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Abstract
Socially Assistive Robots (SARs) are designed to support us in our daily life as a companion, and assistance but also to support
the caregivers’ work. SARs should show personalized and human-like behavior to improve their acceptance and, consequently,
their use. Additionally, they should be trustworthy by caregivers and professionals to be used as support for their work (e.g.
objective assessment, decision support tools). In this context the aim of the paper is dual. Firstly, this paper aims to present
and discuss the robot behavioral model based on sensing, perception, decision support, and interaction modules. The novel
idea behind the proposed model is to extract and use the same multimodal features set for two purposes: (i) to profile the user,
so to be used by the caregiver as a decision support tool for the assessment and monitoring of the patient; (ii) to fine-tune the
human–robot interaction if they can be correlated to the social cues. Secondly, this paper aims to test in a real environment
the proposed model using a SAR robot, namely ASTRO. Particularly, it measures the body posture, the gait cycle, and the
handgrip strength during the walking support task. Those collected data were analyzed to assess the clinical profile and to
fine-tune the physical interaction. Ten older people (65.2 ± 15.6 years) were enrolled for this study and were asked to walk
with ASTRO at their normal speed for 10 m. The obtained results underline a good estimation (p < 0.05) of gait parameters,
handgrip strength, and angular excursion of the torso with respect to most used instruments. Additionally, the sensory outputs
were combined in the perceptual model to profile the user using non-classical and unsupervised techniques for dimensionality
reduction namely T-distributed Stochastic Neighbor Embedding (t-SNE) and non-classic multidimensional scaling (nMDS).
Indeed, these methods can group the participants according to their residual walking abilities.
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1 Introduction

During the last decade, increasing research interest in
Socially Assistive Robotics (SAR) has brought researchers
to develop intelligent robotic solutions that assist users
through advanced social interaction capabilities. The objec-
tive of SAR systems is to provide continuative support and
assistance with appropriate and contextualized emotional,
cognitive, and social cues through the creation of close and
effective interaction. Such systems were used to provide sup-
port and assistance to a wide range of users, including frail
older adults in domiciliary and hospital settings thus improv-
ing their quality of life [1, 2]. Indeed, one of the required
distinctive traits of SARs relies on their capabilities to per-
ceive, learn, and recognize models of the other agents it is
interacting with [3].
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Remarkable results have been achieved with SARs in
realistic scenarios involving real users (see e.g., [4, 5], also
concerning the assistance and themonitoring of impaired and
frail people (see, e.g., [6–8]. However, a crucial requirement
for effective SAR systems is the capability of dealing with
a high variety of situations and contextualized interactions
according to different living contexts and cultural habits of
assisted people showing a high degree of adaptability [9].
In this sense, the Human–Robot Interaction (HRI) field has
become crucial, and it is now compelling better understand
howhumans perceive, interactwith, or accept thesemachines
in social contexts. Consequently, there is a growing interest in
the development of models that can enhance the interaction
between humans and robots [10].

According to the literature [10, 11], the research efforts
aim to develop innovative and adaptable behavioral models
of robotic systems based on brain-inspired Artificial Intelli-
gence (AI) cognitive architectures. Indeed, a substantial part
of the research work in this area is addressing fundamen-
tal scientific problems in cognitive HRI and revolves around
four main themes:

• the study of psychology, social cognition, and neuro-
science models of human–human interaction (HHI);

• the development of sensing and perceptual abilities of
robots to detect emotion, action, and other social cues,
including real-world noisy data based on AI techniques;

• the development of bio-inspired social behaviors for a
robot that continuously learns from humans and adapts
to new social challenges showing human traits;

• the ethical, social, and legal implications of interaction and
data management to consider to be compliant with privacy
aspects.

Despite the crucial research potential of such topics, gaps
from a scientific perspective are still present. It is needed to
have more discussions and developments, and extensive test-
ing in the field, for improving robot capabilities and clinically
validating solutions for healthcare applications [12]. Indeed,
the key challenge in this field is to provide robots with cogni-
tive and affective capabilities, developing architectures that
let them establish empathetic relationships with users. This
requires an enormous effort in the fields of engineering and
AI and covers areas such as face and emotion recognition,
action and intention, prediction, speechprocessing, andmany
others.

Sensing and perception are two key robot capabilities to
deeply investigate for deploying a personalized and contex-
tualized HRI. When a robot interacts or, in general, coexists
with humans, it should sense/perceive and understand the
contexts and the humans. Human interaction is inherently
multimodal: while interacting, we are continually produc-
ing and interpreting a rich mixture of data. In effect, in

human–human interaction, the listener (i.e. the observer)
automatically assesses the emotional and engagement state
of the speaker (i.e. the actor). This human inherent ability in
a social context is the effect of specific processes happening
at the level of the brain, as described by the Theory of Mind
[13]. To mimic this capability, SARs should be able to detect
and recognize some bio-inspired communications signals,
referred to as social cues, which could be “descriptors of the
behavioral state of the user during the interaction”, namely:
posture and body movements, facial expression, head ori-
entation, verbal message, emotion, voice quality, gesture,
vocalization [14]. Consequently, information on the hand
movement, the direction of gaze as well as the relative posi-
tion of body joints can be analyzed to enhance the perception
of the user’s engagement during the interaction [15].

On the other side, clinical evidence showed that these
social cues could give a spot, or it could be linked with phys-
ical, psychological, and cognitive impairments that could
affect frail older persons. Alteration of muscle strength and
walking velocity characterize sarcopenia which is a major
contributor to the risk of physical frailty [16]. Additionally,
the body postures (i.e. body orientation and interpersonal
distance) could be expressions and symptoms of depres-
sion [17], indeed for humans, maintaining a standing posture
is important for spatial recognition, positive physiological
effects, and personal dignity.

In this context, the aim of this paper is dual:

• Firstly, we propose a robot model that aims to analyze
the collected data extracting the cues that can be used
as inputs for i) Health Contextual Reasoning module that
leads toward a decision support tool for the clinicians by
making data available thus to correlate them with symp-
toms (and diseases); and ii) Interaction and Intervention
Reasoning module that orchestrates the interaction ability
of the robot using AI algorithms to tailor the interaction
with the users.

• Secondly, we aim to test the model in a feasibility study in
a real environment. Particularly, we focused on the sens-
ing and the perception modules implemented in a social
robot, namelyASTRO.ASTRO robot [18]was designed to
support the indoor walking task by providing personalized
physical support thanks to the embedded sensors (i.e. laser
and 3d camera on its back and 16 force sensors embedded
on its handle). Particularly, in this paper, the cues related to
the sarcopenia (i.e., handgrip strength, body posture, and
gait parameters) were acquired and stored from those sen-
sors during the walking assistance task with ASTRO and
analyzed to profile the user. These aggregated outcomes
could be used, at the same time, by the clinicians to eval-
uate the performance and to monitor the progress of the
disease, and by the robot’s model to shape the physical
interaction during the walking assistance task.

123



International Journal of Social Robotics

The remainder of the paper is organized as follows,
Sect. “The Robot Model” introduces the robot model and
details the research questions. Section “Related Work”
presents an overview of the literature concerning the use of
robots in the clinical setting and the commonly used sensors
to extract the desired parameters thus contextualizing the sen-
sors selection. Section “Sensing Module: Data Extraction”
details the methodology such as the experimental setting and
the data analyses conducted. Sections “Results” and “Dis-
cussion” present and discuss the results respectively. Finally,
Section “Conclusion” concludes the work.

2 The Robot Model

Research in modeling robot behavior aims at endowing a
SAR with three key stages that are usually performed during
the HRI: the sensing, the perception, and the interaction (i.e.
the acting of the robot) modules. At the same time, the SAR
behavioral model should rely on the correct knowledge of
(i) the needs and the profile of the assisted person; (ii) the
context and its dynamic changes; and (iii) the abilities of the
robotic platform, thus to adapt the robot action [3]. Research
in AI has significantly contributed to different levels in the
realization of thementioned stages, obtaining also significant

results in designing flexible and adaptable solutions [2]. In
this context, we propose an architecture (Fig. 1) based on four
mainmodules (i.e. sensing, perception, decision support, and
interaction) and inspired by the ones described in [7, 9, 19].

Within the sensing module, the multimodal data collected
by the platform are recorded and analyzed to extract features
that characterize the selected social cues. The elaborated
information is the input of the perception module.

The perception module fuses these features at different
levels to perform autonomous user profiling. It could rely
on machine learning algorithms (e.g. supervised learning,
deep learning, reinforcement learning) that aggregate data
and abstract information from the sensing module, data from
clinical records (i.e. a priori knowledge) such as from the con-
text to define the user perception profile (see yellow box in
Fig. 1). User profiling is necessary to update robot knowledge
about the (current) state of an assisted person (i.e. physical,
cognitive, and social profiles) as well as implementing an
effective interaction strategy and for providing correct infor-
mation for the clinical assessment. Indeed, the robot model
relies on the outcomes of the perception module to infer
and plan the actions. As in [7], the proposed model has a
professional-in-the-loop that could adjust the perception of
the user profile providing the robot with some elements to
tailor the process of the perception module.

Fig. 1 The proposed robot model includes (i) the sensing module (purple box) that collects multimodal data from the robot; (ii) the perception
module (the yellow box) that processes and combines the data for the decision-making module (grey box) providing the decision support tool for
the caregiver (blue box), and for the interaction module (green box)
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Table 1 The same features could
be used to estimate the HRI and
to assess the clinical status of the
user

Cues Features HRI relationship Clinical assessment
relationship

Body posture &
movement

Body orientation Engagement [59] Depression [17],
Apathy

Interpersonal
distance

Engagement [60] Age [61], Psychopathy
[62]

Arm movement Engagement [63] &
Emotion [64]

Hints regarding the axis
of apathy-agitation

Gestures Engagement & Emotion
[7]

Apathy [65], Parkinson
[66]

Gait parameters Engagement & Emotion
[67]

Cognitive decline [68],
Dementia [69],
Parkinson [57],
Sarcopenia [16]

Emotion Facial expression Emotion [70] Apathy [71], Parkinson
[72]

Heart rate
fluctuation

Emotion [73, 74] Stress [75, 76]

Head orientation Eye gazing Engagement [77] Attentional fluctuation
[78]

Muscle strength Hand grip strength Physical HRI [79] Frailty [16]

Voice quality Tempo Emotion
[80]

Neurodegenerative
diseases [81, 82]Energy

Pitch

Verbal message Repetitions Engagement & Emotional
[14]

Hints on mental
flexibility and
planning
(repetitions), signs
related to lexical
problems (incomplete
words) and
hesitations (silence)

Incomplete words

Amount of silence

The outcome of user profiling goes into the decision-
making module, which explores the duality of the informa-
tion. The rationale behind this is that the same cues could
lead to different uses if analyzed in different contexts. As
previously anticipated, the cues-related features could bring
information on the quality of the interaction (i.e. engagement
or emotion of the user), but also on potential alteration of
the cognitive and physical status. In this sense, the Health
Contextual Reasoning module elaborates the information
for being used from the professional-in-the-loop; indeed,
the professional caregiver could use the provided data as
a support for the assessment, for the monitoring stages of
a certain pathology, or for identifying anomalies that could
be correlated with early sign of a disease. Alternatively, if
the information about the user profile is used by the Interac-
tion and Intervention Reasoning module, the robot could use
this information as input for the interaction stage. It aims to
adapt the interaction between the robot and the human beings
according to their preferences/needs and the (current) status
detected by the perception module. Indeed, it includes the

behavior planner module that will use the information on the
user profile to adapt the HRI in terms of motion, speech, and
expressions. For instance, in the case of walking assistance,
if the user perception module identifies an older person with
slow gait velocity and incorrect body posture, the interac-
tion module could adapt the behavior of the robot’s motion,
by setting the appropriate angular and linear velocity of the
motors.

Table 1 reports a list of features that describe social cues
used by humans in communication. This table underlines the
duality of their use in the context of HRI and in the field of
clinical assessment. It is evident the importance of endowing
the robotic platform with a multimodal sensing module to
capture different cues. It also highlights the efficacy of an
accurate perception module that can extract and organize the
information in the best way to improve the HRI and provide
support for the professionals.

In this paper,we focused on testing the sensing and the per-
ception modules of the ASTRO robot pointing to the use of
data for the Health Contextual Reasoning module. For what
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concerns the use of data for the Interaction and Intervention
reasoningmodule to adapt theHRI usingAIwe presented our
results in [20]. The perception of the user state is established
usingASTROembedded sensors: the upper bodyposturewas
estimated with the RGB-D camera,while handgrip strength
was measured by force sensors installed on the robot handle,
and gait parameters were extracted from laser data installed
on ASTRO’s back. Then, all the data were fused at the fea-
ture level to assess the status of the user. Summarizing, the
research questions (RQs) of this paper are:

1. RQ I: to analyze the visual, force, and laser data to extract
from ASTRO robot the parameters connected to body
posture, handgrip strength, and gait respectively to inves-
tigate the goodness of the perception module.

We expect to analyze the acquired data and to extract the
parameters related to the body posture, the gait, and the
handgrip strength since these are linked with the evalua-
tion and the monitoring of sarcopenia. We expect to have
comparable measurements obtained with ASTRO robot and
with wearable devices used traditionally (i.e. IMUs, hand
dynamometer). We expect to not find significant differences
between the twogroups of extracted features. Particularly, the
data related to the gait extracted from the ASTRO embedded
laserwill be comparedwith the features extracted from IMUs
signals placed on the feet, since inertial sensors are widely
used to measure the gait. As for the body posture, the body
inclinationmeasuredwith theASTRO camerawas compared
with the inclination measured with the IMU placed on the
sternum. Finally, we will investigate whether the handgrip
strength measured with the ASTRO handle is not different
(p > 0.05) from the ones measured with the dynamometer.
These are all fundamental steps to be verified to confirm
the goodness of the user profiling process and before using
ASTRO robot as a tool for the decision support system.

2. RQ II: to investigate if the output of the sensing modules
can be combined in the perceptionmodule to characterize
the user profile during the walking task thus providing
input for the decision support module.

Since the main goal of this paper is to present and discuss
the user’s profile perception, as the outcome of the percep-
tion module, we expect to see that the combination of all
the features extracted from ASTRO collected data will lead
to a correct perception of the user profile thus to be used as
the input of the decision support tool. Indeed, in this paper,
we will analyze the data to verify if the features could be
combined to describe the motor performances according to
the user’s residual physical abilities (i.e. user profile). Par-
ticularly, the features will be combined in a bi-dimensional

space, and we will observe if users with a similar profile will
be visualized at closer points.

3 RelatedWork

Asdepicted inFig. 1, thiswork represents thefirst step toward
a new paradigm of socially assistive robotics since it relies
on the duality of sensors data, which could be used by the
robot both to adapt its behavior during the interaction and to
provide feedback on the clinical user profile to the profes-
sional caregivers. Currently, the robots in a hospital setting
are generally used for logistic services, such as transportation
tasks, moving goods such as medical equipment [21], food
and garbage delivery tasks [22], and saving human resources
optimizing also task distribution and scheduling [23, 24] to
improve the hospital services. However, these applications
are not directly related to the clinical aspects in terms of
diagnosis andmonitoring neither to the social aspect of inter-
acting with patients.

Important aspects to be investigated to enable themanage-
ment, monitoring, and assessment of patient care in hospitals
by SAR, is the trust in robotic decision support among nurses
and doctors [25, 26] and the expectation toward robots [27].
Even if several issues arouse about the actual use of robots
in clinical practice (such as economic feasibility, acceptance
among clinical staff, acceptance among patients) [28, 29], the
results obtained by Gombolay et al. [30] sustained that the
robot provided high-quality recommendations for delivery
tasks, with a compliance rate of 90% respect to the clin-
ical experts. Additionally, D’Onofrio et al. [6] investigate
the use of SAR in supporting the work of professionals in
administering the comprehensive geriatric assessment that
includes also physical and cognitive tests (e.g. sarcopenia,
mini-mental state examination, Tinetti balance assessment
tool). In this sense, having a system (or a network of systems)
that could support and provide support during the adminis-
tration of such tests could improve the assessment process.

It is evident that over the last years, researchers and clin-
icians started to investigate several technological solutions
that could measure/analyze the output of such tests quanti-
tatively. But which are the most used sensors? Above all,
they were mainly focused on the analysis of body move-
ments, fine gestures, or activities since their fluctuations can
be correlated with neurodegenerative diseases (Table 1). In
this sense, wearable sensors seem the most promising ones
[31].Asdescribed in [32, 33], the inertial data collectedby the
wearable sensors allows the extraction of the walking param-
eters in time and frequency domains [33, 34]. Similarly,
smartphones were also used to measure walking parameters
[35–37], thanks to the Global Positioning System (GPS) data
and embedded IMUs. However, both these solutions could be
cumbersome to be used by frail and older persons. Indeed,
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older people would not have any external sensors because
sometimes they forgot to wear them.

Less invasive solutions are proposed by pressure-sensitive
walkway systems (e.g. GAITRite [38], GEAR [39]) and
the usage of optical motion capture systems, such as Vicon
Motion System (Vicon Motion System Ltd, UK) or Opti-
Track (OptiTrack, Corvallis, OR). While the former technol-
ogy analyses the gait by quantifying the pressure patterns
under a foot [40], the latter solution is composed of multi-
ple cameras and 3D markers that need to be attached to the
user’s body. Both types of technology are characterized by
high fidelity and accuracy in movement reconstruction, but
it is still a bit invasive, low portable (e.g. they cannot be used
outside the laboratory settings [41]), and too expensive to be
exploited in the evaluation of health conditions and during
daily activities.

Due to this limitation, RGB and RGBD cameras are
becoming promising alternatives. Indeed, they provide a
marker-less and portable solution for the estimation of
biomechanical gait features [41] and body posture [42].
These contactless sensors could be easily installed on a social
robot that could use the inputs to provide feedback on the user
profile during the interaction thus adapting its behavior and
supporting the professionals ‘work.

Most of the RGB-D cameras (e.g. Microsoft Kinect)
incorporate proprietary software for detecting the joints’
coordinates of the user body, which allows the estimation of
biomechanical gait features of the lower [43, 44] and upper
limbs [45–48]. Similar results have been obtained by the
RGB cameras, due to the emergence of two popular machine
learning models which allow for real-time human pose esti-
mation: OpenPose [42] and PoseNet [49]. Both tools allow
the extraction of 2D keypoints that could be used to perform
gait analysis, as described in [41, 50, 51]. Authors in [52]
used it to compute the distances of the joints from a refer-
ence point, manually selected on the first RGB frame. Also,
Gu et al. [50] used OpenPose framework in conjunction with
the GrabCut tool [53] to detect the foot position in the image.
Both works focused on lower limb parameters estimation for
gait analysis fromafixed camera.One commondesign choice
in the mentioned works is the stable position of the camera.
Namely, inmost of theworks the camera is fixed in one room,
usually attached to the ceiling or at least 2 m distant from the
user. One of the novelties of our work relies on the config-
uration of contactless sensors. Indeed, the camera used for
the gait and body posture analysis is mounted over a mov-
ing robot. It allows the continuous monitoring of the elderly
activity with no constraints on the sensor’s location. Further-
more, in this work, we aim to enrich the clinical parameters
extracted with the wearable and vision sensors by including
the gait parameters that can be assessed by the laser sensor
mounted on the robotics platform.

4 Material andMethods

4.1 System Description

ASTRO has been designed to assist an older person with
mobility needs as refined under ACCRA project [54]
(Fig. 2a). ASTRO is based on the SCITOS G5 robotic plat-
form (Metralabs GmbH, Germany). SCITOS G5 is also
equipped with a bumper and a couple of emergency-stop
buttons that can stop the motor, if required, guaranteeing the
safety of the users.On the front, the platform is improvedwith
an additional laser (Laser Sick 300) enabling the perception
of the surrounding environment and promoting autonomous
safe navigation into the environment.

On the back, ASTRO is equipped with a second 2-
dimensional laser sensor for area scanning (Hokuyo URG-
04LX-UG01). The light source of the sensor is a pulsed light
laser diode (infrared) of wavelength 785 nm with laser class
1 safety. The scan area is 240° semicircle with an angular res-
olution of 0.36º and a maximum scan distance of 4000 mm.
Scans are performed at a frequency of 10 Hz. Addition-
ally, an Astra ORBECC camera is mounted on the back of
ASTRO to observe the upper part of the user during thewalk-
ing task. Namely, it records RGB data with a resolution of
1280 × 720@30fps and depth images with resolutions 640
× 480@30fps up to 8 m.

About Human–Machine-Interface two touch screens for
direct access to the GUIs were mounted on the front and the
back sides of the robot.

On the back, ASTRO is equipped with a smart handle
to support personal mobility. 16 force sensors (Flexiforce,
Tekscan, USA) were mounted in correspondence of the right
and the left hands to improve the physical HRI during the
mobility services [55]. ASTRO has a smart drive mode that
allows the users to use his/her handgrip strength to drive
the robot during the walking support service. Thanks to this
module, the data acquired from 8 force sensors embedded on
ASTRO handle were combined in real-time using machine
learning technique (i.e. decision Tree) to adapt the linear
and angular velocities of the robot to the normalized force
applied. As result, the robot could adjust the “drive mode”
of ASTRO by changing the applied handgrip strength [20].

In this paper, three inertial sensors (9-axis) (XSens,
Netherlands) were used to verify RQ I. These sensors acquire
data at a sampling frequency of 100 Hz. Additionally,
CAMRY hand dynamometer was used for the measurement
of the grip strength as in traditional clinical practice. These
sensors, external to the robot, have beenused just in the exper-
imental setting to verify the perceptive capabilities of the
robot. They would not be necessary, therefore, in the stan-
dard use of the robot.
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Fig. 2 a A subject during the 10 m walk with the ASTRO robot. The yellow label indicates the sensors embedded on the robot whereas the green
label and the green arrows indicated the wearable IMUs sensors. b OpenPose frameworks, the used joints are indicated such as the parameters
extracted from the camera

4.2 Participants

Atotal of 10 subjects, 8men and2women (65.2±15.6 years)
were enrolled among patients at the research hospital “Fon-
dazione Casa Sollievo della Sofferenza” located in San
Giovanni Rotondo (Foggia, Italy).1

All the involved subjects were right-hand dominant. Eight
out of ten could walk alone and the other two could walk
with the support of a walker. The study design and proto-
col, including subject privacy and data treatment plan, were
approvedby theEthicalCommittee of “FondazioneCasaSol-
lievo della Sofferenza” (Approved on June 12, 2017; Prot.
Code H2020-738,251 ACCRA). Written informed consent
to participate in the study and to use the data for research
purposes was obtained from each participant. During the
experimental trials, a technician and a doctor assisted the par-
ticipants and thus to promptly intervened in case of necessity.

4.3 Experimental Protocol

Before starting the experiment, the technician taught the user
how to use ASTRO during the walk. Particularly, thanks to
the installed “Smart Drive Mode” (see System Description
Section), if the user would like to activate the robot, he had to
increase the handgrip strength of both hands and start walk-
ing. If the participant wished to turn left/right, he/she had to
increase the handgrip strength of the correspondent hand. As

1 Hospital “Casa Sollievo della Sofferenza” official website: https://
www.operapadrepio.it/it/ospedale.html.

soon as the participant felt confident in using ASTRO, the
test could start.

Similarly to [55], in the beginning, the participants were
asked to sustain their maximum force on the dynamometer
for 5 s with elbow flex at ~ 90° and then release their grasp.
This procedure was repeated for both hands. After that, they
were requested to do the same with the ASTRO handle for
5 s. Then, each participantwas asked towear the IMUsensors
on the feet and the sternum by using the elastic bands (see
Fig. 2a). After, they were requested to walk in a straight line
for 10 m at their normal speed with ASTRO with the smart
drive mode activated. During the walking task, data from the
laser, the camera, and IMUs sensorswere acquired and stored
thus being off-line analyzed.

5 SensingModule: Data Extraction

5.1 Gait Segmentation

(1) IMU sensors on the feet

The acceleration and angular rate data acquired with IMUs
placed on feet were offline processed by using Mat-
lab®R2019b (The MathWorks, Inc., Natick, MA, USA). A
fourth-order low-pass digital Butterworth filter was utilized
with a 5 Hz cut-off frequency for eliminating high-frequency
noise [56]. Custom algorithms were developed to extract
motor parameters during the walking task. The gyroscope
signal perpendicular to the motor direction was analyzed.
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For each gait cycle, the start (TS) and the end (TE) events
were identified from the algorithms; then, the segmentation
procedure divided the gait cycle into four phases: stance
(ST), heel-off (HO), swing (SW) and heel-strike (HS). These
phases were used in the algorithms to extract the gait tempo-
ral parameters as detailed in [57]. The same parameters were
extracted from the left (L) and the right (R) foot. As concern
data from the IMUs, the length of the stride (GSTRDL) was
computed as the ratio between the distance (10 m) and the
number of strides (GSTRD). At the end of the process, a total
of 18 parameters were extracted, as reported in Table 2.

(2) Laser data on Robot

Firstly, data from the laser were filtered to remove the
noise which corresponds to when the laser did not see two
centroids because of several reasons (e.g. caregiver help dur-
ing the walking task, camera occlusion). After, the same
parameters extracted from the IMUs were computed also
from the laser data for both feet. In this analysis, we consid-
ered only the data along the x-axis, which is the direction of
the walking task. In this model, the origin of the axis (x = 0)
corresponds to the ASTRO robot. An example of laser data
is reported in Fig. 3. These signals were analyzed by com-
puting the maximum (which corresponds to the TO) and the
minimum (which corresponds to HS). By using these points,
the same features were extracted. The swing phase corre-
sponds to the segment where the distance between the robot
and the legs diminishes and the stance phase corresponds to
the opposite slope. It is worth noticing that, in this case, the
STRDL was computed as the length of the curve between
two TO points (pink lines). The segmentation of the signal
is summarized in Fig. 3.

5.2 Body Posture

(1) RGBD Camera on ASTRO

Each video has been processed offline with an open-source
tool namedOpenPose [42]. This toolkit automatically detects
25-keypoint body pose locations and 70 fiducial facial land-
marks, along with their detection confidence (0–1) from the
2D image. In our work, the camera is mounted on the upper
part of the robotic platform, thus it moves accordingly to it.
Since only the upper body of the user is visible in the image,
only 4-keypoint body pose locations are of interest for our
analysis (Fig. 2b): the left shoulder, right shoulder, neck, and
nose. It is worth noticing that during the walking perfor-
mance, some external users may be present in the scene. To
disambiguate the main user from the external users, the body
pose of the main user is updated based on his/her initial pose.
Since the camera records also the depth images (along the z-
axis), the depth information has been automatically retrieved
from the pixels belonging to the detected body key points.

From these key points, several geometrical parameters
were extracted. As shown in Fig. 2b, the line connecting the
key points of the shoulders was computed to determine the
slope (m) and the inclination (theta). These two parameters
can be used to analyze the motion of the shoulders during the
walk. From the RGB domain, we computed the Euclidean
distance between the nose and the neck key points (DIS),
computed as:

DI S =
√
(xnose − xneck)2 + (ynose − yneck)2

This parameter was chosen as a descriptor of the tilt
motion of the torso. The tilt motion of the torso was esti-
mated also by the variation of the position of the neck in

Fig. 3 Laser data acquired during
the 10 m walking test. The red
points are the Toe-off (TO)
instances and the red points are
the Heel Strike instances. The
pink lines are the length of the
stride. The GSTRDT, GSWT,
and GSTT are also reported
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Table 3 Description, mean value,
and standard deviation (SD) of
the features related to the
selected body joints and the
handgrip strength extracted from
the RGBD camera and the force
sensors respectively

Acronym Features Source Mean (SD)

m Shoulder Slope Camera 0.043 (0.075)

m_SD SD of the Shoulder Slope Camera 0.047(0.016)

THETA Shoulder Inclination Camera 2.46 (4.29)°

THETA_SD SD of the Shoulder Inclination Camera 2.64 (0.86) °

DIS Nose-Neck Distance Camera 144.64 (14.82)
pixel

DIS_SD SD of the Nose-Neck Distance Camera 17.29 (7.28)
pixel

NOSE Nose Displacement Camera 2.97 (0.55) pixel

NOSE_SD SD of the Nose Displacement Camera 2.38 (0.35) pixel

NECK Neck Displacement Camera 2.88 (0.43) pixel

NECK_SD SD of the Neck Displacement Camera 2.05 (0.27) pixel

Zmin Minimum Neck Variation along the z-axis Camera 575.30 (71.84)
mm

Zmax Maximum Neck Variation along the z-axis Camera 794.50 (41.96)
mm

ZRMSE Root mean square error of the Neck along the z-axis Camera 35.57 (11.47)
mm

THETAI Average value of the sternum angular excursion IMU 1.08 (1.88) °

THETAI_SD SD of the value of the sternum angular excursion IMU 1.81 (0.79) °

MFR Maximum Force Right Hand Force 76.52 (39.42) N

MFL Maximum Force left Hand Force 78.01 (37.06) N

the depth domain in terms of minimum (ZMIN) and max-
imum (ZMAX) values. Additionally, the root mean square
error of the neck position in the depth domain (ZRMSE)
was also computed to evaluate the mean oscillation during
the walking task. Similarly, the Euclidean distance was used
to compute the displacement of the nose (NOSE) and neck
(NECK) position among consecutive frames, as:

d
(
p f , p f−1

) =
√(

x f − x f−1
)2 + (

y f − y f−1
)2

where p f = (x f , y f ) is the pixel location belonging to key
the nose (or neck) at frame f . These two parameters can be
descriptive of the motion of the head and of the torso during
walking activity, respectively. All the parameters extracted
from the camera are listed in Table 3.

2) IMU on Sternum

Angular velocity from the IMU placed on the sternum was
analyzed to estimate the angular excursion of the body along
the direction of the path (z-axis as in Fig. 2b). These datawere
synchronized with the ones acquired with the IMUs placed
on the feet. We consider, for each step, the HS of the right
foot and the HS of the left foot as the points to segment the
angular velocity around the z-axis obtained from the gyro-
scope placed on the sternum. Then we extract three features

to characterize the body oscillation: the average oscillation
(THETAI) and its standard deviation (THETAI_SD). The
signal was integrated to extract the angle of the body oscil-
lation.

5.3 Handgrip Strength

(1) ASTRO handle

Similarly to [55], the outputs of the 16 force sensors mounted
on the ASTRO handle (8 in correspondence to the left hand
and 8 in correspondence to the right hand) were added up to
obtain the two profiles of the total hand grip strength over
the time. Then, the maximum force values were identified as
the peak of the slope for each subject.

(2) Camry dynamometer

Camry dynamometer has a digital display where the maxi-
mum force is shown. At the end of the test, the experimenter
reported manually the force into the data record.

5.4 Data Comparison

The following comparisons were performed to answer
Research Question I.
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5.4.1 Comparison of Gait Analysis

At the end of this process, we had two datasets, one from
the laser data and one from the IMUs data. The normal
distribution of the features was verified using the Kol-
mogorov–Smirnov test of normality. Since all the parameters
were not normally distributed, the non-parametric statistic
was applied. Statistical Mann–Whitney U signed test was
used to investigate if there are significant differences (p <
0.05) among the gait parameters measured with the IMUs
and with the Laser. A linear regression analysis, as a linear
approach to model the relationship between the dependent
and independent variables, was performed to further evaluate
the accuracy of the amplitude measurements considering the
average values of the parameters measured from the two sys-
tems (listed in Table 2). The coefficient of linear regression
(R) and its related significance p-value parameters were cal-
culated (significant value p < 0.05). This comparison extends
the one described in [55], which included only young sub-
jects.

5.4.2 Comparison of Handgrip Strength

The maximum value of the handgrip strength of the dom-
inant hand (the right for all participants) was compared
with the data measured with the dynamometer. The normal
distribution of the maximum forces was verified using the
Kolmogorov–Smirnov test of normality. As all raw scores
were not normally distributed, the non-parametric Spearman
(ρ) correlation coefficient was used. Besides, to investigate
similarity in the performances of the two tests, the coefficient
of linear regression (R) and its related significancep-value
parameter were calculated. The Root Means Square Error
(RMSE) was also computed to estimate the goodness of the
fitting.

5.4.3 Comparison of the Body Oscillation Analysis During
theWalk

Correspondent features extracted with the RGBD camera
comparedwith the ones extractedwith the IMU. The selected
features considered in this comparison were the ones related
to the angular excursion of the torso (average value, maxi-
mum value and standard deviation) along the z-axis during
the walk. As in the previous comparison, the data normality
distribution was prior verified as previously described; since
the data were not normally distributed, the non-parametric
statistic was applied. The Mann–WhitneyU signed test was
used to verify whether there were differences between the
THETA and THETAI, THETA_SD and THETAI_SD. Simi-
lar to the other comparisons, the coefficient R was computed
between these couple of features.

6 User Profiling: Data Visualization

The dataset acquired from the laser, the dataset acquired from
the RGBD camera, and the dataset on the handgrip strength
were then combined to answer ResearchQuestion II. Particu-
larly, two-dimensionality feature reduction and visualization
methods were applied to visualize and aggregate the data in a
bidimensional space with the purpose to use these results as
the output of the perception module (i.e. user profiling) and
input of the decision support tool for the clinicians. Indeed,
data from body shape, gait, and force were correlated with
physical frailty (sarcopenia), thus ifASTROcanmeasure and
group users that have similar behavior, it could offer visual
support also for the clinician.

The selected methods were the T-distributed Stochas-
tic Neighbor Embedding (t-SNE) [58] and the non-classic
multidimensional scaling (nMDS) based on dissimilarities
between points. All the analysis was performed usingMatlab
(2019b). t-SNE is an unsupervised and non-linear dimen-
sionality reduction technique that focuses on keeping similar
points close in the reduced features space. In this paper, we
used the built-in function ofMatlab tsne selecting the ‘exact’
algorithm and the ‘euclidean’ methods for calculating the
distance between two points. As for the nMDS, we used the
midscale Matlab function with Sammon’s non-linear map-
ping criterion for the metric scale. In the latter case, the stress
parameter was used to evaluate the goodness of the reduction
process.

7 Results

This paper aims to investigate two research questions, that
were focused on the implementation of the sensing and the
perception modules of ASTRO robot. ASTRO robot was sat-
isfactorily tested in real environments with real patients. All
the participants completed the 10-m walk task, including the
two people with limited walking abilities.

The data from the laser, the camera, and the force sensors
were off-line processed to extract all the parameters related
to the gait, the body posture, and the handgrip strength (RQI).
Particularly, at the end of the features extraction process
described in the previous section, 18 features were extracted
from the laser (i.e. 9 for each foot), 13 features were extracted
from the RGBD camera to describe the body orientation dur-
ing the walking task and 2 features were extracted from the
handgrip strength. A total of 33 parameters described and
characterized the patients. Themean value and standard devi-
ation computed for the 10 participants in the experimentation
are reported in Table 2 (features extracted from gait) and in
Table 3 (features extracted from RGBD camera and the force
sensors).
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As concern the comparison of the gait analysis, the
Mann–Whitney U signed test was computed between the
correspondent features extracted from the IMUs and the ones
extracted from the laser. The achieved results reveal that all
the extracted parameters were not significantly different (p >
0.05) which means that the two vectors of features extracted
from the two systems (i.e. laser and IMUs) come from the
same population. Additionally, except for the GSWTR and
GSWT_SD, all R coefficients are significant (p < 0.05); it is
worth underlining that, the R for GSTRD is higher than 0.95
for both feet. The complete results are depicted in Table 2.

As for the comparison of the handgrip strength, the aver-
age dynamic force profile was computed as the sum of each
force sensor to extract the maximum force value for the dom-
inant hand. The correlation between the maximum values
of the handgrip forces underlines a good and significant (p
< 0.001) correlation of the hand force measured with the
dynamometer. Indeed, the ρ is equal to 0.84, and the regres-
sion analysis confirms a good linear dependency of the two
measures resulting in a high value of R and low RMSE (0.74
and 5.12 N respectively).

The comparison of the body oscillation during the walk
confirms a not significant difference (p < 0.05) for the mea-
surement of the average angular excursion of the torso with
the two systems. Whereas there are significant differences (p
< 0.05) in the standard deviation. There were not any signif-
icant linear regression coefficients. The average values are
reported in Table 3.

As for research question II, the 9 features that describe the
gait of the right foot (average values and SD), the features
related to the body slope (13 features), and themaximum val-
ues of the handgrip strength computed with ASTRO handle
were combined in a single dataset (for a total of 24 fea-
tures), and visualizedwith the t-SNEand the nMDSmethods.
Figure 4a and b depict the new distribution of the features
in the 2D spaces with the t-SNE and the nMDS approaches
respectively. The stress index value equal to 0.95% obtained
for the nMDSmethod underline a good feature reduction pro-
cess for the proposed dataset. The goal of these unsupervised
methods was to explore the relationship among instances,
giving an overview of how each instance is represented
in the feature space. Indeed, they preserve the similarity
among instances in the bi-dimensional visualizations. Simi-
lar instances were then visualized closer than others. In our
cohort, we had two participants that are not able to walk
without external aid (the blue dots) whereas the remaining
participants (red stars) can walk alone, the operative hypoth-
esis was that they could be similar instances in the feature
space. From the visual inspection, it is evident that these
approaches potentially can group the instances of the dataset
according to the similarities among points.

8 Discussion

This paper presented a robot model that uses information
on the user profile as input for the decision-making module
(Fig. 1). That information can follow two paths: (i) it can
be used from the decision support tool for supporting the
clinician in supervising the status of the older persons and
modify (if necessary) the information on the user stored in
the model, and (ii) it can be used from the interaction module
to modulate the behavior of the robot during the interaction.
Additionally, the work presented a feasibility study where
the data related to the sarcopenia during a 10-m walking task
were combined at glance to provide the clinician feedback
on the performance.

The rationale behind this approach is that the same feature
can provide different information related to the interac-
tion/engagement with the robot and the clinical status. For
instance, in this paper, the handgrip strength is used as input
for the perception module, and it is also used by ASTRO
to adapt the angular and linear velocity in real-time during
the walking task. The formulated RQI aimed to evaluate the
multi-modal sensing modules, by evaluating the accuracy
of the extracted features and proposing a comparison with
the gold standard model. These tests were fundamental steps
to be verified before using ASTRO in real/clinical applica-
tions. The results underline that laser sensor could be used to
measure comparable features extracted from the IMUs sen-
sors, widely used in similar applications. Remarkably, also
the measurement of the dominant handgrip strength is highly
correlated to the one measured with the dynamometer. These
results are alignedwith the oneswe obtained involving young
and healthy subjects [55]. These feasibility results also sug-
gest that the camera on the back could be an added value
to measure the body shape of the subject during the walk-
ing task providing interesting parameters to be shown to the
doctors/formal caregivers. Indeed, the angular excursion cal-
culated with the IMU placed on the sternum is comparable
to the one extracted from the camera.

RQII is focused on the perception module that aggregates
data at the features level, proposing two methods to visual-
ize the output in a bidimensional space using non-classical
and unsupervised techniques. From a visual inspection, the
obtained results (Fig. 4) underline that the extracted features
set has the potential to characterize the user’s profile in terms
of their residual walking abilities. According to the results,
ASTRO can be suitable to monitor the performance of a frail
user because it can measure and combine different features
(i.e.walking, posture, hand strength) that can accurately char-
acterize the motor status of frail people without the need to
equip them with additional devices (e.g., wearable sensors,
smartphone). It is also remarkable that the proposed visual-
ization techniques can cluster the subjects according to the
residual motor abilities using the parameters extracted from
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Fig. 4 a Data visualization with the t-SNE method; b Data visualization with the non-classical multidimensional scale

the contactless ASTRO sensors. Indeed, the two subjects that
were not able to work alone are close in the figures. Clini-
cians can use this information as a decision support tool to
monitor/assess the performance of the users and see if prob-
lems occur. Those techniques are based on algorithms that
will enhance similarities among points, similarities that, the
proposed robotic multi-modal sensor module can estimate
through the selected feature set.

For those peoplewhowill useASTRO, the caregiver could
also monitor the walking parameters during the mobility
service. From a clinical perspective, indeed, gait abnor-
malities are correlated with several cognitive and physical
impairments such as Parkinson’s disease, sarcopenia, Mild
Cognitive Impairments (see Table 1), thusASTROcould pro-
vide insights for the clinicians in detecting and monitoring
a pathology over the time. The assessment of the gait per-
formance over time is important, and, in this context, the
ASTRO robot has the potential to do it in a “transparent”
way for the user, avoiding asking to wear specific sensors.

The paper presents the feasibility study on sarcopenia-
related features as an example since other features can be
extracted and used to profile the user and to orchestrate the
HRI. Similarly, data from the camera could be also analyzed
to extract information related to the facial expression to inves-
tigate engagement during the interaction. Remarkably, the
sensing abilities of the robotic platformwill guide the perfor-
mances of the models, thus the robot must integrate different
types of sensors according to the service it will be involved
in. For future exploitation of such an approach, the robot
should be able to select and use the appropriate multi-modal
information thus to profile the user correctly and guide the
system in planning the next actions. In this sense, the AI can

predict the future state according to the internal model and
the user profile modulating the inputs for the decision sup-
port module. Indeed, it is important to tailor the action by
modulating the “what” and “how” of the interaction. In other
words, the content of the interaction and the modality of the
interaction should be planned.

It is evident that proposing a model with the human-in-
the-loop guarantees a high level of system adaptability and
customization [3]. Indeed, in this feasibility study,we include
only the information coming from the sensors to produce
the output of the perception module. In future applications,
the system could fuse, at a different level, that information
with others coming from the context (and/or inserted by the
user) that can provide information on the gender, the cultural
background, the user personality such as on the cognitive and
physical profile (Fig. 1). Indeed, the HRI is highly dependent
on all these issues, so it is important to include them in the
loop. Additionally, the human-in-the-loop also receives the
output of the decision support module, so it can validate in
real-time if the output of the perception module is aligned
with the user’s profile. Indeed, it can send feedback on the
accuracy of the prevision. The system can potentially use
this feedback to manage unseen situations and meliorate the
accuracy of the AI algorithms.

This paper presents some limitations related to the num-
ber of people involved in the study and the a-synchronous
process of user profiling. Immediate future studies should be
planned to enlarge the dataset creating a cohort of participants
that have different physical and cognitive impairments thus
improving the accuracy of user profiling quantitatively.Addi-
tionally, the developedmodules to extract the features will be
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implemented and tested in real-time thus testing the interac-
tive modules. Other studies could be planned to acquire and
analyze other social cues (e.g. facial expression, hand and
body gestures, gaze) that could be linked with other clinical
aspects.

9 Conclusion

The aim of this paper was twofold. Firstly, it aims to present
and discuss the presented behavioral model (Fig. 1), then it
presents the feasibility test to implement the perceptionmod-
ule. The key contribution of this paper is to present the dual
use of the output of the perception module. Indeed, we used
the handgrip strength to modulate the walking support with
the AI techniques to adapt ASTRO during the walking test
[20] and to profile the user. Additionally, the paper prelim-
inary test in a real setting with older adults the sensing and
the perception modules such as the ability to profile the users
using a multimodal approach.

In this context, two research questions were outlined
and investigated. The presented analysis confirms a positive
result for all the formulated RQs since the features extracted
from data collected with ASTRO are comparable with the
ones extracted with traditional devices. It is also worth men-
tioning that the user’s profile obtained from the data is aligned
with the participant’s residual walking abilities. Indeed, peo-
ple that are not able to walk alone are close points in the
bidimensional visualization (Fig. 4). This result suggests that
all the data can be aggregated in a meaningful way and visu-
alized “at a glance” to be used by the clinician to monitor the
status of the users and its progression over time Addition-
ally, the outcome for the profile can be used also by ASTRO
to tailor and adapt the physical interaction during the walk-
ing task. This paper presents a feasibility study on features
related to Sarcopenia, but researchers could use this approach
to investigate other features connected with other HRI and
clinical outcomes.
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