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Abstract
Introduction  The aim of the narrative review was to analyse the applications of nuclear medicine (NM) techniques such 
as PET/CT with different tracers in combination with radiotherapy for the clinical management of glioblastoma patients.
Materials and methods  Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also 
used.
Results  This paper contains a narrative report and a critical discussion of NM approaches in combination with radiotherapy 
in glioma patients.
Conclusions  NM can provide the Radiation Oncologist several aids that can be useful in the clinical management of glio-
blastoma patients. At the same, these results need to be validated in prospective and multicenter trials.
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Introduction

Glioblastoma (GBM) incidence is about 2–3 cases per 
100,000 people [1], and its prognosis is extremely poor with 
a median survival time of only 14.5 months from diagnosis 
in clinical trials [2]. Despite that the 3-year survival rates 

rarely reach 5% [3], in clinical practice a great variability in 
terms of prognosis exists in unselected patients.

Extensive characterisation by multiple omic platforms is 
improving our knowledge of the molecular bases underlying 
the nature of GBM aggressiveness [4–11].

Radiotherapy (RT) represents one of the most effective 
anticancer agents, that can be used either alone or in combi-
nation with other strategies (surgery, chemotherapy, immu-
notherapy). In the field of glioblastoma it represents one of 
the three modalities that are used together with surgery and 
temozolomide [2].

In the past decade, several techniques of Nuclear Medi-
cine (NM) have been developed in the field of primary cen-
tral nervous system cancer, with the aim of increasing the 
early detection of the pathophysiological changes in onco-
logical patients, including those with brain tumours [12, 13]. 
Nowadays, the most used NM imaging technique in this field 
is Positron emission tomography (PET) [12, 13].

Herein, we will discuss the impact of PET in the clinical 
management of glioblastoma patients.

We will focus on the application of PET/CT with dif-
ferent tracers for the treatment planning of radiotherapy 
and for response assessment and to distinguish tumour 
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progression from pseudoprogression or radiation necrosis 
after radiotherapy.

Following a literature search, we will provide a narrative 
overview of these topics.

Materials and methods

Methods

Evidence acquisition

Electronic literature search was conducted in the PubMed 
database for English articles published up November 30, 
2021. Boolean operators (OR, AND) were used to combine 
the following search terms: “glioblastoma”, “radiotherapy”, 
“nuclear medicine”, “PET”. Two independent reviewers 
(VN, ID) screened titles and abstracts and performed final 
article selection. Any discrepancy was resolved by discus-
sion with a third reviewer (AR). Meeting proceedings (Euro-
pean Society of Medical Oncology—ESMO—, European 
SocieTy for Radiotherapy & Oncology—ESTRO—, Ameri-
can Society of Clinical Oncology—ASCO—and American 
Society for Radiation Oncology—ASTRO—), trial regis-
tries (clinicaltrials.gov), reference lists of published studies, 
review articles and relevant books were also considered.

Nuclear medicine: applications in glioblastoma

Positron emission tomography (PET) is a nuclear medicine 
imaging technique that, using different radiotracers evaluat-
ing different metabolic patterns, is able to detect in advance 
pathophysiological changes in oncological patients, includ-
ing those with brain tumours. These functional changes usu-
ally occur before the development of morphological changes 
detected by conventional radiological imaging techniques 
such as computed tomography (CT) and magnetic reso-
nance imaging (MRI) [14]. Even though contrast-enhanced 
conventional MRI is the diagnostic method of choice for 
patients with primary and secondary (metastatic) brain 
tumours, its specificity for neoplastic tissue is low, result-
ing in challenges regarding the distinction between cancer 
and non-neoplastic lesions, the delineation of tumour extent, 
especially of non-enhancing tumour portions, and the differ-
entiation of treatment-related changes from tumour relapse 
[15, 16]. Over the past decades, PET with numerous radi-
olabeled molecules has been evaluated to overcome these 
limitations of conventional MRI and its clinical use has 
been also emphasized by the PET task force of the Response 
Assessment in Neuro-Oncology (RANO) working group. 
Different PET radiotracers have been used to evaluate brain 
tumours, in particular for the delineation of tumour extent, 

diagnosis of treatment-related changesand the assessment 
of treatment response.

18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) is the most 
used PET radiotracer in oncology; it is a radiolabelled glu-
cose analogue taken up by neoplastic cells via cell mem-
brane glucose transporters (GLUT) and subsequently phos-
phorylated through the activity of intracellular hexokinase. 
18F-FDG allows the detection of neoplastic cells due to their 
frequently increased glucose metabolism [14]. In the central 
nervous system, the uptake of 18F-FDG is physiologically 
high and varying in healthy brain parenchyma hampering 
the delineation of brain tumours (see Fig. 1). Furthermore 
the cerebral inflammatory processes may also exhibit high 
FDG uptake, thereby diminishing its diagnostic accuracy 
for the correct identification of treatment-related changes 
and assessment of treatment response in gliomas and brain 
metastases [13, 17]. However, 18F-FDG PET seems to be of 
value for the delineation of tumour extent and assessment of 
treatment response in patients with primary central nervous 
system lymphoma [18, 19]. In recent decades other PET 
tracers, such as radiolabeled amino acids, have been devel-
oped. Radiolabeled amino acids are of particular interest for 
brain tumour imaging using PET because of their increased 
uptake in neoplastic tissue but low uptake in normal brain 
parenchyma, resulting in an improved tumour-to-brain. An 
important feature of these tracers is their ability to cross 
the intact blood–brain barrier via the transport system L 
for large neutral amino acids, allowing for visualization of 
tumour extent beyond contrast enhancement on MRI [12]. 
Compared to 18F-FDG, radiolabelled amino acid PET 
showed higher sensitivity and specificity in differentiating 
between high-grade and low-grade gliomas [20] and can pro-
vide valuable information for planning stereotactic biopsies, 
resection, and radiotherapy [21–23].

11C-methionine (11C-MET) is a radiolabelled amino 
acid; methionine is used by the cells in the following two 
main metabolic functions: protein synthesis and conversion 
to S-adenosylmethionine. In many neoplastic cells, there is 
an increase in protein synthesis, transmethylation and trans-
sulfuration, leading to an increased uptake of 11C-MET [14, 
24]. Unfortunately, the use of this PET tracer is restricted to 
PET centers with a cyclotron facility because of the shorter 
half-life of 11C compared to 18F (20 min versus 110 min, 
respectively) [24].

18F-fluoro-ethyl-tyrosine (18F-FET) is a fluorinated 
amino acid used to detect brain tumours. 18F-FET is taken 
up into neoplastic cells due to their increased amino acid 
uptake through an L-type amino acid transport system, and 
it is not incorporated into proteins [25] (see Fig. 1).

6-Fluoro-(18F)- l -3 ,4-dihydroxyphenyla lanine 
(18F-FDOPA) has been proposed as a useful PET tracer for 
imaging brain tumours (see Fig. 1). 18F-FDOPA is trans-
ported across the blood–brain barrier by a number of amino 
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acid transporters, which have been shown to be overex-
pressed in brain tumours. After intracellular uptake through 
the large amino acid transporter, 18F-FDOPA is decarboxy-
lated by DOPA decarboxylase to 18F-dopamine, which is 
transported into storage granules by vesicular monoamine 
transporters and trapped intracellularly [14, 26].

Another biomarker used in brain tumour imaging is the 
18F-fluoro-3-deoxy-3-L-fluorothymidine (18F-FLT), a bio-
marker of cell proliferation, which is increased in neoplas-
tic cells; during the S phase of the cell cycle, 18F-FLT is 

phosphorylated by thymidine-kinase-1 and trapped inside 
the cell but not incorporated into the DNA. The cellular 
thymidine-kinase-1 activity has been reported to be pro-
portional to the proliferation activity of the tumour [27]. 
However, its diagnostic use is limited by the requirement 
of a disrupted blood–brain barrier [28]. In terms of tumour 
detection and delineation, 18F-FLT PET was less sensitive 
than 11C-methionine PET to detect WHO grade II glio-
mas, which usually show no contrast enhancement [29]. 
On the other hand, 18F-FLT PET seems to be useful for 
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Fig. 1   A MRI and 18F-FDOPA PET findings of a 70-year-old glioblastoma patient (IDH-wildtype); B MRI and 18F-FET PET findings of a 
42-year-old glioblastoma patient (IDH-wildtype); C CT and 18F-FDG PET findings of a 73-year-old glioblastoma patient
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the assessment of response to antiangiogenic therapy with 
bevacizumab in patients with recurrent malignant glioma.

As tumour cells present a high turnover of cellular mem-
branes, radiolabelled choline (using 11C or 18F) may be 
used to detect brain tumours. The uptake of radiolabelled 
choline increases in tumour tissue to keep up with the 
demands of phospholipids synthesis in cellular membranes 
[14, 30]. In brain tumours 11C or 18F-fluorocholine as mark-
ers of cell membrane phospholipids can only detect tumour 
in disrupted blood–brain barrier areas and are, therefore, less 
suitable for the delineation of tumour extent [31].

Another approach to study brain tumour is the evalua-
tion of hypoxia, a phenomenon associated with tumour 
persistence and resistance to cancer treatment. Using PET 
tracers such as 18F-fluoromisonidazole (FMISO), which is 
trapped in hypoxic but viable cells, it is possible to identify 
the hypoxic areas of brain tumour and make an accurate 
target volume delineation for radiotherapy planning in glio-
blastoma patients.

Last, PET ligands targeting the 18 kDa mitochondrial 
translocator protein (TSPO), located at the outer mitochon-
drial membrane, which is strongly expressed in gliomas, 
are also of interest in neuro-oncology. TSPO is associated 
with neuroinflammation due to its expression in activated 
microglia, endothelial cells, and infiltrating macrophages 
[32]. The TSPO ligand GE-180 labelled with [18F], recently 
introduced, offers an increased binding specificity and was 
tested in patients with gliomas [33]. However, the impor-
tance of this radiotracer for radiotherapy planning has not 
yet been established.

Radiation therapy: applications in glioblastoma

The role of radiation treatment in the management of glioma, 
both low- and high-grade (LGG and HGG, respectively), is 
a mainstay.

In Laperriere review [34] post-operative external beam 
radiotherapy (EBRT) is recommended as standard therapy 
for patients with malignant glioma.

According to EORTC guidelines, for LGG in absence 
of favorable prognostic factors (age < 40, no median shift, 
absence of neurological symptoms, oligodendritic features 
and maximum diameter < 6 cm), radiotherapy is indicated 
after surgery with a FTD of 50.4/54 Gy in fractions of 
1.8/2 Gy [35–37]. In this case, GTV is represented by high 
intensity area on postoperative T2w MRI and CTV is GTV 
plus a 1-cm margin [38, 39].

In the management of anaplastic oligodendroglioma, 
RT leads to a risk reduction in association with surgery 
and chemotherapy with lomustine, vincristine and procar-
bazine (PCV), especially in 1p-19q codeleted ones [40]. 
Conventional fractionation is recommended (60 Gy in 30 
fractions or 59.4 Gy in 33 fractions). Also in anaplastic 

astrocytoma adjuvant radiation treatment is the standard 
of care at the same FTD in association to sequential temo-
zolomide [41, 42].

Glioblastoma Multiforme (GBM) is the most common 
type of malignant glioma—and brain tumors as well—
among adults.

Radiation treatment in the setting of GBM has a crucial 
role, as demonstrated by several studies in which radio-
therapy following surgery led to an improved survival, if 
compared to surgical treatment alone [43–45].

The current clinical management of GBM is still based 
on the STUPP trial [2] in which the addition of concomi-
tant temozolomide 75 mg/mq daily plus sequential temo-
zolomide 150–200 mg/mq to radiotherapy treatment sig-
nificantly improved median OS (14.6 mo vs 12.1 mo with 
only post-operative RT). Radiation treatment was deliv-
ered for a Fractionated Total Dose of 60 Gy in 30 fractions 
of 2 Gy each (in patients aged 18–72 and with PS <  = 2) 
and it was delivered to the Gross Tumour Volume (GTV) 
with a 2-to 3-cm margin for the Clinical Target Volume 
(CTV) 60 Gy in 30 fractions.

As a consequence, the current standard of care in the 
management of GBM is maximal safe neurosurgical resec-
tion followed by radiation treatment to the involved brain 
with concurrent and adjuvant temozolomide.

For what concerns contouring and planning, accord-
ing to ESTRO-ACROP guidelines [46], to ensure accurate 
re-positioning, the patient’s head should be immobilized 
using an individually adapted mask system (e.g. thermo-
plastic systems). A CT scan should be obtained using 
1–3 mm slice thickness from the vertex to the lower border 
of C3. Contrast enhanced MRI scan should be fused with 
the planning CT to aid target delineation. If a recent MRI 
is not available, for example if MRI is contraindicated, 
then intravenous contrast should be administered during 
the planning CT scan to help identification of residual 
disease. Target delineation should be performed using 
contrast-enhanced T1 + T2/FLAIR sequences.

GTV is usually identified with surgical resection cav-
ity plus any residual enhancing tumour (post-contrast T1 
weighted MRI scans) without inclusion of peri-tumoural 
oedema (see Fig. 2).

CTV is defined as the GTV plus a margin to account for 
microscopic spread. Based on studies of recurrence pat-
tern and tumour infiltration, 20 mm is the recommended 
margin applied in all directions, but CTV margin may 
be reduced to 0.5 cm around natural barriers to tumour 
growth (see Fig. 2).

More specifically, CTV reduced at such as the skull 
(0 mm, using bone window), ventricles (5 mm), falx (5 mm), 
tentorium cerebelli (5 mm), visual pathway/optic chiasm and 
(each 0 mm), provided the tumour is distant from the white 
matter tracts extending to these regions (e.g. midbrain).
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Planning Target Volume (PTV) should take into account 
uncertainties of planning, including those arising from 
CT-MRI fusion and patient setup. Restricting the CTV to 
PTV margin to a maximum value around 3–5 mm is recom-
mended (see Fig. 2).

In Europe, single-phase treatment is advocated, with a 
dose of 60 Gy delivered in 30 fractions of 2 Gy each.

The American Radiation Therapy Oncology Group 
(RTOG), on the other hand, recommends two phases start-
ing with a larger volume that receives 46 Gy before “coning 
down” for the additional 14 Gy. In phase 1, a total dose of 
46 Gy is delivered in 23 fractions of 2 Gy each. GTV1 is 
defined as the surgical resection cavity plus any residual 
enhancing tumour (postcontrast T1-weighted MRI scans) 
plus surrounding oedema (hyperintensity on T2 or FLAIR 
MRI scans). CTV1 is defined as the GTV1 plus a margin of 
2 cm (if no surrounding oedema is present, the CTV is the 
contrast enhancing tumour plus 2.5 cm). PTV1 is defined as 
CTV1 plus a margin of 3–5 mm).

Phase 2 is represented by boost dose of 14  Gy in 7 
fractions. GTV2 can be identified with surgical resection 
cavity plus any residual enhancing tumour (postcontrast 
T1-weighted MRI scans); CTV2 is GTV2 plus a margin of 
2 cm and PTV2 is a margin of 3–5 mm around CTV2.

For what concerns organs at risk (OARs), they include 
the optic nerves, eyes, lenses, brain and brainstem which 
all should be contoured. Some also contour the hippocam-
pus when the tumour is in a location that will allow sparing 
without compromising dose to the target; there is currently 
insufficient evidence to support recommendations on hip-
pocampal sparing.

Expansion of OARs to create a planning risk volume 
(PRV) for each OAR is frequently applied; the margin should 
reflect the accuracy of daily set-up. Overlaps between PRVs 
and PTV should be considered and may necessitate reducing 

PTV dose adjacent to OARs. In elderly patients (> 70 years) 
or those with poor performance status (KPS < 70) hypofrac-
tionated schedules are appropriate, such as 40 Gy delivered 
in 15 fractions of 2.67 Gy [47] or 34 Gy in 10 fractions of 
3.4 Gy [48].

Results

The role of NM before glioblastoma radiotherapy: 
treatment planning, dose escalation

Radiotherapy plays important role in the complex onco-
logical treatment of glioblastoma multiforme (GBM). The 
current clinical standard consists of surgery followed by 
radiotherapy plus concomitant and adjuvant temozolomide, 
providing a median overall survival of 12–16 months [2]. 
Concomitant temozolomide appears to be most effective in 
young and fit patients with GBM who have had debulking 
surgery [49]. Several technological advances have changed 
the radiotherapy in GBM patients, such as the use of inten-
sity modulated radiotherapy (IMRT) [50], proton therapy 
and so on [51, 52].

At the same time, there is still an unmet need for the 
development of additional imaging techniques to comple-
ment the standard planning imaging with computed tomog-
raphy (CT) and magnetic resonance imaging (MRI), in 
order to increase the therapeutic ratio of radiotherapy. In 
this context, numerous studies have indicated that the use of 
MET/FET PET, MRS in conjunction with MRI was supe-
rior to MRI alone in determining the extent of malignant 
involvement [53, 54]. With these techniques it is possible 
to define the so-called biological target volume (BTV) [55] 
and although the modern radiotherapy treatments are based 
on cross-sectional CT and MRI information, more attention 

Fig. 2   GTV and CTV in the 
EORTC radiotherapy plan. 
CTV margin reduced to 0.5 cm 
around natural barriers to 
tumour growth
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is being paid to functional hybrid imaging describing the 
biological and functional morphology of tumour lesions and 
newer radiopharmaceuticals for imaging [56].

Conventional PET-CT uses the most commonly tracer 
18F-FDG but in this context it may show limited utility 
because of the high metabolic rate of normal brain tissue 
[17, 57]. In 2002 a preliminary analysis of 27 GBM patients 
showed that there was a mean difference of 25% between the 
18F-FDG PET and the MRI delineation volume [58]. How-
ever, when PET is analysed approximately 3.5 h following 
FDG injection, it allows the washout of FDG from normal 
brain cells while abnormal tissue retains FDG. This delayed-
phase PET has been shown to be beneficial in detecting both 
primary and metastatic brain lesions as well as differenti-
ating between residual or recurrent tumour and radiation 
necrosis following treatment [59, 60].

Within the past decade, several other radiotracers have 
been investigated in GBM, such as 11C-MET and 18F-FET, 
that are able to cross the blood–brain barrier [17].

Comparing the 11C-MET PET and MRI, Grosu et al. [61] 
found that in operated patients with brain gliomas, the size 
and location of residual 11C-MET uptake differs consid-
erably from what found on postoperative MRI. This con-
sideration has led to new investigations in the radiotherapy 
treatments planning, initially in the context of re-irradiation 
at the disease progression, and subsequently in the defini-
tion of first treatment target for dose escalation of a limited 
area (boost).

Douglas et al., explored the use of a 18F-FDG PET based 
boost (up to a total dose of 79.4 Gy), but unfortunately they 
found no significant differences in OS or PFS in comparison 
with the historical data [62].

Miwa et al. investigated a simultaneous integrated boost 
(SIB) with helical tomotherapy system (HT) planning. Their 
boost volume was defined on MET uptake and their results 
showed that the SIB had significant efficacy in controlling 
both regional and infiltrating tumour cells, without evidence 
of increased neurological toxicity. In subsequent studies 
hypo-IMRT and stereotactic IMRT showed a favourable 
survival outcomes for patients with GBM when there was a 
complementary use of 11C-MET PET [63, 64].

Despite apparent gross total resection the majority of 
patients may have residual disease detected by 11C-MET 
PET before chemoradiation, the persistent 11C-MET PET 
subvolume is a strong predictor for in field progression-free 
survival (PFS) and OS [65].

Other Investigators have used 18F-FET PET in dosimetric 
studies, in order to understand the potential of a PET based 
dose escalation, without increasing the dose to the OAR, 
with an approach similar to isotoxic dose escalation [66].

Piroth et al. investigated the use of 18F-FET PET for dose 
escalation, finding that the auto-contoured PTV led to com-
plex geometric configurations limiting the achievable mean 

dose in the boost volume [67]. The same group conducted a 
phase II study that demonstrated that dose escalation based 
on 18F-FET PET did not lead to a survival benefit [68], 
probably due to the low resolution of PET scans and to the 
low contrast between healthy tissues and tumour periphery 
in terms of 18F-FET uptake.

In 2013 Rieken et al. [69] showed that the integration 
of both MRI and 18F-FET PET/CT may help to improve 
GTV coverage by avoiding larger incongruence between 
physical and biological imaging techniques. The integra-
tion of 18F-FET PET in recurrent glioblastoma has been 
analysed by Piroth et al. more recently [70]. The Authors 
analysed 13 patients with recurrent GBM and found that a 
simulated target volume, based on first FET-1 with 7 mm 
margin covered 100% of relapse volume in median and led to 
a significantly reduced PTV, compared to MRI-based PTVs. 
This approach may achieve similar therapeutic efficacy but 
lower side effects offering a broader window to intensify 
concomitant systemic treatment focusing distant failures. In 
the same context, Lohmann et al. enrolled 50 GBM patients 
[15] that underwent upfront 18F-FET PET and MRI. In 43 
patients (86%), the PET tumour volume was significantly 
larger than the contrast enhancement MRI volume, and 
thus the information derived from both imaging modalities 
should be integrated into the management of patients with 
newly diagnosed glioblastoma.

Fleischmann et al. [71] also enrolled 36 GBM patients 
undergoing 18F-FET PET examination before primary radi-
ochemotherapy, confirming that target volume delineation of 
GBM patients can be improved through metabolic imaging 
prior to primary radiation treatment, since vital tumour can 
be detected more accurately and at the same time suggesting 
that CTV margins could be reduced.

Albert et al. [33] used 18F-GE-180 and MRI in order to 
investigate the 18-kDa mitochondrial translocator protein 
(TSPO) that was reported to be upregulated in gliomas. In 
percentage difference, the PET volumes were on average 
179%, 135% and 90% larger than the respective MRI vol-
umes showing that 18F-GE-180 PET provides a remarkably 
high tumour contrast in untreated and pretreated glioblas-
toma even beyond contrast enhancement on MRI.

While 18F-FET PETs are based on the amino acid uptake 
of the tumour, other promising radiotracers are ligands of 
Fibroblast Activating Protein, FAPI-02 and FAPI-04, which 
detect tumours based on their expression of Fibroblast Acti-
vation Protein (FAP) in tumour stroma on cancer-activated 
fibroblasts [72].

Windisch et al. [73] compared FAP-specific PET to MRI 
for treatment planning in 13 GBM patients, finding that the 
GTV based on different technique was different. The result-
ing incongruent volumes could provide additional informa-
tion for radiotherapy or biopsy planning. In 2015 Bell et al. 
[26] analysed in a review different approach, finding that 
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18F-FDOPA PET provides greater sensitivity and specificity 
in detection, grading, prognosis and validation of treatment 
success in both primary and recurrent gliomas.

Recently Laak et al. demonstrated in a phase 2 trial that 
that 18F-DOPA PET is sensitive and specific for identifying 
regions of high density and biologically aggressive glioblas-
toma. The authors analysed an image-based dose escalation 
approach in 75 GBM patients that was correlated with an 
increase of PFS, with no increase of toxicity [74].

These results suggests that the additional value of 
18F-FDOPA should be considered when delineating tar-
get volumes to improve patient care, optimize outcome and 
deliver more focused therapies [75].

Finally, other metabolic approach that have been used 
consists in the evaluation of hypoxia that is closely related 
to the aggressiveness of the brain tumour [76]. 18F-FMISO 
is currently the most commonly used radiotracer for hypoxia 
imaging and 18F-FMISO PET can distinguish glioblasto-
mas from lower-grade gliomas, and it can predict the micro-
environment of tumours, including necrosis, vascularization, 
and permeability, survival and treatment response prediction 
[77].

In the recent years more efforts have been put in finding 
a way to improve RT plans by adding new type of imaging 
with computer-based models. Multiparametric MRI, using 
both DWI and ADC maps were correlated with 18F-FET 
PET in a cohort of 41 recurrent glioblastoma [78]. Lipkovà 
combined patient structural and metabolic scans from a sin-
gle time point with a computational tumour growth model 
through a Bayesian inference framework [79], in order to 
obtain a more personalized RT plan for each patient.

Finally, other approach consists in the delivery of a subse-
quent boost with a stereotactic approach based on functional 
imaging, such as the protocol of Jacobo et al. [80]. GBM 
patients underwent a maximal safe resection, followed by the 
Stupp protocol and in the end a PET guided SRS (stereotac-
tic radiosurgery). The results were encouraging but further 
studies are needed to confirm this hypothesis.

Several of the above-mentioned PET tracers were suc-
cessfully correlated with the outcomes of GBM patients.

Graham et al. analysed 31 GBM patients and showed that 
qualitative FDG uptake was significantly associated with OS 
(p value 0.03), with a median OS of 9.0 months in non-avid 
patients versus 4.5 months in avid patients [81]. SUVmax, 
SUVpeak, TNR-WM and TLG were significantly associated 
with OS.

Similar results were obtained by other Researchers [82, 
83]. A ratio of 2.0 or 2.5 between the residual lesion SUV-
max and the healthy white matter SUVmax could be used as 
a cutoff to identify patients with reduced survival who may 
potentially benefit from intensive therapeutic strategies [84].

Kawasaki et al., conversely, analysed MET-PET before 
and after Stupp protocol in 30 newly diagnosed GBM 

patients who had undergone surgical resection [85]. A reduc-
tion in TBRmax of 36.6% or more, correlated to a longer OS 
of > 23 months.

18F-FDOPA is very useful for distinguishing radiation 
necrosis and glioblastoma recurrence. Hermann and col-
legues analysed 110 patients followed for glioblastoma and 
found that also 18F-FDOPA PET were prognostic of PFS. 
Patients with positive examinations had a 4.2 times shorter 
median OS than patients with negative examinations [86].

Conversely, Patel et al., conversely, demonstrated that 
age (p = 0.001) and the metabolic tumour volume on PET 
(p = 0.016, using a SUVmax T/N threshold) were corre-
lated with the 2-year overall survival time [87]. Chen et al. 
demonstrated that increased 18F-FLT uptake in high-grade 
glioma was associated with reduced patient survival, in a 
study of 25 patients [88]. 18F-FLT SUVmax correlated more 
strongly with Ki-67 index (r = 0.84; p < 0.0001) than 18F-
FDG SUVmax (r = 0.51; p = 0.07). 18F-FLT uptake also 
had more significant predictive power with respect to 
tumour progression and survival (p = 0.0005 and p = 0.001, 
respectively).

In summary, we report a table comparing different 
approaches of PET tracers for radiotherapy (see Table 1).

The role of NM after glioblastoma radiotherapy: 
response assessment, differential diagnosis

The aim of the present paragraph was to report the published 
data regarding the potential role of emerging PET techniques 
as useful tools of prognostic value in the setting of response-
to-treatment evaluation and in differential diagnosis between 
true tumour progression and radiation-induced side effects, 
as compared with conventional MRI assessment.

After chemoradiotherapy for gliomas, conventional treat-
ment response assessment is evaluated via T1-weighted 
MRI, T2- and/or FLAIR-weighted MRI signal [12, 89].

Although RECIST criteria are widely used for response 
assessment to therapy in most of cancers, its use in neuro-
oncology has been limited because concerns that one-dimen-
sional (1D) measurements may not accurately measure the 
irregular or asymmetric margins characteristic of high-grade 
gliomas (HGG). Then, MacDonald criteria were published 
in 1990 with regard of two-dimensional (2D) assessment 
of tumour size either on contrast-enhanced CT or contrast-
enhanced MRI. With development and growing use of anti-
angiogenic agents that affect vascular permeability and 
contrast enhancement, the limitations and shortcomings of 
RECIST and MacDonald criteria have become more appar-
ent and necessitated changes. To address this issue, RANO-
HGG criteria were introduced in 2010 [90].

However, MRI technique’s reliability is limited by 
several issues such as treatment-related effects, radia-
tion necrosis and pseudoprogression. The assessment of 
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treatment response in glioblastoma is difficult with MRI 
scans because reactive blood–brain barrier alterations with 
contrast enhancement can mimic tumour progression [91].

Radiologically, pseudoprogression (PsP) is defined as 
a new or enlarging area(s) of contrast agent enhancement 
occurring early after the end of radiotherapy (e.g. within 
3–4 months), in the absence of true tumour growth, which 
subsides or stabilizes without a change in therapy [92].
The RANO criteria attempts to address the phenomenon of 
pseudoprogression characterized by contrast enhancement 
in absence of true tumour progression typically following 
chemoradiation therapy.

In the absence of tissue confirmation, there is no avail-
able imaging modality which reliably distinguishes true 
from pseudoprogression. The RANO–HGG criteria suggest 
that within the first 3 months after completion of chemora-
diation patients whose MRI shows increased enhancement 
should not be considered to have progressed and should not 
be considered eligible for clinical trials for recurrent dis-
ease. The exceptions are patients who develop new areas 
of enhancement outside of the radiation field (beyond the 
high-dose region or 80% iso-dose line) or if there is une-
quivocal evidence of tumour on histopathologic sampling. 
Because of the difficulty in differentiating pseudoprogres-
sion from true progression, there is the suggestion that the 

first post-radiation MRI, rather than the postoperative MRI, 
should be used as the baseline scan [90].

Radiation necrosis is another issue in terms of differen-
tial diagnosis. This phenomenon is an important side effect 
of radiotherapy and can be assessed as a radiation-induced 
change which usually occurs more than 6 months after radio-
therapy even up to several years later. The rate of radia-
tion necrosis following radiotherapy may vary considerably 
(approximately 5–25%) and depends on the irradiated vol-
ume, radiation dose and fractionation scheme as well as on 
concurrently applied therapies such as targeted therapy or 
immunotherapy using checkpoint inhibitors [12].

Nowadays, the emergence of advanced MRI techniques, 
MR spectroscopy and PET tracers has improved response 
assessment [89] and has helped in overcoming the limits in 
differential diagnosis.

18F-FDG PET value has proven limited in the brain in 
consideration of its high glucose metabolism in tumour tar-
get delineation [12], but of independent prognostic value 
pre- and post- radiotherapy in glioma patients [82, 93, 94]. 
In the setting of response assessment 18F-FDG PET has a 
controversial role: the evidence that 18F-FDG PET uptake 
pre- and post RT treatment in a setting of glioma patients 
showed no correlation between metabolic changes and sur-
vival of patients was demonstrated [95], but, on the other 

Table 1   Summary of PET tracers used in radiotherapy for various purposes [57, 86]

PET tracer in radiotherapy Advantages Drawbacks Sensitivity % Accuracy %

18F-FDF Availability False negative 43–100 60.7
11-C-Choline Grading gliomas No differentiation between low-grade 

gliomas and non-neoplastic lesion
73.5–92.3 NA

18F-DOPA Grading gliomas and radiotherapy 
planning

Availability 84–100 78–97

11C-methionine Grading gliomas and radiotherapy 
planning

Limited use due to on-site cyclotron 
need

75–91.2 NA

18F-FET Grading gliomas and radiotherapy 
planning

Availability 84–100 85–96

18F-FLT Grading gliomas No differentiation between low-grade 
gliomas and non-neoplastic lesion

82.1 NA

18F-FMISO Radiotherapy boost planning on small 
hypoxic areas

Requires an early and a delayed aquisi-
tion due to high background activity

NA NA

18F-FAZA Sensitive to acute hypoxia areas Standardization and validation process 
is still necessary in order to establish 
a definitive clinical role

NA NA

68 Ga-PSMA and 18F-PSMMA Differentiation between radiation necro-
sis and recurrence. It can be used 
right after surgery

Cerebral necrosis may still lead to a 
false positive

73.5–92.3 NA

TSPO PET High versatility Cost–benefit and upregulation of 
TSPO PET radioligands’ binding is 
not discriminant between activated 
microglia, astrocytes and infiltrated 
macrophages

NA NA

11-C-Acetate High uptake in high-grade gliomas Standardised only for HCC and Pros-
tate Cancer

90 NA
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hand, the correlation of 18F-FDG PET scans with survival 
in a cohort of glioma patients was established, with patients 
with higher 18F-FDG PET scores more likely to progress 
clinically and to have lower overall actuarial survival times 
[96].

18F-FDG PET also has a potential role in distinguish-
ing PsP from true tumour progression, in comparison to 
MRI scans at 1 month post the end of radiotherapy which 
were significant of tumour progression because of contrast 
enhancement even in the presence of clinical improvement 
[97].

18F-FDG PET has a rationale in discriminating between 
radiation necrosis and tumour recurrence, with a high posi-
tive predictive value (PPV) and negative predictive value 
(NPV), as compared to conventional MRI [98].

Of much more relevance in this context is the use of PET 
with radiolabelled aminoacids.

Several studies reported the emerging role of 18F-FET 
PET —particularly related to its early changes in tumour-to-
brain uptake ratios— in the prediction of both PFS and OS 
in newly diagnosed glioma patients, compared to traditional 
MRI scans [91, 99, 100].

The prognostic impact of postoperative tumour volume 
and tumour/brain ratios (TBR) in 18F-FET PET using in 
comparison with MRI was evaluated in prospective studies 
with the results that 18F-FET PET could be helpful to deter-
mine the residual tumour volume after surgery of multiforme 
glioblastoma (GBM) and may serve as a valuable tool for 
optimal planning of radiation treatment [70].

18F-FET PET has also been investigated in terms of dif-
ferential diagnosis between radiation-induced injuries (pseu-
doprogression and radiation necrosis) and true tumour pro-
gression with successful evidence.

Werner and colleagues analysed with 32 18F-FET PET 
scans 23 newly diagnosed glioblastoma patients following 
lomustine-temozolomide chemoradiation and with equivocal 
MRI scans. They defined maximum and mean tumour-to-
brain ratios and other dynamic 18F-FET uptake parameters 
(e.g. time-to-peak). In patients with more than one 18F-FET 
PET scan, relative changes of TBR values were considered 
as follows: an increase or decrease of > 10% compared with 
the reference scan was considered as tumour progression or 
pseudoprogression. As a result, 18F-FET PET demonstrated 
a significant role in diagnosing pseudoprogression in this 
setting of patients [101].

To validate the emerging role of 18F-FET PET in com-
parison to MRI scans in detecting early PsP, we report Gall-
diks and Langen experience [102].

Pseudoprogression usually occurs within 3–4 months 
after the end of radiation therapy, but as a matter of fact it 
may occur later in the course of the disease and may then 
be particularly difficult to distinguish from true tumour 
progression.

In this regard, the role of 18F-FET PET in the diagnosis 
of rare late pseudoprogression was investigated in 26 glio-
blastoma patients that presented with increasing contrast-
enhancing MRI lesions later than 3 months after completion 
of radiochemotherapy and who then underwent 18F-FET 
PET. TBRmax and TBRmean were significantly higher 
in patients with true progression than in patients with late 
pseudoprogression. So, 18F-FET PET provided valuable 
information in assessing the elusive phenomenon of late 
PsP [103].

18F-FET PET was also investigated for differentiating 
local recurrent brain metastasis from radiation necrosis after 
radiation therapy with the results that using tumour/brain 
ratios in combination with the evaluation of time–activity 
curves derived from the kinetic 18F-FET PET scans has a 
sensitivity and specificity of about 90% [104].

Among new aminoacid PET tracers, 11C-MET PET 
imaging of glioblastoma has proven useful for detecting 
postoperative residual disease and response to chemora-
diation therapy; it may also have a role both in delinea-
tion of target volume and in response assessment. Indeed, 
11C-MET PET scanning showed a significant decrease in 
metabolic signal at 1 month after chemoradiation compared 
with the immediate postoperative period, even when T2/
fluid-attenuated inversion recovery changed little [105]. 
11C-MET PET MTV (metabolic tumour volume) both in 
low- and in high-grade gliomas has proven to have a signifi-
cant and independent prognostic value for patients’ survival 
[65, 106, 107].

For the differentiation of local brain metastasis recurrence 
from radiation related effects, the calculation of tumour-to-
brain ratios in 11C-MET PET studies revealed a sensitivity 
and specificity of 70–80% [108–110].

18F-FDOPA PET may also be useful for diagnosing 
patients with pseudoprogression and differentiating them 
from those with true tumour progression. In this line, we 
report Hermann’s experience whose study on 110 glio-
blastoma patients revealed an accuracy of 82% for the cor-
rect diagnosis of tumour progression or recurrence [86]. A 
18F-FDOPA PET study also revealed a sensitivity and a 
specificity of more than 80% for the differentiation of local 
brain metastasis recurrence from radiation-induced effects 
[111]. Another study compared 18F-FDOPA and 18F-FDG 
PET brain imaging with the conclusion that 18F-FDOPA 
PET was more accurate than 18F-FDG PET for imaging 
of low-grade tumours, for evaluating recurrent tumours and 
for distinguishing tumour recurrence from radiation necrosis 
[88].

18F-FMISO PET evaluates intratumoural hypoxia to 
deliver higher radiation dose to hypoxic subvolumes and 
overcome hypoxia-induced radioresistance. 18F-FMISO 
uptake is a mark of an aggressive tumour, almost always 
a glioblastoma. 18F-FMISO PET could be useful to guide 
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glioma treatment, and in particular radiotherapy since 
hypoxia is a well-known factor of resistance [112]. Its role 
has been investigated also in the setting of response assess-
ment. Leimgruber and colleagues showed in a cohort of 
18 glioblastoma patients who underwent radiotherapy that 
patients with the longest overall survival showed non-detect-
able hypoxia in both pre-radiotherapy and post-radiotherapy 
18F-FMISO PET [113].

The role of PET with radiolabelled aminoacids has also 
been evaluated for what concerns re-irradiation in glioma 
relapse. A small number of clinical trials have utilized 
PET for target volume delineation. Re-irradiation of recur-
rent glioblastoma multiforme using 11C-methionine PET/
CT/MRI image fusion for hypofractionated stereotactic 
radiotherapy by intensity-modulated radiation therapy has 
recently been explored with good tolerance and a median 
survival time of 11 months after treatment completion [64]. 
A randomized phase II trial compared MRI-guided and 
18F-FET PET-guided reirradiation in patients with recur-
rent GBM with the result that stereotactic fractionated RT 
is associated with improved survival when aminoacid-PET 
is integrated in tumour target delineation [114].

In summary, we report a table comparing diagnostic value 
of new AA tracers with standard MRI-scan (see Table 2).

The future role of NM in glioblastoma radiotherapy: 
trials in progress

Several trials are currently evaluating different approaches of 
nuclear medicine in the field of GBM research (see Table 3).

Some trials are investigating the differential diagnosis 
of GBM, with the use of PSMA PET (NCT04588454) in 
the visualisation of GBM, the use of 18F-FDG PET for 
the diagnosis of GBM, the use of 18F-FDOPA PET for the 
demonstration of functional brain abnormalities and the 
18F-DASA-23 and PET Scan in the evaluation of Pyruvate 
Kinase M2 Expression in patients with intracranial tumours. 
Other trials in this context are evaluating Tryptophan Metab-
olism in Human Brain Tumours, the use of [68 Ga]-FF58 
in Patients with selected solid tumours expected to overex-
press selective Integrins, the assessment of Brain Tumour 
Hypoxia With Fluoromisonidazole, FDG and Water, the use 
of mpMRI/Fluorine-18 Fluciclovine PET-CT in GBM and 
the use of 11C-MET PET as a Post-surgery Baseline Scan 
for GBM.

Other trials are currently investigating the role of nuclear 
medicine in the response assessment after standard thera-
pies for GBM, in order to differentiate pseudoprogression 
with 11C-MET PET or with different tracers, such as 68 Ga-
PSMA PET-CT and 18F-FDOPA PET-CT, 18F-FDG PET/
CT. Several trials are currently investigating F18 Fluciclo-
vine PET/CT, either alone or in combination with mpMRI. Ta
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In the context of radiotherapy planning, other Investiga-
tors are enrolling patients for different protocols, such as 
Fluciclovine or 18F-FET PET guided radiotherapy, or the 
use of 18F-FDOPA PET/MRI scan for the investigation of 
proton beam therapy for elderly GBM patients. Other Inves-
tigators are currently enrolling GBP patients for TTFields 
and radiosurgery based on 18F-FET PET for recurrent glio-
blastoma, or for amino-acid PET guided reirradiation.

Finally, several other trials are currently evaluating 
different endpoints, such as the PARP-1 expression with 
18F-FluorThanatrace PET, the predictive role of PET and 

perfusion CT in GBM patients undergoing anti-angiogenics, 
the role of 18F-FDG PET in EGFR positive GBM patients 
undergoing osimertinib, or laser interstitial thermal therapy 
treatment response assessment with Fluciclovine PET.

Future directions and conclusions

All the above mentioned studies have shown promising 
results of different application of nuclear medicine in the 
field of GBM. Nevertheless, the clinical approach of GBM 

Table 3   Trials in progress evaluating the role of PET in the clinical management of GB patients

NCT number Title Study type

NCT04588454 18F-PSMA PET/CT for visualization of glioblastoma multiforme Diagnosis
NCT02885272 FDG PET imaging in diagnosing patients with glioblastoma Diagnosis
NCT04315584 FDG and FDOPA PET demonstration of functional brain abnormalities Diagnosis
NCT03539731 [18F]DASA-23 and pet scan in evaluating pyruvate kinase M2 Expression in patients with intracranial 

tumours or recurrent glioblastoma and healthy volunteers
Diagnosis

NCT02367482 Tryptophan metabolism in human brain tumours Diagnosis
NCT04712721 Study of [68 Ga]-FF58 in patients with selected solid tumours expected to overexpress #v#3 and #v#5 

Integrins
Diagnosis

NCT01246869 Assessment of primary and metastatic brain tumour hypoxia with Fluoromisonidazole, FDG
and Water

Diagnosis

NCT03409549 Multi-parametric MRI/Fluorine-18 fluciclovine PET-CT in glioblastoma Diagnosis
NCT02585219 Pilot viability of 11C-MET-PET as a post-surgery baseline scan in high-grade gliomas Diagnosis
NCT03903419 Feasibility study of 68 Ga-PSMA PET-CT and 18F-FDOPA PET-CT in glioblastoma patients Response assessment
NCT03739333 Early diagnosis of pseudoprogression

using 11C-methionine PET-MRI after concomitant radiochemotherapy Treatment for glioblastoma
Response assessment

NCT02902757 FDG PET/CT in monitoring very early therapy response in patients with glioblastoma Response assessment
NCT03990285 [18F]Fluciclovine in Post-treatment

glioblastoma ( Axumin)
Response assessment

NCT04044937 Fluoroethyltyrosine in detecting tumours in participants with recurrent intracranial tumours Response assessment
NCT03926507 F18 fluciclovine PET/CT in assessing tumour volume and radiation therapy response in patients with 

glioblastoma undergoing surgery
Response assessment

NCT01579253 Combined O-(2-[18F]Fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) and simulta-
neous magnetic resonance imaging (MRI) Follow-up in re-irradiated recurrent glioblastoma patients

Response assessment

NCT04840069 Radiotherapy planning using Fluciclovine PET in patients with newly diagnosed glioblastoma RT planning
NCT03778294 18F-DOPA-PET/MRI scan in imaging elderly patients with newly diagnosed grade iv malignant glioma 

or glioblastoma during planning for a short course of proton beam radiation therapy
RT planning

NCT04671459 TTFields and radiosurgery of recurrent glioblastoma ± 18F-Fluoro-Ethyl-Thyrosine RT planning
NCT01165632 Fluorine F 18 Fluorodopa-labelled PET scan in planning surgery and radiation therapy in treating 

patients with newly diagnosed high- or low-grade malignant glioma
RT planning

NCT01252459 Amino-acid PET versus MRI guided re-irradiation in patients with recurrent glioblastoma multiforme RT planning
NCT03370926 FET-PET and multiparametric MRI for high-grade glioma patients undergoing radiotherapy RT planning
NCT04566185 Evaluation of the predictive value of 18F-fluorodeoxyglucose positron emission tomography and brain 

perfusion computed tomography for the efficacy of anti-angiogenic therapy (Bevacizumab) in recurrent 
glioblastoma

Other

NCT04221061 A pilot study evaluating in vivo PARP-1 expression with18F-FluorThanatrace positron emission tomog-
raphy (PET/CT) in glioblastoma

Other

NCT03732352 18F-FDG PET and osimertinib in evaluating glucose utilization in patients with EGFR activated recur-
rent glioblastoma

Other

NCT05054400 Study of laser interstitial thermal therapy (LITT) treatment response assessment with Fluciclovine PET 
MR

Other
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patients remains the same from the Stupp trial [2]. In this 
context, considering the poor OS, several efforts must be 
taken in near future in order to increase the therapeutic 
efficacy of different therapies.

Conversely, despite an impressive number of retrospec-
tive studies, the number of prospective clinical trials inves-
tigating the potential role of nuclear medicine in GBM 
patients remains somewhat low (see Table 3).

There are still some limitations to resolve before 
nuclear medicine techniques can be successfully 
applied in the clinical management of GBM patients. 
More specifically, current major pitfalls in nuclear 
medicine are the big heterogeneity of tracers adopted, 
the lack of image standardization and the lack of stand-
ardization of volumes definition to be used in the treat-
ment planning.

Nuclear medicine actually represents one of the most 
interesting approaches of tailored medicine in this disease. 
Future research will also need to focus on big data analysis 
and artificial intelligence in order to facilitate the clini-
cal application of nuclear medicine in the management of 
GBM patients.
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