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Abstract— Modern logistic operations in warehouses consist
of human and robots working in the same large indoor or
outdoor areas. To design safe and efficient area and avoid
collisions or accidents, localization and tracking of humans need
to be deployed. The development of location based service, such
as human activity monitoring, has been one of the drivers for
the last decade interest in indoor or outdoor positioning and
localization. In this work, a novel tracking system integrating
inertial measurements and an ultra-wide band infrastructure
is proposed to follow and localize humans in a warehouse
scenario. The system has been designed to be self-configurable,
able to learn online most of the needed parameters. Being the
computational load low, it can be implemented on wearable
devices. We tested the tracking system in a real outdoor
scenario where the adaptive online algorithms have shown
their effectiveness and improvements with respect to existing
approaches.

I. INTRODUCTION AND STATE OF THE ART

Modern warehouse and logistic operations consist of large
indoor or outdoor areas where robots are transferring goods,
moving racks, and performing physically difficult and repet-
itive tasks. This is performed near humans, whose presence
may affect the operations and warehouse efficiency. So, there
is a need of implementing some safety system that requires
the human localization as one of its essential components.
In the present paper we focus our attention to the human
localization and tracking, designing a novel solution to per-
form an improved positioning system for monitoring persons
in logistic operation areas. Indoor or outdoor localization
is very important in many fields, such as robotics, assistive
technology, tourism, industrial monitoring ([1], [2]), sport
([3], [4]), and in high risk operations (e.g., firefighters
interventions [5]). Two methods for monitoring human mo-
tion or determining pedestrian position have recently gained
attentions, the Pedestrian Dead Reckoning (PDR) using the
inertial sensors and localization methods using an UWB
(Ultra Wide Band) infrastructure. The process of estimating
the position of humans using inertial sensors is referred to as
PDR and it is widely used when GPS fails (like in an indoor
environment) or when it is unavailable or its accuracy is not
sufficient, although the results may not be accurate. Inertial
sensors present in many applications some limitations due
to drifts. In [6] an analysis of available PDR methods with
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a focus on wearable sensors is presented and a comparison
of the accuracy of different sensor layouts and algorithms is
shown. The UWB framework presented in [7] and [8] use
a set of static UWB receivers, named anchors, playing the
role of receivers together with some UWB transmitter (in
the wearable device). The UWB communication link from
the on-body transmitter to the receivers can be influenced
by many factors such as the relative height between the
transmitting and the receiving antennas as shown in [4], [9].

The novel positioning system presented in this paper is
improving the performance of the UWB by integrating a
PDR localization system, using wearable sensors. Integration
of UWB and PDR algorithms has been proposed for outdoor
scenarios in [3] and for indoor applications in [10], using
a Kalman (extended or, respectively, unscented) filter for
the sensor fusion operations. To estimate the state of the
PDR and UWB fusion system is commonly use a Kalman
filter exploiting the prior information on the data covariance
matrix (see [11], [12]). In [13] a robust nonlinear Kalman is
implemented to overcome both the challenges encountered
by the UWB (nonline-of-sight conditions) and the error
accumulation of PDR. Here, We fuse the two localization
methods to improve performance and positioning accuracy,
indoor or outdoor. The key features and novelty of the
presented sensor fusion algorithm with respect to previous
contributions [3], [4] can be summarized as follows:

1) All model parameters are identified and estimated on-
line, so the algorithm is independent from the user (i.e.,
weight, gender, height) and from the system calibration
(i.e., accelerometer bias, positions of the anchors, mag-
netometer calibration, and so on). No a priori knowledge
of the human body size is required.

2) A recursive parameter estimation via an adaptive learn-
ing procedure is presented.

3) The online algorithm estimates two human activities:
standing still and motion (slowly walking and fastly
walking). Despite previous attempt to solve this prob-
lem, this can be done now because the parameter related
to the human walking step length is estimated at each
run of the algorithm with no body information.

4) The algorithm is low time consuming.

To evaluate the performance of the localization algorithm
there certain criteria need to be satisfied. A first attempt to
standardize such tests to be passed to evaluate the localization
systems was the ISO/IEC 18305 standard, see [14] where the
various evaluation standard methodologies are compared. We
refer to such standard to define our tests and comparisons at
system level, and further key performance indicators have
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Fig. 1. Tracking system architecture

been evaluated.
The paper is organized as follows: in Section II the

adopted tracking system is detailed while in Section III
the processing of the data collected by the inertial sensors
is described. In Section IV the filter used for tracking is
highlighted. Finally, in Section V the achieved results are
reported. In Section VI the conclusive remarks are drawn.

II. TRACKING SYSTEM DESCRIPTION

The tracking system has been developed to compute
the position of a person in an industry environment or
warehouse. We focus the present paper and the tests on an
outdoor area, but indoor tests are also ongoing. The human
is equipped with a wearable device, consisting of an Inertial
Measurement Unit (IMU), a magnetometer, and an UWB
blinker. A set of UWB anchors are deployed on the perimeter
of the area of interest. Thus, the output of the tracking system
is the vector x̂i composed by the position coordinates and
the orientation of the human in a 2D environment.

All sensors provide information about the person move-
ment: the IMU can compute the accelerations and the angular
velocities, the magnetometer reports the orientation, and the
UWB system can retrieve the position. The latter at each time
instant is computed according to the architecture sketched in
Fig.1. The data provided by the IMU are pre-processed to
retrieve the displacement of the person during a sampling
interval. This information is used to build a prediction of
the human position and orientation. The prediction is further
adjusted by the information provided by the magnetometer
and the UWB positioning system.

It is worth noticing that i) the IMU and magnetometer data
are measured according to a moving coordinate frame, i.e.
the IMU body frame (BF); ii) the UWB data are computed
with respect to a fixed coordinate frame, i.e., the global
frame (GF). Therefore, a transformation from BF to GF
according to the IMU orientation has to be applied to merge
the information from the different sensors.

III. DATA ELABORATION WITH IMU AND
MAGNETOMETER PROCESSING

Processing the data collected by the IMU and magnetome-
ter is necessary to estimate the displacement and orientation
of the human. In this contribution, we assume that the human
stands still, slowly walks, or fastly walks in the considered
area. The wearable device is placed on the back of the

Fig. 2. Acceleration coronal axes of the human, triangles point aM and
am during a walking step event

person, near the center of mass, having the vertical axis of
the BF aligned with the human coronal plane, perpendicular
to the area. This position of the the device provides several
advantages resulting in a reduced computational complexity.
In more details, concerning accelerometers, only data along
z-axis of the BF need to be processed. The orientation can be
computed by integrating the gyroscopes data along the same
axis. The heading from magnetometer is computed using data
in the transversal plane of the user, i.e., data on the x, y-plane
of the BF. Since the z- axes of BF and GF are aligned, the
transformation from BF to GF reduces to an orientation shift,
once the initial position and orientation of the human with
respect to the GF are known.

A. Activity detection

The human activities considered in this work are standing
still and motion. A set of samples from the accelerometer
and gyroscope is analyzed to detect different activities.
Specifically, the covariance of the set of measurements is
computed and compared with the thresholds

cov(mj ,mj+1, . . . ,mj+k) ≤ tm (1)

where mj is the measurement and tm is the correspondent
threshold.

If one of the covariance values is lower than the threshold,
the activity is classified as standing still, otherwise motion.
The parameters tm is fixed, while the cardinality of the
measurement sets k is updated during the experiment. It
is worth noticing that a covariance computed over a large
number of measurements is more accurate, however this may
introduce a delay in the position computation. Therefore,
the choice of k represents a trade-off between accuracy
and delay. This choice is based on the activity motion:
specifically,

k = 3l (2)

where l is the number of measurement samples retrieved
during a single walking step event.

B. Adaptive bias computation

The main source of errors using IMU is biases affecting
both accelerometers and gyroscopes. The bias is often re-
moved by the pre-processing done by the sensor. However,
since the bias changes slowly over time due to different
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operational conditions (e.g., the temperature), a constant
residual error always affects the data. To remove it, the
measurements collected during standing still are used to
estimate the bias:

b = avg(mj ,mj+1, . . . ,mj+k). (3)

Once estimated, the bias is eliminated from the correspond-
ing measurement. Following this approach, the gravitational
acceleration is also removed since it can be considered as a
bias along the z-axis of the BF.

C. Adaptive displacement computation

There are several methods to compute the displacement
over a time interval by processing the IMU data. Here, the
integration of the accelerometer signal is not considered, as
it has been proven to be inaccurate and requires all the
accelerometer components. To determine the walking step
length, the dynamic approach proposed in [15] is considered,
thus the displacement ∆s at each walking step event n
becomes

∆sn = β 4
√
aM,n − am,n (4)

where β is a parameter that depends on gender, weight, and
height of the person, while aM,n and am,n are the maximum
and minimum accelerations along the z-axis of the GF
retrieved during the walking step event n. The displacement
depends on the accelerations in the event, which change
when the human is slowly walking or fastly walking: this
allows to reduce the number of activities to be recognized
during the detection phase. On the other hand, the aM,n and
am,n are known once a single walking step event is isolated.

A walking step is identified by l samples; however, this
number changes due to the speed of movement, this is why
we use an adaptive algorithm to online compute it. At the
beginning of the procedure, l is initialized by considering
the IMU sampling frequency and the average step frequency
in human walking (i.e., 1.5Hz). Afterwards, k samples are
collected to perform activity identification. If motion is de-
tected, the accelerometer data is prefiltered using a low pass
filter to remove high frequency noise. The two phases of the
gait cycle (i.e., double limb and single limb support) produce
a peak and valley around zero in the acceleration along the
coronal axis, as shown in Fig. 2. The adaptive algorithm
identifies two adjacent zero crossings and computes aM,n

and am,n. These acceleration values are used to set the
adaptive thresholds pa = 0.8aM,n and va = 0.8am,n.
These thresholds are applied to the k accelerometer samples
to identify the walking steps. Once the walking steps are
identified, the number l of acceleration samples is updated
as the mean value of the samples in each walking step. It is
worth noticing that when the human changes activity, some
walking steps cannot be correctly classified; however, in this
case, once the change is recognized, a post-processing of the
signal is performed.

Because we need to obtain a tuning that is human-
independent, the parameter β is initialized once the first
motion activity is detected. The distance computed by the

UWB positioning system and the maximum and minimum
accelerations are used to compute the a sequence βn; the
parameter is computed as

β = avg(β1, β2, . . . , βn) (5)

D. Adaptive magnetometer calibration

Consumer-grade magnetometers are prone to several er-
rors. According to [16], these errors can be divided into
instrumentation errors and magnetic deviation. The former
depend on the device and are represented by scale fac-
tors, bias, and non-orthogonality of the axes. The magnetic
deviations depends on the ferromagnetic features of the
environment. They can be classified as hard iron and soft
iron: the first can be modeled as bias, the second as scale
factor.

By combined the instrumentation errors and the magnetic
deviation, the vector of measurements hm retrieved by the
magnetometer can be written as

hE = Chm + g (6)

where hE is the vector of the Earth magnetic field, the
matrix C encodes the scale factors, the non-orthogonality
and the soft iron errors, and g is the vector of the bias
and hard iron errors. When magnetometer measurements are
not affected by perturbations, the norm of the magnetometer
vector is equal to the magnitude of the Earth’s magnetic
field. When the magnetometer rotates in space, the collected
measurements should lie on a ellipsoid. Considering this
constraint, the calibration parameters, i.e., the matrix C and
the vector g, can be easily retrieved by using an ellipsoid
fitting algorithm [17]. Considering only the measurement in
the (x, y)-plane of the BF, the calibration reduces to finding
the parameter that fits a ellipse, as shown in Fig. 3.

To calibrate the magnetometer, there is a need of collecting
a number of measurements retrieved at different heading an-
gles, to avoid unstable calibration. Thus, the magnetometer is
used in the tracking filter only when the calibration is stable,
i.e., the calibration parameters do not vary significantly when
new measurements are available. Once the magnetometer is
calibrated, a post processing can be performed to further
improve the accuracy of the heading. The magnetometer
measurements on (x, y)-plane provide the orientation of
human as

φi,MAG = atan2
(
ĥm,y/ĥm,x

)
(7)

where ĥm,x and ĥm,y represent the calibrated measurement
of the magnetometer.

IV. TRACKING FILTER

The tracking filter collects the data from different sensors
and provides the position and orientation x̂i = [x̂i, ŷi, θ̂i]

T

of the user every time a walking step event i is detected.
The sensor fusion among IMU, magnetometer, and UWB
positioning system is implemented by an Extended Kalman
Filter (EKF). As mentioned above, in the prediction step,
IMU data are used to perform PDR. In the correction step,
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Fig. 3. Calibration ellipse for magnetometer. The area around the user is
depicted in meters.

magnetometer and UWB positioning refine this estimate.
Since the data are not synchronized with walking step
events, the update of the estimate is not always performed.
Therefore, we consider two separate correction stages, the
first for the magnetometer and the second for the UWB
positioning system.

Positioning algorithms based on PDR assume that the
starting position and orientation is known. Most of the time
this assumption are unrealistic. Here, we consider as starting
position and orientation the one computed by the UWB
system during the calibration of IMU and magnetometer.
Once reliable data from magnetometer are available, the
orientation from the Earth reference frame to the GF can
be obtained by a shift.

A. PDR prediction

The classical Kalman prediction step is computed hereafter
by updating the state composed by the position s and the
orientation θ of the person according to the displacement ∆s
computed in the walking step event and the angular velocity
ω from the gyroscopes, specifically

x̂i|i−1 = f(x̂i−1|i−1, ω̄i) =

= Ax̂i−1|i−1 +

 ∆si cos θi−1|i−1

∆si sin θi−1|i−1

(ω̄i − bω)∆ti


Pi|i−1 = Jf

xPi−1|i−1J
f
x
T
+Qi

(8)

where A = I3×3, ω̄i is the mean angular velocity computed
on the samples collected during the walking step event, ∆ti
is the duration of the walking step event, Pi|i−1 is the
prediction covariance matrix, and Jf

x is the Jacobian of f(·)
with respect to x̂.

B. Magnetometer correction

The magnetometer provides information about the orien-
tation of the person, φi,M . Thus, the expected measurement

can be modeled as

ŷi = Cx̂i|i−1 = [ 0 0 1 ] x̂i|i−1. (9)

The classical Kalman update equations can be written in the
presented context as

si = CPi|i−1C
T + ri

ki = Pi|i−1C
T s−1

i

x̂i|i = x̂i|i−1 + ki(φi,M −Cx̂i|i−1)
Pi|i = (I3×3 − kiC)Pi|i−1

(10)

where ri is the covariance that model the uncertainties of the
magnetometer measurements.

C. UWB correction

The UWB system implements a remote positioning con-
figuration: the tracked human wears a blinker, that transmits
a ranging signal to the anchors on the perimeter. The anchors
are deployed along the area and are self configurable. Once
the anchors are placed, a calibration algorithm is able to find
their positions with respect to a reference framework having
its origin in the position of one anchor, labelled as 1, the x-
axis heading to an adjacent anchor, labelled 2 and the y-axis
so to have a Cartesian reference frame. This frame represents
the GF of the tracking system.

The anchors can compute the distance from the human
exploiting the time-of-flight of the signal. All the distances
computed by the anchors are forwarded to a master station
that is able to retrieve the position of the user. In particular,
a multi-lateration algorithm is used to find the position of
the person in the GF. In a 2D environment, such as a flat
area, the exact position of the blinker (xi,UWB , yi,UWB) is
completely defined using three anchors; however, the ex-
ploitation of a grater number of anchors can further improve
the accuracy of the measurement.

Moreover, the UWB system can be used to also provide
information on the orientation of the human by computing
the heading angle as

φi,UWB = atan2

(
yi,UWB − yi−1,UWB

xi,UWB − xi−1,UWB

)
(11)

Note that the heading angles ϕ and θ are named differently
because they are measured with very different sampling time.

The information provided by the UWB system, i.e., the
position and the orientation of the person xi,UWB =
[xi,UWB , yi,UWB , φi,UWB ]

T is used in the Kalman correc-
tion step of the tracking filter according to the following
equations:

Si = Pi|i−1 +Ri

Ki = Pi|i−1S
−1
i

x̂i|i = x̂i|i−1 +Ki(xi,UWB − x̂i|i−1)
Pi|i = (I3×3 −Ki)Pi|i−1

(12)

where Ri is the covariance matrix that model the uncertain-
ties of the UWB measurements.
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Fig. 4. Acceleration along coronal axes of the human during standing still
event, triangles identify false negative

TABLE I
ACTIVITY DETECTION OUTCOME

True P False P True N False N
259 5 34 7

V. EXPERIMENTAL RESULTS

The proposed approach has been validated in real scenario.
Hereafter, only two significant experiments. The positions
retrieved from the UWB system and the data from IMU and
magnetometer has been collected during the experiments and
have been post-processed by using a Matlab tool developed
by the Authors [3].

The UWB positioning system is composed by 6 re-
ceivers (anchors) placed on the perimeter of the area, as
shown in Fig. 6. The blinker is equipped with the UWB
transmitter; both the blinker and the anchors are supplied
with a Decawave DWM1000 UWB transceiver and a Li-
Po battery-powered, whereas the anchors include also a
WiFi module. The blinker is attached to a belt to obtain
a waist-mounted configuration. In [4] a full description of
the UWB positioning system specifications can be found.
Concerning the inertial sensors, an Intel IMU contained in an
ASUS ZenPhone 2 has been used. An Android app has been
also developed to log the data at the maximum sampling
frequency available (i.e., 80Hz). The mobile phone is also
placed on the belt, near the center of gravity of the user.

In the first experiment, the human moves from anchor 2 to
anchor 5. The human starts the experiment with a standing
still activity lasting 15s, then reaches the opposite side, turns
back, and stops for 10s. Finally, he comes back to the starting
position. The overall length of the path is 50 m. During the
experiment, the person changes the walking speed, so the
IMU processing needs to adapt the parameters to accurately
compute the displacement.

The result of the activity detection is reported in Tab. I,
where positive is the activity motion and negative is the
activity standing still. A quantitative analysis is proposed
based on the classification error: specifically, the accuracy,
the sensitivity, the specificity, the positive predictive value
(PPV), and the negative predictive value (NPV) is reported in
Tab. II. As it can be seen, the activities are correctly classified
and the classifier shows an optimal predictive capability for
positive events (i.e., motion), while the standing still activity
is more difficult to detect. This is due to i) the limited
duration of the standing still activity with respect to the

Fig. 5. Error [m] vs time [s]: blue line is the error of the proposed tracking
filter, red line of UWB positioning system, and green line PDR

TABLE II
PERFORMANCES OF THE ACTIVITY DETECTION

Accuracy Sensitivity Specificity PPV NPV
96% 97% 87% 98% 83%

motion one (i.e., there are less events to be classified as
standing still) ii) the residual errors during activity switching.
For example, some walking steps are recognized when the
user is standing still before start, as highlighted in Fig. 4 due
to the adaptive threshold.

The error of human tracking using IMU only, UWB only
and the proposed algorithm (PDR+UWB) is shown in Fig. 5.
To evaluate the effectiveness of the approach, we analyze
the overall trajectory rather than a set of fixed reference
points. To this aim, we use a line from anchors 2 to 5 as
as ground truth. The distance between the estimated path
measures how the its shape is different from the ground truth.
In Tab. III we report the error (with its Covariance (COV),
Maximum (MAX) and minimum (MIN) value of the path
estimated by the PDR, the UWB positioning system, and the
fused tracking filter (PDR+UWB). It worth noticing that the
maximum error, as well as the mean error is suitably reduced
by merging information from different sources. Concerning
the maximum error, it occurs in the last part of the path, when
the orientation computed by the IMU accumulate errors and
the data from UWB are not accurate. Along this segment,
indeed, the blinker is able to retrieve few signals from aligned
anchors, thus the positioning results less precise. According
to ISO/IEC 18305 standard we evaluate the localization error
when the user stops and at starting position. When user stops
the mean error is about 13 cm. The final localization error
is about 90 cm.

In the second experiment, the human moves from the
starting position S near 6 to anchor 3. The user starts the
experiment with a standing still activity lasting 10s, then
reaches the anchor in the opposite corner, turns back, and
directly comes back to anchor 6. The overall length of the
path is 100 m. Also in this experiment, the user changes the
pace and the parameters for activity recognition, walking step
detection and length computation are modified accordingly.
The obtained human tracking is reported in Fig. 6. In this

case the ground truth is represented by the line intersecting
anchor 1 and anchor 5. In Tab. IV are reported the errors
retrieved by the different tracking algorithms. The proposed
tracking system performs better during this experiment: in
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TABLE III
ERROR COMPARISON

Tracking Mean Cov Min Max
Algorithm err[m] err[m2] err[m] err[m]

PDR 0.84 0.61 0.01 2.53
UWB 0.33 0.11 0.01 1.52

PDR+UWB 0.22 0.10 0.01 1.30

TABLE IV
ERROR COMPARISON

Tracking Mean Cov Min Max
Algorithm err[m] err[m2] err[m] err[m]

PDR 0.76 0.36 0.03 2.2
UWB 0.76 0.16 0.01 1.78

PDR+UWB 0.49 0.09 0.02 1.50%

this case the UWB anchors are not always aligned to the
blinker, so the estimate results more accurate. The PDR
results less precise, since the path is longer than the previous
one and the inertial estimate accumulates errors. Once this
errors are bounded from the UWB positioning system, the
overall performance are improved. According to ISO/IEC
18305 standard we evaluate the localization error when the
user stops and at starting position. When user reach anchors
3 the error is about 1 m. The final localization error is about
50 cm.

VI. CONCLUSION

In this contribution a tracking system for human operating
in a warehouse has been designed and implemented. The
tracking system is able to merge information from inertial
sensors and UWB anchors, requiring wearable sensors on
the persons and a light infrastructure deployable in the
area of interest. The proposed tracking system presents two
main advantages. The system is able to learn online all the
parameters needed for the computation. The computational
load is low, so the algorithm can be easily implemented on
an embedded system. The results obtained are promising,
however, there is still room for improvements in the human
movement detection. Now it is is able to classify the motion
with high accuracy, however, more different activities need
to be recognized. In an operation area, the motion of the
people is not limited to slowly walking and fastly walking.
Moreover, an improvement can be obtained by differently
filtering the collected IMU data to compute the orientation.
Its precision, indeed, affects also the position estimate. An
integration with obstacle avoidance and safety algorithms
with autonomous robots working in the area is the next step
of this work.
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