
Citation: Mattei, G.; Gan, Z.;

Ramazzotti, M.; Palsson, B.O.;

Zielinski, D.C. Differential

Expression Analysis Utilizing

Condition-Specific Metabolic

Pathways. Metabolites 2023, 13, 1127.

https://doi.org/10.3390/

metabo13111127

Academic Editors: Miha Moškon

and Tadeja Režen

Received: 1 July 2023

Revised: 19 October 2023

Accepted: 1 November 2023

Published: 3 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Differential Expression Analysis Utilizing Condition-Specific
Metabolic Pathways
Gianluca Mattei 1 , Zhuohui Gan 2, Matteo Ramazzotti 1 , Bernhard O. Palsson 3 and Daniel C. Zielinski 3,*

1 Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
gianluca.mattei@unifi.it (G.M.)

2 School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; zgan@eng.ucsd.edu
3 Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
* Correspondence: dczielin@ucsd.edu; Tel.: +1-858-822-1144

Abstract: Pathway analysis is ubiquitous in biological data analysis due to the ability to integrate
small simultaneous changes in functionally related components. While pathways are often defined
based on either manual curation or network topological properties, an attractive alternative is to
generate pathways around specific functions, in which metabolism can be defined as the production
and consumption of specific metabolites. In this work, we present an algorithm, termed MetPath,
that calculates pathways for condition-specific production and consumption of specific metabolites.
We demonstrate that these pathways have several useful properties. Pathways calculated in this
manner (1) take into account the condition-specific metabolic role of a gene product, (2) are localized
around defined metabolic functions, and (3) quantitatively weigh the importance of expression to a
function based on the flux contribution of the gene product. We demonstrate how these pathways
elucidate network interactions between genes across different growth conditions and between cell
types. Furthermore, the calculated pathways compare favorably to manually curated pathways
in predicting the expression correlation between genes. To facilitate the use of these pathways,
we have generated a large compendium of pathways under different growth conditions for E. coli.
The MetPath algorithm provides a useful tool for metabolic network-based statistical analyses of
high-throughput data.

Keywords: pathway analysis; metabolism; constraint-based modeling; expression analysis

1. Introduction

High-throughput molecular data such as genome-scale gene expression measurements
are ubiquitous; however, this abundance of data comes with the challenge of efficiently
extracting biological knowledge from the data. It is largely this challenge that has cat-
alyzed the rise of systems biology [1]. As cells are fundamentally composed of networks
of interacting molecules, the central challenge in data analysis becomes understanding
molecular interactions in the context of the underlying biochemical network [2,3]. As one of
the primary tools of systems biology, biochemical pathway-based analysis is attractive for
its ability to integrate signals from multiple functionally connected components, which can
amplify the statistical power of coordinated changes in the system [4]. Within metabolism
specifically, pathway analysis plays a particularly important role [4–6] as connections be-
tween enzymes have clear functional objectives in the conversion of molecules to energy,
biomass, and other functional molecules. However, identifying pathway structures that are
best used to interpret high-throughput data remains an active area of research [7].

Metabolic pathways have historically been manually defined based on an intuitive
understanding of the function of particular sets of enzymes. Classical pathway examples
such as glycolysis and the TCA cycle appear in textbooks and pathway databases and have
well-accepted structure and content [5,8]. However, canonically defined pathways are not
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necessarily the most optimal pathways for analysis. For example, these pathways do not
generally take into account the myriad variations in metabolism that exist across the phylo-
genetic tree [9], the condition-specific use of pathways and partial pathways, or the in vivo
tight coupling of canonically separate pathways, such as the coupling of biosynthesis of a
biomass precursor to the synthesis of required cofactors for a pathway [7]. As alternatives to
manually defined pathways, a number of methods have been developed to algorithmically
calculate pathways from a metabolic network structure directly [7]. These algorithmic
methods often have a strict numerical objective, such as calculating extreme pathways
according to a non-negative basis for the null space of the stoichiometric matrix of the
metabolic network [10]. As these methods are rooted in the structure of organism-specific
metabolic networks, calculated pathways have the benefit of accounting for organism-
specific and condition-specific pathway variation. However, pathways defined based on
purely numerical criteria still may not be the most practical or the most effective pathways
to interpret high-throughput data, and their calculation on the genome scale can become
computationally infeasible. Ideally, pathways would be defined in a way that is both
functionally intuitive and accounts for organism- and condition-specific nuances.

The first challenge in designing a pathway-based data analysis is to obtain a functional
definition of a pathway, which we propose can be defined as a set of genes working together
to achieve a function. In a metabolic network, function can be defined succinctly in terms
of the production and degradation of metabolites. Using these definitions, we can define
a metabolic pathway as a sequential set of enzymes that is involved in the production or
degradation of a metabolite under a defined metabolic flux state. This definition inherently
assumes that the flux directions through the network are defined, but in fact, these are not
fixed across growth conditions. A set of reactions may be involved in the consumption
of a metabolite under one condition and the production of the metabolite under another
condition, for example, the relationship between the reactions involving glycolysis and
glucose under glycolytic compared to gluconeogenic conditions. Thus, the functional
interpretation of changes in enzyme levels depends on the flux directions in the network.
Furthermore, the relative importance of enzyme changes depends on the contribution
of a pathway to a metabolic function. As an example, the pathways of glycolysis and
glycogen synthesis both consume glucose. However, glycolysis operates at a rate greatly
exceeding that of glycogen synthesis. Thus, a 10% increase in expression of glycolytic
enzymes presumably would have a much greater impact on glucose turnover than a 10%
decrease in glycogen synthesis. We can use this type of analysis to examine how gene
expression changes in these pathways in order to identify coordinated expression shifts
that serve specific metabolic functions in terms of increased or decreased capacity for the
production or degradation of specific metabolites.

In this work, we developed a constraint-based modeling method, termed MetPath,
to calculate condition-specific production and consumption pathways for the purpose of
differential analysis of metabolic expression data. Using metabolic modeling, we calculated
metabolic pathways for specific flux conditions by defining weighted, context-specific path-
ways in terms of metabolic functions, i.e., production/consumption of specific metabolites.
We compared this method qualitatively and quantitatively to existing pathway databases,
specifically the KEGG database, and found that the MetPath pathways show a higher
intergene correlation within the same pathways across different conditions in E. coli K12
MG1655. We examined the performance of MetPath using two case studies in E. coli, looking
at the tryptophan pathway during aerobic growth on glucose with and without tryptophan
supplementation as well as glucose growth under the condition of aerobic–anaerobic shift.
Finally, we looked at the ability of MetPath pathways to interpret cell-specific differences
in gene expression, specifically examining neurotransmitter pathway expression in human
neural cell subtypes based on single-cell transcriptomics data.
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2. Materials and Methods
2.1. Overview of MetPath Pathway Calculation and Differential Gene Expression Analysis

We define the functions of a metabolic network as the production and degradation of
metabolites (Figure 1). Utilizing this definition of metabolic function, we use constraint-
based modeling to calculate the pathways that are involved in the production or degra-
dation of each metabolite under a specified metabolic flux state. Finally, we assess, in the
form of a perturbation score, how gene expression has changed in these pathways. This
workflow identifies coordinated expression shifts that serve specific metabolic functions
in terms of increased or decreased capacity for the production or degradation of specific
metabolites. The source code can be found at github.com/SBRG/MetPath.

2.2. Calculation of a Condition-Specific Flux State

To calculate state-specific production and degradation pathways, we first calculate
the estimated metabolic state. We solve the quadratic programming flux balance analysis
problem of a metabolic model constrained by the estimated metabolite uptakes as follows:

maxZ = cTv + vFvT

Sv = 0

vlb < v < vub

where Z is the objective score; v is the vector of reaction fluxes; S is the matrix of reaction sto-
ichiometries; vlb and vub are the lower and upper bounds of the reaction fluxes, respectively;
c is the linear objective vector, which is typically the biomass reaction but can be changed
by the user; and F is a diagonal scaling matrix used as a secondary flux length objective and
is set to an arbitrarily small value of 10−6. The flux state is calculated by minimizing the
total length of the flux vector subjected to constraints, and represents the principle that a
cell will try to achieve its metabolic function using as little enzyme expenditure as possible
to minimize precursor costs. The purpose of this flux state estimation is to identify possible
reaction directions and relative pathway flux values, given the established literature on
aspects such as metabolite synthesis versus de novo uptake and relative energy production
between glycolysis and beta-oxidation. These relative weightings and pathway directions
add important information when calculating production and degradation pathways, as
they lend context to the interpretation of a gene expression change related to the potential
for production and degradation of different metabolites in the network.

2.3. Calculation of Production and Degradation Pathways for Each Metabolite

Then, using this estimated flux state, we calculate weighted production and degrada-
tion pathways for each metabolite as follows: First, reactions that carry flux in the estimated
flux state are extracted as zero-flux reactions do not contribute to pathways under the
selected condition. Then, a desired pathway length D is defined. For each metabolite,
reactions that are within the distance D by means of a forward traversal (in the case of
degradation) or reverse traversal (in the case of production) of the flux-carrying network
are identified. For non-cofactor metabolites, cofactors are first removed from the network
before traversal to prevent spurious connections. The production or degradation pathway
subnetworks are then extracted and mass balanced by adding compensating input and
output reactions for unbalanced metabolites. These subnetworks are then broken down
into elementary modes using a published algorithm [11]. These elementary modes are
mass-balanced pathways with weightings that, when summed, recapitulate the full flux
distribution. Elementary mode pathways that contain the current metabolite are then
extracted and summed to create a single weighted production or degradation pathway for
the metabolite, representing the contribution of reactions within the distance D to the pro-
duction or degradation of the metabolite in the estimated flux state. In practice, we found
that distances D between 2 and 5 yielded similar performance in terms of intra-pathway
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expression correlation, with a distance of 1 yielding worse performance.2.4. Construction
of Aggregate Pathway Perturbation Scores
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Figure 1. Overview of the MetPath algorithm. MetPath is a constraint-based modeling method to
calculate pathways for the production and consumption of each metabolite in a network. (a) The
algorithm begins by calculating a flux state for the condition of interest. (b) Then, for each metabolite,
a subnetwork around the metabolite that is active based on the flux state for the condition is extracted.
(c) This subnetwork is then broken down into production pathways and consumption pathways,
weighted by their flux contribution, using elementary modes for each metabolite in the network. (d) To
interpret differential gene expression data using MetPath pathways, a reaction score is calculated for
each reaction in the pathway as the multiplication of differential gene expression for genes catalyzing
the reaction based on the weighting of that reaction within the pathway. These reaction scores are
summed and divided by the number of reactions to obtain a pathway score. A value of 1 indicates
unchanged expression for the pathway, a value greater than 1 indicates an up-regulation of genes
in the pathway, and a value less than 1 indicates a down-regulation of genes in the pathway. These
scores are then ranked, and highly perturbed consumption and production pathways are identified.
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To construct perturbed production and degradation scores for each metabolite, we
first define reaction fold-change scores by averaging the fold change for all genes that are
involved in the catalysis of each reaction as follows:

reaction_score =
1
n

n

∑
i=1

fi (1)

where n is the number of genes, and f is the fold change for each gene. We then define the
production and degradation pathway perturbation scores for each metabolite by calculating
a weighted average of the pathways with their corresponding reaction expression fold
changes as follows:

pathway_score =
n

∑
i=1

wi × reaction_scorei (2)

The reaction weightings w are assigned according to the reaction fluxes within each
pathway and are normalized by the sum of those fluxes. These final production and degra-
dation scores for each metabolite represent the expression change in reactions involved in
the production and degradation of the metabolite, respectively, weighted by the degree of
contribution of each reaction to the metabolite production/degradation in the estimated
flux state.

2.4. Universal Database Generation

The universal database was constructed by deploying MetPath using common growing
conditions for E. coli cultures. With this purpose, we simulated 64 different growing
conditions. Starting from what we considered to be the standard growing conditions
(minimal medium, 37 ◦C), we obtained 20 different cultures, each characterized by a
supplement of a single amino acid (Supplementary Data File S1). In these cases, the
lower bound of the specific amino acid was set to −0.5 to activate its uptake and the
downstream reactions. For all these cases, flux distributions were calculated under both
aerobic conditions and anaerobic conditions. We also simulated cultures with different
carbon sources (glucose, lactate, galactose, mannose, acetate, fumarate, succinate, and
glycolate). These cultures were matched with normoxia, hypoxia, and anoxia using nitrate
as electron acceptors. The relative data used to constrain the models were taken from the
literature [12]. For both amino acid-supplemented conditions and conditions with different
carbon sources, before setting the ATP production as the objective function, the minimum
biomass was set to the maximum of the model capacities.

2.5. KEGG Comparison

To perform the comparison with data from the KEGG pathway database, we used
an E. coli K-12 MG1655 array expression database obtained from 213 samples under var-
ious conditions. The first analysis aimed at comparing the distribution of the means of
the Spearman’s correlation of gene expression within the pathways extracted using Met-
Path and the distribution of the Spearman’s correlation of genes mapped within Kegg’s
pathways. To retrieve genes involved in each KEGG pathway, we used Keggrest, an R
package that provides a client interface for the KEGG REST server. We mapped the stan-
dard condition expression data obtained from the E. coli expression database mentioned
above onto the extracted pathways, and we scored the average of the correlation for each
pathway (Figure 2a). To further investigate the correlations of genes within the pathways,
we repeated the analysis using the MetPath-extracted pathways, filtering the genes by
their expression. We studied the gene correlations as a function of their expression by
increasing the expression threshold and scoring the average of the Spearman’s correlations
of gene expression within the pathways extracted (Figure 2b). To support the hypothesis
that genes with closer reactions have a better correlation and, thus, smaller pathways offer
a better starting point for analysis, we analyzed how the correlation is influenced by path-
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way lengths. We generated 15 sets of extracted pathways using three different conditions
(standard, anaerobic, and tryptophan-supplemented) and different distance parameters
ranging from 1 to 5. These sets were then used to score the average of genes involved in
each pathway and their correlation. These values were used to perform linear regression
(Figure 2c). The subsystems are annotations that link reactions to the pathways following
the literature. In the model we used for E. coli, the subsystem annotations obtained from
KEGG were used to perform a direct comparison of results. To score perturbations, for
each pathway, we considered an aggregate perturbation score and the involved reactions.
Then, a hit score was calculated for each subsystem by looking at how many reactions of
the current pathway were associated with a subsystem. The hit scores were then multiplied
by the aggregate perturbation score of the current pathway. This was performed for each
extracted pathway, and then the values were collapsed by scoring the average for each
subsystem. The KEGG analysis was performed by calculating the mean of the threshold
value to select all genes with an up- or down-regulation equal to or above 65% in each
condition. Up-regulated genes and down-regulated genes were compared to the KEGG
pathways using KEGG Mapper.

2.6. Anaerobic Condition Analysis

To test MetPath functionalities we compared the expression data obtained under
anaerobic conditions to data obtained under aerobic conditions. In both cases, we used the
average values of three replicates from the expression data available in the literature [13].
We used the metabolic model iJO1366 from the BiGG database [14] for the E. coli strain
K-12 MG1655. To constrain the metabolic model, the ATP production was set as the
objective function and the M9 minimal medium was used as the culture medium. For the
aerobic conditions, the growth rate was constrained to 0.4 h−1 [12] in order to activate
the reactions involved in the production of the most important metabolites, and for the
anaerobic conditions, the biomass production was decreased to 0.26 mmol/gDW/h and
the uptake of O2 was decreased to −2 mmol/gDW/h.

2.7. Tryptophan Supplementation Analysis

To test the universal database, RNAseq data from a tryptophan-supplemented aerobic
growth condition was used [7]. Since the universal database is based on array expression
data, we could not perform a direct comparison of the expression values. Thus, we ranked
the genes in the RNAseq data based on their expression. Then, we gave a value that was
equal to the corresponding position in the ranked list. The same procedure was performed
for the expression values of every condition within the database. These values were then
used as the expression values. Then, the final aggregate perturbation score and the set of
reactions that made up a pathway were calculated. The final aggregate perturbation scores
were calculated as the average of the aggregate perturbation scores of a pathway across all
the conditions of the database. To choose the set of reactions that made up a pathway, we
considered those from the pathway with a higher aggregate perturbation score across all
conditions and, thus, comprised the set of reactions that better represented and fitted the
expression data. Using RegulonDB, we examined the relationship between the tna operon
and the trpR transcription factor with the reactions within the extracted pathways in the
tryptophan-supplemented condition. The tna operon is a well-known operon involved in
tryptophan metabolism, which encompasses one regulator, tnaC, and two enzymes, tnaA
and tnaB. TnaA, also known as Tryptophanase, catalyzes the cleavage of L-tryptophan to
indole, pyruvate, and NH4+. TnaB is known as a transporter for tryptophan in E. coli. The
trpR transcription factor negatively regulates the expression of the trp regulon in response
to intracellular levels of tryptophan. For each pathway, we took into consideration the
reactions in order to extract the involved genes; then, using RegulonDB, we analyzed which
gene is related to the tna operon or to the trpR repressor.
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Figure 2. Comparison of MetPath and KEGG pathways in predicting gene expression correlation.
(a) Histograms of the correlation of gene expression within the pathways for KEGG (red) and the
MetPath (blue) pathways. Expression data were obtained from 213 samples under various conditions
in E. coli K12 MG1655. (b) Gene correlation within the pathways as a function of the expression level
of each gene. Highly expressed genes show greater correlation with each other. (c) Correlation of
gene expression for genes within the pathways when compared at different pathway lengths. A
clear negative correlation is observed, demonstrating that the correlation between genes diminishes
rapidly with an increase in network distance between the genes.
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2.8. Neurotransmitter Analysis

For each extracted neurotransmitter pathway from RECON1, we mapped the normal-
ized expression values onto the genes of the reactions involved. The model was optimized
for atp production, and the resulting value was used to constrain its own rate to obtain
at least 90% of maximum atp production. Then, we added a demand reaction for each
metabolite present in the biomass production formula, with an exception for cholesterol
ester in the endoplasmic reticulum due to the inability of this model to produce this metabo-
lite. We optimized each demand reaction one by one and divided the resulting scores by
the total number of demand reactions added. These values were used to constrain the
corresponding flux rate of the reactions from which the value was obtained. This step was
not meant to obtain the exact production amount of the biomass components but to activate
the upstream reactions needed for their synthesis. An additional constraint was added by
forcing the model to produce a minimum amount of all studied neurotransmitters, with
the aim of activating the upstream reactions needed for their production. Finally, to adapt
the model to each neuron type, the production rates of the neurotransmitters expected
to be associated with a specific neuron were maximized. We used MetPath to extract the
neurotransmitters’ production pathways from every neuron and mapped the standardized
gene expression onto reactions belonging to these pathways. Then, by summing these
values within every pathway, we obtained a production score used to generate the heatmap.
The results confirm that the algorithm has high reproducibility and specificity; moreover,
the extracted paths are as good as those manually extracted using the literature or even
better in some cases.

3. Results
3.1. Calculation of Condition-Specific Pathways for Production and Consumption of Metabolites

The MetPath computational workflow to analyze the change in metabolic production
and degradation pathways in the network is as follows (Figure 1): To summarize the
workflow, we first defined an estimated metabolic state based on the established metabolite
uptakes and energy production estimates using flux balance analysis [15]. Calculation
of an accurate and complete flux state is desired as incorrect or inactive reactions will
lead to wrong or missing pathways, respectively. We then defined the production and
degradation pathways for each metabolite in the network using the network structure and
constraint-based pathway definition algorithms [15]. Briefly, for each separate metabolite,
the local active network within a certain user-defined number of reactions upstream and
downstream of the metabolite was extracted. Then, the flux state for this subnetwork
was broken down into elementary modes, yielding pathways for the production and
consumption of the metabolite as well as weightings for those pathways according to how
much each mode contributes to metabolite production or consumption. While the flux
solution in the subnetwork around the metabolite contains fluxes that do not involve the
metabolite of interest, this elementary mode extraction serves to isolate only the pathways
involved in the production or consumption of the metabolite of interest. While elementary
mode calculation is not numerically tractable on the genome scale, it is efficient at defining
pathways for small active subnetworks extracted around individual metabolites, thus
bypassing the scaling issues typical of pathway calculation algorithms. The calculated
elementary modes were then summed together to simultaneously represent all pathways
involved in the production or consumption of the metabolite under this condition. The
numerical values on each reaction are the flux contribution to production or consumption
of the metabolite, which we scaled to a norm of 1 to serve as a relative weighting on
expression fluxes.

Finally, using these defined pathways, we created an aggregate perturbation score
for each production and degradation pathway based on the fold change of significantly
changed metabolic genes within each pathway. Perturbed pathways thus represent
network-integrated gene expression changes in the production or degradation potential
of specific metabolites. The weights of the genes were assigned based on the flux carried
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by the reaction within the pathway for the metabolite of interest. Changes in genes that
contribute larger flux reactions were weighted more heavily than genes whose reactions
contribute little to the production or consumption of the metabolite of interest. Statistical
p-values indicating the significance of the up-regulation or down-regulation of a pathway
were calculated using nonparametric permutation tests.

In the initial validation of the biological significance of these pathways, we looked at
gene knockout phenotypes. We obtained gene knockout data previously used to validate
the E. coli metabolic model [16]. This dataset consists of the characterization of the Keio
collection of genome-scale gene knockouts in different media, with corresponding growth
rate effects of the knockouts. If genes were related within the pathways, it was expected
that they would share a phenotype more often than randomly associated genes. We found
that the variance in gene essentiality was 0.13 when compared to the MetPath pathways,
which had an internal variance in the average gene essentiality of 0.087. Therefore, it
appears that the MetPath pathways are substantially more similar in essentiality than all
the genes in total, further supporting the relatedness of their genes.

3.2. Definition of a Universal Pathway Database for E. coli Expression Analysis

As the definition of a metabolic state depends on the condition of interest, we defined a
set of standard conditions that may be of interest to users and calculated the MetPath path-
ways for each of these conditions. We utilized the iJO1366 E. coli genome-scale metabolic
network [16] and calculated the flux states for a representative set of 66 growth conditions,
altering carbon and nitrogen sources as well as terminal electron acceptor. We combined the
MetPath pathways for each metabolite in the network under these conditions into a single
database by combining pathways that were shared between conditions (Matthews correla-
tion coefficient between the pathways greater than 0.9) and leaving dissimilar pathways
separate. The resulting pathway database consists of a set of condition-specific production
and consumption pathways for each metabolite in the network. This database serves as a
basis for pathway-based analysis of gene expression data across diverse conditions and is
made available in the Supplementary Data File S1.

3.3. Comparison of MetPath Pathways to Manually Curated Pathways

To assess the ability of the MetPath E. coli pathway database in interpreting differential
gene expression, we gathered 213 gene expression samples from E. coli K12 MG1655 grown
under various conditions and genetic perturbations. We mapped this gene expression
dataset onto the pathway database and examined the co-expression of genes within path-
ways. We calculated the correlation of genes within the same pathways compared to genes
that do not share pathways (Figure 2a) and compared to pathways extracted from the
KEGG database. We found that genes within the MetPath pathways are substantially
more correlated. This correlation is dependent upon the pre-defined length of a MetPath
pathway, with shorter distances associated with higher correlations. This indicates that the
co-expression of genes along metabolic pathways tends to be highly colocalized. As the
KEGG pathways tend to be significantly longer than the MetPath pathways, this colocaliza-
tion bias leads to a lower total co-expression of genes in the KEGG pathways. Additionally,
we found that more highly expressed genes tend to be more co-expressed within the same
pathways (Figure 2b). This could indicate either a tighter gene expression regulation of
highly expressed genes or a clearer correlation signal in highly expressed genes compared
to low-expressed genes due to noises associated with measuring the latter. To explain the
comparatively better performance of MetPath when compared to KEGG, we hypothesized
that the shorter length of the MetPath pathways is beneficial. Indeed, we found that the
correlation between genes in the MetPath pathways rapidly falls off as the distance between
genes increases (Figure 2c), which is consistent with previous findings [17]. This indicates
that the greater spatial localization of the MetPath pathways is beneficial for discovering
locally co-regulated gene sets.
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Looking at the TCA cycle as a case study, the KEGG pathway consists of 27 genes
that map onto 19 reactions, including two genes, ybhJ and ydbK, that have no assigned
functions in the metabolic model, and Ecocyc indicates their functions are putative or
spurious. MetPath identifies 57 metabolites with production or consumption pathways that
involve TCA cycle reactions. These pathways are generally shorter than the KEGG pathway,
with a median length for the production pathways of six reactions, and a median length
for the consumption pathways of five reactions. The pathway with the most reactions
is the consumption pathway for FADH2, which involves 19 reactions on its own, many
of which are minor variants of the same set of redox reactions. From observation, the
MetPath pathways of the TCA cycle metabolites contain a large part of the canonical TCA
cycle. For example, the production pathway for succinate contains the following reactions:
ACONTa, ACONTb, AKGDH, CS, FRD2, FRD3, ICDHyr, NADH17pp, NADH18pp, and
SUCOAS. The consumption pathway of succinate contains FUM, MDH, and SUCDi. Thus,
between the production and consumption pathways for succinate, most of the canonical
TCA cycle is represented. Notably, isozymes that are not used in the selected growth
condition, for example, due to less energetically favorable stoichiometries, do not appear in
the corresponding pathways.

3.4. MetPath Pathways Reveal Coordinated Expression Changes with Shifts in Environment

We were then interested in determining whether the MetPath pathways could identify
functional differences between metabolic states based on gene expression data. By utilizing
the available gene expression data for E. coli again, we examined two comparisons. First,
we looked at the MetPath production and consumption pathways for tryptophan for E. coli
grown aerobically on glucose with and without tryptophan supplementation (Figure 3).
We found that due to the change in the underlying metabolic flux state calculated based
on the flux balance analysis for each condition, the MetPath pathways differ substantially
between the glucose-only case, where tryptophan must be synthesized de novo, and the
tryptophan-supplemented case. This condition change is associated with both a clear
expression change that is observed in the MetPath pathway scores as well as a known
shift in the activity of the transcription factor regulating this pathway. An examination of
highly perturbed metabolite production and consumption pathways reveals that many of
the top pathways are regulated by trpR, a well-known regulator of tryptophan metabolism
(Figure 3b).

Second, we examined central energy and oxidative metabolism during aerobic-anaerobic
shift in E. coli. Looking specifically at the pyruvate pathway, a key branch point in the
oxidative/glycolytic shift (Figure 4), we once again observed a coordinated multi-gene
response along the MetPath pathways. This indicates that a clear expression signature
exists that can be mapped onto the metabolic network through the MetPath pathways
to obtain an integrated signature with potentially greater statistical power than single
gene-based expression analyses. An examination of highly perturbed subsystems in the
MetPath and KEGG pathways shows that MetPath highlights pyruvate metabolism as
being consistently up-regulated and oxidative phosphorylation and the citric acid cycle as
down-regulated, which is consistent with the expectations for an aerobic–anaerobic shift.
Meanwhile, the KEGG subsystems give conflicting results, with these pathways appearing
in both up-regulated and down-regulated subsystems (Figure 4b).
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Figure 3. MetPath pathways highlight metabolic and regulatory shifts due to growth condition.
(a) MetPath pathway scores under tryptophan supplementation reveal differential pathways of
tryptophan production and consumption in a condition-specific manner, with red highlight indi-
cating down-regulation and blue highlight indicating up-regulation. (b) Examination of highly
perturbed metabolite production and consumption pathways reveals that many of the top pathways
are regulated by trpR, a well-known regulator of tryptophan metabolism.

3.5. MetPath Pathways Recapitulate Canonical Cell Type-Specific Metabolic Functions

Finally, we wanted to determine whether the MetPath pathways could identify func-
tional metabolic differences across entirely different cell types using their gene expression
alone. To this end, we utilized single-cell gene expression data from a set of 33 cell subtypes
identified from human brain samples [18]. Given that the samples originated from the
human brain, we were interested specifically in whether MetPath could identify differential
use of metabolic pathways associated with neurotransmitters in these cell subtypes. We
collected pathways for a representative set of neurotransmitters and mapped the expression
data for the neural cell subtypes onto these pathways using the global human metabolic
network reconstruction Recon 1 [19] (Figure 5a). Encouragingly, we observed clear differ-
entiation of cell subtypes based on the expression of neurotransmitter pathways. These
neurotransmitters matched their canonical use within particular neural cell subtypes, such
as the association of GABA with inhibitory neurons and glutamate with excitatory neurons.
Additionally, we identified unusual neurotransmitter use among particular subtypes of
neurons, such as an up-regulation of the NO synthesis pathway among particular sub-
types of inhibitory neurons. With the goal of comparing integrated pathway analysis with
single-gene analysis, we again extracted the glutamate pathway as a case study (Figure 5b).
We compared the expression of the glutamate pathway within excitatory neurons, where
this pathway is canonically activated, and endothelial cells, where its role is unclear. As
with E. coli, we observed that there is a coordinated multi-gene signature involving an
up-regulation of glutamate production in the excitatory neurons. This signature includes
an up-regulation of glutamate production and secretion genes and a down-regulation of
the primary glutamate degradation enzyme glutamate dehydrogenase, which is consistent
with the use of glutamate as an excitatory neurotransmitter. Thus, it appears that the
integrated analysis using MetPath pathways reveals additional coordination that would be
more difficult to see based on single-gene analysis.
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aerobic growth and anaerobic growth of E. coli revealed by MetPath scores for pyruvate. (b) Examina-
tion of highly perturbed subsystems in MetPath and KEGG pathways shows that MetPath highlights
pyruvate metabolism as being consistently up-regulated and oxidative phosphorylation and the
citric acid cycle as being down-regulated, consistent with the expectations for an aerobic–anaerobic
shift. Meanwhile, KEGG subsystems give conflicting results, with these pathways appearing in both
up-regulated and down-regulated subsystems.
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Figure 5. MetPath reveals cell-specific expression of neurotransmitter use in single-cell neural gene
expression data. (a) Single-cell gene expression data mapped onto the metabolic pathways for
neurotransmitter production for a representative set of neurotransmitters. Analysis of subtypes of
neural cells revealed differential expressions of neurotransmitters that are consistent with canonical
neurotransmitter use. (b) MetPath scores for glutamate production in excitatory neural cells compared
to endothelial cells. A coordinated up-regulation of glutamate production and secretion genes and
down-regulation of the primary glutamate degradation enzyme glutamate dehydrogenase was
observed, consistent with the use of glutamate as an excitatory neurotransmitter.
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4. Discussion

In this work, we developed a constraint-based modeling method, termed MetPath,
to calculate metabolite production and consumption pathways for the purpose of dif-
ferential analysis of gene expression data. We compared this method qualitatively and
quantitatively to existing pathway databases, most notably KEGG, and found that the
MetPath pathways showed higher intergene correlation within the same pathways across
different conditions in E. coli K12 MG1655. We examined the performance of MetPath
using two case studies in E. coli, looking at the tryptophan pathway during aerobic growth
on glucose with and without tryptophan supplementation as well as glucose growth un-
der a condition of aerobic–anaerobic shift. Finally, we looked at the ability of MetPath
pathways to interpret cell-specific differences in gene expression, examining specifically
neurotransmitter pathway expression in human neural cell subtypes based on single-cell
transcriptomics data.

We examined the performance of MetPath pathways in comparison to KEGG path-
ways in predicting gene correlation, primarily with the goal of displaying the qualitative
difference between the behavior of the pathways. This study was not intended to be a rig-
orous comparison of various pathway databases and pathway algorithms to determine the
best performing set of pathways. Others have conducted such analyses [7], and sufficient
increases in available validated data have not been made to warrant revisiting this effort.
However, the results showing that the expression among genes was more correlated within
the MetPath pathways than within the KEGG pathways across conditions lend credibility to
the hypothesis that the localization of these pathways around the production and consump-
tion of individual metabolites, as well as the condition-specific nature of the pathways,
may yield some tangible benefits when performing pathway-based data analyses.

The basis for using a metabolic pathway to understand differential gene expression
is rooted in the assumption that the expression difference is associated with a change in
flux through the metabolic pathway. The link between gene expression and metabolic
flux, which is the variable of greatest interest, is known to be indirect at best [20]. mRNA
and enzyme levels are known to have only modest correlation [21], and the flux catalyzed
per unit of enzyme depends also on metabolite levels, which can change between condi-
tions [22]. Thus, rather than attempting to estimate differential flux levels directly using
gene expression changes, we decided to ask the more addressable question of how gene
expression changes have made the different ‘functions’ of the metabolic network more
or less difficult based on the assumption that mRNA changes and enzyme changes are
positively correlated [23].

To provide real case studies demonstrating the utility of MetPath pathways in under-
standing the functional significance of gene expression differences, we looked at the gene
expression from E. coli grown under different conditions as well as the gene expression from
different cell subtypes in the human brain. In each case, we found that highly perturbed
pathways were directly tied to the functional difference between conditions or cell types. A
similar result may be obtained by looking at the expression of individual genes in these
cases. However, we observed a coordinated gene expression difference among several
genes in the pathways in each case. Thus, statistical testing to examine this integrated
gene expression change may yield additional power compared to non-pathway-based
analysis methods.

This work fills a gap toward building simple and intuitive metabolic model-based
statistical analysis of expression data. The benefits of the MetPath algorithm are that
pathways are (1) automatically calculated, (2) intuitively defined, (3) condition specific,
and (4) numerically tractable. We believe that this particular set of traits distinguishes the
obtained pathways from existing pathway sets and enables the algorithm to be broadly
useful across new data sets and organisms.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/metabo13111127/s1, Supplementary Data File S1.
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