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Abstract

Introduction: We tested whether changes in functional networks predict cognitive

decline and conversion from the presymptomatic prodrome to symptomatic disease

in familial frontotemporal dementia (FTD).

Methods: For hypothesis generation, 36 participants with behavioral variant FTD

(bvFTD) and 34 controls were recruited from one site. For hypothesis testing, we

studied 198 symptomatic FTD mutation carriers, 341 presymptomatic mutation

carriers, and 329 family members without mutations. We compared functional net-

work dynamics between groups, with clinical severity and with longitudinal clinical

progression.

Results: We identified a characteristic pattern of dynamic network changes in FTD,

which correlated with neuropsychological impairment. Among presymptomatic muta-

tion carriers, this pattern of network dynamics was found to a greater extent in those

who subsequently converted to the symptomatic phase. Baseline network dynamic

changes predicted future cognitive decline in symptomatic participants and older

presymptomatic participants.

Discussion: Dynamic network abnormalities in FTD predict cognitive decline and

symptomatic conversion.

mailto:djw216@medschl.cam.ac.uk
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Highlights

1. We investigated brain network predictors of dementia symptom onset

2. Frontotemporal dementia results in characteristic dynamic network patterns

3. Alterations in network dynamics are associated with neuropsychological impair-

ment

4. Network dynamic changes predict symptomatic conversion in presymptomatic

carriers

5. Network dynamic changes are associated with longitudinal cognitive decline

1 INTRODUCTION

Neuropathological and structural changes accumulateovermanyyears

prior to the onset of symptoms in neurodegenerative diseases.1,2

Understanding the timing and consequence of such changes for clin-

ical syndromes is key to accounting for heterogeneity in progression

and risk-stratifying asymptomatic individuals for preventative clinical

trials. We have previously shown that functional network integrity

is important in maintaining cognitive performance in individuals at

risk of dementia,3,4 with the corollary that loss of network integrity

may herald symptom onset and predict cognitive decline. Genetic

frontotemporal dementia (FTD) provides an opportunity to charac-

terize functional networks throughout the course of the disease.

Approximately one-third of patients with FTD have a family history

in keeping with an autosomal dominant inheritance.5 Mutations in

three genes account for the majority of these cases: chromosome 9

open reading frame 72 (C9orf72), granulin (GRN), and microtubule-

associated protein tau (MAPT).5,6 The resulting phenotypes are het-

erogeneous, with behavioral variant FTD (bvFTD) the most common

clinical presentation.5

The coordination of neural activity across distributed spatial and

temporal scales is dynamic.7–9 Such connectivity underpins cogni-

tion in health and is affected in psychiatric and neurodegenerative

diseases.10–12 While canonical approaches to functional connectivity

have averaged over the scan acquisition time, time-varying fluctu-

ations in connectivity can also be captured by functional magnetic

resonance imaging (fMRI).13–15 In the clinical syndromes of FTD, there

are deficits in inhibitory and excitatory neurotransmitters required for

network integration and segregation16 which we propose contribute

to changes in temporal dynamics in the disease. Subtle changes in

time-varying functional connectivity occur in presymptomatic muta-

tion carriers,17 although their longitudinal significance and evolution

into the symptomatic phase have not been studied.

We examined resting state brain dynamics in presymptomatic

and symptomatic carriers of pathogenic mutation carriers in the

Genetic Frontotemporal Initiative (GENFI) using fMRI to determine

whether disruption to network dynamics predicts cognitive decline.

We used hidden Markov modelling as a highly articulated data-

driven approach to model the blood-oxygen-level-dependent signal

of fMRI, an approach which posits the existence of a finite number

of hidden states that describe the sequential evolution of observed

data.15,18

We investigated brain state dynamics using hidden Markov models

(HMMs) with a two-stage approach to ensure replication and refine

analytic choices. Hypothesis generation used a cohort of patients

with mainly sporadic bvFTD and control participants recruited at the

Cambridge Centre for FTD. We repeated the methodology in the

GENFI, following preregistration of our cross-sectional analysis plan

(https://osf.io/k64gh/wiki/home/), with the following hypotheses: (1)

brain state dynamics differ between symptomatic mutation carriers

and cognitively normal non-mutation carriers; (2) changes in network

dynamics correlate with both neuropsychological deficits and carer

assessed measures of impairment; (3) presymptomatic mutation car-

riers (versus non-mutation carriers) have abnormal network dynamics

as a function of proximity to onset as denoted by age; and (4) altered

network dynamics predict conversion from the presymptomatic to

symptomatic phase and subsequent cognitive decline in genemutation

carriers.

2 MATERIALS AND METHODS

2.1 Participants

Weuseddatasets from36participantswith bvFTDand34healthy con-

trols recruited at theCambridgeUniversity Centre for Frontotemporal

Dementia for hypothesis generation. Clinical assessment included the

Addenbrooke’s Cognitive Examination-Revised,19 Mini-Mental State

Examination (MMSE),20 Frontal Assessment Battery,21 andCambridge

Behavioral Inventory-Revised (CBI-R).22

https://osf.io/k64gh/wiki/home/
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RESEARCH INCONTEXT

1. Systematic Review: We reviewed published literature

using traditional resources. Neuropathological and struc-

tural changes occur in dementia many years prior to the

onset of symptoms. Assessing the onset of the symp-

tomatic phase in those at high risk of dementia is clinically

challenging, and neural correlates of conversion from the

presymptomatic prodrome to symptomatic disease are

not well characterized.

2. Interpretation: Our results show that changes in the pro-

portion of time spent in key brain networks in presymp-

tomatic carriers of frontotemporal dementia mutations

occur in the late presymptomatic phase. They are associ-

ated with conversion to symptomatic disease and subse-

quent cognitive decline.

3. Future Directions: Dynamic brain network changes are

a promising tool for stratification and prognostication in

presymptomatic dementia, with implications for predict-

ing outcome and risk-stratifying asymptomatic individu-

als for preventative clinical trials

The GENFI includes participants from 25 research sites across

Europe and Canada. Participants were included if they were over 18

and had a known pathogenic mutation in MAPT, C9ORF72, GRN, or

TBK1, or were a first degree relative of a mutation carrier. A total of

198 symptomatic mutation carriers, 341 asymptomatic mutation car-

riers, and 329 family members with usable fMRI (datafreeze 5) were

included in this study. Clinicians classified mutation carriers as either

symptomatic or presymptomatic, with participants deemed symp-

tomatic if symptoms were present, were progressive in nature, and

consistent with a diagnosis of an FTD-related degenerative disorder.

GENFI participants underwent a standardized assessmentwith clin-

ical history, physical examination, neuropsychological assessment, and

informant-based questionnaires.1 Severity of behavioral symptoms

was assessed using the CBI-R. Neuropsychological tests included the

Trail Making Tests, Digit Symbol Test, Backwards Digit Span, Letter

and Category Fluency, a short version of the Boston Naming Test,23

and the MMSE. Assessments were repeated yearly or biannually, with

longitudinal data up to 7 years post baseline visit.

2.2 Image acquisition and preprocessing

Image acquisition for the two cohorts and fMRI preprocessing have

been published previously3,4,24 and are described in detail in the Sup-

plementary Materials. Given the potential sensitivity of estimates of

network dynamics tomotion,25,26 we excluded participants above pre-

viously defined thresholds for three data quality indices24 (maximum

spike percentage,27 maximum framewise displacement,25 maximum

spatial standard deviation of successive volume difference28). We

excluded nine participants with bvFTD and 2 healthy controls from the

Cambridge cohort, and 103 scans from 89 participants in the GENFI

(20 non-carriers, 21 presymptomatic mutation carriers, 48 symp-

tomatic participants). We performed an additional analysis excluding

participants exceeding a mean framewise displacement threshold but

included in the primary analysis (SupplementaryMaterials).

2.3 Hidden Markov models (HMMs)

We assessed network dynamics in both cohorts using HMMs.29 These

models treat time series data as being generated from a finite num-

ber of unknown states. Each time point is therefore classified as being

in a single state, although the assumption of state mutual exclusivity

is adjusted through soft probabilistic inference. While the states and

probability of transitioning between them are defined at the group

level, a state time course can be estimated per participant.

We performed an independent component analysis (ICA) using

MELODIC (fMRIB Software Library [FSL]) from preprocessed fMRI

of all participants to allow comparison between cohorts. We chose

a model order of 30 as a balance between excessive network

fragmentation30 and predetermining HMM outputs. Six component

maps were identified as artefact. Participant specific time courses for

each componentwere generated by regression of the componentmaps

into each subject’s preprocessed fMRI. From standardized per partici-

pant non-artefactual component time courses a multivariate Gaussian

HMM15 with six brain states was inferred for each cohort using the

HMM-MAR toolbox (https://github.com/OHBA-analysis/HMM-MAR).

All states shared a common covariance matrix.31 Model order was

specified in registration prior to analyzing the GENFI dataset; it has

previously been shown that robust behavioral inferences can be made

through a six-state model.32 We repeated the analysis with ICA

dimensionality determined automatically byMELODIC.

The temporal dynamics of HMM states can be characterized

through a small set of metrics, namely switching rate (the frequency

with which state transitions occur), fractional occupancy (the propor-

tion of time a state is active), and the transition matrix consisting of

transition probabilities (the chance of between-state transitions) and

persistence probabilities (the chance of remaining in the same state).

Mean activation maps were generated by weighting component maps

by the mean of the state Gaussian distribution. For illustrative pur-

poseswecompared thesemapswith templatesmapsof canonical static

functional networks,33 and performed an additional analysis of resting

state connectivity to determine where connectivity changes occur in

the GENFI cohort (see SupplementaryMaterials).

2.4 Statistical analyses

All statistical analyses were performed in R,34 with the exception of

permutation testing using FSL’s PALM (“Permutation Analysis of Lin-

ear Models”).35 P-values throughout were corrected across relevant

https://github.com/OHBA-analysis/HMM-MAR
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tests for a false discovery rate of 5%, except permutation testingwhere

family-wise error correction to 5% was performed across all tests and

contrasts.

2.4.1 Descriptive statistics

Wecomparedcontinuousvariablesbetweengroupsusing independent

sample t tests and categorical variables with the chi-square test.

2.4.2 Cambridge cohort

We compared fractional occupancy and switching rates between

groups using a one-way analysis of covariance, with age and sex as

covariates. For each participantwe extractedmatrices of the 36 transi-

tion and persistence probabilities. Given the interdependence of these

probabilities, we assessed for group differences in a permutation test

(5000 permutations) using FSL’s PALM. Age and sex were included as

covariates of no interest.

2.4.3 GENFI

In the GENFI data, cross-sectional analysis was performed using par-

ticipants’ latest scan that passed motion thresholding, maximizing

per-participant volume number. Differences in fractional occupancy

rates and switching rates were assessed using mixed-effects linear

models with diagnostic group as the main effect, age and sex as

dependent variables, and scan site as a random intercept using the

lme4 package.36 Significance values were calculated using the Satter-

waithe estimate of effective degrees of freedom. Switching rates were

adjusted to account for small differences in repetition time. Group dif-

ferences in transition/persistence probabilities were calculated as per

the Cambridge cohort.

For contrasts with clinical scores and longitudinal analysis we per-

formed a principal component analysis on state fractional occupancies

using the alfa.pca (alpha = 1) function from the Compositional pack-

age in R,37 followed by varimax rotation. We selected the number of

components for analysis usingMacArthur’s "broken-stick" criterion.38

2.4.4 Network dynamics by age

In previous GENFI studies, mean family age at symptom onset has

been used to estimate years until symptom onset, but only in MAPT

mutations does this explain a significant proportion of variability in age

of onset.39 Given that component scores did not differ by mutation

type, we explored component scores by age as a marker of proxim-

ity to onset (comparing to family members without mutations, over a

similar age range). We compared component scores and state occu-

pancies between non-carriers and presymptomatic mutation carriers

as a function of age, assessing the group by age (linear or quadratic)

interaction.

2.4.5 Presymptomatic mutation carriers and
neuropsychological correlates

We compared component scores in presymptomatic mutation car-

riers with pre-registered neuropsychological tests (Backwards Digit

Span, Digit Symbol, Trail Making Test) as a function of age within a

mixed-effects linear model.

2.4.6 Converters

Mutation carriers who were assessed during longitudinal follow-up

as moving from the presymptomatic to symptomatic phase were

classified as converters. We compared component scores, state occu-

pancies, and neuropsychological scores between converters and non-

converting presymptomatic mutation carriers at their latest presymp-

tomatic scan in mixed-effects linear models with group as the

main effect, age and sex as covariates, and scan site as a random

variable.

2.4.7 Longitudinal cognitive data in symptomatic
patients

A mixed linear model was used to calculate patient specific yearly

rates of change in clinical and neurocognitive scores (MMSE, CBI-R,

Backwards Digit Span, Digit Symbol, Trail Making Test B [TMTB]). Neu-

rocognitive assessment was the dependent variable in the model, with

years from baseline assessment as an independent variable and with

estimation of intercept and slope (neurocognitive assessment∼ time+

(time | ID)). Thesemodels were calculated using all participants.

To assess whether baseline component scores predict neurocogni-

tive decline, individual estimates of disease progression (slope) were

taken to a secondmodel as a dependent variable, with baseline compo-

nent scores as an independent variable and baseline age, sex, and site

as covariates of no interest.

2.4.8 Longitudinal cognition in presymptomatic
mutation carriers

We repeated the two-step model for presymptomatic mutation car-

riers, additionally assessing the interaction between baseline compo-

nent scores and age given that proximity to symptom onset increases

the probability that small fluctuations in neurocognitive assessment

are important.

3 RESULTS

3.1 Descriptive statistics

Demographic and clinical characteristics for the two cohorts for partic-

ipants with a sub-motion threshold scan are included in Tables 1 and 2.
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TABLE 1 Demographic and clinical characteristics for the participants recruited at the Cambridge Centre for Frontotemporal Dementia and
Related Disorders

Control (n= 32) FTD (n= 27) Statistic (t/χ2)

Age 67.2 (8.5) 64.3 (7.3) t(57)= 1.4 , P= .16

Sex (M/F) 14/18 17/11 χ= 1.5, P= .23

ACE-R 65 (20)

FAB 9.3 (4.4)

CBI-R 74.3 (22.3)

Scores are mean (SD). ACE-R, Addenbrookes Cognitive Examination-Revised; CBI-R, Cambridge Behavioral Inventory-Revised; FAB, Frontal Assessment

Battery.

TABLE 2 Demographic and clinical characteristics for the GENFI participants

NC PSC Symp NC vs. Symp NC vs. PSC

n= 309 n= 320 n= 150 Stat (χ2/t) P d Stat (χ2/t) P d

Age (y) 48 (13) 45 (12) 63 (8.2) t= –15 <.0001 1.3 t= 2.5 .01 0.2

Gender (F/M) 179/130 197/123 67/83 Χ= 7 0.008 Χ= 0.9 0.35

Mutation (n) C9orf72 109

GRN 133

MAPT 60

TBK1 7

C9orf72 119

GRN 141

MAPT 58

TBK1 2

C9orf72 71

GRN 53

MAPT 26

Χ= 5 .06 Χ= 0.3 .9

MMSE 29 (1) 29 (1) 21 (7) t= 13 <.0001 1.9 t= –0.1 .92 0

CBI-R Total 5 (7) 6 (9) 62 (32) t= –21 <.0001 –3 t= –1.5 .1 –0.13

Trail Making Test

B

67 (37) 67 (40) 211 (92) t= –16 <.0001 –2.4 t= 0.13 .99 0

Digit Symbol 58 (14) 58 (14) 25 (14) t= 22 <.0001 2.3 t= 0 1 0

Backwards Digit

Span score

4.8 (1.2) 4.8 (1.2) 3.1 (1.5) t= 13 <.0001 1.4 t= –0.54 .6 –0.04

BostonNaming 28 (2) 28 (3) 19 (8) t= 13 <.0001 1.8 t= 0.84 .4 0.07

Letter Fluency 41 (13) 41 (13) 17 (12) t= 18 <.0001 1.9 t= 0.84 .4 0.07

Category Fluency 23 (6) 24 (6) 11 (6) t= 20 <.0001 2.2 t= –1.5 .14 –0.12

Scores aremean (SD). P valuesminimum threshold of<.0001.

CBI-R, Cambridge Behavioral Inventory-Revised; MMSE, Mini-Mental State Examination; NC, non-carrier; PSC, presymptomatic mutation carrier; Symp,

symptomatic.

In the Cambridge cohort no significant differences were observed in

age or sex. InGENFI, symptomatic participantswere older than asymp-

tomatic participants and showedmarkeddeficits in neuropsychological

and informant-based assessment of severity.

3.2 Network dynamics in FTD

For the Cambridge data, we used temporally concatenated participant

time series from ICA components to fit an HMM with six brain states

(Figure S1A, with labeling in Figure S2 to indicate the most closely

matching canonical static network for positive and negative activa-

tions). Participants with FTD had increased fractional occupancy of

state 2, whose positive activations constituted the salience network

(F=7.8,P= .043). Switching rates between stateswere reduced in FTD

(Figure S1; F= 6.5, P= .014).

For the GENFI data, we used temporally concatenated participant

component timeseries to fit anHMMwith six brain states (Figure 1A-C

and S2). Comparing symptomatic participants with mutation non-

carriers, we found that participants with FTD had increased fractional

occupancy of the state overlapping with the salience network (state 2,

F = 32, corrected P = 2 × 10−7) and of state 4 overlapping with the

default mode network (F = 8, P = .008). Participants with FTD spent

less time than non-carriers in two states with inversed activation pat-

terns: state 3 with positive activations in sub-cortical regions (F = 17,

P=1×10−4), and state5withpositive activations inmotor and sensory

(somatic, visual, and auditory) regions (F= 15, corrected P= 2× 10−4).

In this cohort switching rates did not differ in FTD (F= 3.1, P= .08).
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F IGURE 1 Network dynamics in the Genetic Frontotemporal Initiative. (A)Mean activationmaps for the six modelled states. (B) Fractional
occupancy by state, with increased occupancy in states 2 and 4, and decreased occupancy in states 3 and 5. (C) Altered transition and persistence
probabilities in frontotemporal dementia (FTD) using a permutation test. Blue lines represent significantly decreased transitions in FTD, and red
lines significantly increased transitions. The figures show the absolute percentage increase or decrease in probability in FTD

Weperformedaprincipal component analysiswith varimax rotation

on state occupancies for each cohort. In the GENFI cohort one com-

ponent was selected, which explained 68% of the variance (Figure 2A).

Higher component scores were associated with greater time in states

2, 4, and 6, and decreased time in states 3 and 5. Component scores

were increased in symptomatic participants (F = 21, P = 4 × 10−7).

There was a weak trend between component scores and motion

assessment indices in symptomatic participants (maximum framewise

displacementPearson’sR=0.047,P= .57;maximumDVARSR=0.042,

P = .61; maximum spike percentage R = 0.1 P = .1). Comparable

components were derived for the Cambridge cohort (Supplementary

Materials).

We found no difference in component scores bymutation or clinical

phenotype (Supplementary Materials). Component scores were asso-

ciated with carer-based assessments and neuropsychological scores in

symptomatic and presymptomatic mutation carriers (Supplementary

Materials and Figure S4).

3.3 Network dynamics in mutation carriers

We investigated temporal dynamics across all mutation carriers. We

hypothesized that fractional occupancy would show a non-linear rela-

tionship with age, as a proxy marker of proximity to symptom onset.

We therefore included a quadratic term for age using orthogonalized

polynomials. Model comparison found that inclusion of a quadratic age

term to a linear model significantly improved fit for state 2, but not for

component scores or other states (Table S2 and Figure 2D).

Within a mixed model including age as a quadratic term and with

sex and site as covariates of no interest, state 2 occupancy showed

an uncorrected difference between non-carriers and presymptomatic

mutation carriers as a function of age (interaction F= 3.8, uncorrected

P = .022, Figure 2E), results that were not replicated in a purely linear

model (F= 1.7, uncorrected P= .19). No differences were observed for

other states or components scores.

3.4 Network dynamics predict symptomatic
conversion

Fourteenpresymptomatic carriers becamesymptomatic during follow-

up.We compared these converters at their latest presymptomatic visit

with imaging with other presymptomatic carriers. Converters had sig-

nificantly worse performance on neuropsychological assessment at

this visit (BackwardsDigit Span F=5.7,P= .017; BackwardsDigit Span

score F = 6.9, P = .009; Trail Making Test B F = 28, P = 2 × 10−7). We

found that component scores and state 2 occupancy were increased in

converters (Figure 2B,C).

3.5 Network dynamics predict cognitive decline

We assessed whether higher baseline component scores in symp-

tomatic patients were associated with subsequent neurocognitive

decline using pre-registered assessments (TMTB, Digit Symbol, Back-

wards Digit Span) and measures of global cognitive and behavioral
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F IGURE 2 Changes in network dynamics occurring in the late presymptomatic phase. (A) Component loadings from a principal component
analysis (PCA) on state occupancies. (B) Component scores showing a significant increase in converters (at their latest presymptomatic scan) in
contrast to those who have not converted to the symptomatic phase during longitudinal follow-up. (C) Fractional occupancy by state, showing an
increase for converters in state 2 (salience) occupancy. (D) State 2 occupancy in all carriers. (E) State 2 occupancy in presymptomatic mutation
carriers (PSC) showing evidence of a non-linear relationship with age, in contrast to non-carriers (NC). GENFI, Genetic Frontotemporal Initiative;
HMM, hiddenMarkovmodel

decline (CBI-R, MMSE). Patients at floor scores for assessments were

removed prior to deriving linear mixed models (TMTB n = 20, Back-

wards Digit Span n = 2, Digit Symbol n = 2). Linear mixed models on

longitudinal clinical and neurocognitive scores indicated an effect of

time for all measures in symptomatic participants (Table S3).

Correcting for age at baseline scan, sex, and site, baseline compo-

nent scores were related to the annual rate of clinical progression

for MMSE (Figure 3A, Std Beta = −0.43, P = .001). The associations

with Backwards Digit Span (Std Beta = −0.26, uncorrected P = .021,

P = .054) and TMTB (Std Beta = 0.35, uncorrected P = .035, P = .059)

were not significant after correction for multiple comparisons. No sig-

nificant relationship was found with Digit Symbol (Std Beta = −0.21,

P = .089) or carer-rated severity using the CBI-R (Std Beta = 0.16

P = .18). We found a significant difference in slope between symp-

tomatic mutation carriers and non-carriers for MMSE, TMTB, and

CBI-R (group × baseline component score interaction: MMSE Std

Beta = −0.66, P = 2 × 10−10; Backwards Digit Span Std Beta = −0.23

P= .11; Digit Symbol Std Beta=−0.12 P= .18; TMTB Std Beta= 0.58

P= 5× 10−5; CBI-R Std Beta= 0.12 P= .041).

We proceeded to investigate whether baseline network dynamics

predicted cognitive and clinical decline in presymptomatic mutation

carriers, hypothesizing that the relationship between annualized rate

of change in neurocognitive measure and component scores would

depend on age as amarker of proximity to symptom onset.

We found that age significantly modified the relationship between

annualized rate of clinical progression and baseline component scores

for TMTB (interaction Std Beta = 0.21 P = .002), and MMSE (interac-

tion Std Beta=−0.14 P= .048). For the TMTB, a significant three-way

interaction (group × age × component score) implied that baseline

component score increased the rate of clinical deterioration in older

presymptomatic mutation carriers, relative to non-carriers or younger

carriers (Table 3). We did not find any significant relationships with

Digit Symbol, Backwards Digit Span, or CBI-R.

Given the difference in state 2 occupancies both in converters

and between non-carriers and presymptomatic mutation carriers,

together with the known role of the salience network in FTD, we

also investigated the relationship between baseline state 2 occupancy

and longitudinal cognitive decline. We found baseline salience state
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F IGURE 3 Cognitive decline in symptomatic participants. (A) Baseline component scores predict subsequent cognitive decline in symptomatic
participants in theMini-Mental State Examination (MMSE), with an uncorrected association with Digit Span and Trail Making Test B (TMTB).
Annualized rates of change in cognitive scores are derived from amixed linear effect model, and taken to a secondmodel to compare with
component scores while partialing out covariates. (B) Baseline state 2 occupancy predicts subsequent cognitive decline in symptomatic patients in
a range of clinical and neuropsychological tests. CBI-R, Cambridge Behavioral Inventory-Revised

TABLE 3 Two-step predictionmodels for presymptomatic mutation carriers

Slope∼ comp+ cov Slope∼ comp*age+ cov Slope∼ comp*age*group+ cov

Model Std Beta t P Std Beta t P Std Beta t P

TMTB –0.13 –1.0 .75 0.22 3.9 .0006 0.43 5.1 2x10-6

Digit Span 0.02 0.37 .75 0.09 1.5 .17 0.12 1.3 .19

Digit Symbol –0.02 –0.31 .75 –0.02 –0.45 .66 –0.12 –1.6 .15

MMSE –0.05 –0.76 .75 –0.14 –2.4 .048 –0.19 –2.1 .072

CBI-R 0.03 0.50 .75 0.11 1.7 .15 0.20 2.0 .072

comp, fractional occupancy component; CBI-R, Cambridge Behavioral Inventory-Revised; MMSE, Mini-Mental State Examination; TMTB, Trail Making

Test B.



1956 WHITESIDE ET AL.

occupancy predicted cognitive decline in symptomatic carriers in all

measures except CBI-R, and for the TMTB, MMSE, and CBI-R in

older presymptomaticmutation carriers (Figure3Band supplementary

materials).

4 DISCUSSION

This study demonstrates that the temporal dynamics of large-scale

brain networks are disrupted by sporadic and familial FTD, with char-

acteristic changes in both the symptomatic and late presymptomatic

phases of disease. There is an increase in salience and default mode

network occupancy, and a decrease in proportion of time spent in

the primary cortices and subcortical regions: a change which corre-

lates with clinical and neuropsychological markers of disease severity.

Changes in temporal dynamics occur near to disease onset and predict

the onset and deterioration of the clinical syndrome as evidenced by

(1) the increased component scores of those who subsequently con-

verted to the symptomatic phase during follow-up, and (2) increased

rates of cognitive and clinical decline in both symptomatic and older

presymptomatic participants with higher component scores.

Functional networks provide an intermediate phenotype to inves-

tigate the compensatory changes that account for the dissocia-

tion between neuropathological progression and maintained cogni-

tive performance in presymptomatic neurodegeneration,40 with cou-

pling between functional connectivity and cognition increasing close

to disease onset.4,41 Changes in time-varying connectivity predict

behavioral traits beyond static functional connectivity or structure

alone,11,31 suggesting that investigating network dynamics informsour

understanding of the transition from the presymptomatic to symp-

tomatic phase of neurodegenerative disease. Herewe found that while

the dynamic repertoire is unchanged through much of the presymp-

tomatic period, the onset of change indicates future symptomatic

decline. This suggests that network dynamics can potentially be used

both to guide prognosis and as an intermediate marker of success for

interventions in presymptomatic mutation carriers, adding to existing

clinical, blood, and other imaging biomarkers.42

Given that the salience network is selectively targeted in

bvFTD, with atrophy of network hubs and reduced functional

connectivity,43–45 the finding of increased salience network occu-

pancy in FTD in both cohorts is perhaps unexpected. The salience

network is integral to accessing other large-scale networks, including

executive46 and default mode networks.47 Neuropathological dis-

ruption to salience network connectivity may undermine its ability to

coordinate network switching, perturbing global network dynamics,

resulting in increased time spent in a state with positive activations

in the default mode network and increased time within the salience

network itself. Assessment of between-group differences in transition

probabilities provides a potential explanation for these changes. We

found a reduced frequency of transition from the salience state to

the subcortical (primarily thalamic) state. Subcortical atrophy is well

recognized in FTD, notably in the thalamus, and occurs in both sporadic

and genetic FTD,48,49 including in the presymptomatic phase.1 Our

findings could suggest that subcortical network integrity influences

cortical salience network dynamics, echoing previous work describing

the role of thalamic degeneration in disrupting salience network

connectivity in genetic FTD.48

There are limitations to our study, despite the advantages of cross-

sectional replication and longitudinal follow-up in the GENFI data. The

HMM provides a data-driven explanation of the data without biologi-

cal assumptions,50 with resulting constraints to its explanatory power.

It is possible that a time-varying connectivity approach with additional

biologically informed constraints could provide further group differ-

entiation and refined longitudinal predictions. Our approach was not

optimized to finddifferences inbrain statedynamicsbetweenmutation

types or by phenotype. Alternative methodological choices may reveal

such differences, according to different a priori numbers of states,

focusing on different large-scale networks and modelling subsets of

patients. In the GENFI cohort the study design necessarily results in a

significant age difference between non-carriers and symptomatic par-

ticipants. That similar patterns of state occupancies were observed in

theCambridge cohort suggests that our results arenotprimarily driven

by age differences.

We conclude that network dynamics are a critical link between

neuropathology and symptomatology, heralding symptom onset and

correlating with key measures of clinical severity. Network dynamics

are a promising tool for stratification and prognostication in FTD.
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