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Simple Summary: This manuscript aims to address the diagnostic challenges of mediastinal bulky
lymphomas with the baseline value of 18F-FDG PET/CT metabolic, volumetric and texture parame-
ters, also relying on machine learning techniques, in patients with grey zone lymphoma, primary
diffuse large B-cell lymphoma of the mediastinum and classical Hodgkin lymphoma. Different
types of histology demonstrated several baseline 18F-FDG PET/CT radiomics parameters that were
significantly different from one another, suggesting the possibility of identifying potential histological
heterogeneity and aggressive transformation. Moreover, using radiomics-based imaging biomarkers,
machine learning techniques offer a solution for separating not completely disjoint histological types.
To date, the gold standard for diagnosis is biopsy, but machine learning methods could be combined
with radiomics to build a histological representation of mediastinal bulky masses that is able to suc-
cessfully identify different types of lymphomas. Finally, this preliminary study supports the potential
of metabolic texture analyses as future imaging biomarkers, with a growing role in clinical diagnosis.

Abstract: Background: This study tested the diagnostic value of 18F-FDG PET/CT (FDG-PET)
volumetric and texture parameters in the histological differentiation of mediastinal bulky disease due
to classical Hodgkin lymphoma (cHL), primary mediastinal B-cell lymphoma (PMBCL) and grey zone
lymphoma (GZL), using machine learning techniques. Methods: We reviewed 80 cHL, 29 PMBCL
and 8 GZL adult patients with mediastinal bulky disease and histopathological diagnoses who
underwent FDG-PET pre-treatment. Volumetric and radiomic parameters were measured using FDG-
PET both for bulky lesions (BL) and for all lesions (AL) using LIFEx software (threshold SUV ≥ 2.5).
Binary and multiclass classifications were performed with various machine learning techniques
fed by a relevant subset of radiomic features. Results: The analysis showed significant differences
between the lymphoma groups in terms of SUVmax, SUVmean, MTV, TLG and several textural
features of both first- and second-order grey level. Among machine learning classifiers, the tree-
based ensembles achieved the best performance both for binary and multiclass classifications in
histological differentiation. Conclusions: Our results support the value of metabolic heterogeneity
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as an imaging biomarker, and the use of radiomic features for early characterization of mediastinal
bulky lymphoma.

Keywords: bulky lymphoma; diagnosis; textural analysis; machine learning; FDG-PET; radiomics;
precision medicine; personalized treatment

1. Introduction

The presence of a mediastinal bulky mass at the time of diagnosis in patients with
lymphoma is a poor prognostic factor in treatment response and overall survival [1–4].
Therefore, an accurate characterization of the bulky mass is crucial and represents a diag-
nostic challenge in clinical and imaging evaluation.

Despite the similarities in clinical presentation, the treatment strategies and outcomes
are highly different among the most common mature B-cell lymphomas associated with
mediastinal bulky masses, which are classical Hodgkin lymphoma (cHL), primary medi-
astinal B-cell lymphoma (PMBCL) and grey zone lymphoma (GZL). Since the treatment
approaches for cHL and PMBCL are historically different, correctly differentiating their
histology is of paramount importance, even if it often represents a non-trivial task. GZL is
an uncommon, unclassifiable B-cell lymphoma, with intermediate features between diffuse
large B-cell lymphoma and cHL. Furthermore, a spectrum of morphologies with features
of cHL and PMBL can occur in GZL. In addition, the same lymphoma type could exhibit
not only clinical behavioral differences, but also intra-tumor heterogeneities, reflecting
different cell subpopulations distributed in different regions of the same lesion. Both inter-
and intra-patient heterogeneity may be found, varying with the histopathological pattern
of the lymphoma, resulting in a different prognosis [5].

In this scenario, morphological and functional imaging represents a fundamental
diagnostic method to fully characterize bulky mediastinal lymphoma. Nowadays, FDG-
PET is considered an indispensable tool for staging and defining the treatment response
in different lymphomas. Its value derives both from the intrinsic ability to quantify the
use of glucose as a local functional activity, providing information on specific metabolic
patterns, and from the continuous refinement of many methodological and interpretative
aspects such as metabolic semi-quantification and volumetric parameters as SUV, MTV and
TLG [1,2,6,7].

Radiomics is a quantitative approach to medical imaging based on the assumption
that biomedical images contain information of disease-specific processes that human eyes
cannot detect. It provides several image properties that can be used to characterize tumor
phenotypes and support clinical decision-making in a non-invasive manner [8]. Further-
more, texture analysis (TA) quantitively estimates intra-tumor heterogeneity, reflecting
the heterogeneities in the distribution of cell subpopulations [9]. Radiomics deeply ben-
efits from the progress achieved by the machine learning (ML) community, relying on
state-of-the-art algorithms for medical image segmentation [10–12], for the extraction of
imaging biomarkers or even for the analysis of textural radiomic signatures [13–15]. In the
era of precision medicine and personalized treatment [16], metabolic texture analyses may
become the future imaging biomarker, with prognostic and predictive values [17].

We assessed the diagnostic value of metabolic FDG-PET and TA in the differentiation
of the most common mature B-cell lymphomas associated with mediastinal bulky masses
due to cHL, PMBCL and GZL. Then, using radiomic features to feed ML algorithms, we
aimed to build a radiomics-based histological representation of mediastinal bulky masses
despite the presence of not completely disjoint lymphoma types.
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2. Materials and Methods
2.1. Population

From January 2010 to April 2021, a cohort of untreated patients with a histopatholog-
ical diagnosis of cHL, PMBCL or GZL were retrospectively evaluated in a monocentric
study conducted by both the Nuclear Medicine and Hematology Divisions of Azienda
Ospedaliero-Universitaria Careggi (Florence, Italy). Eligibility criteria included ≥18 years,
histologically proven cHL, PMBCL and GZL, and the presence of mediastinal bulky disease
with diameter ≥5 cm in a computed tomography scan and FDG-PET at baseline (Figure 1).
Relapse or refractory patients were excluded from the study. The study was approved
by the Institutional Ethics Review Board of the center, and all patients provided written
informed consent. The study was conducted according to the Helsinki Declaration, good
clinical practice and the applicable national regulations.

Figure 1. 18F-FDG-PET/CT maximum intensity projection (MIP) and mediastinal transaxial images
show the mediastinal bulky mass in patient with (a) cHL, (b) GZL and (c) PMBCL.

2.2. Image Acquisition

All patients fasted for at least 4 h before examination, with blood glucose levels
< 170 mg/dL. Images from the mid-skull to pelvis were obtained using a dedicated PET/CT
scanner (Philips Gemini TF 16 PET/CT), 60 min after intravenous injection of 3.7 MBq/kg
of 18F-FDG. Before the PET scans, a low-dose CT (120 kV; 50–80 mA) was acquired to allow
attenuation correction and lesion localization. PET images were reconstructed using an
iterative algorithm (3D LOR RAMLA reconstruction with TOF, FOV: 576, matrix: 144 × 144,
voxel dimension: 4 × 4 × 4 mm). Fused images of matching pairs of PET and CT images
were available for review in axial, coronal and sagittal planes and in maximum intensity
projections (MIPs).

2.3. Data Analysis

FDG-PET images were independently evaluated by two nuclear medicine experts,
using the open-source software LIFEx 6.3 (www.lifexsoft.org accessed from January 2020 to
August 2021) that enables the computation of conventional, histogram-based textural and
shape characteristics from medical images [18]. Each measurement was performed using
the SUV thresholding method, based on the absolute SUV value > 2.5 on a bulky lesion
(BL) [19].

The SUVmax and SUVmean of the BL were also evaluated, computed in SUVbw units
for both variables. The segmentation was performed using the default settings suggested
by the LIFEx user guide. Regions containing only physiological FDG uptake were edited

www.lifexsoft.org
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out. For each bulky lesion, metabolic tumor volume (MTV) and tumor lesion glycolysis
(TLG) were computed.

2.4. Texture Analysis

The features defined as first-order and second-order were extracted on the BL VOI
using LIFEx software [18]. First-order features are typically drawn from the histogram
of grey-level values obtained from the considered VOIs. They describe the overall signal
variation in the VOI regardless of the relative position of the voxels. Therefore, these
features are invariant to geometric transformations, and robust to image reconstruction
and filtering. They include basic statistics such as mean, median, range, standard deviation,
skewness and kurtosis.

Second-order features are those that are usually referred to as texture features, since
they consider the spatial relationship between neighboring VOIs in an image; thus, they
are capable of capturing details on lesion heterogeneity. They include the grey-level co-
occurrence matrix (GLCM), the neighborhood grey-level different matrix (NGLDM), the
grey-level run-length matrix (GLRLM) and the grey-level zone-length matrix (GLZLM),
and indices from sphericity and histogram. A detailed description of the various texture
parameters provided by LIFEx can be found at www.lifexsoft.org accessed from January
2020 to August 2021.

The conventional and advanced metabolic tumor parameters as well as the radiomics
features assessed are summarized in Table 1.

Table 1. Parameters evaluated included conventional and volumetric indices and texture features.

Index Matrix Parameter Matrix Parameter

Conventional indices SUVmean, SUVmax, SUVpeak

Volumetric indices MTV, TLG

Texture features: first-order Histogram skewness, kurtosis, entropy, energy

Texture features: second-order

GLCM homogeneity, energy, contrast, correlation, entropy,
dissimilarity

NGLDM coarseness, contrast, busyness

GLRLM SRE/LRE, LGRE/HGRE, SRLGE/SRHGE,
LRLGE/LRHGE, GLNUr/RLNU, RP

GLZLM SZE, LZE, LGZE, HGZE, SZLGE, SZHGE, LZLGE,
LZHGE, GLNUz, ZLNU, ZP

2.5. Machine Learning

GZL exhibits mixed characteristics between cHL and PMBCL. This represents a major
difficulty in the differentiation of the three mediastinal lymphoma types. Particularly, it
prevents the direct performing of multiclass classifications. To build a representation of
mediastinal lymphomas that considers this limitation, the ML study was divided into
two steps:

• Training a model to perform a binary classification between cHL and PMBCL;
• Promoting the trained model to cope with a multiclass classification.

Since it was a preliminary study, several ML strategies were compared in order to
assess their capability to build a reliable histological representation for the three lymphoma
types. The performance of logistic regression, support vector machine (with linear kernel),
Gaussian process, random forest and gradient-boosted decision trees (BDT) are discussed
in the following sections of this document.

The ML classifiers were trained on a sample of the study cohort containing 80% of
patients, namely the training set. The model training was driven by an independent and
robust subset of the radiomic features extracted from LIFEx [18]. Feature importance was

www.lifexsoft.org
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measured with the recursive feature elimination (RFE) algorithm [20]. When possible,
hyperparameter optimization (HPO) was used to enhance the discriminant capabilities of
binary classifiers. In particular, HPO studies were carried out using Bayesian optimization
methods [21,22] to maximize the AUC score obtained by tree-based ensemble models in an
independent subset of the training set (validation set).

The performance of both binary and multiclass classifiers was evaluated with the
AUC score computed on a separate sample containing 20% of never-seen patients, namely
the test set. Given the limited statistic of the study, preventing models from overtraining
and controlling possible bias is crucial. Thus, the robustness of the trained classifiers and
the uncertainties associated with their performance were measured through the bootstrap
technique. The various ML models were implemented in Python (the code for our models
is available at https://github.com/mbarbetti/mediastinal-lymphoma-classification) using
the Scikit-Learn package [23], while the Bayesian optimization of the tree-based ensembles
was driven by the Optuna framework [24].

Following what was undertaken by Montes de Jesus et al. [25], the performance
achieved by the trained classifiers was compared to what was obtained using the SUVmax
parameter alone, which was used as a baseline for the benchmark studies.

Before training any model, an intense data cleaning was performed, keeping only a
limited number of the radiomic features extracted from LIFEx [18]. The intensity-based
features were selected to ensure highly independent parameters (|PCC| > 0.75) and to
provide the SUVmax value. The texture features were taken in line with Orlhac et al. [26],
selecting the indices robust to segmentation and relatively independent from one another.
Lastly, to test the discriminant power of each feature, a Mann-Whitney U test [27] was
performed on the chosen subset, requiring a confidence level of 99% to reject the null
hypothesis. A complete list of the selected features is reported in Figure 2 together with a
probabilistic estimation of the relative ranking computed after 100 iterations of the RFE
algorithm on the logistic regression training.

Figure 2. Matrix Nfeatures × Nfeatures reporting the fraction of times the i-feature ends up in the
j-position of the ranking obtained from the RFE algorithm during a 100-iterated bootstrap technique
on the logistic regression training.

2.6. Statistical Analysis

Statistical analysis was performed with SPSS software (SPSS25) by means of ANOVA to
evaluate the differences between means among measured variables. Quantitative data are
presented as the mean ± standard deviation (SD). p value < 0.05 was considered significant.

https://github.com/mbarbetti/mediastinal-lymphoma-classification
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3. Results
3.1. Patients

One-hundred-seventeen histologically proven patients were included in the study
(Table 2). Twenty-nine patients were PMBCL (24.8%), 80 (68.4%) were cHL, and 8 (6.8%)
were GZL. The median age for PMBCL was 40 years (range, 21–59), for cHL it was 33 years
(range, 18–74) in the 73 available patients, and for GZL it was 47 years (range, 18–60). The
median largest mediastinal diameter measured for PMBCL was 11.0 cm (range, 6.5–17),
8.9 cm (range, 5–20) in cHL patients and 13.5 cm (range, 5–16) in GZL patients.

Table 2. Summary of the study population.

Characteristics PMBCL, n (%) cHL, n (%) GZL, n (%)

Patients 29 (24.8%) 80 (68.4%) 8 (6.8%)

Male sex 10 (34.5%) 35 (43.8%) 5 (62.5%)

Median age y (range) 40 (21–59) 33 (18–74) 47 (16–60).

Ann Arbor Stage
I 6 (21%) 1 (2%) 0 (0%)
II 12 (58%) 48 (66%) 7 (87.5%)
III 2 (7%) 12 (16%) 1 (12.5%)
IV 4 (14%) 12 (16%) 0 (0%)

B symptoms 8 (28%) 29 (40%) 4 (50%)

LDH UI/l (range) 355 (134–757) 207 (135–630) 255.5 (206–335)

ERS mm/h (range) 37 (6–106) 321 (4–120) 34.5 (20–62)

Median bulky
diameter cm (range) 11.0 (6.5–17) 8.9 (5–20) 13.5 (5–20)

3.2. Radiomic Features

Several metabolic and volumetric indices, as well as texture features, were signifi-
cantly different among the three groups. SUVmax and TLG were significantly different
between groups, with the highest values in PMBCL, intermediate in GZL and lowest in
cHL (Figure 3). PMBCL and GZL had similar MTV values, but they were significantly
higher than cHL.

Figure 3. Histograms representing mean SUVmax and SUVmean (a), MTV (b) and TLG (c) in the
subsets of cHL, GZL and PMBCL. * p < 0.05, ** p < 0.01.

Among first-order variables, histogram skewness and kurtosis were significantly
different between groups (p < 0.001). PMBCL showed significantly lower values with
respect to the other groups, indicating asymmetrical histograms with left-sided skewness.
On the contrary, cHL showed significantly higher positive values than the other groups,
indicating asymmetrical histograms with right-sided skewness.
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Regarding kurtosis, cHL showed significantly higher kurtosis values, indicating a
value distribution with a heavier tail as compared to PMBCL, which showed significantly
lower kurtosis values.

Among the features extracted from NGLDM, only contrast resulted significantly
different between groups, with PMBCL showing significantly higher contrast than GZL
and cHL, and GZL significantly higher than cHL.

In the GLZLM matrix, GLZLM_SZE, GLZLM_HGZE, GLZLM_SZHE and GLZLM_ZLNU
parameters showed significantly increasing values between groups, with lower values
in cHL, intermediate values in GZ and higher values in PMBCL. On the contrary, GL-
ZLM_LZE, GLZLM_LGZE and GLZLM_SZLGE parameters showed significantly decreas-
ing values between groups, with significantly higher values in cHL, as compared to both
GZL and PMBCL (Figure 4).

Figure 4. Histograms representing mean LRE and SRE derived from GLRLM (a), homogeneity and
entropy derived from GLCM (b) and LGZE, HGZE, SZHGE and ZLNU derived from GLZLM (c) in
the subsets of cHL, GZL and PMBCL. * p < 0.05, ** p < 0.01.

GLCM features showed significantly different results between groups: variance, en-
tropy and dissimilarity showed lower values in cHL, higher values in PMBCL and interme-
diate values in GZL. On the contrary, GLCM homogeneity resulted significantly lower in
cHL, intermediate in GZL and higher in PMBCL.

Among the GLRLM features, GLRLM_LRE, GLRLM_LRLGE, GLRLM_SRLGE,
GLRLM_HGRE and GLRLM_RP showed significantly lower values in cHL, intermediate
values in GZL and higher values in PMBCL. Instead, in GLRLM_ SRHGE and GLRLM_
SRE, higher values were seen in cHL, with intermediate values in GZL and lower values
in PMBCL. Regarding GLRLM_RLNU, PMBCL and GZL showed similar values, both
significantly higher than cHL.
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3.3. Machine Learning

The use of ML techniques assumes that the training set is statistically significant, not
only in terms of instance multiplicity but also in terms of the discriminant power brought
by each instance. The first step of the ML study was the separation between cHL and
PMBCL. Since the patient cohort dataset was highly unbalanced, the SMOTE technique [28]
was applied to the training set to boost the lower-represented class through over-sampling
and to prevent models from overtraining. The five classifiers were trained over such
SMOTE-corrected sample, while their performance was evaluated using the unbalanced
test set. The true positive rate (TPR, also known as sensitivity or recall), true negative rate
(TNR, also called specificity), positive predictive value (PPV, also referred to as precision),
AUC-ROC (AUC) and AUC-PR (AP) scores of different classifiers are listed in Table 3.
Figure 5 reports the ROC curves (left) and the precision-recall curves (right), together with
the corresponding AUC and AP scores. The TPR and TNR scores were computed using two
custom decision thresholds chosen to require strict performance in output to the classifiers;
in particular, the scores reported in Table 3 correspond to a TPR score greater than 0.7 and
0.9 on the training set. The random forest classifier achieved the best performance with an
AUC score of 0.87 against the 0.78 score achieved by the SUVmax-based classifier.

Figure 5. ROC curves (left) and precision-recall curves (right) of the different binary classifiers under
investigation. Each classifier is reported together with mean and standard deviation (in square
brackets) of the AUC and AP scores achieved during a 300-iterated bootstrap technique.

The next step of the ML study was the promotion of the five binary classifiers to include
GZL within the available classes. Since GZL can be described as a sort of classification
uncertainty between cHL and PMBCL, its representation can be implemented by cutting
out a decision boundary in the space induced by the trained models between the regions
depicting the two separate classes. The one-vs-all TPR, TNR, PPV, AUC and AP scores for
GZL and PMBCL of promoted classifiers are listed in Table 4. Figure 6 reports the one-vs-all
ROC curves (left) and precision-recall curves (right), together with the corresponding
AUC and AP scores for the GZL classification. Similar curves and scores are depicted in
Figure 7 for the PMBCL classification. Again, the random forest classifier achieved the best
performance with one-vs-all AUC scores of (0.68, 0.78) against the (0.77, 0.70) totaled by the
SUVmax-based classifier.
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Table 3. Performance of different machine learning models and the SUVmax-based classifier in
separating PMBCL and cHL lymphomas. TPR, TNR and PPV scores are reported for two user-defined
decision thresholds, indicated in the table as tight/slight requirements and obtained requiring a
sensitivity score greater than 0.9/0.7 on the training set.

Logistic
Regression Linear SVM Gaussian

Process
Random

Forest Gradient BDT SUVmax

AUC
[10th, 32nd percentiles] 0.81 [0.73, 0.78] 0.78 [0.68, 0.75] 0.77 [0.68, 0.75] 0.87 [0.79, 0.83] 0.85 [0.74, 0.81] 0.78 [0.73, 0.75]

AP
[10th, 32nd percentiles] 0.82 [0.64, 0.77] 0.82 [0.65, 0.76] 0.82 [0.66, 0.78] 0.77 [0.56, 0.69] 0.75 [0.58, 0.69] 0.80 [0.63, 0.75]

TPR
[10th, 32nd
percentiles]

Tight
requirement 0.84 [0.67, 0.83] 0.82 [0.67, 0.83] 0.85 [0.67, 0.83] 0.81 [0.50, 0.67] 0.59 [0.33, 0.50] 0.88 [0.67, 0.83]

Slight
requirement 0.69 [0.50, 0.67] 0.69 [0.33, 0.67] 0.69 [0.50, 0.67] 0.65 [0.33, 0.50] 0.62 [0.33, 0.50] 0.76 [0.50, 0.67]

TNR
[10th, 32nd
percentiles]

Tight
requirement 0.79 [0.62, 0.75] 0.79 [0.62, 0.75] 0.77 [0.56, 0.75] 0.80 [0.62, 0.75] 0.90 [0.81, 0.88] 0.63 [0.38, 0.56]

Slight
requirement 0.90 [0.81, 0.88] 0.90 [0.81, 0.88] 0.91 [0.81, 0.88] 0.91 [0.81, 0.88] 0.91 [0.81, 0.88] 0.82 [0.62, 0.75]

PPV
[10th, 32nd
percentiles]

Tight
requirement 0.13 [0.11, 0.12] 0.14 [0.11, 0.12] 0.14 [0.12, 0.13] 0.15 [0.10, 0.14] 0.16 [0.09, 0.14] 0.12 [0.10, 0.11]

Slight
requirement 0.18 [0.13, 0.16] 0.18 [0.10, 0.17] 0.18 [0.13, 0.17] 0.17 [0.09, 0.14] 0.17 [0.09, 0.14] 0.18 [0.14, 0.16]

Table 4. Performance of different machine learning models and the SUVmax-based classifier in
separating cHL, GZL and PMBCL lymphomas. One-vs-all TPR, TNR and PPV scores are reported
imposing the tight requirement, namely requiring the TPR score of the binary classifier greater than
0.9 on the training set.

Logistic
Regression Linear SVM Gaussian

Process
Random

Forest Gradient BDT SUVmax

AUC
[10th, 32nd
percentiles]

One-vs-all for
GZL classification 0.67 [0.60, 0.65] 0.65 [0.58, 0.63] 0.68 [0.58, 0.65] 0.68 [0.59, 0.66] 0.65 [0.52, 0.62] 0.77 [0.73, 0.77]

One-vs-all for
PMBCL

classification
0.76 [0.66, 0.72] 0.76 [0.66, 0.72] 0.74 [0.63, 0.71] 0.78 [0.65, 0.74] 0.80 [0.66, 0.76] 0.70 [0.59, 0.67]

AP
[10th, 32nd
percentiles]

One-vs-all for
GZL classification 0.44 [0.37, 0.41] 0.42 [0.35, 0.39] 0.41 [0.33, 0.38] 0.46 [0.37, 0.42] 0.42 [0.31, 0.38] 0.64 [0.55, 0.60]

One-vs-all for
PMBCL

classification
0.62 [0.42, 0.56] 0.65 [0.46, 0.58] 0.70 [0.50, 0.63] 0.54 [0.33, 0.45] 0.62 [0.40, 0.55] 0.36 [0.28, 0.33]

TPR
[10th, 32nd
percentiles]

One-vs-all for
GZL classification 0.74 [0.67, 0.67] 0.67 [0.56, 0.67] 0.86 [0.78, 0.89] 0.86 [0.89, 0.89] 0.66 [0.22, 0.56] 0.89 [0.89, 0.89]

One-vs-all for
PMBCL

classification
0.84 [0.67, 0.83] 0.81 [0.65, 0.67] 0.85 [0.67, 0.83] 0.80 [0.50, 0.67] 0.76 [0.50, 0.67] 0.88 [0.67, 0.83]

TNR
[10th, 32nd
percentiles]

One-vs-all for
GZL classification 0.60 [0.41, 0.55] 0.63 [0.45, 0.59] 0.59 [0.41, 0.55] 0.64 [0.45, 0.59] 0.66 [0.50, 0.64] 0.49 [0.27, 0.41]

One-vs-all for
PMBCL

classification
0.59 [0.44, 0.67] 0.63 [0.52, 0.60] 0.53 [0.40, 0.52] 0.56 [0.44, 0.52] 0.64 [0.48, 0.60] 0.45 [0.28, 0.40]

PPV
[10th, 32nd
percentiles]

One-vs-all for
GZL classification 0.44 [0.35, 0.40] 0.43 [0.35, 0.40] 0.47 [0.38, 0.44] 0.50 [0.38, 0.47] 0.44 [0.26, 0.40] 0.43 [0.27, 0.41]

One-vs-all for
PMBCL

classification
0.33 [0.27, 0.31] 0.35 [0.28, 0.32] 0.31 [0.25, 0.29] 0.31 [0.24, 0.29] 0.35 [0.25, 0.30] 0.28 [0.22, 0.25]
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Figure 6. ROC curves (left) and precision-recall curves (right) of the different multiclass-promoted
binary classifiers under investigation. Each classifier is reported together with mean and standard
deviation (in square brackets) of the one-vs-all AUC and AP scores achieved during a 300-iterated
bootstrap technique for GZL classification.

Figure 7. ROC curves (left) and precision-recall curves (right) of the different multiclass-promoted
binary classifiers under investigation. Each classifier is reported together with mean and standard
deviation (in square brackets) of the one-vs-all AUC and AP scores achieved during a 300-iterated
bootstrap technique for PMBCL classification.

4. Discussion

This study showed the diagnostic value of FDG-PET volumetric and texture parame-
ters in discriminating mediastinal bulky lymphomas caused by different histological types,
i.e., GZL, PMBCL and cHL.

Among conventional quantitative variables, SUV measurements showed significantly
different results between the three lymphoma types, with lower values in cHL, intermediate
in GZL and higher in PMBCL.

SUVs have been the first and most investigated measures to provide objective quan-
tification of tumor biological activity. Several studies in lymphoma patients correlated FDG
activity with tumor proliferative ability, demonstrating that high-proliferative lymphomas,
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such as PMBCL, often show very high metabolic activity [29–31]. Our results are consistent
with these findings, confirming that differences in proliferation activity may be a possible
explanation for the different FDG uptakes between various histo-types. Moreover, both
SUVmax and SUVmean values were significantly lower in cHL compared with NHL,
consistent with its peculiar neoplastic tissue architecture, composed of few and scattered
neoplastic cells called Hodgkin and Reed-Sternberg cells, accounting for less than 1% of the
total cell count, surrounded by an overwhelming population of non-neoplastic mononu-
clear bystander cells with relatively high metabolism [32–35]. Such unique pathological
features may explain the differences in metabolic activity of cHL compared to PMBCL.
Finally, we found an intermediate behavior in the GZL group, again consistent with its
biological characteristics. Indeed, GZL could show a wide range of cell types, with the
coexistence of cells resembling HRS cells, cells with centroblastic or immunoblastic cy-
tology and marked nuclear pleomorphism, and cells with more monomorphic cytology,
resembling PMBCL [36].

Beyond SUV values, there were also significant differences among lymphoma types
regarding volume-based variables, such as MTV and TLG. MTV represents one important
prognostic factor in lymphoma, in addition to stage and the other clinical factors such
as LDH, performance status, age and presence of extra-nodal disease. Not surprisingly,
most studies have demonstrated that MTV was an adverse prognostic factor, regardless of
lymphoma histology and choice of quantification method [37–40].

Our data are in line with the concept that volumetric parameters have greater values
in aggressive histo-types. Indeed, in our study, PMBCL and GZL showed higher values of
both MTV and TLG than cHL, but at the same time PMBCL significantly differs from GZL
due to the higher value of TLG.

One of the most interesting findings is the significant difference between lymphoma
types regarding several texture features extracted from FDG-PET images. Metabolic het-
erogeneity is a remarkable feature of malignancy, and texture analysis provides tools for
its quantification [41]. In recent years, several studies convincingly showed the complex
relationship between textural features and biological characteristics of a tissue and how
the spatial intensity variations found in an image could differ depending on biological
processes. This association has been found to be more robust for high-order features, which
refer to the relative distribution of intensity value within the neighborhood, than first-order
variables, which only measure intensity variability independently of the underlying spatial
distribution in the tumor microenvironment. Those features measuring increasing hetero-
geneity within tumors may be associated with differences in regional tumor cellularity,
proliferation, hypoxia, angiogenesis and necrosis, but also genomic variety, factors that
independently have been associated with more aggressive behavior, poorer response to
treatment and worse prognosis [42–44]. We chose to focus on patients presenting with
mediastinal bulky lymphomas since it is well established that the complementary informa-
tion provided by textural analysis strongly depends on tumor size. Although information
increases substantially with larger volumes, the level of correlation between the variables
tends to decrease substantially [36,45].

In our study, the high co-occurrence features, analyzing inter-relationships between
pairs of voxels and thus characterizing local non-uniformities, were able to significantly
differentiate the three lymphoma groups. Orlhac et al. [46] reported that low grey-level
zone emphasis exhibited higher values in visually homogeneous lesions than in hetero-
geneous lesions. They identified two different sets of texture indices able to reflect the
different characteristics of uptake heterogeneity. The first included GLCM_homogeneity,
GLCM_entropy, GLRLM_SRE and GLRLM_LRE, all of which were sensitive to the presence
of uptake heterogeneity, in absence of the influence of the nature of the heterogeneity (hy-
posignal or hypersignal). The second comprised GLZLM_HZE and GLZLM_LZE, which
were mostly sensitive to the average uptake rather than to the local heterogeneity uptake.
So, homogeneous lesions like cHL had a higher value of homogeneity and GLZM_LGZE
and a lower value of entropy and GLZM_HGZE than heterogeneous lesions such as PMBCL
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and GZL. As expected, entropy, which reflects disorder, varies in the opposite direction
to homogeneity. Another important aspect is how SUV measurements and entropy are
strongly correlated [47,48]. Since the more chaotic the image, the greater the entropy will
be, this is reflected in the trend of our results, too, with higher values in PMBCL and lower
values in cHL [8,49].

The other features evaluated in this study highlight tumor heterogeneity, depending
on the type of matrix used and the kind of feature computed on this matrix. Consequently,
whereas a single feature cannot be directly linked to a specific biological process, one
could assume that a combination of textural parameters may be closely related to un-
derlying pathophysiological processes, such as vascularization, neoangiogenesis, tumor
aggressiveness or hypoxia [50,51].

Finally, referring to the GLZM matrix, the “Zone-Length Non-Uniformity”, which
measures the variability of the intensity values of the grey-level in the image, showed lower
values, indicating greater homogeneity in the intensity values as in the cHL and instead
very high values in the PMBCL.

The literature studying the possibility of pathological predictions of histological sub-
types based on radiomic features from FDG-PET images has produced conflicting results.
Previous studies excluded the possibility of creating a close correlation between histology
and radiomics, even if texture indices may provide some useful information in the spatial
organization of tumor cells [52]. However, more recently, ML has been shown to provide
promising methods for predicting the different subtypes of malignant lymphomas based
on radiomics [26,53].

Our data are consistent with these latter results, demonstrating that ML algorithms
powered by radiomics and texture features can build robust histological-based classifiers,
with good discriminant power. In fact, through a set of selected features (reported in
Figure 2), the ML algorithms show promising results in inferring the histological type
of the mediastinal bulky masses evaluated with a good sensitivity and specificity for the
binary classification PMBCL/cHL, as well as with acceptable performance for the multiclass
classification.

Among the set of radiomic and texture features selected for model training, there is no
strong indication of the importance order of such features in the classification task. What
appears in Figure 2 on the feature ranking obtained by iterating 100 times the RFE algorithm
on the logistic regression training is that SUV kurtosis is the best ranked feature most of the
time. The texture GLRLM and GLZLM indices follow, achieving high-ranked positions on
average. On the contrary, GLCM_entropy and SUVmax seem to be less important for the
logistic regression peaking at low-ranked positions. SUVmean and GLCM_homogeneity
look to be moderately important, while it is hard to infer something about the importance
of TLG and SUV skewness from Figure 2.

The best performing binary classifier is the random forest that, with an AUC score of
0.87, totalized a balanced set of scores in TPR and TNR. Referring to the decision threshold
with TPR > 0.9 (on the training set), the random forest can correctly classify PMBCL in 81%
of patients, and cHL in 80%. The other ML models achieve slightly better performance in
identifying PMBCL cases (82–85%), at the cost of lower performing capabilities for cHL
identification (77–79%). The SUVmax-based classifier exacerbates this behavior, totalizing
the best sensitivity score (88%), but the worst specificity score (63%).

The multiclass problem confirms the domain of the random forest classifier as the best
performing model with one-vs-all AUC scores for GZL/PMBCL classification of 0.68/0.78.
The ensemble classifier can identify PMBCL lymphomas within a multi-type cohort in 80%
of patients, and GZL cases in 86%, keeping acceptable performance in correctly excluding
GZL/PMBCL instances for at least 56% of patients. The other ML models show similar
multiclass capabilities, even if there are some cases where higher scores in TPR are at the
cost of worse performance in TNR and vice versa (Table 4). Again, the SUVmax-based
classifier exhibits the same behavior, obtaining the best TPR scores (88% for PMBCL and
89% for GZL), but failing in correctly excluding GZL/PMBCL instances in 55% of all cases.
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Despite the fact that SUVmax delivers information about the histological nature of
masses that can be tuned to identify specific lymphoma types, such information is not
enough to finalize the complementary task that is shown with a significant drop in the
specificity performance. Including more features besides the SUV-based ones makes it
possible to recover the missing information, providing more balanced performance. Our
results on the conjunction of radiomics with ML methods demonstrates that textural
features derived from FDG-PET imaging are correlated with histologic diagnosis in patients
with mediastinal bulky lymphomas, and thus may support pathological analyses.

In this context, FDG-PET could aim to be used in several additional ways beyond the
standard clinical use. On one hand, it could represent the best method for guiding a biopsy
in a bulky mass by answering the questions “where and how many samples”, identifying
the metabolic patterns corresponding to the specific histology as well. On the other hand,
FDG-PET radiomics could help clarify possible discordances between the histopathological
diagnosis and clinical characteristics of the patient. In this last case, radiomic features
of the bulky mass could represent an additional variable that could help clinicians and
pathologists define the diagnosis or guide the decision to undergo a second biopsy in a
more suggestive area of the bulky lesion.

The literature on functional imaging radiomics for lymphoma remains scant. Never-
theless, most of the published researchers in this field highlight the capacity of PET-related
ML to differentiate lymphomas from other entities [54,55]. Just recently, Montes de Jesus
et al. [25] analyzed ML algorithms to discriminate follicular lymphoma from diffuse large
B-cell lymphoma with promising results.

The present study had some limitations. Firstly, this was a retrospective study. Sec-
ondly, the PMBCL and GZL cohorts were limited, especially compared to the cHL group,
even if such proportions reflect the true incidence of these diseases. Moreover, it should be
highlighted that most of the results come with large uncertainties, surely due to the limited
statistic available. Thus, it could be important to extend this research in a multicenter
retrospective study with an enlarged sample size to develop more robust histological-based
classifiers and to validate the results in a prospective multicenter one. To harmonize ra-
diomic features calculated from images coming from different scanners or protocols, the use
of harmonization methods is of key importance. Moreover, with the current technological
evolution, it may also be interesting to implement our approach in full digital PET/CT to
confirm our findings. Finally, the relationship between texture parameters and histopatho-
logical findings also requires further study to determine the tumor biological dependency
of each textural feature.

5. Conclusions

Different subtypes of bulky mediastinal lymphomas, namely cHL, GZL and PMBCL,
demonstrated different FDG-PET characteristics and metabolic heterogeneity when exam-
ined using radiomics and texture analysis. ML methods could be combined with radiomics
to build a histological representation of bulky mediastinal masses that can successfully
identify different types of lymphomas. In the era of precision medicine and personalized
treatment, this preliminary study supports the potential of metabolic texture analyses as a
future imaging biomarker, with a growing role in clinical diagnosis.
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