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ABSTRACT
A recent simulation study of the transverse current autocorrelation of the Lennard-Jones fluid [Guarini et al., Phys. Rev. E 107, 014139 (2023)]
revealed that this function can be perfectly described within the exponential expansion theory [Barocchi et al., Phys. Rev. E 85, 022102 (2012)].
However, above a certain wavevector Q, not only transverse collective excitations were found to propagate in the fluid, but a second oscillatory
component of unclear origin (therefore called X) must be considered to fully account for the time dependence of the correlation function.
Here, we present an extended investigation of the transverse current autocorrelation of liquid Au as obtained by ab initio molecular dynamics
in the very wide range of wavevectors 5.7 ≤ Q ≤ 32.8 nm−1 in order to also follow the behavior of the X component, if present, at large Q
values. A joint analysis of the transverse current spectrum and its self-portion indicates that the second oscillatory component arises from the
longitudinal dynamics, as suggested by its close resemblance with the previously determined component accounting for the longitudinal part
of the density of states. We conclude that such a mode, albeit featuring a merely transverse property, fingerprints the effect of longitudinal
collective excitations on single-particle dynamics, rather than arising from a possible coupling between transverse and longitudinal acoustic
waves.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152090

I. INTRODUCTION

Liquid metals have often been regarded as reference systems for
investigations of the microscopic dynamics of liquids due to their
monatomic nature and the typically sharp features of the dynamic
structure factor S(Q, ω).1–3 Early studies mainly focused on the char-
acterization of longitudinal collective excitations (often referred to
as “sound waves”) propagating in these fluids.3–5 More recently,

experimental and simulation works on the dynamics of liquid met-
als addressed the behavior of transverse excitations (“shear waves”),
certainly present in dense fluids at sufficiently small wavelengths, i.e.,
above a threshold wavevector Q value that can be as low as a few
inverse nanometers, as observed from ab initio molecular dynamics
(AIMD) simulations of these systems.6–10 So far, simulations provide
the only possibility to determine the most crucial functions for stud-
ies of transverse dynamics:2 the transverse current autocorrelation
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function (TCAF) CT(Q, t) and the velocity autocorrelation function
(VAF), here denoted as Z(t). The former probes transverse excita-
tions with varying Q; the latter is, instead, a function of time only
and both longitudinal and transverse collective processes contribute
to it by affecting the velocity of every single particle. In particular, the
spectrum of the VAF Z̃(ω) in a liquid is the analog of the phonon
density of states (DoS) of a solid, thereby revealing, in an averaged
way, all the excitations sustained by the fluid, as shown in the liter-
ature both for the model Lennard-Jones (LJ) dense fluid11 and for
liquid metals.12,13

Very recently, we demonstrated that by using the exponential
expansion theory (EET) of correlation functions,14–16 a remarkably
accurate account of CT(Q, t) and its spectrum, C̃T(Q, ω), can be
obtained for the LJ fluid.17 In that work, the studied thermody-
namic state and Q range permitted an accurate determination of
the wavevector at which shear waves start to propagate. Unexpect-
edly, at higher Q values, we also found that an additional oscillatory
contribution had to be considered to properly describe CT(Q, t).
The oscillation frequency of this second component (labeled “X” in
Ref. 17) was observed to grow steeply with Q, rapidly overtaking the
frequency of transverse waves. The available data, which focused on
the low Q range, did not permit any conclusion on the nature and
physical meaning of the X contribution to CT(Q, t). Nonetheless,
its frequency ωX appeared to grow with Q toward the value of the
maximum of the dispersion curve of the longitudinal acoustic exci-
tation obtained from S(Q, ω)11 for the same thermodynamic state of
the LJ fluid (see, in particular, the red curve in Fig. 9 of Ref. 11). This
fact suggested that the X signal might be a fingerprint in CT(Q, t) of
the longitudinal dynamics.

In order to elucidate the origin of this second phenomenon (X),
we turn here to the analysis of CT(Q, t) of liquid Au as obtained from
the simulated atomic configurations already used to calculate both
S(Q, ω)5 and its single-particle (self-)part Sself(Q, ω).12 The present
investigation, extended to Q values well above the position Qpeak of
the main peak of the static structure factor (Qpeak = 26 nm−1 for Au),
enables us to follow the Q dependence of the frequency and damping
of the oscillatory processes and to check, in particular, the presence
of the X component of CT(Q, t) in a system substantially different
from the LJ fluid.

The choice of Au was suggested not only by the availability
of reliable and well-tested5 AIMD simulations but also, as men-
tioned, by the enhanced dynamical features typically characterizing
correlation functions of liquid metals as compared to other simple
fluids. In fact, the sharper spectral features often mitigate interpre-
tative uncertainties. Moreover, the monatomic nature ensures the
absence of optic-like (i.e., weakly dispersed) modes that might make
the interpretation more complex and allows us to focus solely on
acoustic excitations. In addition, we note that monatomic simple
liquids can be subdivided into two large categories: noble-gas liquids
and liquid metals. While the LJ case already studied is paradig-
matic of the first class, it is important to also investigate some
representative of the second one in order to check whether cer-
tain dynamical features have a “universal” character among simple
liquids.

The objective of the present work is to provide a convincing
proof of the longitudinal origin of the X component of CT(Q, t),
which not only is detected in the case of simulated Au but is even

more clearly defined than in the LJ system. We will also show
that traces of the longitudinal dynamics in a transverse correla-
tion need not necessarily be interpreted as evidence of a mixing,
or coupling, of the longitudinal and transverse excitations. This
mixing has sometimes been conjectured,18,19 though never quanti-
tatively demonstrated nor theoretically derived, in order to explain
the fact that signs of transverse waves in S(Q, ω) and of longitu-
dinal waves in C̃T(Q, ω) have been observed in some simulated
liquid metals6–10 or hydrogen bonded liquids.18,20 More recent stud-
ies addressing the mentioned coupling focused on the total current
correlation CL(Q, t) + 2CT(Q, t),21,22 showing interesting effects if
one starts from a simplified version of both CL(Q, t) and CT(Q, t), as
constituted by a single oscillatory component. However, the study of
the total current is presently not the preferred route in the attempt
to explain, as we aim to, the transverse and longitudinal current
autocorrelation functions with their clear two-excitation structure
above certain Q values. By adopting another point of view, the results
of the present study lead us to propose an alternative interpreta-
tion, independent of the coupling concept, of the mutual signatures
of the main collective processes of fluids in specialized correlation
functions, that is, in functions most appropriate to characterize,
primarily, either the longitudinal, via S(Q, ω), or the transverse,
through C̃T(Q, ω), excitations. In particular, the self-part of the
mentioned autocorrelation functions is shown to contain the traces
of all collective processes acting in the fluid and to convey averaged
information on the “secondary” ones (transverse or longitudinal,
in the above order) to the respective total (either longitudinal or
transverse) functions, i.e., to S(Q, ω) and C̃T(Q, ω).

II. BASIC DEFINITIONS AND PRELIMINARY
OBSERVATIONS

In a system of N identical monatomic particles, the current j is
defined as j(Q, t) = ∑α vα(t)eiQ⋅Rα(t), with Rα(t) and vα(t) denoting
the position and velocity of the α-th particle. It is usually separated
into two parts, jL and jT, where the longitudinal component (parallel
to Q) is given by2

jL(Q, t) = (j(Q, t) ⋅Q)Q/Q2, (1)

and the transverse part is simply jT(Q, t) = j(Q, t) − jL(Q, t). Fol-
lowing the notation of Ref. 2, the longitudinal current autocorrela-
tion function (LCAF) is then

CL(Q, t) =
1
N
⟨j∗L(Q, 0) ⋅ jL(Q, t)⟩ = −

1
Q2

d2F(Q, t)
dt2 , (2)

where F(Q, t) = 1
N∑α,β ⟨e

−iQ⋅Rα(0)eiQ⋅Rβ(t)⟩ is the intermediate scat-
tering function. The TCAF is, instead, given by

CT(Q, t) =
1

2N
⟨j∗T(Q, 0) ⋅ jT(Q, t)⟩. (3)

In Eqs. (2) and (3), ⟨⋅ ⋅ ⋅⟩ denotes, as usual, the ensemble average.
By assuming Q to be parallel to the z-axis, one can also write

the LCAF as2

J. Chem. Phys. 158, 234501 (2023); doi: 10.1063/5.0152090 158, 234501-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0152090/18005160/234501_1_5.0152090.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

CL(Q, t) =
1
N
⟨ j∗z (Q, 0) jz(Q, t)⟩

=
1
N∑α≠β

⟨vz,α(0)e−iQRz,α(0)vz,β(t)e
iQRz,β(t)⟩

+
1
N∑α

⟨vz,α(0)e−iQRz,α(0)vz,α(t)eiQRz,α(t)⟩

= CL,dist(Q, t) + CL,self(Q, t), (4)

where we introduced the self- and distinct components of the
function. An analogous separation can be performed for the TCAF,

CT(Q, t) =
1
N
⟨ j∗x (Q, 0) jx(Q, t)⟩

=
1
N∑α≠β

⟨vx,α(0)e−iQRz,α(0)vx,β(t)e
iQRz,β(t)⟩

+
1
N∑α

⟨vx,α(0)e−iQRz,α(0)vx,α(t)eiQRz,α(t)⟩

= CT,dist(Q, t) + CT,self(Q, t). (5)

Of course, due to the isotropy of the fluid, one has CT(Q, t)
= 1

N ⟨ j∗x (Q, 0) jx(Q, t)⟩ = 1
N ⟨ j∗y (Q, 0) jy(Q, t)⟩.

The velocity autocorrelation function Z(t), whose transform
Z̃(ω) can be interpreted as the DoS of the fluid, is defined by

Z(t) =
1
N∑α

⟨vα(0) ⋅ vα(t)⟩. (6)

Therefore, the comparison of Eqs. (4)–(6) readily shows that, in the
Q→ 0 limit, the following relations hold:

CL,self(Q→ 0, t) = CT,self(Q→ 0, t) =
1
3

Z(t). (7)

As we will show, the self-part of the TCAF has a very weak depen-
dence on Q. As a consequence, CT(Q, t) contains, in addition to
the distinct part, a contribution that is very similar to the VAF,
even at nonzero Q values. Consequently, C̃T(Q, ω) has a spectral
component that yields the same information as the DoS of the fluid.

It is important to recall that an EET representation of the VAF
enables one to distinguish the longitudinal and transverse contribu-
tions to the DoS.12 However, the characteristic frequencies derived
from the analysis of the VAF do not correspond, strictly speaking,
to those of “propagating collective excitations” with concomitant
Q dispersion. In fact, Z̃(ω) is independent of Q and has peaks or
shoulders at frequencies where the branches of the dispersion rela-
tion have a horizontal tangent, as expected from its identification
with the density of pseudo-phononic states. For strongly dispersive
collective excitations, such as the longitudinal ones, the DoS of a
liquid displays a broad shoulder around a frequency correspond-
ing to the maximum of the longitudinal dispersion curve ωs(Q)
(the subscript “s” meaning “sound”) obtained from the analysis of
S(Q, ω).5,12,13 We show this in Fig. 1 for the case of Au. In this sense,
the presence of features in the DoS in some frequency bands, in
fact, reveals that longitudinal and transverse branches are present in
the dispersion relation and where their average frequency is located.
Ultimately, the DoS proves that both sound and shear waves exist in
the fluid.

A. Previous results from an EET analysis
of C T(Q , t ) of a simple fluid

To provide the background for the present work, we give a brief
summary of the exponential expansion formalism14–16 and of the
results obtained with the help of the EET in our recent investigation
of CT(Q, t) in the LJ system.17

The exponential expansion theory predicts that any autocor-
relation function can be expressed as a series of exponential terms
(called modes). Thus, at each Q value, CT(Q, t) can be represented
by

CT(Q, t) = CT(Q, 0)
∞

∑
j=1

I j exp (z j ∣t∣). (8)

In Eq. (8), relaxation processes are accounted for by exponentially
decaying terms with real Ij and zj (with zj < 0), while exponentially
damped oscillatory components of the correlation are represented in
the series by “complex pairs,” i.e., by I j exp (z jt) + I∗j exp (z∗j t)with

FIG. 1. (a) Longitudinal dispersion curve ωs(Q) of liquid Au as obtained from the analysis of the AIMD S(Q, ω).5 (b) Spectrum of the VAF (DoS) of liquid Au.12 The figure
shows that the DoS displays a broad shoulder, centered around 30 rad ps−1 (dashed arrow), in correspondence with the frequency band (rendered by thin solid lines)
approximately containing the maxima of ωs(Q).
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Ij and zj complex and Re zj < 0. Note that complex modes appear
in conjugate pairs because the correlation is real-valued for classical
fluids. In Eq. (8), Ij and zj are functions of Q, although we omitted
this dependence in the above notation.

The EET has enabled very good descriptions of various cor-
relation functions and spectra of interest in studies of the self11,12

and collective dynamics13,23 of fluids. Details on its application can
be found in Refs. 11–13. In particular, the analysis consists of per-
forming a fitting procedure to determine the parameters zj and Ij of
a small number p of modes to which the sum in Eq. (8), in prac-
tice, reduces. Here, we note that a number of p − 1 constraints are
imposed on the amplitudes Ij in order to enforce the vanishing of
the first few odd time derivatives of CT(Q, t) at t = 0.13

Application of the above procedure to CT(Q, t) of the LJ system
allowed us to distinguish three wavevector regions where differ-
ent sets of exponential modes were required to accurately describe
the time behavior of the autocorrelation function. In particular,
we found that in the rather restricted low-Q range studied, the
character of the expansion changes twice, smoothly transitioning
from one Q regime to the other. Indeed, pairs of exponential terms
may be present in the expansion and describe the time depen-
dence of a component that, depending on its damping, behaves
either as an underdamped oscillator with a characteristic frequency
or as an overdamped one. On varying Q, such an “oscillator”
may smoothly cross the transition between the over- and under-
damped states, displaying the onset of a propagating excitation in the
fluid.24

At the very lowest wavevectors (region I in Ref. 17), three real
modes were required to represent the TCAF, one of which per-
fectly reproduced the Q-dependence of the damping of CT(Q, t)
in the hydrodynamic limit.2 However, the scheme of the modes
was found to change above a transition wavevector (called Qgap)
marking the lower boundary of a second dynamical region, thus
denoted as II in Ref. 17. In such a region, four modes in total,
two real and two complex conjugates, i.e., with Im zj ≠ 0, were
found to be necessary to attain a very good fit quality. Our anal-
ysis showed that the latter complex pair evolves from two out of
the three real modes of range I with a transition from an over-
damped to an underdamped condition of the kind described above.
Such a crossover at Qgap marks the onset of transverse collective

excitations propagating in the fluid. Correspondingly, we denoted
the actual oscillation frequency by ωT = Im zj and the damping by
ΓT = −Re zj, with the subscript “T” hinting at the transverse charac-
ter of the parameters of such an oscillator. The so-called undamped
frequency, i.e., the frequency the oscillator would have in the ideal
case of zero friction, is given by ΩT =

√
ω2

T + Γ2
T. Therefore, as far as

shear modes were concerned, the picture emerging from CT(Q, t)
was unambiguous. Regarding the remaining two real modes in
region II of the LJ system, we observed a larger-Q crossover where
these modes also continuously evolve toward the underdamped state
of a second damped harmonic oscillator, thus defining a third dis-
tinctive dynamic region for the processes probed by the TCAF. As
stated in Sec. I, given the lack of a precise assignment, in Ref. 17,
this second oscillatory term was unspecifically labeled as “X,”
and its parameters were analogously denoted as ωX, ΓX, and
ΩX =

√
ω2

X + Γ2
X. However, we already noted that the growth of ωX

with increasing Q suggested that it is likely related to the longitudinal
dynamics.

III. ANALYSIS OF C T(Q , t ) OF LIQUID Au
The details of the AIMD simulations of liquid Au were given in

Ref. 5. Here, we just recall that the simulation was performed with
200 atoms in a cubic box with 1.557 nm edge length, so as to give the
atomic number density n = 53 nm−3 at a temperature T = 1387 K,
slightly exceeding the melting temperature Tm = 1337 K. The above
edge length imposes a minimum Q value of 4.0 nm−1. The simu-
lation was first equilibrated in the NVT canonical ensemble for 9 ps
(3000 steps of 3 fs). The thermalized atom distribution was then sim-
ulated in the NVE microcanonical ensemble for a duration of 36 ps
in 12 000 time steps of 3 fs.

From the atomic configurations, we calculated both CT,L(Q, t)
and CT,L,self(Q, t) for all wavevectors compatible with the cubic box
in the range from Qmin = 4.0 up to 32.8 nm−1, as well as for the sin-
gle higher value Q = 38.1 nm−1. The limited variation of CT,self(Q, t),
with increasing wavevector is shown in Fig. 2, where we display the
self-parts of the LCAF and TCAF at two quite different Q values
(4.0 and 25.5 nm−1), along with Z(t)/3. At our minimum Q, the
self-parts of the current correlations are practically indistinguish-
able from Z(t)/3 [see Eq. (7)]. By contrast, at the higher Q value

FIG. 2. Time dependence of the self-parts of (a) the longitudinal and (b) the transverse current autocorrelations, compared with Z(t)/3 (blue dots). Two Q values are shown
for the self-current correlations: 4.0 nm−1 (solid) and 25.5 nm−1 (dashed).
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(25.5 nm−1), we observe that CT,self(Q, t) remains quite close to
Z(t)/3, while departures are more evident for CL,self(Q, t).

As mentioned above, the simulated CT(Q, t) was analyzed with
an EET model of the form of Eq. (8). Since the minimum set of
modes providing a good fit turned out to be p = 4 at all investigated
wavevectors, the constraints were∑p

j=1 I j = 1, which follows directly
from Eq. (8) at t = 0, ∑p

j=1 I jz j = 0, and ∑p
j=1 I jz3

j = 0. The last two
conditions enforce the vanishing of the first two odd time deriva-
tives of CT(Q, t) at t = 0, which, in the frequency domain, guarantees
that the second and fourth moments of the spectrum C̃T(Q, ω) are
finite.

We achieved accurate fits at each available Q value in the range
5.7 < Q < 32.8 nm−1, while, as often happens at the lowest Q value
admitted by the simulation box size, the TCAF at 4.0 nm−1 turned
out to be affected by the boundary conditions and was difficult to
be fitted properly. At the first two wavevector values of the above
range, Q = 5.7 and 7.0 nm−1, a model containing two real modes
and one (low frequency) complex pair accurately described CT(Q, t)
over its entire time range, indicating that shear waves (such as in

region II of Ref. 17) have already set in at the wavevectors probed
by the simulations. Conversely, at Q > 7.0 nm−1, a satisfactory rep-
resentation of the data could only be obtained by considering no
real modes but two complex pairs, meaning that, just like in the LJ
case, a second (underdamped) oscillatory component (labeled as X,
for consistency with Ref. 17) contributes to CT(Q, t), together with
the familiar transverse one, labeled as T. Figure 3 provides an exam-
ple of the quality of the fit to CT(Q, t)/CT(Q, 0) in this wavevector
range.

Figure 4 shows the Q dependence of the actual frequen-
cies ωT,X, damping coefficients ΓT,X, and undamped frequencies

ΩT,X =

√

ω2
T,X + Γ2

T,X of the two contributions to CT(Q, t). Although
the transverse dispersion curve ωT(Q) in Fig. 4(a) displays a some-
what noisy behavior, the trend of ΩT(Q) in Fig. 4(b) is more regular
and resembles that observed in liquid Ag.7,13 As far as the X pair
is concerned, we first note that the initial Q dependence (from 5.7
to, approximately, 15 nm−1) of ΩX and ΓX is very much the same
as the one found in the underdamped state of the LJ case, namely
a nearly flat behavior for the former and a nearly linear decrease in

FIG. 3. (a) Normalized CT(Q, t) of liquid Au at Q = 15.1 nm−1 (black circles) and fit result (red solid curve). The fit components (two complex pairs) are also shown and
specified in the legend. (b) Corresponding spectrum and fit results. The semilogarithmic scale helps appreciate the quality of the fit over more than two decades. The inset
shows the spectrum and its components on a linear scale.

FIG. 4. (a) Q dependence of the frequencies ωT (green full circles) and ωX (magenta full circles) as obtained from the fits to CT(Q, t). The green dotted–dashed spline curve
through the T points is just a guide to the eye. (b) Same as panel (a) but for the undamped frequencies ΩT (green full squares) and ΩX (magenta full squares). (c) Damping
coefficients ΓT (green asterisks) and ΓX (magenta asterisks).
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the latter. This might suggest that such trends are general and inde-
pendent of the specific nature of the fluid. It can also be noted that,
at Q ≥ 20 nm−1, ΓT and ΓX level off at roughly the same constant
value.

The wide Q range considered in the present paper allows us to
establish that, after a steep growth, ωX(Q) reaches the value of the
maximum (30 rad ps−1 for Au) of the longitudinal dispersion curve
ωs(Q) [see Fig. 1(a)]. This behavior could only be guessed at in the
LJ case due to the limited Q range covered. Interestingly, here we
are able to see that such a frequency value (attained by the X com-
ponent at Q ≈ 18 nm−1), which is also the frequency related to the
longitudinal processes in the VAF [see Fig. 1(b)], does not change
anymore with increasing Q. To further check this constant trend, we
also performed a fit to CT(Q, t) at the single, even higher value of
Q = 38.1 nm−1, finding (see Fig. 4) for both damping and frequency
a behavior similar to that of the preceding Q values. Thus, above
18 nm−1, the behavior of ωX is not the one expected for a propa-
gating dispersive mode, as confirmed by the results presented in the
following.

In Sec. II, we already noted that the second relation in Eq. (7),
exact at Q→ 0, continues to approximately hold for CT,self(Q, t) also
at higher wavevectors (see Fig. 2). On the other hand, we now find
that, at Q > 18 nm−1, CT(Q, t) contains an oscillatory component
matching the longitudinal complex pair of the VAF reported in
Ref. 12. These observations lead us to interpret the X contribution
to CT(Q, t) not only as due to the longitudinal waves propagating
in the fluid, in the same way that these excitations contribute to the
VAF, but also as representing quite a strong fingerprint in CT(Q, t)
of its own self-part and, thus, ultimately, of the VAF itself. To quan-
titatively verify this hypothesis, we performed the EET analysis of
CT,self(Q, t), described in Sec. IV.

IV. ANALYSIS OF C T,self(Q , t ) AND DISCUSSION
OF THE RESULTS

For monatomic fluids, the self-part of an autocorrelation func-
tion is, in turn, also an autocorrelation function. The EET can then

be applied to self-correlation functions, as already done in Ref. 12.
We, thus, modeled CT,self(Q, t) according to

CT,self(Q, t) = CT,self(Q, 0)
∞

∑
j=1

I j,self exp (z j,self∣t∣) (9)

and performed fits in the same Q range investigated for the total cor-
relation. Given the close resemblance of CT,self(Q, t), with the VAF
also at nonzero wavevectors, the model adopted in Ref. 12, consist-
ing of two complex pairs plus one real mode, was also employed here
and proved to be very accurate at all wavevectors. Figure 5 shows
its performance at a representative Q value. We will indicate the
parameters of the low-frequency modes of CT,self(Q, t)with the sym-
bols ω1 and Γ1 (Ω1 =

√
ω2

1 + Γ2
1) and those of the high-frequency

complex pair by ω2 and Γ2 (Ω2 =
√

ω2
2 + Γ2

2).
In Fig. 6, the fit results are compared with those of Fig. 4. Very

smooth trends of the “self”-parameters are observed, with ωX(Q)
and ΓX(Q) of CT(Q, t) nicely falling on top of ω2(Q) and Γ2(Q)
of CT,self(Q, t) at intermediate and high Q values.25 Conversely, the
transverse dispersion curve ωT(Q), and even more so the undamped
frequency ΩT(Q), as expected, deviate from ω1(Q) and Γ1(Q) of the
self-correlation function, except at wavevectors exceeding ∼25 nm−1.

The two pairs of modes of CT(Q, t) thus appear to have a pro-
foundly disparate nature, not only because of the different processes
they are related to (shear and sound waves) but also because the
lower frequency complex pair (the transverse one) embodies, at low
and intermediate wavevectors, the genuine collective excitation that
the correlation function is suited to reveal, while the other, at almost
all Q values, is essentially related to the way in which the existence of
longitudinal modes is reflected in the single-particle behavior.

These considerations are also supported by the fact that the
distinct part of CT(Q, t) must play a significant role in the trans-
verse modes over the greatest part of the Q range, giving rise to
the weak but visible dispersion of ωT(Q) (see Fig. 6). By contrast,
the X modes are sensitive to the distinct component only in the
first part of the Q range; otherwise, their frequency would differ,
also above 18 nm−1, from what is found by the fits to CT,self(Q, t).

FIG. 5. (a) Normalized CT,self(Q, t) of liquid Au at Q = 21.0 nm−1 (black circles) and fit result (blue solid curve). The fit components (two complex pairs plus one real mode)
are also shown and specified in the legend. (b) Corresponding spectrum and fit results on a semilogarithmic scale. The inset shows the spectrum and all its components on
a linear scale.
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FIG. 6. Same as Fig. 4 with the addition of the results of the fits to CT,self(Q, t). (a) Empty stars are used for the actual frequencies of the complex pairs labeled as 1 (cyan)
and 2 (red) in Fig. 5. (b) Same as panel (a) with identical color code. Empty hexagrams represent Ω1 and Ω2. (c) Same as panel (b) but for the damping coefficients. Empty
circles are used for Γ1 and Γ2.

On the other hand, observing that the distinct dynamics mostly
affect the transverse excitations means it is primarily the T modes
of CT(Q, t) that embody genuine information about the relative
motions of different particles, in agreement with the collective, prop-
agating, and dispersive character we just attributed to these modes of
the TCAF.

Nonetheless, even for the T modes of CT(Q, t), this character is
lost above 25 nm−1, where their frequency ωT(Q) essentially merges
with ω1(Q) of Fig. 6(a). We thus conclude that in Au, all the modes
here observed lose their collective propagating character above this
threshold wavevector. Consequently, at Q > 25 nm−1, only the fre-
quencies of CT,self(Q, t), or equivalently of the VAF, can reasonably
be found from the analysis of the total correlation CT(Q, t) as well. A
posteriori, one realizes that such a collective to single-particle tran-
sition in the character of the T component occurs at a Q value
corresponding to a distance (2π/Q) ≃ 0.25 nm, which, at the density
of liquid gold, is very close to the average interparticle distance, so
that the probed dynamics is essentially that of single atoms. Accord-
ingly, going to smaller (and no longer significant at a “collective

level”) length scales cannot actually bring new information besides
that already contained in the VAF.

For completeness, we report in Fig. 7 the comparison of
CT,self(Q, t), and CT(Q, t) at the three selected wavevectors as
Q = 9.9, 18.5, and 38.1 nm−1. The first Q value [Fig. 7(a)] belongs
to the range where both the T and X components are affected by
the distinct part, giving rise to a total correlation that decays and
oscillates more slowly than CT,self(Q, t). The second wavevector con-
sidered in Fig. 7(b) lies at the beginning of the interval where ωX
reaches and maintains the same constant value of the high-frequency
mode of CT,self(Q, t), while the third is the maximum Q investi-
gated in this work. In both the two latter cases [Figs. 7(b) and
7(c)], the very slight difference between the two plotted curves at
times longer than 0.1 ps actually does not entail a change of the fre-
quency [see Fig. 6(a)] as determined by the fits to the two functions
but only a small, likely not significant, difference in the damping
[see Fig. 6(c)].

In this respect, another important remark is suggested by Fig. 8,
where the damping derived from the analysis of S(Q, ω) [here again

FIG. 7. Total (red solid curve) and self-TCAF (blue dashed curve) at three Q values: (a) 9.9 nm−1, (b) 18.5 nm−1, and (c) 38.1 nm−1.
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FIG. 8. Same as Fig. 6(c) with the addition of the damping zs(Q) (black
empty squares with error bars) of longitudinal excitations as determined from the
dynamic structure factor of liquid Au.5 The data are missing in the region around
Qpeak = 26 nm−1 because, in the propagation gap, where ωs(Q)→ 0, fits to
S(Q, ω) become unstable.

indicated as zs(Q) for consistency with Ref. 5] is superimposed
on the results already given in Fig. 6(c). Interestingly, all damping
coefficients tend to overlap beyond the well-known “propagation
gap” of ωs(Q), typically occurring around Qpeak, where the static
structure factor reaches its maximum.5 This trend corroborates
our overall picture since, at high enough Q values, only a sin-
gle damping mechanism seems to be detected, whatever dynamical
process is investigated through whatever autocorrelation function.
Apparently, this is a further proof that, above Qpeak, only only the
single-particle dynamic behavior is being probed.

V. SYNOPSIS AND FINAL REMARKS
This paper was aimed at providing a quantitative interpreta-

tion of an unexpected dynamical feature of the TCAF of fluids we
recently found for the LJ system: namely, the existence, along with
transverse collective excitations, of another oscillatory component
of unclear origin (therefore designated as X) in the correlation. The
availability of reliable AIMD simulations for liquid Au allowed us to
address the case of a “real” dense fluid and, at the same time, to span
a rather wide Q range, where transverse modes have already set in
and where the X modes, if present, could be followed appropriately
in their evolution with Q.

Our analysis, based on the EET of correlation functions, proved
again to be very successful, as in many other cases already reported,
and confirmed the presence of the X modes also in CT(Q, t) of Au,
up to the rather high wavevectors of this investigation. The obser-
vation of the same phenomenon in such different fluids constitutes,
per se, an interesting result.

An important clue concerning the nature of the X modes of
CT(Q, t) is given by the almost constant frequency they maintain
above a certain Q. In addition, this constant frequency value (30 rad
ps−1) turns out to be extremely close to one of the characteristic fre-
quencies found in previous studies on Au, both from the analysis of
the VAF and from the maxima of the longitudinal dispersion curve
derived from S(Q, ω).

Since the VAF is a single-particle (self-)property, and the X
modes of CT(Q, t) were observed to have the same characteristics
as the longitudinal contribution to the VAF,12 it was natural to also
perform an EET analysis of CT,self(Q, t), given its close resemblance
with the VAF at rather high Q values, as shown in Fig. 2. More pre-
cisely, although, as Q grows, CT,self(Q, t) does not coincide with the
VAF on an absolute scale, it nonetheless displays the presence of
longitudinal waves in a fluid in essentially the same way the VAF
does and, in particular, with the same frequency, i.e., resulting in a
strong similarity in lineshape. We believe that this is not a fortuitous
coincidence.

Apart from demonstrating once again the efficacy of the
EET in the description of any correlation function, the analysis
of CT,self(Q, t) turned out to be essential for proving that the X
component of the TCAF, initially of unknown origin, could be
unequivocally linked with the single-particle dynamics.

Several other comments, given at the end of Sec. IV, lead to the
following conclusive notes:

The TCAF contains two completely distinguishable signatures
of the main propagating waves present in a fluid: one provides evi-
dence for the collective transverse excitations (with concomitant Q
dispersion) that the function is constructed to detect; the other is
essentially a trace of the VAF, embodying information about other
(longitudinal) waves in the fluid. It conveys this information in a
similar way the DoS does, i.e., without revealing the true dispersion
curve ωs(Q), except through the more or less marked damping the
DoS shows for a specific excitation. In this respect, the behavior of
the X mode of CT(Q, t) at intermediate and high Q values shows
that, despite its original designation, such a component is not a new
and “unknown propagating collective excitation” emerging in the
TCAF but is simply, via CT,self(Q, t), a reflection of the longitudinal
contribution to the VAF.

The above observations suggest that what we found for
CT(Q, t) should also hold in the reverse case, where studies of
S(Q, ω) [or equivalently C̃L(Q, ω)26] show some “transverse-like”
contribution to it.6–10,13 The possibility that such an additional trans-
verse signal to S(Q, ω) might be due to the self-part was proposed
some years ago in the interpretation of simulation data on liquid
Na.27 As a proof of these hypotheses, it would be worth analyzing,
quantitatively, i.e., by the EET, the transverse signal and its possi-
ble relation with the self-part, also in the case of S(Q, ω). However,
analyses similar to the present one are very demanding and cannot
be pursued and described in the same paper. Moreover, given the
weakly dispersive character of transverse modes, such an analysis
would be far less stringent than the present one.

In conclusion, for simple monatomic liquids, such as LJ and
Au, our picture provides an explanation of the observed dynam-
ics independent of possible coupling effects. Rather simply, as this
study shows, the self-dynamics emerges in an evident way, bring-
ing to light also those processes that the longitudinal or transverse
character of the studied function should, in principle, forbid to
observe.
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