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Hard optimization problems have 
soft edges
Raffaele Marino 1,2,3* & Scott Kirkpatrick 3

Finding a Maximum Clique is a classic property test from graph theory; find any one of the largest 
complete subgraphs in an Erdös-Rényi G(N, p) random graph. We use Maximum Clique to explore the 
structure of the problem as a function of N, the graph size, and K, the clique size sought. It displays a 
complex phase boundary, a staircase of steps at each of which 2 log

2
N and Kmax , the maximum size of 

a clique that can be found, increases by 1. Each of its boundaries has a finite width, and these widths 
allow local algorithms to find cliques beyond the limits defined by the study of infinite systems. We 
explore the performance of a number of extensions of traditional fast local algorithms, and find that 
much of the “hard” space remains accessible at finite N. The “hidden clique” problem embeds a clique 
somewhat larger than those which occur naturally in a G(N, p) random graph. Since such a clique is 
unique, we find that local searches which stop early, once evidence for the hidden clique is found, may 
outperform the best message passing or spectral algorithms.

Phase transitions and phase diagrams describing the behavior of combinatorial problems on random ensembles 
are no longer surprising. Large scale data structures arise in practical examples, such as the analysis of large 
amounts of social data, extending to the activities of a few billion people. Effective tools for managing them 
have commercial value. The model system and the forms of interactions that couple its elements in data science 
are known. While exact methods can solve only very small examples, approximate simulation of medium scale 
problems must reach very large scale. Methods such as finite-size scaling analysis expose regularities1. Classic 
examples include the Satisfiability problem in its many variants2,3.

In this paper, we consider finding maximum cliques in random graphs, specifically Erdös-Rényi4,5 graphs of 
the G(N, p) class, with N nodes (or sites) and each edge (or bond) present with probability p. We further special-
ize to the case p = 1/2.

Maximum Clique is an unusually difficult problem, for which naive solution methods (Fig. 1) can construct 
cliques of size K = log2 N , yet probabilistic arguments show that solutions asymptotically of size 2 log2 N must 
exist. No polynomial algorithms that will construct true maximum cliques for arbitrarily large values of N are 
known. The failure is general, not merely a problem for the rare worst case. We shall test several fast algorithms 
of increasing complexity to determine the range of N at which each gives useful answers.

Greedy methods are fast, and a good starting point for our discussion. Start with a site anywhere in the graph, 
and discard roughly half of the sites that are not neighbors. Pick a neighbor from the frontier that remains. Then 
discard half of the remaining sites that are not a neighbor of the new site. Continue in this way until the frontier 
vanishes—no candidates to extend the clique remain. Since we have halved the size of the frontier at each step, 
it is unlikely that this process can proceed beyond log2 N steps6.

Let’s look at this more precisely, as a function of N. The stopping probability, that we can find no other site 
to grow from size K to K + 1 is (1− 2−K )(N−K) , as shown in Fig. 1, where use of a common scale K/ log2 N  , 
brings the various curves all together at a probability of e−1 when K is equal to log2 N . All cliques are extend-
able when K << log2 N , and none are when K >> log2 N . The slopes of these curves are each proportional to 
log2 N . The simple expedient of plotting the curve for each value of N against K − log2 N collapses all of them 
to a universal limiting form, which is shown in the inset to Fig. 1. This is finite-size scaling just as seen in phase 
transitions1. It also shows that cliques selected at random from the large number which we know must exist start 
to be non-extendable at a size two sites below log2 N boundary and are almost never extendable four sites above, 
with a functional form that is almost independent of N. This threshold occurs for each N at K = log2 N , and has 
a width in K which is independent of N.

Matula first called attention to several interesting aspects of the Maximum Clique problem on G(N, p). From 
the expected number of cliques n(K, N), of size K at p = 1/27:
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using Stirling’s approximation, one can see that this is large at K = log2 N  but becomes vanishingly small for 
K > 2 log2 N , providing an upper bound to K. Matula identified Kmax as the largest integer such that

and7,8 expanded the finite N corrections to the continuous function R(N) solving n(R,N) = 1:

This formula is also discussed in Bollobás and Erdös9 and by Grimmett and McDiarmid10. We will focus on Kmax , 
the predicted actual maximum clique size. In effect, its value follows a staircase with the prediction (3) passing 
through the risers between steps, as shown in Fig. 2. Across each step n(Kmax,N) grows from 1 to O (N) . The 
number of maximum cliques per site in the graph that results is shown in Fig. 3. We see that at the left edge of 
each step, cliques of size Kmax are very rare, but at the right edge of that step, each site is possibly contained in 
multiple maximal cliques, while cliques of size Kmax + 1 have an expectation which has reached 1. Thus across 
each step, the probability of finding a clique of larger K decreases by a factor of O (N) for each increase by 1 in K.

Matula drew attention to a concentration result for the clique problem. As N → ∞ the sizes of the largest 
cliques that will occur are concentrated on just two values of K, the integers immediately below and above R(N). 
From the second moment of the distribution of the numbers of cliques of size K one can bound the fraction 
of graphs with no such cliques, and sharpen the result11 by computing a weighted second moment. In effect, 

(1)n(K ,N) =
(

N

K

)

2−(
K
2),

(2)n(Kmax,N) ≥ 1.

(3)R(N) = 2 log2 N − 2 log2 log2 N + 2 log2 e.
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Figure 1.   The picture shows the probability that we can find no other site to grow the clique to size K + 1 as a 
function of K/ log2 N . The inset shows the universal form that all of these curves take when rescaled.
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Figure 2.   Maximum size of a clique in G(N, 0.5) as function of the order of the graph. In green are presented 
Kmax , result of solving (2) and R(N) given by (3), respectively. In black is plotted the value of 2 log2 N and in 
blue, log2 N.
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Markov’s inequality provides upper bounds, and Chebyscheff ’s inequality provides lower bounds on the existence 
of such cliques. The probability that the maximum clique size is Kmax was given by Matula7,8,11. The fraction of 
graphs G(N, p) with maximum clique size Kmax , is bounded as follows:

This leads to the following picture, evaluated for two values of N, one small and one quite large, in Fig. 4,
we see that at the step between two integer values of Kmax , more than half of the graphs will have a few cliques 

of the new larger value from the upper step, and less than half will have only cliques with the smaller value from 
the lower step, but many of them. Figure 4 shows that the crossover at each step edge narrows with increasing N, 
but only very slowly. The two cases sketched correspond to steps at roughly N = 1.2 103 and N = 1.3 106 . For the 
case at smaller N, the transition is spread over almost half the width of the step. As in Fig. 1, the transition is not 
symmetric. The appearance of cliques with the new value of Kmax is sharper and comes closer to the step than 
the disappearance of cases in which the cliques from the previous step still dominate. Because the natural scale 
of this problem is log2 N , we see that the width of the transition from one step to the next remains important on 
the largest scales encountered in actual data networks, such as N ∼ 109 , the population of the earth.
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Figure 3.   Expected number of maximum cliques of size Kmax per site in the graph, as a function of N.

Figure 4.   The picture shows regions defined by upper and lower bounds (obtained by Eq. (4)), on the fractions 
of graphs of size N with maximum cliques of size Kmax and Kmax + 1 . The steps described occur at N = 1239 
(the lighter colors bound the fraction of cliques of size 15 and 16) and N = 1254516 (the darker colors bound 
the fractions of cliques with sizes 33 and 34). The figure depicts approximately half a step width to either side of 
the transition for each size.
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The traditional approach to surveying and challenging the developers of algorithms for solving hard problems 
is to assemble a portfolio of such problems, some with a known solution, and some as yet unsolved. The DIMACS 
program at Rutgers carried out such a challenge in the mid 1990’s12. Roughly a dozen groups participated over a 
period of a year or more, and the sample graphs continue to be studied. The largest graphs in the portfolio were 
random graphs of size 1000 to 2000, and the methods available gave results for these which fell at least one or 
two short of R(N). As a result, the actual values of Kmax for many test graphs are still unknown. A better test for 
these algorithms on random graphs is to determine to what extent they can reproduce the predicted distribution 
of results that we see in Fig. 4, both the steps in Kmax and the fraction of graphs with each of the dominant values 
of Kmax as it evolves with increasing N. We will present extensions of the algorithms tested at DIMACS and show 
that they give good results on sets of problems larger than those in the DIMACS portfolio.

Several authors have proposed that the search for powerful, effective clique-finding algorithms could be 
expressed as a challenge. Mark Jerrum, in his 1992 paper “Large Cliques Elude the Metropolis Process”,13 sets out 
several of these. His paper shows that a restricted version of stochastic search is unlikely to reach a maximum 
clique, and also introduces the additional problem of finding an artificially hidden clique, which we discuss in 
a later section. A hidden clique or planted solution, is just what it sounds like, a single subgraph of KHC sites, 
with KHC > Kmax , so that it can be distinguished, for which all the missing bonds among those sites have been 
restored. A series of papers14,15 show that if KHC is of order Nα with α > 0.5 , a small improvement over our naive 
greedy algorithm ( SM0 introduced in the next section) will find such a hidden clique, simply by favoring sites 
in the frontier with the most neighbors in its search.

Jerrum’s first challenge is to find a hidden subgraph of size ∼ N0.5−ǫ with probability greater than 1/2, using 
an algorithm whose cost is polynomial in the number of bonds in the graph (i.e. N2 is considered to be a linear 
cost). We see below that the range of hidden clique sizes that can be hidden between N1/2 and the naturally-
occurring cliques of size 2 log2 N is not large. So practically oriented work has focused on finding hidden cliques 
of size αN1/2 for α < 1 . Karp in his original paper, Jerrum, and several others have also turned the identification 
of any naturally occurring clique larger than log2 N into such a challenge: find any clique of size exceeding log2 N 
with probability exceeding 1/2. We saw in the discussion of Fig. 1 that finding cliques which exceed log2 N by 
a small constant number of sites should be straightforward at any value of N. We shall see that both challenges 
can be met for large, finite, and thus interesting values of N, and will attempt to characterize for what range of 
N they remain feasible.

Below, in “Greedy algorithms” section, we introduce a class of greedy algorithms, of complexity polynomial 
in N, and test the accuracy with which they reflect the size and distribution of the maximum cliques present 
in G(N , p = 1/2) for useful sizes of N. In “Hidden clique” section, we review the “hidden clique” variant of the 
Maximum Clique problem, and describe its critical difference from the problem treated in “Greedy algorithms” 
section (that the hidden clique is unique, while naturally occurring cliques are many). We show that our greedy-
algorithms can exploit this difference to perform as well as or better than the best proposed methods in the 
literature. “Conclusions” section summarizes our conclusions and provides recommendations for future work.

Greedy algorithms
In this section, we describe the performance of a family of increasingly powerful greedy algorithms for construct-
ing a maximal clique on an undirected graph. Those algorithms are polynomial in time and use some random-
ness, but they are myopic in generating optimal solutions. However, because they are relatively fast, significant 
research effort has been devoted to improving their performance while adding minimal complexity. We will show 
ways of combining several of these simple greedy algorithms, to obtain better solutions at somewhat lower cost 
by adding a very limited form of back-tracking.

We start by considering a simple family of greedy algorithms, designated by Brockington and Culberson16, 
as SMi , i = 0, 1, 2.. . SM0 improves over the naive approach we described at the outset17, by selecting at each stage 
the site with the largest number of neighbors to add to the growing clique. If there are many such sites to choose 
from, each connected to all of the sites in the part of the clique identified to that point, one is chosen at random, 
so multiple applications of SM0 will provide a distribution of answers for a given graph G(N, p). At each stage 
this choice of the site to add retains somewhat more than half of the remainder of the graph, Z, so the resulting 
clique will be larger than log2 N , for all N. SM0 can be implemented to run in O (N2) time.

SMi for i = 1, 2, ... are algorithms in which we start our greedy construction with each combination of i verti-
ces which form a complete subgraph, then extend them one site at a time using SM0 . In other words, SM0 is run 
starting with each of 

(N
i

)

p(
i
2) complete subgraphs of order i. SM1 , starting with every site, can be implemented to 

run in O (N3) . The complexity of SM2 , which uses all connected pairs, is O (N4) . The computational complexity 
for the class of algorithms SMi is O (Ni+2).

In Fig. 5 we show the sizes of the maximal cliques on Erdös-Rényi graphs G(N , p = 0.5) , found using the 
algorithms SMi , with i = 0, 1, 2 . For comparison, we plot the green staircase, Kmax . This figure shows the improve-
ments that result from the (considerable) extra computational cost of the latter two algorithms. Both the blue 
points of SM1 and the orange points of SM2 reflect the staircase of Kmax . Even their error bars reflect the rapid 
increase of the number of the larger maximum cliques after each jump in the staircase. The error bars on the red 
points of SM0 do not show any staircase pattern. SM0 , even with error bars, lies consistently above log2 N . Each 
red point is the average over 2000 random Erdös-Rényi graphs, each blue point is the average over 500 random 
Erdös-Rényi graphs, and each coral point is the average over 100 random Erdös-Rényi graphs. We have used 
a uniform random number generator with an extremely long period (WELL1024)18. The SM2 results track the 
staircase closely up to N = 4000 , a larger size than seen in the DIMACS study, while the SM1 results fall about 
1 site below the staircase at the end of this range.
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Figure 6 gives a more detailed comparison of the two algorithms. Figure 6 compares the predicted fraction 
of random Erdös-Rényi graphs having a maximal clique size with the experimental results obtained with the 
two algorithms around the step from Kmax = 15 to 16. This corresponds to the region most often explored in the 
DIMACS studies. The SM2 algorithm remains within the bounds described by Matula. The red, purple, and blue 
filled square points in the three predicted probability regions (red, purple, and blue, respectively) find acceptable 
fractions of 15, 16, and even 17 sites cliques as N is increased. The SM1 algorithm, shown by orange, pink, and 
blue open squares, falls short in all three probability regions, finding too many 15’s, too few 16’s, and no 17’s. The 
two algorithms both provided similar distributions of results up to N = 300 of Kmax = 12.

These two algorithms are very expensive. We could only analyze rather small random graphs, comparable 
to the larger DIMACS examples. The results fall within the calculated distribution, which is a valuable check, 
since the actual value of Kmax is unknown for an individual graph. Next, we consider less costly algorithms, 
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Figure 5.   Mean and standard deviations of sizes of the maximal cliques from Erdös-Rényi graphs 
G(N , p = 0.5) , using the algorithms SMi , with i = 0, 1, 2 . The maximum size of a clique as a function of the 
order of the graph is represented by the green staircase Kmax . The black and the blue straight lines show 2 log2 N 
and log2 N , respectively. Red data points describe the mean maximal clique size obtained by SM0 , averaging 
over 2000 Erdös-Rényi graphs. Blue points describe the maximal clique size found with SM1 , while orange 
points are the results of SM2 . The average is obtained over 500 and 100 graphs for SM1 and SM2 , respectively.

Figure 6.   Across a single step in Kmax , this figure compares the fraction of graphs predicted to have each value 
of Kmax from equation (4) with the experimental probability obtained using SM1 and SM2 . The left y-axis shows 
the clique number, i.e. the largest clique size Kmax as a function of N. The right y-axis indicates the fraction of 
Kmax − 1 , Kmax , Kmax + 1 , obtained from the experiments with SM1 and SM2 . Each fraction has been computed 
on a population of 500 random Erdös-Rényi graphs G(N , p = 0.5) . The regions coloured in red, purple, and blue 
identify the theoretical probability obtained by equation (4). The filled square points describe the fraction of 
Kmax − 1 , Kmax , Kmax + 1 (red, purple, and blue respectively) obtained from experiments with SM2 , the empty 
squares the same for SM1.
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which allow us to explore much larger graphs. These give results lying between SM0 and SM2 and still reflect the 
staircase character of the underlying problem.

We reverse the order of operations made by the class of algorithm SMi , with i = 1, 2, .. . Instead of running 
SM0 for each pair, or triangle, or tetrahedron (etc.) in the original graph, we run SMi , with i = 1, 2, .. fixed, but 
only on the sites found within one solution given by SM0 . SM0 will return a clique C of size |C|. On this solution 
we run SMi , i.e. we select all the possible 

(|C|
i

)

 complete subgraphs in the clique C, and, on each of them, we run 
SM0 . This simple algorithm, which we call SM0 → SMi , will run in a time bounded by O (N2 lnN).

We have analyzed the results of the algorithm SM0 → SMi , with i fixed to 4, compared to SM0 in the range 
of N [2800:50,000]. Thus we analyzed 

(|C|
4

)

 graphs of order approximately N/16. The combined algorithm 
SM0 → SM4 always finds a maximal clique bigger than those given by SM0 alone. Moreover, the combined 
algorithm reproduces the wiggling behaviour due to the discrete steps in Kmax in a time bounded by O (N2 lnN) , 
while SM0 , used alone, does not.

The improved results of the combined algorithm SM0 → SMi , with fixed i, suggests iterating the procedure. 
First we run SMi , with fixed i, on the clique returned by SM0 . If the clique returned by the algorithm is bigger 
than the one that is used for running SMi , then we use the new clique as a starting point where SMi will be run 
again. The algorithm stops when the size of the clique no longer increases. The complexity of the algorithm, 
therefore, is O (tN2 lnN) , where t is the number of times we find a clique which is bigger than the previous one. 
We call this new algorithm SM0 → iter[SMi].

We present in Fig. 7 the results of SM0 → iter[SMi] , over the full range of N from 100 to 100,000. We use 
different i in different ranges of N, determining their values by experiments. As N increases we have to increase 
the number of sites kept for the iteration in order to get a bigger complete subgraph at the end of the process. 
The values of i selected are given in Table 1

Figure 7 shows the results of experiments with SM0 → iter[SMi] , with i fixed in the range given by Table 1. 
They fall between two staircases. The upper one is Kmax , as before, and the lower one is the max clique size pre-
dicted by the first moment bound if we begin with a randomly selected clique of size i. The coloured staircase 
curve is given by19 the smallest value of K for which:

(5)
(

N − i

K − i

)

p(
K
2)−(

i
2) ≥ 1.

Table 1.   The table shows the values of N, i.e. the order of the graph, and the values of i, the order of the 
complete sub-graph used as starting point, for the algorithm SM0 → iter[SMi].

N i

100–589 2

590–1499 3

1500–7499 4

7500–12,999 5

13,000–64,999 6

65,000–100,000 7
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Figure 7.   Maximal clique sizes found on Erdös-Rényi graphs G(N , p = 0.5) . The green staircase is Kmax , as 
in the previous figures. Data points are the mean maximal clique size obtained by SM0 → iter[SMi] , using 
values of i given by Table 1. The multi-coloured staircase represents the expected maximum values of completed 
subgraphs conditioned by the fact that we are starting with an arbitrary complete subgraph of size i.
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This implies that the subgraphs we have selected as a basis for our iteration are much better than average, com-
pared with the very large number of starting subgraphs that a full SMi would have needed to search. Also, while 
the slope of the SM0 results is no greater than 1 on this plot at larger values of N, the iterated results are rising 
with a higher slope all the way to N = 105.

To get a more objective standard of difficulty, we use the ideas of the Overlap Gap Property (OGP)20, but apply 
it at finite scales. The expected number of combinations of overlapping clusters in this model is easily calculated. 
In Fig. 8 we show the expected number of cliques of size K that overlap a single randomly chosen clique of the 
same size on precisely j sites. Values of K range from log2 N to Kmax − 1 . We define K1 as the largest value of K 
for which cliques of size K have some overlaps at all values of j. A local search, which moves from one clique to 
another by changing only one site at a time can still visit all possible cliques of sizes K1 or less. At fixed N, cliques 
larger than K1 will have an overlap gap and will occur only in tiny clusters that differ in a few sites, touching 
other cliques of the same size only at their edges. This gap opens up when the overlap j is roughly log2 N , so we 
see that K1(N) is somewhat larger than log2 N.

From plots like Fig. 8, evaluated at the step edges seen for values of N from 103 to 5 104 , we find values of 
K1/ log2 N decreasing slowly from 1.34 to 1.24. This sets a bound on the values that SM0 could discover across 
this range of N. In fact, results of SM0 decreased from 1.2 log2 N to 1.17 log2 N across this range. However, our 
results with algorithms SM1 and SM2 , seen in Fig. 7, which reduce confusion by a limited amount of backtrack-
ing, exceed it. At step edges, they range from 1.39 to 1.36 log2 N . The prefactor is still decreasing with increasing 
N, but exceeds the suggested OGP limit.

Hidden clique
To “hide” a clique for computer experiments, it is conventional to use the first KHC sites as the hidden subset, 
which makes it easy to observe the success or failure of oblivious algorithms. But this is an entirely different 
problem than Maximum Clique. Since the hidden clique is unique and distinguished from the many accidental 
cliques by its greater size, there is no confusion to obstruct the search.

We construct the hidden clique in one of two ways. The first is simply to restore all the missing links among 
the first KHC sites. This has the drawback that those sites will have more neighbors than average, and might be 
discovered by exploiting this fact. In fact, the upper limit to interesting hidden clique sizes was pointed out by 
Kučera21, who showed that a clique of size α

√
N lnN  for a sufficiently large α will consist of the sites with the 

largest number of neighbors, and thus can be found by SM0.
The second method is to move links around within the random graph in such a way that after the hidden 

clique is constructed, each site will have the same number of links that it had before. To do this, before we add a 
link between sites i and j in the hidden clique, we select at random two sites, k and l, which lie outside the clique. 
k must be a neighbor of i and l must be a neighbor of j. If k and l are distinct and not neighbors, we create a new 
link between them, and remove the links between i and k and between j and l. If this fails we try the replacement 
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again, still selecting sites k and l at random. The result is a new graph with the same distribution of connectivi-
ties, as measured from the individual sites. This sort of smoothing of the planting of a hidden clique had been 
explored by22. Several graphs prepared in this way are in the DIMACS portfolio, and are said to be more difficult 
to solve. In the results we report below, we have used only the first method, as we found no difference resulted 
when studying hidden cliques in the region of greatest interest, close to the naturally occurring sizes.

A stronger result, by Alon et al.14 uses spectral methods to show that a hidden clique, C, of cardinality 
|C| ≥ 10

√
N  can be found with high probability, in polynomial time. Dekel et al.15 showed that with a linear 

( O (N2) , the number of links) algorithm the constant can be reduced to 1.261. Our experiments, using this 
approach, were successful to a slightly lower value, of roughly 1.0.

Finally, recent work of Deshpande and Montanari23 has shown that Approximate Message Passing (AMP), 
a form of belief propagation, can also identify sites in the hidden clique. This converges down to 

√
N/e , where 

e is Euler’s constant (see Fig. 9). No algorithm currently offers to find a clique of size less than 
√
N/e and bigger 

than Kmax , in quasi-linear time, for arbitrary N. Parallel Tempering enhanced with an early stopping strategy24,25, 
is able to explore solutions below 

√
N/e , but only at the expense of greatly increased computational cost. Some 

of these procedures identify some, but perhaps not all of the planted clique sites, and require some “cleanup” 
steps to complete the identification of the whole clique. The cleanup procedures all require starting with either a 
subset of the hidden clique sites and finding sites elsewhere in the graph that link to all of them, or eliminating 
the sites in a possible mixed subset of valid and incorrect choices which do not extend as well, or doing both in 
some alternating process. These can be proven to work if the starting point is sufficiently complete (hence Alon 
et al.’s C = 10 starting point). We find experimentally, and discuss below, that a cleanup process can be effective 
given a much poorer starting point.

Iterative methods.  Next, we consider methods of searching for the hidden clique that involve iteration. We 
shall employ two approaches, the SM1 greedy algorithm with a simple modification, and the belief propagation 
scheme introduced by Deshpande and Montanari23. First, we must make a further modification of the adjacency 
matrix. We will use ˜A , whose elements are defined by:

where ãij = 1 if the link is present, ãij = −1 if the link is absent, and ãii = 0.
The reason for the extra nonzero entries is simple. It generates the same band of eigenvalues, with doubled 

width, and moves the special uniform state at 0.5
√
N  into the center of the band, where it no longer interferes 

with the influence of eigenstates at the top of the energy band, which are most likely to contain the hidden clique 
sites.

Now we considered the AMP algorithm introduced by Deshpande et al. in23. They proved that as N → ∞ 
their algorithm is able to find hidden cliques of size KHC ≥

√
N/e with high probability. AMP is derived as a 

form of belief propagation (BP), a heuristic machine learning method for approximating posterior probabilities in 
graphical models. BP is an algorithm26–28, which extracts marginal probabilities for each variable node on a factor 
graph. It is exact on trees, but was found to be effective on loopy graphs as well23,29–31. It is an iterative message 
passing algorithm that exchanges messages from the links to the nodes, and from them it computes marginal 
probabilities for each variable node. When the marginal probability has been found, as BP has converged, one 
can obtain a solution of the problem, sorting the nodes by their predicted marginal probabilities. However, it is 

Ãij = ãij ,

ãij = ãji ,
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Figure 9.   Hidden cliques sizes KHC of interest in G(N, 1/2) lie between the Kmax staircase and the proven 
or experimentally observed lower limits that can be found with spectral methods (dashed red line) or AMP 
techniques (solid red line). Sizes of the smallest hidden cliques identified with the SM1 method, augmented by 
early stopping, are shown with blue dots and lie well below both limits.
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possible, if the graph is not locally a tree, that BP does not find a solution or converges to a random and unin-
formative fixed point. In these cases, the algorithm fails. BP for graphical models runs on factor graphs where 
each variable node is a site of the original graph G(N, p), while each function node is on a link of the original 
graph G(N, p). Here we describe briefly the main steps that we have followed in implementing AMP algorithm. 
For details, we refer the reader to23. AMP runs on a complete graph described by an adjacency matrix ˜A . AMP 
iteratively exchanges messages from links to nodes, and from them, it computes quantities for each node. These 
quantities represent the property that a variable node is, or not, in the planted set. It is intermediate in complexity 
and compute cost between local algorithms, such as our greedy search schemes, and global algorithms such as 
the spectral methods of Alon et al.14 For our purpose, we implemented a simple version of this algorithm, using 
Deshpande et al’s23 equations. Here, we recall them:

Equations (6) and (7) describe the evolution of messages and vertex quantities Ŵt
i  . They run on a fully con-

nected graph, since both the presence or absence of a link between sites is described in the adjacency matrix ˜A . 
For numerical stability, they are written using logarithms. Initial conditions for messages in (6) are randomly 
distributed and less than 0. The constant part is obtained by observing that relevant scaling for hidden clique 
problems is 

√
N .

Equation (6) describes the numerical updating of the outgoing message from site i to site j. It is computed 
from all ingoing messages to i, obtained at the previous iteration, excluding the outgoing message from j to i. 
These messages, i.e. equation (6), are all in R and they correspond to so-called odds ratios that vertex i will be in 
the hidden set C. In other words, the message from i to j informs site j if site i belongs to the hidden set or not, 
computing the odds ratios of all remaining N − 2 l sites of the graph, with l  = i, j . When a site l is connected to 
site i, the difference between logarithms, in the sum, will be positive and will correspond to the event that the 
site l is more likely to be a site of C than a site outside it. However, when l is not connected to i the corresponding 
odds ratios will be less than one, i.e. the difference of logarithms, in the sum of equation (6), will be less than 
zero, and will correspond to the event that the site l is more likely to be outside the hidden set. The sum of all the 
odds ratios will update equation (6), telling us if site i is more likely to be in C or not.

Equation (7), instead, describes the numerical updating of the vertex quantity Ŵt
i  . It is computed from all 

ingoing messages in i, and is an estimation of the likelihood that i ∈ C . These quantities are larger for vertices 
that are more likely to belong to the hidden clique23. Elements of the hidden set, therefore, will have Ŵtc

i∈C > 0 , 
while elements that are not in the hidden set will have Ŵtc

i  ∈C < 0.
As iterative BP equations, (6) and (7) are useful only if they converge. The computational complexity of each 

iteration is O (N2) , indeed, equation (6) can be computed efficiently using the following observation:

The number of iterations needed for convergence for all messages/vertex quantities is of order O (logN) , which 
means that the total computational complexity of the algorithm is O (N2 logN) . Once all messages in (6) con-
verge, the vertex quantities given by (7) are sorted into descending order. Then, the first KHC components are 
chosen and checked to see if they are a solution. If a solution is found we stop with a successful assignment, else 
the algorithm returns a failure. For completeness, our version of theAMP algorithm returns a failure also when 
it does not converge after tmax = 100 iterations.

As a first experiment, we run simulations, which reproduce the analysis in23, but apply their methods to a 
larger sample, N = 104 . In Fig. 10 we show the fraction of successful recoveries by AMP after one convergence, 
as a function of α . As the analysis in23 predicts, the AMP messages converge down to about α =

√
N/e , but 

with a decreasing probability of convergence, or with success in a decreasing fraction of the graphs that we have 
created. At and below the algorithmic threshold of AMP for this problem, we obtained very few solutions.

Greedy search with early stopping.  We also explored using our greedy search methods to uncover a 
planted clique in this difficult regime. Our hypothesis was that using SM0 was unlikely to succeed since almost 
all sites selected at random do not lie within the planted clique. But SM1 seems more promising, even with its 
O (N3) cost. And if the search gave rise to any clique of size R(N) or larger, perhaps by a fixed amount d ≥ 2 , 
that is strong evidence of the existence of the planted clique. A clique of this size is a reliable starting point for a 
cleanup operation to find the remaining sites.

The cleaning algorithm starts with a complete subgraph C of order |C| = R(N)+ 2 , obviously too large to be 
just any statistically generated clique. We scan the entire remaining graph, selecting the sites with the most links 
to the subset C, and adding them to C to form a subset C′ . The largest clique to be found in C′ will add new sites 
not found before and may lose a few sites which did not belong. Iterating this process a few times until no other 
sites can be added, in practice, gives us the hidden clique.

(6)Ŵt+1
i→j = log
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+
N
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As shown in Fig. 10, this succeeds in a greater fraction of the graphs than does AMP for planted cliques, 
when α < 1 . This strategy of stopping SM1 as soon as the hidden clique is sufficiently exposed to finish the job 
produces the hidden clique almost without exception in our graphs of order 104 through the entire regime from 
α = 1 down to α = 1/

√
e . In this regime, AMP, converges to a solution in a rapidly decreasing fraction of the 

graphs. We studied the same 100 graphs with AMP as were solved with SM1 at each value of α . Using SM1 with 
early stopping, we could extract planted cliques as small as α = 0.4.

In Fig. 11, we show the probability of success for a range of values of N. Except for the two cases for N = 200 
or 400, where the solutions lie close to the naturally generated clique sizes, the success probability curves track 
the results obtained at N = 104 . Notice how the curves show less scatter as α increases.

The success of early stopping in making SM1 useful led us to try the same with SM2 . We tried this with only 
5 graphs at each value of α , and were able to identify the planted clique in all graphs down to α = 0.35 , and in 
two out of five graphs at α = 0.3 . The method was not successful at all at α = 0.25.

Figure 10 compares the results of all three methods on our test case N = 104 . It appears that the local, greedy 
methods, when used repeatedly in this fashion, are actually stronger than the more globally extended survey 
data collected by AMP. But to compare their effectiveness, it is also necessary to compare their computational 
costs. This is explored in Fig. 12.

In Fig. 12, we compare the effectiveness of SM1 and SM2 with early stopping and AMP. First, we find that the 
number of trials required for SM1 to expose the hidden clique was close to N at the lowest successful searches, 
but dropped rapidly (the scale is logarithmic) for α >

√
1/e . As α approaches 1, there are more starting points 

than there are points in the hidden clique, while for α <
√
1/e , not every point in the hidden clique is an effec-

tive starting point.
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We briefly explored the importance of where to stop the search by running SM1 to completion for a small 
number of graphs at α = 0.6 and considering the sizes of the cliques found. This distribution varies quite widely 
from one graph to another. The full hidden clique is frequently found, and the most common size results were 
about half of the hidden clique size. Only a very few cliques returned by SM1 were within 1− 4 sites of R(N), so 
we recommend the stopping criterion R(N)+ 2 as a robust value.

The average running time to solve one graph for each of the three is plotted in Fig. 12. The average cost of 
solving AMP, (red points) is greatest just above α = 1/

√
e where it sometimes fails to converge, and decreases 

at higher α , largely because convergence is achieved, with fewer iterations as α increases. The cost decreases at 
lower values of α because AMP converges more quickly, but this time to an uninformative fixed point. SM1 with 
early stopping (blue points) requires less time than AMP to expose the planted clique at all values of α where 
one or both of the methods are able to succeed and is several hundred times faster at α = 1 . SM2 with early stop-
ping (black points) is more expensive than SM1 with early stopping at all values of α , but is also less costly than 
AMP in the range 1/

√
e < α < 1 . It is the most costly algorithm at still lower values of α , but the only method 

that can provide any solutions down to the present lower limit of α = 0.3 . This efficiency, as well as the ability of 
local greedy algorithms with early stopping to identify cliques with α <

√
1/e , is a surprising and novel result.

Conclusions
More than 30 years have elapsed since the DIMACS community reviewed algorithms for finding maximum 
cliques (and independent sets) in Erdös-Rényi graphs G(N, p) with N sites and bonds present with fixed prob-
ability, p. Computer power and computer memory roughly 100× what was available to the researchers of that 
period are now found in common laptops. But unfortunately, the size of the problems that this can solve (in 
this area) only increases as the log or a fractional power of the CPU speed. We can now explore the limits of 
polynomial algorithms up to N = 105 , while the DIMACS studies reached only a few thousand sites. In con-
trast to problems like random 3-SAT, for which almost all instances have solutions by directed search2 or belief 
propagation-like32–34 methods which approach the limits of satisfiability to within a percent or less, finding a 
maximum clique remains hard over a large region of parameters for almost all random graphs, if we seek solu-
tions more than a few steps beyond log2 N . Using tests more detailed than the bakeoff with which algorithms have 
been compared, we show that expensive O (N3) and O (N4) searches can accurately reproduce the distribution 
of maximum clique sizes known to exist in fairly large random graphs. (Up to at least N = 500 for the O (N3) 
algorithm and about N = 1500 for the O (N4) algorithm.) This is a more demanding and informative test of the 
algorithms’ performance than seeing what size clique they each can extract from graphs whose actual maximum 
clique size is unknown.

A more promising approach is to use the simplest search algorithm to define a subgraph much smaller than 
N as a starting subset in which to apply the higher-order search strategies. This does not produce the exact 
maximum clique, or even get within a percent or less of the answer as with SAT, because the naive initial search 
combines sites which belong in different maximum cliques into the starting set. The higher-order follow-up 
search that we employ does not fully separate them. Therefore, from our initially defined clusters, which exceed 
the log2 N lower bound in size, but may contain a confusing mixture of incompatible larger clusters that prevent 
each other from being extended we have used a restricted form of backtracking to find the subset which is most 
successful in growing further.

The second challenge we considered is locating and reconstructing a hidden clique. Using Deshpande and 
Montanari’s23 AMP, or our slightly more than linear cost polynomial SM1 with early stopping, we can discover 
and reconstruct the hidden clique well below the limit of spectral methods and almost down to the sizes of 
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naturally occurring cliques. It is surprising that a version of the simplest greedy algorithm performs better on 
problems of the largest currently achievable sizes. This is possible because the hidden clique is unique, so the 
greedy search is not confused.

The challenges posed at the start of this paper apply only in the limit N → ∞ , in a problem with significant 
and interesting finite-size corrections. Although computing power, data storage, and the data from which infor-
mation retrieval tools are sought to find tightly connected communities all increase at a dramatic pace, all of these 
presently lie in the finite-size range of interest, far from an asymptotic limit. Yet they are well beyond the scale of 
previous efforts to assess algorithms for this problem. Since asymptotic behavior is only approached logarithmi-
cally in the clique problem, we think that further progress is possible in the finite-size regime. We have shown 
that effective searches for cliques can be conducted on graphs of up to 105 sites, using serial programs. With better, 
perhaps parallel algorithms, and the use of less-local search strategies such as AMP, can this sort of search deal 
with information structures of up to 109 nodes using today’s computers? With computational resources of the next 
decade, and perhaps a better understanding of the nature of search in problems with such low signal-to-noise 
ratios as Maximum Clique, perhaps we can hope to see graphs of order the earth’s population being handled.

What we learn from looking into the details of the Overlap Gap20 (Fig. 8 and many similar plots) is that an 
ergodic phase in which local rearrangements can transform any clique of size K1 into another of the same size 
extends slightly above K = log2 N . But cliques of size K1 vastly outnumber cliques of size Kmax and the larger 
cliques only slightly overlap, so what is needed are efficient ways of identifying the components of such cliques 
with the greatest chance of continuing to grow by local moves.

Beyond the Overlap Gap, we expect to encounter a “Clustered phase” similar to that predicted for more 
complex systems using the arguments of replica symmetry breaking and the calculational tools of the “cavity 
model”35,36. (Fortunately, the extra complications of “frozen variables,” introduced in these models, should be 
absent when looking at graph properties such as Maximum Clique, where there are no extra internal degrees 
of freedom.)

We have made progress beyond the Overlap Gap limit by simple forms of backtracking. More expensive 
searches, costing higher powers of N, such as SM1 and SM2 are effective for a range of N within this clustered 
phase. But stronger and more costly methods, such as simulated annealing37 and its parallel extensions, or learn-
ing algorithms38 may be needed to provide more exhaustive search.

Data availibility
The numerical codes used in this study and the data that support the findings are available from the correspond-
ing author upon request.
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