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• Prediction of ecological status at large
scales with few spatial data.

• Performances of 5 Machine Learning clas-
sification algorithms are compared.

• Ecological status is correlated to land use,
summer climate and water exploitation.

• Random Forest predicts ecological status
with 80 % precision.
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Ensuring a good ecological status of water bodies is one of the key challenges of communities and one of the objectives
of the European Water Framework Directive. Although recent works identified the most significant stressors affecting
the ecological quality of rivers, the ability to predict the overall ecological status of rivers based on a limited amount of
easily accessible geospatial data has not been investigated so far.Most of the analyses focus on detailed localmodelling
and measurements which cannot be systematically applied at regional scales for the purposes of water resources man-
agement. The aim of this work is to understand the capabilities of five supervised machine learning classifiers of
predicting the ecological status of rivers based on land use, climate, morphology, and water management parameters
extracted over the river catchments corresponding to the ecological monitoring stations. Moreover, the performances
of machine learning classifiers are compared to the results of the canonical correlation analysis. Themethod is applied
to 360 catchments in Tuscany (central Italy) with a median size of 33.6 km2 and a Mediterranean climate. The results
show (i) a significant correlation of ecological status with summer climate (i.e., maximum temperatures andminimum
precipitation), land use andwater exploitation, (ii) an 80% precision of Random Forest algorithm to predict ecological
status and (iii) higher capability of all classifiers to predict at least good ecological status. In perspective, such predic-
tive capabilities can support decisionmaking in the land andwater resources management and highlight strategies for
river eco-hydrological conservation.
1. Introduction

River water quality is significantly affected by numerous stressors
(Reid et al., 2019; Herrero et al., 2018; EEA, 2018). The European Water
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framework DirectiveWFD (60/2000/EC) (EU Parliament, 2000) prescribes
an intense monitoring program of ecological status of river water bodies
with the final objective of achieving at least a “good” condition. The inter-
action among different stressors in determining the ecological status is still
poorly understood due to the complex non-linear feedbacks of living eco-
systems and does not facilitate the adoption of mitigation measures
(Carvalho et al., 2019). Moreover, the WFD recognizes the crucial
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importance of water quantity and dynamics in maintaining the quality
of aquatic ecosystems and requires River Basin District Authorities to set
out ecological flows. Ecological flows are considered within the context of
the WFD as “a hydrological regime consistent with the achievement of
the environmental objectives of the WFD in natural surface water bodies”
(European Commission, 2016). Thus, understanding the key ecological
stressors allows to set out more appropriate ecological flows.

Ecological status is usually determined by measuring and combining
specific biological indicators and recognizing that different water types
and supporting quality elements demand different threshold levels, thus a
good ecological status cannot be defined across Europe using absolute stan-
dards (Voulvoulis et al., 2017). The ecological status classification is based
on the worst among the selected biological indicators. Common indicators
for rivers aremacroinvertebrate-based indices, which are sensitive to pollu-
tion and habitat degradation (Azzellino et al., 2013). Nitrogen, phosphorus,
and dissolved oxygen are accounted for in the LIMeco indexwhich iswidely
recognized as a proxy for ecological quality (Larsen et al., 2019; ARPAT,
2021). Macrophytes indices (e.g., Macrophyte Biological Index for Rivers,
IBMR) and diatom (Trophic Diatom Index, TDI) (Lu et al., 2020; Bytyqi
et al., 2020) are also widely used. The river quality classification sensu
WFD also includes the integrity and continuity of river morphology and ri-
parian zones (Belletti et al., 2020).

These indicators require periodic on-site surveys by environment agen-
cies that collect samples for analysis. Obviously, such a detailed on-site
monitoring can be carried out only at predetermined locations and water
bodies of main interest, with limited capabilities of extrapolating ecological
quality indicators at unmonitored locations. In recent years, the role of dif-
ferent stressors on water quality has been investigated. Grizzetti et al.
(2017) considered the catchments of the whole European Union, with an
average size of 180 km2 to study the most significant indicators in
explaining ecological quality. They identified twelve indicators in terms
of (i) pollution pressures (e.g., phosphorus concentrations), (ii) hydrologi-
cal alterations (e.g., low flow alteration), (iii) hydromorphological alter-
ations (e.g., artificial land cover in floodplains, density of infrastructures)
and (iv) integrated pressures (e.g., agricultural land cover in the catchment
area). The correlation among indicators was explored and three types of
classification techniques were adopted to test the combined effects of mul-
tiple pressures. Their results showed that a good ecological status of rivers is
mainly driven by the presence of natural areas in floodplains, nutrient
concentration (especially nitrogen), infrastructures in floodplains and
urbanisation and agriculture in the drained catchment. It should be
noted that the indicators related to pollution and hydrological alter-
ations were obtained by numerical simulations, while others were elab-
orated from spatial data.

Lemm et al. (2021) analysed ca. 50,000 catchments of a median size of
60 km2 and seven stressors, i.e., urban and agricultural land use in the ripar-
ian zone, alteration of mean annual flow and base flow, phosphorus and ni-
trogen load andmixture toxic pressure. They distinguished the river type in
terms of geological substrate, catchment size, altitude, and climate. Also in
this case, hydrological alterations and nutrient loadwere simulated to build
the dataset. The dataset was analysed with Spearman's correlation to check
how individual stressors are correlated and through nonlinear Boosted
Regression Tree models. They found counter-intuitive results such as a sig-
nificant role of nutrient enrichment in mountain rivers rather than in low-
land rivers and similar effects of hydrological alteration in Mediterranean
rivers and overall catchment population.

Visser et al. (2022) adopted 10 Machine Learning (ML) models and a
multiple regression model on a number of samples of about 200 records
to calculate the effect of restoration and mitigation measures on the
ecological status of surface waters and to support decision makers in
the Netherlands. They select 15 stressors which include, besides pollu-
tion ones, water transparency, bank design, hydraulic connectivity,
meandering, impoundments etc. to fit the common specific water body
conditions in the country. They found that Random Forest algorithm
provides the best prediction of ecological quality ratios but with a lim-
ited transparency of model structure.
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A ranking of stressors by using Random Forest algorithm was also per-
formed by Herrero et al. (2018) for the Ebro catchment. They identified ag-
ricultural surface, population, and altitude as good predictors for biological
quality elements, i.e., diatoms, macrophytes and invertebrates. They also
considered future climate and socio-economic scenarios and predicted
a decrease in diatom and invertebrate indices.

Valerio et al. (2021) used ML (Random Forest and gradient boosted
regression trees) to model biological response to multiple stressors, such
as land use and nutrient concentrations. They obtained an accuracy be-
tween 70 % and 90 % in predicting macroinvertebrates, diatoms and
macrophytes indices in the Tagus River basin.

Nevertheless, the prediction of the overall ecological status at large spa-
tial scales, though crucial for planning effective policies, is still a complex
task, especially when the required information, e.g., nutrient concentra-
tion/load needs to be simulated in many catchments with limited ability
to validate the estimates with on-site data. Some authors also highlight a
low attention on the role of chemical pollution and other major pressures
besides eutrophication (Posthuma et al., 2020; Poikane et al., 2020).

The mentioned studies considered nutrients load, simulated at large
scales, land use, simulated discharges and morphological alterations to un-
derstand the response of biological quality in surfacewater highlighting the
importance of phosphorus (and nitrogen) and land use (Visser et al., 2022;
Lemm et al., 2021; Valerio et al., 2021; Grizzetti et al., 2017). ML algo-
rithms are key tools (Chen et al., 2020) to rank the significance of single
and combined stressors or predict biological indices, which constitute the
basis for the determination of ecological status. In the hypothesis that
land use and nutrients load in rivers are correlated and that also biological
indices are correlated to the overall ecological status, the aim of this work is
to investigate the ability of ML classification algorithms to predict the
overall ecological status of rivers by using a limited number of geospatial
data related to climate, land use, water management and morphological
alterations, without any model to simulate physico-chemistry stressors
(e.g. dissolved oxygen, ammonium, etc.) and hydrological alterations. The
ML classification algorithms are trained and tested on two independent
datasets of the Tuscany Region (Central Italy) starting from the ecological
monitoring stations of the regional environment agency. To the authors'
knowledge this is the first example of prediction of the overall ecological
status for a diverse set of catchments sizes from 1 km2 to c. 8000 km2 with-
out explicitly accounting for physico-chemistry stressors, but only for a lim-
ited number of easily available geospatial data. The proposed approach has
the potential for a systematic application on large scales, e.g., region or
country, based on readily available geospatial datasets and might help
water resources management.

2. Materials and method

The methodological workflow is summarized in Fig. 1. First, the river
catchments corresponding to the location of the ecological monitoring
sites are identified based on a Digital Terrain Model in a Geographic Infor-
mation System environment. Second, the vector layer of the river catch-
ments is enriched with several attributes that are combined into synthetic
parameters to build the working dataset (Section 2.1). In the third phase
the dataset is split into calibration and validation set to test the predictive
performances of 5 ML classification algorithms (Section 2.2) in comparison
with a canonical correlation analysis. Finally, the prediction errors on the
validation set are interpreted on a geographic basis through the spatial
mapping of the components of the confusion matrix.

2.1. Dataset creation

The catchment dataset is created in Quantum Geographic Information
System (QGIS) starting from the text file of coordinates of the ecological
monitoring sites converted into a vector shapefile. In order to resolve
minor issues related to the position of monitoring sites, i.e., few meters of
distance between river centerline and monitoring stations, the QGIS plugin
ClosestPoint (Baudin, 2020) is used to associate the points to the river



Fig. 1.Methodological workflow, ellipses stand for numerical operations, rectangles for data flows.
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network. The river catchments upstream each ecological monitoring site
are obtained by a filled 10 m resolution Digital Terrain Model (DTM).
The hydrology SAGA tools channels and upslope area allow creating the
catchments and associate to them themonitoring station ID and the ecolog-
ical quality class ECO_St (from 1-High to 5-Bad). The procedure univocally
associates river ID, corresponding catchment, and ECO_St.

Once the catchments are created, a series of geospatial data are
extracted over the catchment area A (km2). Table 1 lists the geospatial
data included in the attribute table. The data include climate conditions
(temperature and precipitation), land use, presence of hydraulic structures,
water abstraction and treatment.

From the GIS data extracted on the catchment areas a series of normal-
ized parameters have been calculated to summarize key stressors in terms
of climate, water management, morphological alterations, and land use
(Table 2). With respect to land use, the percentage of agricultural, artificial
and forest areas have been calculated (parameters 3–5). Climate parame-
ters on the catchments are mean annual precipitation, minimum summer
precipitation, and maximum summer temperature (parameters 6–8). They
have been selected to account both for annual average conditions and for
summer conditions, that in Mediterranean climate are the driest months.
Maximum summer temperature, although lasting for a short time, show
high correlation with mean annual temperature (Pearson's r = 0.85) and
can highlight the most critical period for ecological status when higher
Table 1
GIS data extracted over the catchments vector layer.

GIS original data

DTM
Ecological status (ECO_St)
Land use land cover (LULC)
Annual and monthly precipitation (Py, Pm)
Monthly temperatures (Tm)
Linear hydraulic structures (LHS)
Point hydraulic structure (PHS)
Combined Sewer Overflow (CSO)
Permitted Water Abstraction (PWA)
Treated Wastewater Volume (WWV)

3

surface water temperatures have consequences on dissolved oxygen con-
centration at saturation.

Alterations in river continuity andmorphology are accounted for in two
parameters measuring the density of linear and point hydraulic structures
over the length of the water body in the catchment (parameters 9 and 10).

The ratio between permitted water abstraction and precipitation vol-
umes in the catchment, both on annual and summer basis are the stressors
on renewable water quantity (parameters 12–13). Proxies for water quality
are the number of Combined Sewer Overflow (CSO) per unit length of
water body expressed in km, and volume fraction of treated wastewater
with respect to permitted water abstraction (parameters 11 and 14). Nutri-
ents load fromCSO and treatedwastewaters is not here explicitly accounted
for. In the case of CSO the information is not available due to the occasional
activation of these systems, for treatedwastewaters the limits for concentra-
tion of nutrients at the outlet are prescribed by law, thus we consider the
treated volume as driving variable.

2.2. ML algorithm and predictive performances

The final dataset is composed by the 14 parameters calculated in the
catchments (Table 2) and the class attribute of the ecological status
assigned to rivers at the monitoring stations (ECO_St). As a preliminary
analysis, the Spearman's rank correlation coefficients between all pairs of
Description

Digital Terrain Model 10 × 10
Classification 1-high, 2-good, 3-moderate, 4-poor, 5-bad (2019–2020)
Level 1 (artificial surfaces, agricultural areas, forest and semi-natural areas)
Raster map based on a twenty years' time series (1999–2019)
Raster map based on a twenty years' time series (1999–2019)
Polyline data including dikes, levees etc.
Point data including weirs, abstraction structures, sluice gates, spillway, groynes etc.
Point data with occasional untreated discharges
Point data with annual volumes withdrawn
Point data with annual volumes discharged from wastewater treatment plants



Table 2
Elaborated and normalized parameters subdivided per stressor typology for the creation of the dataset.

Type of stressor Parameters Elaboration Unit of
measurement

Catchment characteristics 1 Catchment area A – km2

2 Elevation of catchment outlet E – m a.s.l.
3 Agricultural surface Agr% Aagr/A %
4 Artificial surface Urb% Aurb/A %
5 Forest and semi-natural areas For% Afor/A %

Climate 6 Mean annual precipitation in the catchment Py_mean 1
n cells ∙ ∑

n cells

j¼1
Py,j

mm

7 Min. summer precipitation Ps_min in the catchment (July j, August a, September s) min(Pj, k + Pa, k + Ps, k)
k = 1, …, n cells

mm

8 Maximum summer temperature Ts_max in the catchment (July j, August a, September s) max(Ti, k), i = j, a, s; k = 1, …, n cell °C
Morphology 9 Density of linear hydraulic structures DLHS LLHS/Lriver km/km

10 Density of point hydraulic structures DPHS PHS/Lriver Number/km
Water resources management 11 Density of Combined Sewer Overflow DCSO CSO/Lriver Number/km

12 Permitted Water Abstraction/Precipitation (annual) PWAP PWA/(Py_mean · A) %
13 Permitted Water Abstraction/Precipitation (summer) PWAP_S (0.25 · PWA)/(Ps_min · A) %
14 Treated Water Fraction TWF WWV/PWA %
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variables are calculated to detect statistically significant relationship be-
tween ecological status (5 classes) and stressors, and between stressors.
Moreover, the canonical correlation analysis, a widely adopted technique
to find linear combinations of vectors which show maximum correlation
with each other (Hardoon et al., 2003) is performed to act as benchmark
for ML classification algorithms.

Predicting classes is one of the most common supervised learning tasks
(Géron, 2019). In order to simplify the classification problem into a binary
classification, the ecological status of river is transformed into two classes:
(i) at least good, for those rivers classified as high or good, and (ii) less than
good, for those rivers classified as moderate, poor or bad, sensu WFD. The
dataset is randomly split into a training set (66 % of the instances) and a
test set (34 % of the instances). The sensitivity with respect to different ran-
domly selected training and test set has been verified by repeating the
calibration-validation exercise over different training and test set to avoid
the risk of overfitting.

Five classification algorithms are considered to compare their predic-
tive ability in the WEKA (Waikato Environment for Knowledge Analysis)
environment (Frank et al., 2016): Naïve Bayes (John and Langley, 1995),
Random Forest (Breiman, 2001), J48 classification tree (Quinlan, 1993),
Logistic regression (Strickland, 2017) and K-nearest neighbour (Aha and
Kibler, 1991). The performances of the classifiers are evaluated by means
of precision, recall and F-measure (Géron, 2019; Chen et al., 2020) ob-
tained by the evaluation of the confusion matrix. Precision is the ratio be-
tween true positive TP and the sum of true positive and false positive FP.

precision ¼ TP
TPþ FP

(1)

Recall is the ratio of positive instances that are correctly detected by the
classifier

recall ¼ TP
TPþ FN

(2)

where FN is the number of false negative.
F-measure is the harmonic mean of precision and recall

F ¼ TP
TPþ FNþFP

2

(3)

Finally an analysis of the most significant parameters for ecological sta-
tus classification is carried out through algorithms that iteratively create all
possible subsets from the feature vector and then use a classification algo-
rithm to assess which subset performs the best (Hall, 1998). Predictive per-
formanceswith a reduced number of attributes can be then compared to the
classification with all 14 parameters. This final analysis provides key indi-
cations for the application of the proposed methodology in regions where
4

not all the 14 parameters considered heremay be available, or for designing
data collection/retrieval experiments aimed at ecological status prediction.

2.3. Case study

The study area is the Tuscany Region located in central Italy (Fig. 2,
panel a). The surface area is c. 23,000 km2 and the population is 3.7 million
approximately. The northern boundary is characterized bymountains, with
an altitude of the order of 1000–1500 m a.s.l., the western part is bounded
by the Tyrrenian Sea. Climatic conditions are semiarid in southern coastal
areas and perhumid in the northern mountainous regions. Annual average
temperatures are irregularly distributed within the study area, ranging
from 8 °C in the northern mountain peaks to 17 °C in southern coastal
area. The average annual precipitation is 1190 mm (min. 618 mm, max.
2748 mm at point rainfall gauges), with a high variability with respect to
season and elevation. Themountains and the southern portion of the region
have a limited population density. The population is mostly concentrated
within the Arno River catchment in the metropolitan area of Florence, in-
cluding the municipalities of Prato and Pistoia (ca. 1.2 million inhabitants)
and the province of Pisa (ca. 450,000 inhabitants).

The Regional environment agency (ARPAT, 2021) monitors 360
points within rivers in the area (violet points in Fig. 2, panel b). The
five indicators used for ecological status classification are benthic mac-
roinvertebrates, macrophytes, benthic diatoms, LIMeco (dissolved oxy-
gen, phosphorus, ammonium, nitrate) and the concentration of selected
hazardous substances (according to Italian Law d.lgs. 172/2015). Ac-
cording to the monitoring results, WFD objectives are achieved for
215 river catchments whose ecological status is classified at least good
(green polygons in Fig. 2, panel b), while 145 rivers fail to achieve the
WFD objectives (orange polygons in Fig. 2, panel b). The corresponding
360 catchments identified upstream of the ecological monitoring sites
have a surface area ranging from 1 to 8122 km2, with an average size
of 205 km2 and median size of 33.6 km2 (Fig. 2, panel c). The Arno
River has the largest river basin in the region with a surface of
8200 km2. The Tuscany Region cartographic data portal and the re-
gional hydrologic service provide the data listed in Table 1.

3. Results and discussion

3.1. Correlations between ecological status and stressors

Table 3 shows Spearman's correlation coefficients between all pairs of
variables considering all the 5 classes of ecological status (ECO_St). Non-
statistically significant correlations between pairs are marked as nss using
a p threshold of 0.001. ECO_st appears correlated to all land use classes,
i.e., Urb%, Agr%, For%, and is negatively correlated to For% that means
that ecological quality decreases with the decrease of forest and natural



Fig. 2. Setting of the study area in central Italy (a). Catchments identified upstream each ecologicalmonitoring station and their compliance with respect toWFD objectives at
least good (green) and less than good (orange) (b), frequency histogram of catchment surface areas (c).
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areas cover. Agricultural and artificial surfaces are instead positively corre-
lated showing a detrimental effect of both Urb% and Agr% on ecological
quality. ECO_St also shows statistically significant correlations with climate
parameters especially with Ps_min and Ts_max highlighting the presence of
worse ecological status of rivers in catchments with drier and warmer sum-
mer conditions. Elevation is correlated to ECO_St, For% and all climate pa-
rameters (especially temperatures). Some works considered elevation as a
proxy of anthropization (Larsen et al., 2019) and also for our study area it
is possible to notice a Spearman's correlation coefficient of−0.45 between
E and Urb% (see also Fig. 3 panel c). In fact, (i) the elevation is also nega-
tively correlated with DLHS, i.e., increased morphological alterations
with linear infrastructures (e.g., levees) in floodplains, and (ii) positively
correlated with DPHS, i.e., higher density of point infrastructures
(e.g., weirs) in the mountains. The density of point hydraulic structures is
slightly correlated to ECO_St, no correlation exists with the density of
CSO, however, a non-negligible correlation is found with the density of lin-
ear hydraulic structures DLHS. On the side of water management, the ratio
between permitted water abstraction and precipitation, both in annual and
summer conditions are positively correlated to ECO_St showing, as largely
expected, a decreasing ecological status with increasing water abstraction.
Nevertheless, it is worth mentioning that some authors found some biolog-
ical indicators, used in ecological status classification, unsuitable for detect-
ing specific hydrologic pressures highlighting gaps that should be
addressed in future (Larsen et al., 2019; Arrighi et al., 2021). The positive
correlation of ECO_St with the catchment area A highlights a decrease in
5

ecological status with increasing area, that can be interpreted in terms of
combination of multiple pressures occurring upstream creating impacts in
downstream areas due to advection and bio-chemical reactions.

Fig. 3 shows some significant catchment parameters for the ecological
status. Panel (a) represents the five classes of ecological status (1-High to
5-Bad) versus minimum summer precipitation andmaximum summer tem-
perature. It shows a quite evident trend of decreasing ecological status to-
wards drier and warmer climatic conditions, i.e., moving towards the
bottom right part of the plot, which are concerning for future climate sce-
narios. Particularly, poor and bad ecological statuses appear clustered in
the area with PS_min < 200 mm and TS_max > 27 °C. Panels (b–c) represent
the five classes of ecological status vs elevation and land use, forest and
artificial cover, respectively. Higher elevations and less artificial land
cover in favour of forest land cover appear also quite important to deter-
mine a good ecological status.

The canonical correlation analysis returns a canonical variable V as a
linear combination of the 14 attributes. The coefficients of the linear com-
bination are shown in the Supplementary Table 1. The higher the linear
combination coefficients obtained, the greater the influence that the single
variable has in explaining ECO_St. Again, the canonical correlation analysis
confirms the importance of land use, summer maximum temperature and
permitted water abstraction, which show the higher order of magnitude
of the coefficients. The correlation coefficient between the variables
ECO_St and the canonical variable V is equal to 0.62, it constitutes the
benchmark for ML algorithms.



Table 3
Rho Spearman's correlation coefficients between all pairs of variables. Positive and negative correlations are highlighted in yellow and blue shades
respectively with a linear scale of four intervals with colors darkening with higher values.

ECO_St A Urb% Agr% For% Py_mean Ps_min Ts_max DPHS E DLHS DCSO TWF PWAP PWAP_S

ECO_St 1.00 0.44 0.44 0.44 -0.53 -0.25 -0.34 0.47 0.28 -0.45 0.42 nss 0.32 0.31 0.31

A 1.00 0.20 0.30 -0.40 -0.20 -0.45 0.54 0.35 -0.48 0.49 0.42 0.55 0.34 0.35

Urb% 1.00 0.56 -0.61 -0.30 -0.30 0.45 0.27 -0.45 0.39 0.22 0.30 0.32 0.30

Agr% 1.00 -0.88 -0.74 -0.67 0.59 nss -0.47 0.19 nss 0.29 nss nss

For% 1.00 0.68 0.69 -0.66 -0.20 0.61 -0.34 nss -0.35 nss nss

Py_mean 1.00 0.84 -0.54 nss 0.38 nss nss nss 0.22 0.26

Ps_min 1.00 -0.68 nss 0.56 -0.18 nss -0.23 nss nss

Ts_max 1.00 0.26 -0.71 0.37 0.20 0.35 0.18 nss

DPHS 1.00 -0.25 0.59 0.21 0.22 0.33 0.34

E 1.00 -0.44 nss -0.36 -0.33 -0.33

DLHS 1.00 0.29 0.36 0.46 0.46

DCSO 1.00 0.23 0.24 0.25

TWF 1.00 0.22 0.22

PWAP 1.00 1.00

PWAP_S 1.00
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The significance of land use parameters in the indices determining the
river ecological status confirms previous studies (Valerio et al., 2021;
Lemmet al., 2021; Grizzetti et al., 2017;Molina-Navarro et al., 2020). How-
ever, Spearman's rho of land use parameters is slightly higher than in
Grizzetti et al. (2017) (0.44 for Agr% here with respect to 0.29) and higher
than in Lemm et al., 2021 (0.44 for Agr% and URB% here with respect to
0.23 and 0.18 respectively). Higher Spearman's rho in our study can be
due to the smaller number of observations and on the limited regional var-
iability of catchment characteristics.

The scarce correlation of ECO_St and the presence of point hydraulic
structures can be a consequence of the scarce pressures from river barriers
with respect to other EU countries (Belletti et al., 2020; European Environ-
ment Agency, 2020), while linear morphological alterations, such as levees
or river bed protections appear quite significant. However, summer maxi-
mum temperatures and summer precipitations haven't emerged as signifi-
cant drivers in previous studies, which focused on different geographical
areas. Only Molina-Navarro et al. (2020) identified mean annual tempera-
ture as a stressor for ecological status. The study by Grizzetti et al. (2017)
is the only one investigating the role of water demand in ecological quality,
although measured in absolute terms (mm per day) rather than in compar-
isonwith precipitation. In that analysis the significance of water demand on
ecological status was less clear with respect to land use and nutrients con-
centration. Here instead, the correlation of ECO_Stwith the stressors related
to permitted water exploitation and treated wastewater (TWF, PWAP and
PWAP_S) appears significant.

With respect to the canonical correlation analysis, which to the au-
thors' knowledge has been rarely applied to predict ecological status
or biological indicators, it is possible to say that the interpretability of
the method, as defined by Visser et al. (2022) is high and can be pre-
ferred by decision makers and stakeholders, with respect to some ML
methods whose structure resembles to a black box. Nevertheless, a com-
promise between interpretability of model structure and predictive ca-
pabilities should be carefully analysed.
6

3.2. ML classification performances

With ECO_St transformed into two classes (at least good and less than
good), the ML classification algorithms are calibrated on the training set
and provide an estimated predictive ability on the validation set, as
shown in Table 4.

All the ML classification algorithms have a better performance with re-
spect to the correlation coefficient obtained by the canonical correlation
analysis, that we consider here as a benchmark. All the applied classifica-
tion algorithms perform better in terms of precision in predicting a status
of at least good. This can be interpreted in terms of difficulties in predicting
the effects of multiple climate and anthropic pressures. Overall, the best
classification performance is obtained by Random Forest approach with
an 80 % precision, recall and F-measure. An accuracy of the order of
70–90 % was also found in the case study of Ebro river catchment in
predicting macroinvertebrates, diatoms and macrophytes indices (Valerio
et al., 2021). Random forest algorithm confirms to be one of the most accu-
rate predictors also in similar studies (Chen et al., 2020; Visser et al., 2022;
Grizzetti et al., 2017).

In order to better understand what the reasons for a bad prediction are,
the catchments used as validation set are mapped and compared with the
actual ecological status assessed by ARPAT. The results are shown in
Fig. 4. The catchments in light blue and pink are those correctly predicted
by the Random Forest classifier, the light blue ones and the pink ones cor-
respond to at least good and less than good rivers respectively. The dark
blue polygons are predicted at least good by the model but assessed less
than good. They are mostly located in the north western part of the region
with mid altitudes, high summer precipitation and forest land cover,
however the analysis of chemical substances, sensu WFD, reveals in
these river the presence of mercury, lead and polybrominated
diphenylethers (pBDEs), which are recognized in EU as the main responsi-
ble of failure in achieving good chemical status (Posthuma et al., 2020;
European Environment Agency, 2018). Mercury compounds contaminate



Fig. 3. Ecological status of rivers with respect to climate and land use conditions of
the upstream catchment.

Table 4
Ability to predict river ecological status of the ML classification algorithms with all 14 a

Algorithm Precision
(at least good)

Recall
(at least good)

F measure
(at least good)

Precision
(less than good)

Naïve Bayes 0.86 0.63 0.73 0.60
J48 0.82 0.54 0.65 0.53
Random forest 0.83 0.84 0.84 0.76
Logistic regression 0.73 0.70 0.72 0.57
K-Nearest Neighbours 0.79 0.66 0.72 0.58
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waters through atmospheric deposition (from energy sector, industrial pro-
cesses, cement manufacturing etc.), thus their presence is not easily
guessed by land use in the catchment. Urban settlements are the main
sources of pBDEs which are persistent in sediments and soils and have
harmful effect on endocrine system of aquatic organisms, adversely affect-
ing reproduction and growth (European Environment Agency, 2018). The
presence of pollution sources which are not directly linked to the character-
istics of the catchments, such as those from atmospheric deposition, make
weaker the assumption that is possible to predict ecological status with a
certain degree of accuracy with a few geospatial information, because our
selected parameters are not able to capture this phenomenon. This aspect
should be addressed in future works to possibly identify different parame-
ters or more appropriate combinations of parameters for the ML models
and by better understanding overfitting issues and most sensitive parame-
ters for model training.

The purple polygons, predicted less than good but actually at least good,
are located in the southern part of the region in the two provinces of Siena
and Grosseto. Here the reasons for a wrong classification could reside in the
large agricultural land use, which however counts a significant amount of
organic farming (ca. 30 % of the agricultural area) (Regione Toscana,
2006, 2012). However, the exact geographic location of organic agricul-
tural areas is currently not available as geospatial data. The availability of
this type of geospatial data could further improve the predictive capabilities
of ML classifiers. Overall, ML learning classifiers perform well when the
available data for training and testing are enough and have a good qual-
ity. The predictive abilities of the ML algorithms might be enhanced by
(i) an improved quality of the geospatial data used for training and test-
ing, e.g., organic agricultural surfaces, and (ii) the adoption of different
parameters more capable to capture pressures on river ecology, (iii) an
enlargement of the sample size.

The analysis of the most significant parameters for ecological status
classification, yields as results the following 7 attributes: Agr%, For%,
Py_mean, Ps_min, Ts_max, DCSO, and PWAP. The application of the ML algo-
rithm to this attribute subset yields the results shown in the Supplementary
Table 2.

With a reduced number of attributes, the best predictive precision and
F-measure reduces to 0.72 and 0.71, with respect to 0.8 of the whole set
of attributes. The Naïve Bayes classifiers performs slightly better than Ran-
dom Forest in this case. The precision is again better in predicting at least
good instances rather than less than good. The performance of the ML
classifiers, although reduced, are still better than the correlation coeffi-
cient obtained by the canonical correlation analysis (r = 0.62).

Complex biological, hydrological, morphological, and climatological in-
teractions occur in rivers and determine ecological quality. As a result of
this complexity, modelling ecological status and ecological parameters
such as diatoms, macrophytes or invertebrates is extremely difficult at
large scales, i.e., river district scale. Nevertheless, strategic measures are
identified and prioritized at such large scales. ML techniques, which dem-
onstrated in this study good predictive capabilities might be a useful tool
for large scale planning of water resources.
4. Conclusions

This work aimed at understanding if the overall ecological status of
river can be predicted with a limited, easily accessible amount of
ttributes.

Recall
(less than good)

F measure
(less than good)

Precision
(weighted avg.)

Recall
(weighted avg.)

F measure
(weighted avg.)

0.83 0.70 0.75 0.71 0.72
0.81 0.65 0.71 0.65 0.65
0.75 0.75 0.80 0.80 0.80
0.60 0.59 0.67 0.66 0.67
0.73 0.65 0.71 0.69 0.69



Fig. 4. Spatial map of the confusion matrix obtained by the Random Forest algorithm in predicting ecological status of rivers on the validation set.
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geospatial data related to land use, climate, water management and
morphological alterations.

In the study area, ecological status has been found correlated to land
use, but also to minimum summer precipitation and maximum summer
temperature bringing to the fore an important aspect for Mediterranean cli-
mate, that was not highlighted before and raises some concerns related to
future climate scenarios. Moreover, the ratio between permitted water
abstraction and precipitation has been found correlated to ecological
status highlighting the role of water exploitation on river ecology.

Random Forest algorithm was the best classifier with 80 % precision
and F-measure, followed by Naïve Bayes classifier (F-measure = 0.72).
All classifiers performed better in predicting at least good status, highlight-
ing the difficulties in understanding multiple stressors interactions. The
performances ofML classification algorithms are better than those obtained
by a canonical correlation analysis, here used as a benchmark.

The spatial analysis of prediction error highlighted a potentially
high significance of organic farming in reducing nutrients-related pressures
on rivers. Unfortunately, a distinction of agricultural land use in “conven-
tional” and “organic” was not possible with the currently available spatial
data. Moreover, the classifiers failed in predicting some less than good eco-
logical statuses where some chemical substances, i.e., mercury and pBDEs
were detected by the environmental authority. This raise some concerns es-
pecially related to the atmospheric deposition of mercury compounds that
cannot be easily predicted with the spatial information used in this study.
Overall, this work contributed to the understanding of pressures determin-
ing ecological status of rivers and demonstrated a pretty good capability of
ML classifiers in predicting ecological status that can help in identifying
appropriate ecological flows, mitigation measures and water management
practices at large scales.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.159655.
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