fatty acid moieties can be unsaturated or saturated. Unsaturated AC are also

divided into monounsaturated or polyunsaturated. Also, the cis- and trans- configura-

tion of the fatty acid moiety can be considered. Although most AC have an aliphatic,

straight-chain fatty acid moiety, some AC have branched-chains or even cyclic organic

acids moieties. The fatty acid can also be substituted by several other chemical groups,

such as hydroxyl- or carboxyl- groups. An overview of the possible structures of AC is

reported in Fig. 1.10.

Figure 1.10: Representative structures of various acylcarnitine classes. Adapted from
Dambrova et al. 2022.

Most AC are syntehsized during fatty acid metabolism. However, some can result from

the degradation products of amino acids (lysine, valine, leucine, and isoleucine) or

carbohydrates103. AC synthesis is mostly carried out by enzymes linked to the mito-

chondria, although peroxisomal metabolism seems to be involved as well104.

Beside their principal role in the energetic metabolism, several studies are considering
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AC as diagnostic biomarkers. For example, the concentration of plasma long-chain

acylcarnitines (LCAC) is indicative of inborn errors of fatty acid oxidation and is widely

used in newborn screening105. The interest towards AC is also growing in the field

of metabolomics, as an increasing number of health conditions and diseases exhibits

distinct AC profiles102.
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2 AIM OF RESEARCH

The goals of this project are:

• developing a GC-MS method to explore the metabolomic characteristics of AF to

spot themetabolites or metabolite patterns that change in response to the disease

or are involved in its progression;

• developing a LC-HRMS lipidomics method to focus the analysis on lipids;

• measuring key markers of inflammation to assess the link between low-grade

inflammation and AF development and progression;

• studying the variation of acylcarnitines and amino acids concentrations in AF;

• determining the links between acylcarnitines, amino acids, and inflammation.

All these findings, linking bench with bedside experience, could be useful to guide the

clinical management of patients with AF according to age. In particular, these data may

help in the choice between rate and rhythm control therapy of the arrhythmia and could

be the basis to understand the correlation between AF and frailty.
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3 MATERIALS AND METHODS

3.1 Materials

• 2-mL polypropylene microcentrifuge tubes

• 2-mL glass autosampler crimp vials with micro-inserts and Teflonized seals

• glass volumetric flasks

• water (H2O) LCMS grade

• acetonitrile (ACN) LCMS grade

• isopropanol (IPA) LCMS grade

• methanol (MeOH) LCMS grade

• chloroform (CHCl3) analytical grade

• trifluoroacetic acid (TFA) LCMS grade

• formic acid (FoAc) LCMS grade

• ammonium formate

• n-butanol

• HCl

• extraction solvent: 3:3:2 (v/v/v) ACN/IPA/H2O

• solution A: 2:5:2 (v/v/v) H2O/MeOH/IPA

• QC mix (see 3.5.1)

• FAME mix (see 3.5.2)

• internal standard: succinic acid-d4 (Sigma-Aldrich), 20 ng/𝜇L in solution A
• internal standards for LC-MS: phosphocholine (PC) 17:0 14:1 (Avanti Polar Lipids)

for positive ion mode; phosphatidylinositole (PI) 17:0 14:1 (Avanti Polar Lipids) for

negative ion mode

• anhydrous pyridine

• derivatization agent: D-methylhydroxylamine (MeOX)

• derivatization agent:N-methyl-N-(trimethylsilyl)trifluoracetamide (MSTFA)

• derivatization agent: N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTB-

STFA)

• sodium hydroxide (NaOH) pellet (Sigma-Aldrich)
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• silica gel (SiO2) Rubin granules (Honeywell, Fluka)

• centrifuge

• orbital shaker

• magnetic stirrer

3.2 Ethical Committee approval and study subjects consent

All enrolled patients and controls gave their informed consent to participate in the study.

3.3 Enrollment, patient evaluation, and sample collection

All consecutive patients with persistent AF admitted in the Day-Hospital of the Research

Unit of Medicine of Aging of the University of Florence and of the AOU Careggi to un-

dergo elective electrical cardioversion (ECV) of the arrhythmia were enrolled in the

study. The inclusion and exclusion criteria are summarized in Table 3.1. All patients

were evaluated by integrating the standard clinical and instrumental cardiological visit

(ECG and echocardiogram), comprehensive of the Cardio-Ankle Vascular Index (CAVI)

to measure arterial stiffness, with following tools of the Geriatric Multidimensional As-

sessment (GMA) to describe patients’ neurocognitive function, depressive symptoms,

and physical performance:

• Mini-Mental State Examination (MMSE; abnormal score ≤ 24/30)

• Geriatric Depression Scale (GDS; abnormal score > 5/15)

• Short Physical Performance Battery (SPPB; abnormal score ≤ 6/12)

Table 3.1: Inclusion and exclusion criteria for enrollment of patients.

Inclusion criteria Exclusion criteria

AF diagnosed by ECG, ECG-Holter, or implantable

device

sinus rhythm on enrollment

day

age ≥ 60 years -
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Inclusion criteria Exclusion criteria

consent to participate in the study -

All patients underwent routine blood tests for hospital analysis and the results were

integrated in our study (See Appendix Table 6.1).

Control subjects were enrolled among volunteers who were visited in the outpatient

clinic of our Department, and who did not show any sign or symptom of cardiovascular,

neoplastic, renal, and respiratory disease. A blood sample was collected from all sub-

jects in fasting conditions using a vacutainer blood tube containing ethylenediaminete-

traacetic acid (EDTA) to prevent blood from clotting. Each sample was immediately

centrifuged for 15 min at 4 °C and 2,500 rpm to collect plasma, which was then stored

in a refrigerator at -80 °C until analysis. The subjects were stratified in groups according

to age, diagnosis of AF, and presence or absence of HF as illustrated in Table 3.2.

Table 3.2: Study groups and description.

Groups Description

AF all patients

AFonly patients with AF but no HF

AFHF patients with AF and HF

H all healthy controls

Hy healthy controls aged ≤ 60 years (“young”)

Ho healthy controls aged > 61 years (“old”)

3.4 Subjects metadata

A database with all the available information about patients was built and updated with

the information gained in the course of the study. This database was used to collect all

the clinical and molecular information available about the subjects and as a basis for

the statistical analyses (See Appendix Table 6.1).
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3.5 Untargeted metabolomics by GC-MS

This analysis was carried out using gas chromatography coupled with mass spectrom-

etry (GC-MS). The method is detailed below.

3.5.1 Quality Control sample

An external reference standard quality control mixture (QC mix) of 28 selected com-

pounds was prepared following a standardized protocol86. Briefly, each compound

was weighted and dissolved in the corresponding solvent in order to obtain the desired

final concentration as detailed in Table 3.3. A stock solution was prepared by adding all

compounds to a glass volumetric flask containing 25 mL of solution A and was mixed

for 30 min on a magnetic stirrer. To add the QC mix to the samples, a working solution

of 10 𝜇L/mL was prepared by diluting 2.5 mL of stock solution to 10 mL using solution
A.

Table 3.3: The compounds included in the QC mix.

Compound Concentration (mg/mL) Solvent

Pyruvate 2.0 H2O

Alanine 2.0 H2O

Valine 2.0 H2O

Serine 2.0 H2O

Nicotinic acid 2.0 H2O

Succinic acid 2.0 H2O

Methionine 2.0 H2O

Aspartic acid 2.0 Solution A

4-Hydroxyproline 2.0 H2O

Salicylic acid 2.0 H2O

Glutamic acid 2.0 Solution A

Creatinine 2.0 H2O

𝛼-Ketoglutaric acid 2.0 H2O
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Compound Concentration (mg/mL) Solvent

N-Acetylaspartic acid 2.0 H2O

Asparagine 2.0 H2O

Putrescine 4.0 H2O

Shikimic acid 2.0 H2O

Citric acid 2.0 H2O

Lysine 2.0 H2O

D-(+)-Glucose 2.0 H2O

Glucose-6-phosphate 2.0 H2O

Arachidic acid 2.0 CHCl3
Serotonin 2.0 MeOH

Adenosine 2.0 H2O

Sucrose 2.0 H2O

Chlorogenic acid 2.0 MeOH

𝛼-Tocopherol 3.9 CHCl3
Cholesterol 4.0 CHCl3

3.5.2 Fatty acid methyl esters (FAME) mixture preparation

An internal standard mixture of fatty acid methyl esters (FAME) was prepared according

to the a standardized protocol86. Each FAME was weighted and prepared to reach the

desired final concentration (see Table 3.4).

Table 3.4: A list of the FAME employed for the study and their final concentration.

Compound Concentration (mg/mL)

Methyl hexanoate (C06) 0.8

Methyl octanoate (C08) 0.8

Methyl nonanoate (C09) 0.8

Methyl decanoate (C10) 0.8

33



Compound Concentration (mg/mL)

Methyl dodecanoate (C12) 0.8

Methyl tetradecanoate (C14) 0.8

Methyl hexadecanoate (C16) 0.8

Methyl octadecanoate (C18) 0.4

Methyl icosanoate (C20) 0.4

Mehtyl docosanoate (C22) 0.4

Methyl tetracosanoate (C24) 0.4

Methyl hexacosanoate (C26) 0.4

Methyl octacosanoate (C28) 0.4

3.5.3 Sample preparation and GC-MS analysis

The protocol was adapted from literature86. Plasma samples were thawed and cen-

trifuged at 4 °C, 12,000 g, for 2 min. A 30 𝜇L plasma aliquot was transferred to a new
tube where 1 mL of extraction solvent was added. Samples were vortexed for 10 sec

and placed on an orbital shaker for 5 min at 4 °C. After centrifuging for 5 min at the

same conditions as before, 450 𝜇L of supernatant were transferred to a new 2 mL tube

and dried under nitrogen (N2) stream at 40 °C. Samples were resuspended in 300 𝜇L
50:50 (v/v) ACN/H2O at room temperature, vortexed for 10 sec, centrifuged for 5 min as

before, and transferred to a new tube. Samples were then dried under N2 stream and

kept in a vacuum desiccator containing NaOH pellet and SiO2 granules to enhance the

removal of water residues. After 2 h, 25 𝜇L of internal standard solution was added to
resuspend the sample, which was then vortexed for 10 sec and centrifuged according

to the protocol. The supernatant was transferred to an autosampler vial, dried under

N2 stream and let rest inside the vacuum desiccator overnight to ensure the complete

removal of moisture. Two derivatization methods were tested: one with MSTFA and

one using MTBSTFA, which is more suitable for efficient silylation of amino acids106.

The day after overnight desiccation, the first step of derivatization involved adding 10

𝜇L of MeOX to the vial and shaking the sample on an orbital shaker for 1.30 h, at 37 °C
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and 700 rpm. Then, 91 𝜇L of a mixture containing 100 𝜇L of MSTFA and 1 𝜇L of FAME
was added and the sample was left shaking for 30 min, at 37 °C and 700 rpm. A pool of

samples was prepared by adding 20 𝜇L of five samples from each group (i.e five sam-

ples of Hy, five of AFonly, and so on). The steps until MeOX addition were the same for

derivatization with MTBSTFA but the procedure was adapted to the different derivatiz-

ing agent by adding a mixture of 50 𝜇L ACN, 50 𝜇L MTBSTFA, and 1 𝜇L FAME to each

sample which was then left shaking for 1 h at 80 °C and 700 rpm. The instrument used

for the analysis is an Agilent Technologies GC-MS equipped with an electron ionization

(EI) source and a quadrupole mass analyzer. The GC column used is a Restek 95%

dimethyl/5% diphenyl polysiloxane RTX-5MS column (30-m length, 0.25-mm internal

diameter, 0.25-𝜇m film) with 10-m empty Restek guard column. Initial temperature 60

°C for 1 min; ramp 10 °C/min to 325 °C, final hold time 10 min. Samples were run in one

sequence including blanks (ACN), pools, and QCmix samples every ten experimental

samples.

3.6 Lipidomics by LC-HRMS

The analysis performed in LC-MS was targeted to lipids. Briefly, 10 𝜇L of plasma were
transferred to a new tube where 30 𝜇L of IPA + 0.08 % TFA were added. 100 ng of

internal standard (PC 17:0 14:1 for positive ion mode; PI 17:0 14:1 for negative ion

mode) were added to the solution. The sample was left overnight at -20 °C and the

following day was centrifuged for 20 min at 4 °C and 14,000 rpm. The supernatant was

collected and transferred to a glass autosampler vial and 15 𝜇L of ACN were added to

reach a final IPA concentration of 50 %. 740 𝜇L of ACN/H2O 60:40 + 0.1 % FoAc were

added to reach a final volume of 800 𝜇L. 10 𝜇L were injected. Mobile phases were: A
= ACN:H2O 60:40 + 10 mM ammonium formate + 0.1 % FoAc; B = ACN:IPA 10:190 +

10 mM ammonium formate + 0.1 % FoAc.

Samples were processed in both positive and negative ion modes using a liquid chro-

matography platform coupled with a Linear Trap Quadrupole (LTQ)-OrbitrapTM mass

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The multi-step gradient

used for the chromatography is detailed in Table 3.5. Data were acquired in data de-
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pendent acquisition mode, with a resolution of 100,000 in positive mode and 60,000 in

negative ion mode. Data acquisition and analysis were carried out using the Thermo

Xcalibur software (version 2.0.7).

Table 3.5: Chromatographic conditions used for the lipidomics analysis.

Retention time (min) Flow (𝜇L/min) % mobile phase B

0.0 300 10

3.0 300 10

6.0 300 30

26.0 300 60

41.5 300 100

45.0 300 100

46.0 300 10

54.0 300 10

3.7 Dried Plasma Spots (DPS)

Dried plasma spots to measure acylcarnitines and amino acids concentrations were

prepared according to107,108. Briefly, 20 𝜇L of plasma from each sample were spotted

on filter paper (903, Schleicher & Schuell) and dried. A dried plasma spot was punched

into a 1.5-mL tube and 200 mL of MeOH were added. The sample was vortexed for 20

min and dried under a N2 stream at 50 °C. The extracted acylcarnitines and amino acids

were derivatized to butyl esters with n-butanol and HCl (3 M) at 65 °C for 25 min. After

derivatization, the sample was dried under N2 flow at 55 °C and resuspended in 200 𝜇L
H2O/ACN (1:1) + 0.1 % FoAc. 40 mL of the diluted sample were injected in flow injec-

tion analysis (FIA) mode for MS/MS experiments using an Applied Biosystems-Sciex

(Toronto, Canada) API 3200 triple quadrupole mass spectrometer equipped with a Tur-

boIonSpray source operated in positive ion mode with a needle potential of +5,900V

and turbo gas flow of 10 L/min of air heated at 150 °C. Collision-activated dissociation

(CAD) MS/MS occurred in the LINAC Q2 collision cell with 10 mTorr pressure of N2
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as collision gas. The collision energy (CE) and declustering potential (DP) were opti-

mized for acylcarnitines and amino acids using Analyst 1.4 software. For amino acids,

the DP was set at +18 V and the optimal CE was 20 eV while for acylcarnitines a DP

ramp (10-55 V) and a CE ramp (35-50 eV) were needed. MS and MS/MS spectra were

collected in continuous flow mode. Standards of each amino acid and acylcarnitine

were prepared in a 10 ng/mL solution in H2O/ACN (1:1) + 0.1 % FoAc and infused at

10 𝜇L/min. Quantitation experiments were done using a series 1100 Agilent Technolo-
gies (Waldbronn, Germany) CapPump coupled to an Agilent Micro ALS autosampler,

both controlled by the API 3200 data system. The mobile phase was H2O/ACN (1:1)

+ 0.1 % FoAc, flow rate 30 𝜇L/min. Chromatographic and spectral interpretation and

quantitative information were obtained with the Analyst 1.1 software.

3.8 IL-6 and OPG concentration measurement

The following commercially available ELISA kits were used to measure IL-6 and OPG

concentration in plasma samples:

• Human IL-6 Quantikine HS ELISA kit (R&D Systems) with assay range 0.156 -

10 pg/mL in plasma;

• Osteoprotegerin Human ELISA (BioVendor R&D) with calibration range 1.5 - 60

pmol/L.

The procedure was carried out according to the vendor protocols.

3.9 Statistical analyses

3.9.1 Metadata, citokines, acylcarnitines, and amino acids

Concentration data about acylcarnitines, amino acids, IL-6 and OPG were added to

the dataset containing the study subjects metadata, and all the variables in the dataset

were analyzed using IBM SPSS Statistics ver. 28 (See Appendix Table 6.1). Continu-

ous variables are expressed as mean ± standard deviation (sd), categorical variables
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as raw numbers and percentages. Normal distribution of variables was assessed with

the Levene test. When the variable distribution was normal, Student-t-test and ANOVA

were used to compare two or more groups, respectively. If the variable distribution

was non-normal, Mann-Whitney U test and Kruskal-Wallis test were used to compare,

respectively, two groups and more than two groups of subjects. ANOVA and Kruskal-

Wallis tests were followed by Tukey’s post-hoc test. Simple linear regression analysis

models were used to explore the correlation between continuous variables, and mul-

tivariable linear regression analysis models (backward deletion method) were built to

identify the factors independently associated with continuous variables. To evaluate the

association between categorical variable, the 𝜒2 test was used, followed by the Phi or

Cramer’s V measures to assess the strength of the correlation between dichotomous or

non-dichotomous categorical variables, respectively. A two-tailed p-value < 0.05 was

set as the threshold to determine statistical significance.

3.9.2 Untargeted metabolomics and lipidomics

Data obtained from the untargeted metabolomics experiment carried out using GC-MS

were preliminarly processed using MSDial ver. 4.80. Data were normalized by the

internal standard and metabolites have been identified using NIST, Wiley, and Fiehn

mass spectra libraries. Lipids were identified using LipidFinder109. After normalization,

peak intensities data were exported to proceed with downstream analysis using R ver.

4.1.2. Similarly, lipidomics data were analyzed using R, with a method adapted from the

one developed for GC-MS analysis. All the details about the R method are explained

in the Section below (3.9.3).

3.9.3 R method details

The R packages used for the metabolomics analysis are listed in Table 3.6.
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Table 3.6: The R packages used for metabolomics and lipidomics data analysis.

Package Brief description Reference

tidyverse a set of packages for data science

including ggplot2 (data visualization) and

dplyr (data manipulation)

110

FactoMineR multivariate exploratory data analysis and

data mining

111

factoextra extract and visualize results of

multivariate data analyses

112

mclust Gaussian mixture modelling for

model-based clustering, classification,

and density estimation

113

cluster cluster analysis to find groups in data 114

NbClust determination of the best number of

clusters in a dataset

115

clValid validation of clustering results 116

clustree visualization of clusterings at different

resolutions

117

cowplot streamilined plot theme and plot

annotations for ggplot2

118

scatterplot3d plotting 3D scatter plots 119

bigutilsr utility functions for large-scale data

(e.g. outlier detection, unbiased PCA

projection)

120

kableExtra construction of complex tables 121

knitr generation of a dynamic report 122

flagme fragment-level analysis of gas

chromatography-mass spectrometry

metabolomics data

123
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Package Brief description Reference

MSnbase manipulation, processing, and

visualization of mass spectrometry data

124

ProtGenerics generic infrastructure for mass

spectrometry packages

125

xcms LC-MS and GC-MS data analysis 126

Briefly, raw data were imported in R, peaks were grouped and aligned using the

functions provided by the xcms package and the RT was adjusted with the Obiwarp

method. Data were normalized by the internal standard (IS) using a function specifi-

cally developed for this purpose and scaled using the Pareto method.

For the lipidomics analysis, raw data were loaded and processed in R using the

packages listed in Table 3.6. Peak detection was performed using the centWave

algorithm127, with a signal-to-noise threshold set to 0, allowing 1 ppm of error, and

setting the peakwidth to 10-80. The m/z center of the chromatographic peak was

calculated with the wMean function which calculates the intensity weighted mean of

the peak’s m/z values. The correct integration of the internal standard was checked.

After peak picking, peak alignment and retention time alignment was performed across

samples using the Obiwarp method128. The same pre-processing methods were

applied for both positive and negative ion modes and, at the end of the processing,

the final files were merged into one containing results from both ionization modes

to allow for a comprehensive downstream analysis. Data were visually inspected

using multivariate statistical tools like Principal Component Analysis (PCA) which was

also informative for the detection of outliers in the datasets. Outliers were further

determined using the Local Outlier Factor (LOF) algorithm and then removed from the

dataset. A cluster analysis was performed to determine unsupervised clustering of the

groups using k-means clustering. The most suitable number of clusters to be used in

the analyses was determined with the Silhouette method129. In order to shed light on

what characterstics drive the clustering of the groups, the clusters obtained from the

cluster analysis were analyzed using IBM SPSS Statistics ver. 28 interrogating the
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database containing the metadata of the subjects enrolled in the study. To compare

variables between clusters, Student-t-test or Mann-Whitney U test were used in case

of variables that were normally or non-normally distributed, respectively.
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4 RESULTS

4.1 Study population

Fifty patients with persistent AF were enrolled for the study and 22 subjects met the

criteria to be included in the control group. The characteristics of each group are il-

lustrated in Table 4.1. The AF and H groups have comparable ages (p = 0.055) while

the percentage of women in the H group is higher than the AF group (p = 0.012). Age

distribution across the dataset is shown in Fig. 4.1.

Table 4.1: Mean age ± standard deviation (sd), number of subjects (N), and gender
representation in each study group.

Groups Age (mean ± sd) N women (%)

AF 76 ± 6 50 32.0

AFonly 76 ± 6 23 30.4

AFHF 76 ± 6 27 33.3

H 70 ± 14 22 63.6

Hy 56 ± 4 8 62.5

Ho 79 ± 10 14 64.3
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Figure 4.1: Age distribution of study subjects

4.2 Metadata analysis

From the comparison between healthy subjects (H) and patients (AF) and the analysis

of the differences between the four subgroups (Hy, Ho, AFonly, and AFHF), the CHA2DS2-

VASc score differed both between H and AF (p < 0.001) and among the four groups

increasing according to age and disease complication (p < 0.001) (Fig. 4.2).

Figure 4.2: Boxplots showing the significant difference in CHA2DS2-VASc score be-
tween H and AF groups (A) and among the four subgroups (B)
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The metadata available for the subjects included in the AF group (see Table Appendix

6.1) were tested to assess the differences between the subgroups AFonly and AFHF.

Left ventricular ejection fraction (LVEF) resulted significantly lower in patients with HF

(p = 0.014) as well as the BMI (p = 0.030). Differences in end-diastolic (EDD) and end-

systolic diameters (ESD) also emerged (EDD p = 0.018; ESD p = 0.022). Variations in

Ca2+ levels were detected, with subjects without HF having a slightly higher concen-

tration of circulating Ca2+ (p = 0.043). NT-proBNP levels also differed between the two

groups, with AFHF subjects having a significantly higher level of the peptide (p = 0.019)

(Fig. 4.3).

Figure 4.3: Significant differences that emerged between AF only and AF HF groups.

4.3 CHA2DS2-VASc score and Geriatric Multidimensional Assessment

Together with the analyses carried out on the main dataset, the plasma of 134 pa-

tients was used to measure additional IL-6 and OPG levels to study the relationship

between low-grade inflammation and frailty, measured by the CHA2DS2-VASc score

and the questionnaires of the Geriatric Multidimensional Assessment (GMA). Overall,

inflammatory mediators in 93 (69.4 %) of the 134 patients enrolled in this study pro-

tocol were measured. Mean age was 77 ± 8 years (men: 64.5%; BMI: 26.7 ± 4.0
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Kg/m2). The most frequently observed comorbid condition was hypertension (82.8%).

The prevalence of congestive heart failure, diabetes, stroke or transient ischemic at-

tack and vascular diseases was 29.0, 16.1, 12.9 and 29.0%, respectively. Erythrocytes

sedimentation rate and C reactive protein concentration was below the abnormal val-

ues in more than 70% and 80% of cases. Subjects with a CHA2DS2-VASc score > 4

(N = 51, 54.8 %), when compared with those with a score < 3 (N = 42, 45.2 %), had

higher values of IL-6 and OPG (retrospective power for the comparisons: 77.2 and 81.9

%, respectively). Uric acid, iron, ferritin, hemoglobin concentration, and the glomerular

filtration rate (GFR) were lower in patients with a CHA2DS2-VASc score > 4. In linear

regression models, IL-6 maintained its statistical association with the CHA2DS2-VASc

score, while OPG only approached statistical significance (𝛽 = 0.32 ± 0.17, R = 0.216,

p = 0.061). When separately evaluating the different components of the CHA2DS2-

VASc, we found that IL-6 concentration was higher in patients > 75 years (4.1 ± 3.0

vs. 3.2 ± 3.0 pg/mL, p = 0.042) and in those with diabetes (4.9 ± 3.0 vs. 3.6 ± 3.0

pg/mL, p = 0.039) and vascular diseases (4.8 ± 3.3 vs. 3.4 ± 2.8 pg/mL, p = 0.044).

IL-6 maintained an association with age also using a linear regression analysis model

(𝛽 = 0.10 ± 0.04, R = 0.269, p = 0.011). OPG was significantly higher only in patients

with vascular diseases (5.3 ± 2.9 vs. 3.7 ± 2.1 pmol/L, p = 0.035); no differences were

observed for the other components of the CHA2DS2-VASc score. When studying the

tools of the GMA, IL-6 showed an inverse association with SPPB; no correlation was

found with MMSE and GDS scores. SPPB, as previously found, was inversely related

to the CHA2DS2-VASc (𝛽 = -0.75 ± 0.15, R = 0.461; p < 0.001) and the GDS (p <
0.001) scores. Among the other variables, IL-6 was associated with the concentration

of iron and uric acid. In multivariate analysis (R = 0.501; p < 0.001), only SPPB (𝛽
= -0.42 ± 0.12; p = 0.001) and iron (𝛽 = -0.04 ± 0.01; p < 0.001) maintained their

association with the cytokine levels, while CHA2DS2-VASc score (p = 0.324) and uric

acid (p = 0.122) were deleted from the model. OPG did not show any correlation with

GMA tools. Higher levels of hemoglobin corresponded to lower levels of OPG (𝛽 =

-0.36 ± 0.16, R = 0.247; p = 0.032).
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4.4 Untargeted metabolomics by GC-MS

The efficacy of the two derivatization methods was assessed by evaluating the repro-

ducibility of each method and comparing the intensity of peaks obtained in samples

derivatized with MSTFA with the intensity of peaks of TBDMS derivatives. Both deriva-

tization methods worked for most metabolites and, as expected, MTBSTFA derivati-

zation resulted more efficient in derivatizing amino acids. However, amino acids were

also detected as TMS derivatives and, overall, MSTFA yielded better results in terms

of peak intensity, sample reproducibility, as well as reaction and was thus selected as

the elective derivatization method for our analysis. Overall, 67 samples, 44 AF and 22

H, were analyzed. The internal standard (IS) peak, corresponding to succinic acid-d4,

was detected in all samples the RT range 570-690 and at m/z range 250.1-252.1. A

total ion current (TIC) profile is shown in Fig. 4.4.

Figure 4.4: Total ion current of a metabolomic sample repeated three times to show
reproducibility. The spectra of two identified molecules are shown in the inserts.

A preliminary data exploration using PCA allowed for the identification of sample 345

AF as an outlier. This was also confirmed by the Local Outlier Factor (LOF) outlier

detection method applied to the dataset (Fig. 4.5) .
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Figure 4.5: Above: A Principal Component Analysis (PCA) showing the presence of an
outlier sample. Below: The outlier highlighted by the Local Outlier Factor (LOF) outlier
detection method.

After removing the outlier from the dataset, a new PCA was performed to visually in-

spect the data. The PCA successfully separated the QCmix samples and the blank

samples (ACN) from the plasma samples as highlighted in Fig. 4.6 and pool samples

are grouped within the other plasma samples.
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Figure 4.6: PCA performed including QCmix samples, blanks, and plasma samples.

After removing the QCmix, blank, and pool samples from the dataset, a PCA was per-

formed again to see if a separation between the study groups was detectable. Based on

the screeplot (Fig. 4.7), the principal components that explain most of the variance are

PC1 and PC2, which are displayed in the PCA plot in Fig. 4.7, from which it emerges

that no clear separation between the four groups is appreciable with this method.
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Figure 4.7: Above: Screeplot indicating the principal components (PCs) that explain
most of the variance. Below: PCA of samples.

The separation is not detectable even when dividing the dataset in two groups, H and

AF as shown in Fig. 4.8.
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Figure 4.8: PCA of samples divided into the two main groups, H and AF.

The same approach was followed to visually examine the distribution of samples within

the AF group. No clear separation between AFonly and AFHF subjects is appreciable

(Fig. 4.9).
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Figure 4.9: Above: Screeplot indicating the principal components (PCs) that explain
most of the variance. Below: PCA of AF samples.

4.4.1 Cluster analysis of metabolomics data

Following this result, an unsupervised cluster analysis was performed to determine

which characteristics are relevant to differentiate groups within the dataset. The Sil-

houette method for determining the correct number of clusters to use in the analysis

suggested to set two groups to maximize the variance between clusters (Fig. 4.10).
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The k-means clustering algorithm suggested the grouping shown in Fig. 4.10.

Figure 4.10: Above: Silhouette analysis to detect the best number of clusters to be
used in cluster analysis. Below: results from the k-means clustering algorithm.

The groups determined by the cluster analysis were set as independent variables and

metadata of patients and controls were used as dependent variables. The two clusters

differed only based on the weight and BMI of subjects, with Cluster 1 grouping subjects

with lower BMI and weight (Table 4.2). None of the categorical variables analyzed with

the 𝜒2 test resulted to be significant.
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Table 4.2: Analysis of clusters and metadata (variables) of patients and controls using
k-means clustering. Values are expressed as means ± sd when a parametric test was
used, whereas mean ranks are specified when a non-parametric test was employed.

Variable p-value

mean ± sd or mean rank

Cluster 1 (N = 17)

mean ± sd or mean rank

Cluster 2 (N = 35)

Weight 0.032 74.10 ± 11.86 81.76 ± 11.48

BMI 0.046 23.57 32.53

The same data analysis was performed with only the samples of patients, to assess the

differences within the AF group. Interestingly, one of the two clusters included subjects

with lower SPPB score, higher CHA2DS2-VASc score, and higher IL-6 levels (Table 4.3

and Fig. 4.11)

Table 4.3: Analysis of clusters and metadata (variables) about AF patients using k-
means clustering. Values are expressed as mean ranks as a non-parametric test was
employed.

Variable p-value

mean rank Cluster 1

(N = 16)

mean rank Cluster 2

(N = 29)

SPPB 0.009 19.24 29.81

CHA2DS2-VASc score 0.007 26.86 16.00

IL-6 0.002 25.96 16.44
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Figure 4.11: Boxplots showing the differences between the two clusters determined by
k-means clustering.

The 𝜒2 test highlighted that Cluster 2 includes more subjects having dyslipidemia (p =

0.011). A detailed table of the clusters obtained with k-means clustering can be found

in the Appendix Tables 6.3 and 6.4.

4.5 Lipidomics analysis by LC-HRMS

72 samples, including 46 AF and 26 H, were run in both positive and negative ion

modes. PC 17:0 14:1 (m/z 718.5381) was used as internal standard for the positive

mode and PI 17:0 14:1 (m/z 793.4873) for negative mode. Data were visually inspected

and peaks within the retention time window 20 - 2280 s were selected for downstream

analysis. The extracted features were searched in Lipid Finder and several classes of

lipids were identified (Fig. 4.12)
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Figure 4.12: Classes of lipids present in the samples and identified through Lipid Finder.

Visual inspection of the dataset with PCA followed by Local Outlier Factor determined

the following samples as outliers: 352 AF, 59 Ho, 60 Ho, 61 Ho, 62 Ho, 63 Ho.

After removing the outliers from the dataset, a PCA was performed to see if any sepa-

ration occurs in the lipidomic profile of the study groups. PC1 and PC2 explain most of

the variance and thus have been used for plotting the PCA.
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Figure 4.13: Above: PCA of lipidomics samples. Below: Loading plot showing the
features that drive the separation.

Although no clear separation can be appreciated among groups, Ho samples seem to

be clustered in the lower left quadrant of the PCA biplot while Hy mostly group in the

lower right quadrant. Based on this result, a loading plot was executed to detect which

features drive the separation toward the region where H samples seem to cluster.
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4.6 Acylcarnitines and amino acids

A detailed list of the compounds that were measured with the dried plasma spot method

is summarized in Table 4.4.

Table 4.4: Acylcarnitines and amino acids measured for this study.

Acylcarnitines Amino acids

free carnitine (C0) alanine (Ala)

acetylcarnitine (CAR 2:0) valine (Val)

propanoylcarnitine (CAR 3:0) leucine/isoleucine (Xle)

propenoylcarnitine (CAR 3:1) methionine (Met)

butyrylcarnitine (CAR 4:0) phenilalanine (Phe)

hydroxybutyrylcarnitine (CAR 4:0 OH) tyrosine (Tyr)

isovalerylcarnitine (CAR 5:0) aspartic acid (Asp)

ethylacryloylcarnitine (CAR 5:1) glutamic acid (Glu)

hexanoylcarnitine (CAR 6:0) ornithine (Orn)

hexenoylcarnitine (CAR 6:1) arginine (Arg)

octanoylcarnitine (CAR 8:0) citrulline (Cit)

octenoylcarnitine (CAR 8:1) glycine (Gly)

decanoylcarnitine (CAR 10:0)

decenoylcarnitine (CAR 10:1)

decadienoylcarnitine (CAR 10:2)

hydroxydecanoylcarnitine (CAR 10:0 OH)

dodecanoylcarnitine (CAR 12:0)

dodecenoylcarnitine (CAR 12:1)

hydroxydodecenoylcarnitine (CAR 12:0 OH)

myristoylcarnitine (CAR 14:0)

tetradecenoylcarnitine (CAR 14:1)

tetradecadienoylcarnitine (CAR 14:2)

hydroxymyristoylcarnitine (CAR 14:0 OH)

palmitoylcarnitine (CAR 16:0)
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Acylcarnitines Amino acids

palmitoleoylcarnitine (CAR 16:1)

hydroxypalmitoylcarnitine (CAR 16:0 OH)

hydroxypalmitoleoylcarnitine (CAR 16:1 OH)

stearoylcarnitine (CAR 18:0)

octadecenoylcarnitine (CAR 18:1)

octadecadienoylcarnitine (CAR 18:2)

hydroxystearoylcarnitine (CAR 18:0 OH)

hydroxyoctadecenoylcarnitine (CAR 18:1 OH)

hydroxyoctadecadienoylcarnitine (CAR 18:2 OH)

The plasmatic concentration of acylcarnitines and amino acids was compared between

groups. AF subjects resulted to have lower Asp, Arg, and Gly compared to controls

(Asp p = 0.017; Arg see details below; Gly p = 0.002) and higher concentrations of

CAR 3:1 and CAR 5:0 (CAR 3:1 p = 0.002; CAR 5:0 p = 0.037) (Fig. 4.14).

Figure 4.14: Significant differences in amino acids and acylcarnitines concentrations
between AF patients and H controls.
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When analyzing the four subgroups, Arg andGly concentrations decreased significantly

(Arg see details below; Gly p = 0.011) (Fig. 4.15). The same analyses were carried out

on patients, to investigate the differences between AFonly and AFHF. Both CAR 12:1

and CAR 14:1 increased in patients with HF (CAR 12:1 p = 0.031; CAR 14:1 p = 0.035)

(Fig. 4.16).

Figure 4.15: Decreasing trend in Gly concentration.

Figure 4.16: Increase in medium- long-chain acylcarnitines in patients with HF.
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4.6.1 Arginine

Among the amino acids measured in this project, arginine (Arg) was analyzed in depth

as it is an established marker of endothelial function130. The amino acid levels were

significantly lower when AF was present (56 ± 17 vs. 71 ± 23 𝜇mol/L; p = 0.003); a

post-hoc analysis showed a statistically significant difference between Hy and patients;

no differences were observed between Hy and Ho individuals and patients (Fig. 4.17).

A multivariate linear regression analysis model with, at each step, backward deletion

of the variable showing the lowest statistical association (R = 0.547, p < 0.001), found

an inverse association linking Arg concentration to age (𝛽 = -0.93 ± 0.22; p < 0.001)

and to the presence of AF (𝛽 = -9.71 ± 4.58; p = 0.038), whereas sex was deleted

from the model (p = 0.666).

Figure 4.17: Arginine concentration in the groups

When limiting the analysis to patients with the arrhythmia, an inverse relation linking

Arg and age was observed. No association of the amino acid concentration was found

with sex, BMI, heart rate, hypertension, diabetes, dyslipidemia, chronical renal faiure,
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LVEF, CAD, cerebrovascular disease, and peripheral artery disease. Accordingly, also

the CHAD2DS2-VASc score was unrelated to Arg concentration, as well as MMSE,

GDS, and SPPB. Arg levels were associated with white blood cells count, and with iron

and glutamic-pyruvic transaminase concentration. Interestingly, IL-6 did not show any

correlation with Arg, as observed for arterial stiffness, and the most important cardio-

vascular drugs. Citrulline levels were directly related to Arg concentration (𝛽 = 0.85 ±
0.16; R = 0.619; p< 0.001). A multivariate linear regression analysis model (R = 0.626,

p < 0.001) confirmed the age-related Arg decrease in patients with AF (𝛽 = -0.91 ±
0.37; p = 0.019). Also, it showed the inverse association between Arg and iron levels (𝛽
= -0.19 ± 0.07; p = 0.009) and the direct correlation between the amino acid and the

glutamic-pyruvic transaminase concentration (𝛽 = 0.21 ± 0.07; p = 0.037), whereas

white blood cells count was deleted from the model (p = 0.318).

4.7 IL-6

IL-6 concentration was significantly higher in patients with AF when compared to the

control group (p = 0.011) (Fig. 4.18). When the control group was stratified according

to age, an increase in IL-6 concentration was detected with increasing age and in pres-

ence of AF (Fig. 4.19). IL-6 is higher also in presence of hyperuricemia when compared

to patients with normal uric acid levels (p = 0.004).
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Figure 4.18: IL-6 in controls and AF patients.

Figure 4.19: Trend of IL-6 concentration.

A simple linear regression model showed that IL-6 was inversely related to SPPB. The

overall regression was statistically significant (R2 = 0.275, p < 0.001). Similarly, a

lower MMSE score was associated with higher IL-6 concentration (R2 = 0.129, p =

0.012). No significant association was found between IL-6 and the GDS score. A

62



significant correlation was found when CRP was the independent variable (R2 = 0.268,

p = 0.001), as with hyperuricemia (R2 = 0.223, p< 0.001). An association between IL-6

and the natriuretic peptide NT-proBNP concentrations was also found (R2 = 0.217, p =

0.003). No association between the cytokine levels and CAVI was detected. Results

are summarized in Table 4.5.

A multiple linear regression model using the backward deletion method was built in-

cluding variables significantly associated with IL-6 levels as independent variables in

univariate analysis. In the final step (R = 0.615, p < 0.001), the citokine concentration

was correlated directly with uric acid levels (𝛽 ± SE = 0.056 ± 0.23, p = 0.021) and

inversely with SPPB score (𝛽 ± SE = -0.78 ± 0.17, 95% CI = -1.13/-0.43). Age, sex,

chronic renal and chronic heart failure, diabetes, and MMSE score were deleted from

the model.

Table 4.5: Significant associations between IL-6 and patients’ clinical characteristics
(univariate analysis).

Variable 𝛽 ± SE R p-value 95 % CI for 𝛽
SPPB - total (score) -0.744 ± 0.176 0.525 <

0.001

-1.098; -0.390

MMSE (score) -0.500 ± 0.192 0.358 0.012 -0.887; -0.114

GDS (score) - - ns -

CRP (mg/L) 0.274 ± 0.079 0.518 0.001 0.114; 0.434

Hyperuricemia (y/n) 3.108 ± 0.846 0.472 <
0.001

1.407; 4.810

NT-proBNP (pg/mL) 0.001 ± 0.000 0.465 0.003 0.000; 0.001

RCAVI - - ns -

LCAVI - - ns -

Medium- long-chain acylcarnitine concentrations also significantly predicted IL-6 levels

as illustrated in Table 4.6.
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Table 4.6: Linear regression analysis for IL-6 with acylcarnitines

Variable 𝛽 ± SE R p-value 95 % CI for 𝛽
CAR 8:1 65.515 ± 28.986 0.316 0.029 7.168; 123.861

CAR 12:1 31.737 ± 9.390 0.446 0.001 12.835; 50.638

CAR 12:0 OH 53.085 ± 23.673 0.314 0.030 5.434; 100.736

CAR 14:0 38.911 ± 15.936 0.339 0.019 6.834; 70.988

CAR 14:1 15.188 ± 6.942 0.307 0.034 1.215; 29.162

CAR 14:0 OH 161.143 ± 60.919 0.363 0.011 38.519; 283.766

CAR 18:1 19.927 ± 8.239 0.336 0.020 3.344; 36.511

CAR 18 OH 161.545 ± 68.771 0.327 0.023 23.115; 299.975

The same analyses were carried out using OPG instead of IL-6 and no parameter re-

sulted to be significantly associated with this citokine.
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5 DISCUSSION AND CONCLUSIONS

The results we have just shown demonstrate that, when clustering metabolomic profiles

of older patients with persistent AF and healthy subjects, a difference in their body size

emerges; furthermore, when analyzing only patients with the arrhythmia, it is possible

to identify three clinical-laboratory characteristics, namely, the CHA2DS2-VASc score,

the SPPB score and the IL-6 levels, that allow to define two clusters of subjects with dif-

ferent patterns at the untargeted metabolomic analysis. IL-6 concentration is inversely

associated with SPPB score and directly correlated with uric acid and medium- long-

chain acylcarnitine levels, and, when studying a broader cohort of individuals, also with

the CHA2DS2-VASc score. We also found that arginine (Arg) levels are significantly

lower in AF patients, even after having adjusted for age, and we hypothesize the exis-

tence of endothelial dysfunction when arrhythmia is present.

Different metabolomic profiles by body weight or BMI when simultaneously analyzing

younger healthy controls and the AF cohort can be explained by the progressive reduc-

tion of muscular mass, i.e. sarcopenia, observed after 45 years of age. In particular, in

subjects equal or older than 90 years, muscular mass is 50 % lower than that usually

found at younger ages. Possible explanations of this phenomenon are represented by

a sedentary lifestyle, the reduced uptake of proteins and calories, and the decreased

trophic action exerted by the autonomic nervous system fibers. All these changes are

coupled with the reduced production of steroid hormones, mitochondrial dysfunction,

the increased inflammatory burden, and the presence of oxidative damage131. Also, the

genome can exert an influence on sarcopenia, as demonstrated by the InChianti Study,

where, in the original cohort of subjects older than 65 years, 5 transcripts allowed to

identify a “biologically” younger group, characterized by lower levels of IL-6 and urea

nitrogen, a higher concentration of albumin and a greater strength than controls132. Im-

portantly, the changes just illustrated can explain the complex interactions leading from

decline in mobility, through functional impairment, to the increase in mortality131. Sar-

copenia is also an essential component of frailty. The condition, a multi-factorial syn-

drome, is caused by the reduction of physiological reserve and the possibility to resist

to stressful events. Hence, it can be conceived as the lack of the homeostatic capacity.
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It is often discovered in older individuals, but it can be found also when other condi-

tions, such as heart failure, chronic kidney disease, and cancer are present. Frailty is

a complex and dynamic disorder. Importantly, it can lead to an increased incidence

of disability, and to higher rates of hospitalization, institutionalization, and mortality. It

is now thought that frailty can be in great part attributed to a process characterized by

the progressive loss of ability to produce, distribute, and utilize energy66. Interestingly,

in a survey led by the European Heart Rhythm Association (EHRA) among physicians

involved in the management of arrhythmias, 72 % of the respondents thought that AF

was one of the comorbidities most frequently observed in frail individuals. Also, the

bradycardia-tachycardia syndrome, often associated with the arrhythmia, was thought

to be often present in frail subjects66. The prevalence of frailty is highly variable in the

most important AF studies, usually ranging between 20 and 90 %, according to the

protocol which was followed (i.e., randomized trial or prospective registry), the clinical

setting which was studied (i.e., hospital, outpatient clinic, and home), the specializa-

tion of the involved physicians and the geographical area, with the related culture, in

which the observation takes place133,134. Despite the methodological and the related

epidemiological differences, all experiences are concordant in showing a mortality risk

2.5 times higher in AF frail patients when compared to non-frail arrhythmic subjects133.

The same is true for major bleeding related to oral anticoagulant therapy135. These

concepts are particularly important if related to the findings of our experience. As pre-

viously mentioned, in our cohort of AF individuals, three different patterns were identi-

fied at the untargeted metabolomic analysis. Accordingly, study participants could be

clustered basing on the CHA2DS2-VASc and the SPPB scores, and to the IL-6 levels,

with, in each case, the same group showing the lower results at the CHA2DS2-VASc

and the SPPB, and the higher concentration of the cytokine. Indeed, both the Frailty

Deficit Index136 and the Phenotype Frailty Index137, the two most important models to

understand the condition, are based on the interaction among comorbidities, disability,

and frailty itself (Fig. 5.1).
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Figure 5.1: The interaction among comorbidities, disability, and frailty, as detailed in
the paper by Fried et al., 2021.

We previously demonstrated that the CHA2DS2-VASc score, expressing a number of

comorbid conditions, and for this reason an index of clinical complexity, was inversely

related with cognitive function (i.e., with MMSE), and importantly with SPPB, one of

the most important indexes of disability and frailty138. Moreover, in our main dataset,

also IL-6 concentration was inversely associated with SPPB score, demonstrating once

again the significant link between disability and frailty with inflamm-ageing. Indeed, be-

cause of the significant role of inflammation in cardiovascular diseases, and given that

the pro-inflammatory state typical of ageing is a strong risk factor for many age-related

chronic conditions, cardiovascular diseases themselves could often precede, follow, or

develop in the context of multimorbidity and frailty139. More in general, many studies

suggest that chronic inflammation is a risk factor across multiple diseases, some of

which are sometimes considered unrelated. Among these are to be mentioned cardio-

vascular diseases, diabetes, chronic renal failure, cancer, depression, and dementia.

In addition, higher levels of inflammatory markers are associated with loss of muscular

tissues and strength, higher loss of mobility, lower physical performance, and depres-

sion, with all these elements necessary to define a frail condition. Accordingly, a high
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concentration of IL-6 can be associated with an accelerated development of multiple

chronic diseases and frailty in older individuals139.

In our experience, IL-6 was higher also in patients with hyperuricemia. This result is

consistent with those reported by other groups, showing that the cytokine levels were

significantly increased in children with hyperuricemia, even if they have never had an

acute gout event before140, and in the older patients enrolled in the InChianti Study. In

particular, in this study, a positive and significant correlation between uric acid levels

and IL-6, and other inflammatory markers, was found in the whole enrolled population

and in the subgroup of subjects who showed a normal uric acid concentration. It could

be hypothesized that uric acid could be part of a complex vicious cycle involving inflam-

matory and oxidative-related mechanisms. Chronic inflammation causing hypoxia and

cellular damage could upregulate uric acid production and trigger free radicals release.

In particular, cytokines could enhance xanthine oxidase activity, the ROS-mediated cell

damage and apoptosis. These alterations could subsequently originate endothelial dys-

function. The following release of uric acid in the surrounding microenvironment may

further boost the inflammation cascade, even if uric acid concentration is within the nor-

mal range. Older age and the presence of comorbidities could significantly strengthen

all these interactions141.

The association betweenmedium- long-chain acylcarnitines and IL-6 suggests an inter-

play between these molecules and confirms the possible involvement of acylcarnitines

in the activation of proinflammatory pathways as suggested in previous studies142. In

fact, long-chain acylcarnitines (LCAC) concentration in blood or tissues have been as-

sociated with several conditions as well as inflammation, cell stress response, and in-

sulin resistance143–145. This can be explain by the fact that an increase in the con-

centrations of AC reflects an incomplete or impaired long-chain fatty acids (LCFA) 𝛽-
oxidation. This inefficiency, also partly due to a reduced tricarboxylic acid cycle per-

formance, leads to the accumulation of acetyl-CoA and yields chain-shortened AC that

activate certain proinflammatory pathways146. In vitro studies on a skeletal muscle

model showed that LCAC trigger IL-6 production and induce a rise in markers of cell

permeability and death in a dose-dependent manner144 suggesting that, under cer-

tain conditions of inefficient 𝛽-oxidation, an increase in LCAC may contribute to lipid-
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associated cell stress. Furthermore, AC are known to be involved in the development

of certain cardiovascular diseases147–151. In cardiac ischemia, an increase in tissue or

blood LCAC occurs as a consequence of the inhibition of 𝛽-oxidation that causes the
accumulation of hydroxy fatty acids, acyl-CoA and AC152. LCAC have also been asso-

ciated with alterations of Ca2+ intracellular release153 and are known to induce delayed

afterdepolarizations and electrophysiological alterations in cardiac tissue154. Studies

suggest that the accumulation of LCAC affects the integrity of cell membranes, which

is crucial for the maintenance of homeostasis144. The loss of proper myocardial cell

membrane function, together with derangements in ionic flux that control cardiac elec-

trophysiology, may contribute to the development of pathologies such as arrhythmias,

myopathies, and necrosis155,156.

Arginine is a well-established marker of endothelial function and is also the precursor of

nitric oxide (NO), which is produced through the activity of NO synthase130. Our results

show significantly lower levels of Arg in patients with AF when compared to the control

group without the arrhythmia. A previous study demonstrated that NO synthase expres-

sion and NO production were, respectively, 46 and 73 % lower in atrial endocardium

isolated from pigs with pace-induced AF when compared to controls. Interestingly,

these changes corresponded to an increased activity of the prothrombotic protein plas-

minogen activator inhibitor 1 (PAI-1)157. Additionally, subjects with embolic stroke of

undetermined source showed higher values of L-arginine and a reduced carotid intima-

media thickness than patients with stroke and AF158. Importantly, in our analysis, the

relation between Arg and AF is independent and additive to that found for age. Indeed,

endothelial dysfunction is highly prevalent in older subjects, and it might contribute to

the development or the worsening of important age-related conditions, such as de-

mentia, loss of physical function, hypertension, heart and renal failure130. Interestingly,

despite the existance of conflicting evidence, it was shown that, in older individuals,

Arg concentration could be increased through oral supplementation, with this change

correlated to the improvement of endothelial function130. In our patients, we also found

an inverse relation between iron levels and Arg concentration. Indeed, the association

between Arg and iron is complex. NO, derived from the amino acid, exerts its action

oxidizing, nitrating, and nitrosylating regulatory proteins and enzymes. Among these,
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the nitrosilation of the heme iron brings to the activation of the soluble guanylyl cyclase,

which catalyzes GTP conversion to cGMP, a key step in vasodilation. Historical data

support the hypothesis that NO generation could be associated with cahanges in iron

homeostasis, due to an enhanced iron release from intracellular ferritin stores. Also, it

was shown that macrophages activated by interferon-gamma synthesize a flavoprotein

promoting the conversion of Arg to NO, with this last mediato responsible of the efflux

of the metal from neoplastic and infected cells. Importantly, these macrophage target

cells could significantly reduce the iron uptake from plasma if the concentration of Arg

is low159. These last findings support the existence of an inverse relationship between

the concentration of iron and that of Arg or its derivative, NO. The direct association

between the amino acid concetntration and the glutamic-pyruvic transaminase levels

could be justified by the involvement of the enzyme in the complex catabolic cascade of

Arg itself and by the key role played by the liver in its synthesis, one of the main steps

of the urea cycle160.

The possibility to support clinical behavior with laboratory data can represent a decisive

point in the management of older patients with the arrhythmia. At this regard, very re-

cently, the AF-SCREEN International Collaboration expert panel identified a series of

knowledge gaps related to the care of aged individuals with AF addressed to prevent

dementia, one of the most up-to-date and dreadful complications of the arrhythmia.

The association between AF and cognitive decline has newly emerged and it could be

explained by the reduction of cardiac output, the presence of brain silent or clinically

manifest ischemic lesions, the activation of inflammation, the presence of microbleeds

related to oral anticoagulant therapy, and the influence of genetic factors. Some of the

issues to be clarified are related to oral anticoagulant therapy. Their aim is to under-

stand the role of arrhythmic burden on dementia development, the need to anticoagu-

late patients with atrial cardiomyopathy not showing AF, and the right moment to start

therapy in order to prevent cognitive decline161 (Fig. 5.2).
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Figure 5.2: The suspected mechanisms of cognitive impairment in atrial fibrillation.
From Rivard et al., 2022.

The possibility to compare the metabolic pathways and the concentration of inflam-

matory mediators in patients with AF and in controls, should allow to identify some

important factors potentially useful to guide clinical practice. Indeed, even if in a com-

pletely preliminary and exploratory analysis, our findings allowed to demonstrate the

reduced concentration of Arg - a condition potentially indicating endothelial dysfunction

- in subjects with the arrhythmia. These results could allow to better describe atrial car-

diomyopathy, and could justify the increased risk of thromboembolic events in patients

with a history of AF even in the absence of the arrhythmia itself. It is not clear whether

the identification of biomarkers could, in the long term, replace the clinical diagnosis of

comorbidities and frailty, but metabolomics studies can certainly enhance a more ob-

jective and quantifiable assessment of the pathophysiological alterations linked to AF

and its comorbidities including frailty162. Furthermore, a metabolomic approach could

help to identify the characteristics of subjects with silent AF, as well as of those at risk of

developing the arrhythmia, especially the frail ones. In this perspective, metabolomic

analysis could reveal an useful preventive tool. The other important issues raised by the

experts of the AF-SCREEN International Collaboration were about the choice between

the rate- or the rhythm-control strategy of the arrhythmia. New evidence on this topic

originated by the researchers involved in the Early Treatment of Atrial Fibrillation for
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Stroke Prevention Trial (EAST-AFNET 4), who demonstrated that an early intervention

(< 1 y from the diagnosis of AF) to restore and maintain sinus rhythm, when compared

to usual care, was correlated to the reduced incidence of the composite outcome, con-

sisting of cardiovascular death, stroke, and new hospitalizations due to heart failure or

acute coronary syndromes163 (Fig. 5.3).

Figure 5.3: Cumulative-incidence curves for the first primary outcome (early rhythm
control – N = 1,395, 70 y; usual care – N = 1,394, 70 y; follow-up: 5.1 y). From Kirchhof
et al., 2020.

The same results on identical endpoints were obtained in a huge registry, in which the

rhythm control strategy resulted once again superior to a rate-control one if started in

the first 12 months from the arrhythmia onset. No benefit was found in subjects treated

after that period164 (Fig. 5.4).
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Figure 5.4: Incidence of the primary outcome in early and late treatments for AF among
the NHIS participants (early/late - N = 16,323/6,312; age: 70/69 years; CHA2DS2-
VASc: 4/4; FU: 2.1/2.2 years; 2005-2015). From Kim et al., 2021.

Even the substrate ablation of AF revealed to be a more effective strategy to reduce

the incidence of dementia than medical therapy. Importantly, the clinical benefits were

observed in both vascular and Alzheimer’s dementia165. It was also found that a rhythm-

control strategy to be effective on cognitive decline should be pursued in patients with

a maximum age of about 85 years166 .
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Figure 5.5: Relation between age at treatment initiation and risk of dementia for rhythm-
control or rate-control among the NHIS participants. From Kim et al., 2022.

Accordingly, the knowledge gaps about the arrhythmia and dementia concern the ef-

fects of AF ablation, the role of anti-arrhythmic therapy, irregularity of rhythm, and of

a rate-control strategy161. We think that to be able to successfully choose the more

appropriate type of therapy - sometimes a highly-invasive one - the support of the bio-

chemical basis of a clinical “scenario” could be extremely useful.

This study was conducted on a small sample of patients and controls and this could rep-

resent a limitation. Additionally, untargeted metabolomics produces a global biochemi-

cal phenotype and the challenges of a comprehensive investigation of the metabolome

are well known. In fact, beside the diversity in physical and chemical properties of the

metaboolites, they also occur in a wide concentration range. Furthermore, the dynam-

ics of the metabolome should also be considered as metabolite distribution can vary

according to several factors including diet or circadian fluctuations167. Obtaining more

information about the diet and lifestyle of the subjects enrolled in the study could have

been useful to better stratify the subjects in more homogenous groups, thus minimizing

the differences that are not strictly due to the presence or absence of AF. In spite of

these limitations, the differences we found allowed to build statistical models biologically

and clinically plausible. It should be mentioned that this experience derived from the

activity of only one center. This fact could limit the generalizability of our conclusions
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but, also, it should make more homogeneous the experimental conduct of the team.

We included only patients with persistent or long-standing persistent forms of the ar-

rhythmia. We cannot exclude that our conclusions could have been different if we had

studied also patients with paroxysmal (short-lasting episodes) or permanent AF. How-

ever, a persistent form of the arrhythmia is very frequently observed in older people.

All patients enrolled in our study presented a form of symptomatic AF and therefore we

could not evaluate the metabolomic profile of subjects with silent AF. Also, we could not

exclude that any of the healthy elderly subjects presented a silent form of AF, although

it is highly unlikely since they did not have any of the risk factors or comorbidities asso-

ciated with the arrhythmia. Lastly, for statistical reasons, the vast number of molecules

that were detected did not allow to test all possible interactions. However, this study

is to be conceived as a true pilot one. From the robust protocol we developed and the

findings we presented, we think it could pave the way to more up-to-date and refined

projects.

In conclusion, the results of this study allowed to reach some conclusions that we feel

important for a more effective clinical practice. First, healthy young subjects differed

from AF patients because of their body size, probably a surrogate marker of sarcope-

nia. Second, applying metabolomics, AF patients could be clustered according to their

clinical complexity, their physical function and the plasma levels of IL-6. Accordingly,

the subjects with the arrhythmia presenting the worse metabolic profile could repre-

sent the frailest ones. A more “targeted” analysis could allow to identify some of the

metabolic markers associated with the condition and to decide if an intervention is ap-

propriate or futile. Third, we found an association between inflammation and medium-

long-chain acylcarnitines which may cause electrophysiological alterations in cardiac

tissue and thus contribute to the establishment of a favourable substrate for AF de-

velopment. Last, we identified the existence of endothelial dysfunction in our cohort

of patients. In them, AF acted independently and on top of the age-related effects to

contribute to atrial cardiomyopathy and to an increased risk of stroke. As previously

mentioned, more specific projects with a more adequate sample size are needed to

confirm our findings and future studies should follow the metabolomic profile changes
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that occur as AF progresses.
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Appendix

Table 6.1: The metadata available of patients with AF*.

Biometric

data

Heart

details Comorbidities Drugs

GMA & other

scores

Blood

test

values

Age RCAVI hypertension type of oral

anticoagulant

MMSE leucocites

Height LCAVI diabetes 𝛼 blockers GDS hemoglobin

Weight RABI dyslipidemia 𝛽 blockers SPPB - total platelets

BMI LABI CKD ACE in-

hibitors/ARBs

CHA2DS2-

VASc score

ESR

Gender left atrial

diameter

hyperuricemia dihydropyridines fibrinogen

left atrial

area

CAD statins glycemia

left atrial

volume

CHF diuretics creatinine

EDD CVD amiodarone Na+

ESD arteriopathy antiaggregants K+

EF thyroid

disease

antiulcer

drugs

Cl-

COPD antidiabetic

drugs

Ca2+

insulin ALT/GPT

anti uric acid

drugs

triglycerides

thyroxine cholesterol

benzodiazepines HDL

SSRIs/SNRIs uricemia
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Biometric

data

Heart

details Comorbidities Drugs

GMA & other

scores

Blood

test

values

digitalis CG eGFR

ferritin

iron

NT-

proBNP

CRP

*Biometric data, habits, comorbidities, and drugs are also available for the control

group.

Table 6.2: Frequency table of categorical variables.

Variable N yes % yes

smoke 26 52

hypertension 43 86

diabetes 8 16

dyslipidemia 22 44

CKD 10 20

hyperuricemia 15 30

CAD 13 26

CHF 17 34

CVD 6 12

arteriopathy 10 20

thyroid disease 10 20

COPD 9 18

𝛼 blockers 12 24

𝛽 blockers 39 78

ACE inhibitors/ARBs 42 84
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Variable N yes % yes

dihydropyridines 10 20

statins 23 46

diuretics 32 64

amiodarone 23 46

antiaggregants 6 12

antiulcer drugs 23 46

antidiabetic drugs 5 10

insulin 3 6

anti uric acid drugs 10 20

thyroxine 6 12

benzodiazepines 5 10

SSRIs/SNRIs 3 6

digitalis 18 36

lives alone 11 22

Table 6.3: The clusters obtained with k-means clustering of metabolomics GC-MS data
of H and AF.

Sample Cluster 1 Cluster 2

340_AF X

341_AF X

361_AFHF X

358_AF X

356_AF X

355_AFHF X

354_AFHF X

351_AF X

353_AF X

348_AFHF X
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Sample Cluster 1 Cluster 2

346_AF X

343_AFHF X

342_AF X

362_AFHF X

363_AF X

349_AFHF X

347_AF X

365_AFHF X

366_AFHF X

369_AFHF X

370_AFHF X

371_AF X

374_AF X

376_AFHF X

380_AFHF X

381_AFHF X

387_AFHF X

389_AFHF X

390_AFHF X

391_AFHF X

393_AFHF X

394_AF X

396_AFHF X

398_AFHF X

397_AF X

405_AF X

406_AF X

407_AFHF X

408_AFHF X
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Sample Cluster 1 Cluster 2

409_AF X

410_AF X

455_AF X

465_AFHF X

466_AFHF X

454_AF X

3_Hy X

4_Hy X

5_Hy X

7_Hy X

9_Hy X

10_Hy X

11_Hy X

12_Hy X

50_Ho X

51_Ho X

52_Ho X

53_Ho X

54_Ho X

55_Ho X

56_Ho X

57_Ho X

58_Ho X

59_Ho X

60_Ho X

61_Ho X

63_Ho X
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Table 6.4: The clusters obtained with k-means clustering of metabolomics GC-MS data
of AFonly and AFHF.

Sample Cluster 1 Cluster 2

340_AF X

341_AF X

361_AFHF X

358_AF X

356_AF X

355_AFHF X

354_AFHF X

351_AF X

353_AF X

348_AFHF X

346_AF X

343_AFHF X

342_AF X

362_AFHF X

363_AF X

349_AFHF X

347_AF X

365_AFHF X

366_AFHF X

369_AFHF X

370_AFHF X

371_AF X

374_AF X

376_AFHF X

380_AFHF X

381_AFHF X

387_AFHF X
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Sample Cluster 1 Cluster 2

389_AFHF X

390_AFHF X

392_AFHF X

393_AFHF X

394_AF X

396_AFHF X

398_AFHF X

397_AF X

405_AF X

406_AF X

407_AFHF X

408_AFHF X

409_AF X

410_AF X

455_AF X

465_AFHF X

466_AFHF X

454_AF X
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