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Bullous pemphigoid (BP) is the most common autoimmune bullous disease,

characterized by severe pruritus and skin blistering. The loss of tolerance against

Collagen XVII, also referred to as BP180, is the main pathogenic event of BP, leading

to production of IgG autoantibodies which mainly target the juxtamembranous

extracellular non-collagenous 16th A (NC16A) domain of BP180. A complex

inflammatory network is activated upon autoantibody binding to the basement

membrane zone; this inflammatory loop involves the complement cascade and

the release of several inflammatory cytokines, chemokines and proteases from

keratinocytes, lymphocytes, mast cells and granulocytes. Collectively, these events

disrupt the integrity of the dermal-epidermal junction, leading to subepidermal

blistering. Recent advances have led to identify novel therapeutic targets for BP,

whose management is mainly based on the long-term use of topical and systemic

corticosteroids. As an example, targeting type-2 T-helper cell-associated cytokines,

such as Interleukin-4 and interleukin-13 has shown meaningful clinical efficacy in

case series and studies; targeting IL-17 and IL-23 has also been tried, owing to

an important role of these cytokines in the chronic maintenance phase of BP. In

this review article, we discuss the complex cytokine milieu that characterized BP

inflammation, highlighting molecules, which are currently investigated as present

and future therapeutic targets for this life-threatening disease.

KEYWORDS

cytokine, bullous pemphigoid, target therapy, interleukin, Th2, lymphocyte, eosinophil,
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Introduction

Bullous Pemphigoid (BP) represents the most common autoimmune bullous disorder
and prevalently occurs in the elderly (1). The disease is characterized by circulating IgG
autoantibodies which mainly target the non-collagenous (NC)16A domain of Collagen XVII,
also referred to as BP180, a main component of the hemidesmosomes, which maintains the
integrity of the dermal-epidermal junction (DEJ) (2). Patients with BP also develop antibodies
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against BP230, a cytoplasmic protein of the hemidesmosomal plaque
that cross-link BP180 to keratin (K) 5 and K14 (3, 4).

Bullous Pemphigoid encompasses a heterogeneous spectrum of
manifestations. The classic type is characterized by diffuse tense
blisters arising on a background of erythematous-edematous skin
(5). Pruritus is always present and, in some patients, may precede
for years the appearance of manifest lesions (6). Further, several
non-bullous forms have been described (7).

Over the recent years, the incidence of BP is raising significantly
(2, 8). This phenomenon is partly explained by an increasing aging
population in western countries, and easier access to serological
diagnostic kits. Epidemiologic studies showed that BP is associated
to some neurological disorders (9–11), particularly dementia and
Parkinson, drugs, such as dipeptidyl peptidase IV inhibitors (DPP4i)
and PD-1 inhibitors (12, 13) and malignancies (14, 15). The pandemic
showed that BP might occur after either SARS-CoV-2 infection or
related vaccines (16, 17).

Pathogenically, IgG binding to either BP180 or BP230 activates
a cascade of inflammatory mediators resulting in the loss of dermal-
epidermal adhesion (18). The increasing knowledge of this complex
inflammatory cascade is pivotal for developing new therapeutic
strategies for the disease, as its therapeutic management is still largely
based on long-term immunosuppressive treatments (10). Indeed,
the purpose of this review is to provide a concise overview of the
cytokine milieu of BP, with a special focus on molecules currently
under-investigation as potential therapeutic targets.

Cytokine regulation of humoral
immunity in bullous pemphigoid

Loss of tolerance against bullous
pemphigoid antigens is associated with a
prevalently Th2-type skewed immune
response

BP180-NC16A-reactive CD4+ T cells play a pivotal role in the
pathogenesis of BP (19). Although Th1 and Th2 mixed profiles were
considered in the past as the main mediators of the immune response
in BP (20), BP is currently regarded as a prevalently Th2-cell skewed
disease (Figure 1). Pickford et al. demonstrated strong IL-4 and
IgE responses in peripheral blood mononuclear cell isolated from
BP patients when exposed to NC16A peptides (21). A recent study
on Chinese population identified two NC16A peptides that were
associated with the induction of a Th2-type immune activation in BP.
Specifically, the authors demonstrated that Th2 cell activation in BP
occurred in an human leukocyte antigen-DR (HLA-DR) restricted
fashion. IL-4 production by activated Th2 cells was associated with
B-cell activation and autoantibody production (22). Th2 cytokines
IL-4, IL-13, and IL-31, which play also a crucial role in eosinophil
chemoattraction, maturation and activity, and induction of pruritus,
have been shown to increase both in the peripheral blood and
skin lesions of BP patients (23, 24) (Figure 1 and Table 1). Here,
chemokines such as eotaxin and MCP-4, whose levels increase in the
blister fluid, support the chemotaxis of Th2 cells (25), supporting a
positive feedback loop between activated Th2 cells and eosinophils.

B-cell subsets in the pathogenesis of
bullous pemphigoid

B cell landscape of BP have been only poorly analyzed.
Clinical evidence shows that B cells are pathogenically relevant,
and their depletion with rituximab (RTX) is a viable therapeutic
option, although less effective compared to pemphigus (26–
31). This different qualitative effect exerted by RTX could be
due to the persistency of IgE autoantibodies, which are still
present also after RTX-treatment, and/or persistency of CD20-
plasma cells (32). B-cells secreting autoantibodies were found
also in BP lesions (33). Their trafficking into the skin seems
to depend on the CXCR4/CXCL12 axis rather than cutaneous
lymphocyte-associated antigen (CLA) expression, which is
poorly expressed by B cells (34). Furthermore, CXCL12 activates
C-Myc, which promotes B-cell differentiation into antibody-
secreting cells and facilitate autoantibody production, and
disruption of this axis results in altered antibody production
in vitro (33).

B regulatory cells function in BP appears to be impaired. B
regulatory cells are increased in the circulation of BP patients but
show an inflammatory, rather than regulatory, phenotype secreting
IFN-G, IL-4, and TNF-α instead of IL-10 (35). Different studies
reported that serum levels of B-cell activating factor (BAFF), a protein
which regulates and stimulates B cell differentiation, is up-regulated
in BP (36, 37).

T follicular helper cells and altered T
regulatory cells function support antibody
production by autoreactive B-cells

T follicular helper (TFH) cells are a subset of T cells, characterized
by the expression of CXCR5 and the capacity to migrate into
germinal centers. TFH play a relevant role in autoimmune disorders
by stimulating IgG switching and antibody production by activated
B-cells (38). Inhibition of TFH cells represents a novel therapeutic
approach in autoimmune diseases (39, 40). The signature cytokine
of these cells is IL-21, which stimulate both TFH and B cell
proliferation (41). Both TFH and IL-21 are increased in BP, positively
correlating with anti-BP180 antibody levels; concordantly, treatment
response in BP is accompanied by a decrease in TFH/IL-21 levels
(42). Finally, absence of TFH cells or inhibition of IL-21 decreases
autoantibody production by B-cells in in vitro T/B cell co-culture
(42). In this context, also CXCL13, a chemokine which stimulate the
migration of TFH cells is expressed in BP patients in both serum and
skin (43).

T regulatory (T reg) cells are a crucial T cell subset in the
pathogenesis of BP (Figure 1). Scurfy mice and patients affected by
immune dysregulation, polyendocrinopathy, enteropathy, X-linked
syndrome have been reported to spontaneously generate antibodies
against BP180 and BP230, suggesting that altered Treg function
increases the risk of developing BP (44). In BP, Treg cells increase
in lesional skin (45–47), while IL-10 serum levels are up-regulated
during disease remission (45). These observational data question
whether skin infiltrating T regs show undiminished suppression
capacity in BP.
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TABLE 1 Overview of immunological players involved in the pathogenesis of bullous pemphigoid according to findings from serological, blister fluid, skin
samples, and mice models analysis as well as their current clinical relevance based on ongoing and terminated clinical trials (published or registered at
www.clinicaltrials.gov, accessed on 15 December 2022).

Experimental evidence Therapeutics

Molecule Sera1 Blister fluid2 Skin3 Pathogenecity
in mice4

Correlation to
disease activity5

Targeted
drug

Phase NCT

C5/LTB4 ↑ ↑ NN + NN Avdoralimab
Nomacopan

II
III

NCT04563923
NCT05061771

Eotaxin-1 ↑ ↑ ↑ NN + Bertilimumab II NCT02226146

IgE ↑ ↑ NN + + Omalizumab
Ligelizumab

IV
II

NCT00472030
NCT01688882

IL-4
IL-13

↑

↑

↑

NN
↑

↑

NN
NN

NN
+

Dupilumab II/III NCT04206553

IL-5 ↑ ↑ ↑ NN + Mepolizumab
Benralizumab

II
III

NCT01705795
NCT04612790

IL-8 ↑ ↑ NN + + DF2156A II NCT01571895

IL-17 ↑ ↑ ↑ + NN Ixekizumab II NCT03099538

IL-23
(IL-12)

↑

NN
↑

NN
NN
NN

NN
NN

NN
NN

Tildrakizumab
Ustekinumab

I
II

NCT04465292
NCT04117932

1Interleukin (IL) or other molecule levels in serum of patients. ↑ Indicates increased levels relative to control; NN not studied, or data are uncertain. 2IL or other molecule levels in blister fluid of
patients. ↑ Indicates increased levels relative to control; NN not studied, or data are uncertain. 3IL or other molecule levels in affected skin of patients, detected by Immunohistochemistry/qPCR.
+ Indicates increased levels relative to control; NN not studied, or data are uncertain. 4Proven pathogenetic role in mice model. + Indicates confirmed pathogenetic role in mice model; NN not
studied, or data are uncertain. 5Correlation with disease activity and/or severity in patients. + Indicates presence of correlation; NN not studied, or data are uncertain.

FIGURE 1

Schematic representation of immune cells and molecules involved in the pathogenesis of bullous pemphigoid. Bullous pemphigoid is determined by
IgG, IgE attaching BP180 located in the dermal-epidermal junction. Epidermal cells react by releasing interleukin (IL) 6 and 8. Eventually, this process
leads to the recruitment of immune cells (mast cells, macrophages, and eosinophils) which infiltrate the skin and release inflammatory interleukins (IL)
and proteolytic enzymes. T cells contribute to this inflammatory process by releasing interleukins at both peripheral (blood) and lesional (skin) level.
Especially IL-4, IL-13, IL-31 are crucially involved in B cell proliferation, antibody production and Ig-class switching, itch and eosinophils activation, while
IL-17 support neutrophil recruitment. Together, immune cells induce expression of chemokines, thus increasing skin infiltration. The result of this process
is the formation of erythematous urticarial plaques and, later, dermal-epidermal splitting causative of blistering. IL, interleukin; Ig, immunoglobulin; Th, T
helper; TGF-β, tumor growth factor β; IFN-G, interferon G; GZMB, granzyme B; MMP9, matrix-metallopeptidase 9; LB5, leukotriene B 5; ROS, reactive
oxygen species; C5, complement component 5.
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Interleukin-17/23 signaling in the
pathogenesis of bullous pemphigoid

IL-17/IL-23 axis has a supportive role in the pathogenesis of
BP. In a IL17−/− mice model, passive transfer of anti-BP180
antibodies led to reduced skin inflammation, whereas in wild-type
mice levels of IL-17 production following anti-BP180 IgG passive
transfer correlated to disease severity (48). Collectively, this findings
suggest that IL-17 is pathogenically relevant in murine BP. In human
BP IL-17 levels increase in lesional skin and blister fluid (49) and
its production is mainly sustained by neutrophils (Figure 1). In
the peripheral blood of BP patients, CD3+ lymphocytes appear
to be the main source of IL-17 (24). Interestingly, longitudinal
measurement of IL-17 and IL-23 serum concentration was found to
predict relapse in BP patients, as relapsing patients were shown to
have persisting increased levels of serum IL-17 as well as increasing
serum concentration of IL-23 during the first month of treatment
(50). The IL-17/IL23 axis promotes various pathological processes,
including DNA extracellular trap formation (51), stimulation of
IL-1β production in macrophages and production of matrix-
metalloprotease (MMP)-9 and neutrophil elastase, enzymes involved
in blister formation (52, 53).

Interestingly, only a subset of BP patients shows up-regulation
of IL-17 at the baseline, without correlation with disease severity,
suggesting that not all the patients could effectively benefit from
therapeutic targeting of the IL-17/IL23 axis (30–32). Interestingly,
targeting IL17/IL23 demonstrated efficacy in patients with coexisting
BP and psoriasis, a prototype of IL17/IL23 driven disease (33,
54–57). Results from ongoing clinical trials are thereby necessary to
understand the impact of this treatment approach also in BP patients
without coexisting psoriasis (58). Inhibition of janus kinase may
worth being investigated in BP, since this could allow simultaneous
targeting of both IL-4 and IL-23 (59–62).

Complement-dependent and
independent mechanisms contribute
to blistering in bullous pemphigoid

Complement activation plays a pivotal role in the pathogenesis
of BP (63, 64). This assumption is supported by several evidences:
(i) the complement component C3 is disposed in a linear fashion
along the DEJ in perilesional BP skin, and is even stronger
than IgG, or sometimes found in the absence of IgG, in direct
immunofluorescence (65–68); (ii) the capacity of autoantibodies to
activate complement ex vivo correlates with disease activity and levels
of autoantibodies in BP patients (69); (iii) milder clinical phenotype
of BP230-type seems to correlate with weaker complement deposition
at DEJ (70) (iv) genetic deficiency and/or pharmacological depletion
of various complement components reduce pathogenicity of anti-
BP180 IgG and dampen skin inflammation in experimental mouse
models of BP (71, 72).

In BP patients, the classical pathway activation, which occurs
following antibody/antigen binding, is the major pathway (73).
In vitro and in vivo evidence suggests that blockage of C1q prevents
both complement activation and skin blistering. Likewise, genetic
absence of C4 in experimental BP mouse models is enough to abolish
mast cell (MC) degranulation and attraction of neutrophils (71)

(Figure 1). The alternative pathway of complement activation plays a
supportive role in the pathogenesis of BP (71). Accordingly, passive
transfer of anti-BP180 antibodies in mice with genetic deficiency of
alternative pathway component FB developed a delayed and mild
disease phenotype (71).

The activation of complement generates the attachment of
component C3 and release of anaphylatoxins C3a and C5a, of which
C5a can mediate polymorphonuclear leukocytes chemotaxis and both
C3a and C5a can mediate MC degranulation (74). Of relevance in the
generation of experimental BP in mice is the interaction between C5a
and C5aR1 (75). C5aR2 conversely plays an anti-inflammatory and
protective role in BP (76, 77). C5a receptor 1 (C5aR1) on MC was
shown to be critical for the formation of skin lesions (74). Further,
C5a/C5aR1 interaction on the surface of neutrophils activates the
release of LTB4 via 5-lipoxygenase (78). Collectively, these molecules
are indispensable to an efficient recruitment of neutrophils into the
interstitial skin tissue (79, 80) (Figure 1 and Table 1).

A last consequence of complement activation in BP is the
formation of the terminal membrane attack complex, which exerts
direct cytotoxic effects in the epidermal basal cells.

It is worth noting that loss of dermal-epidermal adhesion in
BP may also occur via complement-independent mechanisms (76,
81, 82), which are thought to be preponderant during early and
non-blistering phases of BP, where non-fixing complement IgG4
subclasses are predominant (83–85). These mechanisms include (i)
internalization of BP180 from the surface of keratinocytes after IgG
binding to BP180 (86); (ii) direct release of cytokines, e.g., IL-6 and
IL-8, from keratinocytes (87); (iii) induction of MC degranulation
and eosinophil activation by IgE autoantibodies (88).

It is thus possible that both complement-dependent and
complement-independent mechanisms work together in inducing
and perpetuating BP inflammation and blistering (85).

Cytokine regulation of non T/B
immune cells in bullous pemphigoid

Loss of dermal-epidermal adhesion in BP is critically associated
with skin infiltration of neutrophil and eosinophil granulocytes
(89–91). In passive transfer models, pathogenicity of antibodies
is significantly reduced in the absence of myeloid granulocytes
(89, 92, 93). Moreover, BP models induced by genetic deletion
of BP180 pathogenic domains are characterized by spontaneous
infiltration of granulocytes (94). Granulocytes induce blistering
by different mechanisms such as the release of proteases, e.g.,
MMP-9, reactive oxygen species (ROS) and either neutrophil or
eosinophil extracellular traps (51, 92, 95–97) (Figure 1). In humans,
neutrophils and eosinophils localize differently in BP skin, with the
first predominating in the blister fluids and the second in the dermal
skin (98). The blister fluid, as well as sera, of BP patients over-
express several chemoattractant and pro-inflammatory molecules,
including IL-1, IL-8, IL-10, IL-5, Tumor necrosis factor-alpha, IL-6,
CCL17, CCL-1, galectin-9, periostin, CCL11, CCL26, thymic stromal
lymphopoietin and eotaxins (99–107) (Table 1). Dermal-epidermal
separation induced by eosinophils is mainly orchestrated by IL-5 and
depends on adhesion and Fcγ receptor activation (108). Neutrophils
and eosinophils also regulate different aspects of BP inflammation.
As an example, NET release from neutrophils acts systemically
by inducing B-cell differentiation into plasma cells via activation
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of the MAPK/p38 cascade (109). Eosinophils mediate specific IgE
pathogenicity, release cytokines which enhance Th2 cell recruitment
and stimulate peripheral nerve terminals, e.g., by releasing IL-31 (88,
110–112).

Cross talk between immune cells is likely to potentiate the effector
functions of granulocytes. Accordingly, neutrophils in BP release
significantly more ROS and MMP-9 when stimulated with monocyte
supernatants in vitro (113). Recently, Granzyme B was shown
to critically regulate monocyte-dependent neutrophil recruitment
in BP, and its inhibition significantly ameliorated pemphigoid
disease induced by immunization with anti-COL7 antibodies in
mice (114).

Monocytes and neutrophils are also activated by CXCL10, whose
levels are increased in early-relapsing patients and is produced by
keratinocytes, fibroblasts, and infiltrating immune cells (115).

Tissue resident macrophages are increased in BP skin and are
mainly polarized toward the M2 phenotype, which express CD163
and CD206 (116, 117). M2 macrophages produce large amounts of
Th2-type cytokines and stimulate T-cell and eosinophil recruitment
by releasing CCL18, CCL22, CCL24, and CCL2 (117, 118).

Furthermore, CD163+ M2 macrophages stimulated by LL37
in vitro produced CXCL10 and CCL20 as well CXCR5+, CXCL13+,
which contribute to recruitment of TFH cells (43, 117).

Finally, BP skin is enriched in both basophils and MC.
Basophils are implicated in BP-associated itch (119). The role
of MCs is still matter of debate. Experimental evidence suggests
that MC degranulation in mice with BP occur after different
stimuli, including complement fractions and specific IgE antibodies
(74). Finally, macrophage-mediated neutrophil infiltration depends
on MC activation (120, 121) (Figure 1). However, while studies
using KIT-dependent MC knock-out mice demonstrated that
MC activation trigger BP (121), Kit-independent MC-deficient
mice still develop the disease, without significant changes in
immune cells infiltration. Collectively, these findings raise the
hypothesis that MC activation could be a bystander effect of BP
inflammation (122).

Target therapies in bullous
pemphigoid

Until now, several targeted therapies for BP have been developed,
including (i) cell-depleting therapies; (ii) autoantibody-targeting
therapies and (iii) single cytokine/molecule-directed therapies
(Table 1).

Rituximab, a B-cell depleting therapy, is still not approved for BP,
but often applied off-label to patients who fail conventional therapies.
BP patients receiving one or more RTX cycles experience high rate of
complete remission (CR) (approximately 75–92% of CR and 40% of
CR off therapy), with significant drop of autoantibody titer (27–29,
123). Notably, RTX was shown to halve the 5-year mortality rate of
BP in one study (124). Although RTX is mostly applied according to
either the lymphoma protocol (375 mg/m2 weekly for 4 weeks) or
the rheumatoid arthritis protocol (2 infusions of 1,000 mg 2 weeks
apart), increasing number of studies addressed the efficacy of low (2
infusions of 500 mg 2 weeks apart) or ultra low (100 mg weekly for
4 weeks) doses of RTX in BP (125, 126).

Intravenous immunoglobulins showed pleiotropic anti-
inflammatory effects (26), including increased autoantibody
catabolism, and demonstrated meaningful positive effects in

several cases and studies in BP both as monotherapy or combined
with RTX (127–130). More recently, efgartigimod, a monoclonal
antibody targeting the neonatal Fc receptor and thereby hastening
the internalization and degradation of immunoglobulins, has
entered clinical trials in BP after promising results in pemphigus and
myasthenia gravis patients (131, 132). Several studies reported disease
improvement with omalizumab, a monoclonal antibody targeting the
IgE-specific Fc epsilon receptor III (133–137) (Table 1). Omalizumab
offers a favorable safety profile, making it suitable for patients with
contraindication to prolonged corticosteroid/immunosuppressive
regimens (138, 139). Intriguingly, it showed efficacy also in patients
without detectable serum anti-BP180/BP230 IgE. Responder patients
show a decrease in IgE skin deposition, circulating IgG autoantibody
levels and circulating basophils, which suggests immune-modulatory
effects beyond IgE inhibition (137, 138, 140).

Over the recent years, complement activation has served as
an attractive target in BP, owing to the established role in BP
pathogenesis demonstrated in animal studies.

In one study blockage of C1s by the specific inhibitor, TNT003,
successfully blocked the complement activating capacity of BP sera.
Likewise, Gutjahr et al. (141) found that tinzaparin sodium inhibited
autoantibody-induced complement activation in BP sera.

More recently, Sadik et al. (142) reported the results of a phase IIa
non-randomized clinical trial of BP patients treated with nomacopan
(NCT05061771), an inhibitor of leukotriene B4 and complement
C5. Seven of the nine patients recruited demonstrated remarkable
reduction of Bullous Pemphigoid Disease Area Index (BPDAI) and
pruritus after approximately 1.5 months. No serious adverse events
were reported (Table 1).

Since a first report in 2018 (143), dupilumab, an IL-4 alpha
subunit receptor inhibitor has been used increasingly in BP.
Dupilumab mainly acts by suppressing IL-4- and IL-13-producing
CD4+ T cells (144). In a case series of 13 patients published in 2020,
dupilumab demonstrated a satisfactory response in 92.3% (145).
BP patients receiving dupilumab in combination with conventional
therapies achieve faster clinical response with a reduction of the
cumulative steroid dose compared to those treated with conventional
therapies (146, 147). Interestingly, combination of omalizumab and
dupilumab demonstrated efficacy in one case of recalcitrant BP
(148). Finally, the drug holds promise as a treatment for special
settings of patients, including highly recalcitrant, rituximab-resistant,
or immune checkpoint inhibitor-induced BP (149–151). So far,
attempts to block IL-5 (mepolizumab) failed to show an impact
on BP activity (NCT01705795), while a study with benralizumab, a
monoclonal antibody targeting the IL-5 receptor is currently ongoing
(NCT04612790) (Table 1).

Finally, it will be intriguing to evaluate the efficacy of
nemolizumab, a monoclonal antibody targeting IL-31, on disease
activity and pruritus of BP.

Concluding remarks

An intriguing aspect of the pathogenesis of BP is that
antibody/antigen binding activates different pathways, which seem
to act in parallel rather than as a single cascade. Hence, combining
different target therapies will represent a feasible way to reduce
the cumulative exposure of patients to systemic steroids. In a
merely speculative manner, combination of rituximab and dupilumab
might effectively target the T-B-cell cross-talk involved in the loss
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of tolerance against BP autoantigens; while, combination of anti-
complement drugs and either neutrophil-or eosinophil-targeting
therapies might be best suited to impair the effector phase of BP
inflammation and pruritus. Indeed, with the number of available
therapeutic options rapidly increasing, clinicians should focus
on identifying comorbidities, clinical variables (e.g., bullous vs.
non-bullous phenotypes and pruritus intensity), laboratory [e.g.,
neutrophil-rich vs. eosinophil-rich infiltrates at histopathology, or the
intensity of complement deposition at direct immunofluorescence
(DIF)] and serological findings (e.g., titer of IgG and IgE
antibodies against BP180/BP230) or molecular factors (e.g., cytokine
concentration) which may influence therapy-response and decision-
making.
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