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Abstract: Climate change and compostinS1g methods have an important junction on the phenological
and ripening grapevine phases. Moreover, the optimization of these composting methods in closed-
loop corporate chains can skillfully address the waste problem (pomace, stalks, and pruning residues)
in viticultural areas. Owing to the ongoing global warming, in many wine-growing regions, there has
been unbalanced ripening, with tricky harvests. Excessive temperatures in fact impoverish the antho-
cyanin amount of the must while the serious water deficits do not allow a correct development of the
berry, stopping its growth processes. This experiment was created to improve the soil management
and the quality of the grapes, through the application of a new land conditioner (Zeowine) to the soil,
derived from the compost processes of industrial wine, waste, and zeolite. Three treatments on a
Sangiovese vineyard were conducted: Zeowine (ZW) (30 tons per ha), Zeolite (Z) (10 tons per ha), and
Compost (C) (20 tons per ha). During the two seasons (2021–2022), measurements were made of single-
leaf gas exchange and leaf midday water potential, as well as chlorophyll fluorescence. In addition,
the parameters of plant yield, yeast assimilable nitrogen, technological maturity, fractionation of an-
thocyanins (Cyanidin-3-glucoside, Delphinidin-3-glucoside, Malvidin-3-acetylglucoside, Malvidin-3-
cumarylglucoside, Malvidin-3-glucoside, Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside,
Peonidin-3-glucoside, and Petunidin-3-glucoside), Caffeic Acid, Coumaric Acid, Gallic Acid, Ferulic
Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-rutinoside, Quercetin-3-O-glucoside, Quercetin-3-
O-galactoside, and Quercetin-3-O-glucuronide were analyzed. The Zeowine and zeolite showed
less negative water potential, higher photosynthesis, and lower leaf temperature. Furthermore, they
showed higher levels of anthocyanin accumulation and a lower level of quercetin. Finally, the interac-
tion of the beneficial results of Zeowine (soil and grapevines) was evidenced by the embellishment
of the nutritional and water efficiency, the minimizing of the need for fertilizers, the closure of the
production cycle of waste material from the supply chain, and the improvement of the quality of
the wines.

Keywords: Zeowine; gas exchanges; grapevine; water stress; composting process; soil management

1. Introduction

Climate change and the problem of corporate sustainability (organic and closed-loop
companies) are two highly topical and relevant issues of the twenty-first century [1,2].

The optimization of the composting methods in closed-loop corporate chains can
skillfully address the waste problem (pomace, stalks, and pruning residues) in viticultural
areas [3,4]. The wine industry produces enormous quantities of waste every year along
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the production chain [5,6]. In general, the grape marc represents 20–30% of the weight of
the grapes used to make wine [7]. It is estimated that about 5% of the total volume of wine
produced in Tuscany (an Italian wine region) in a year constitutes wine lees residues (i.e.,
more than 100,000 hl) [8]. Briefly, one elaborated ton of berries roughly engenders 1.65 m3

of wastewater, 0.13 tons of marc, 0.06 tons of lees, and 0.03 tons of stalks [9]. With a view to
sustainability and a zero-waste circular economy, in recent years new strategies have been
developed to enhance the blooming of the marketable products obtained from industrial
waste recovery operations [10–14]. However, nowadays most wine entrepreneurs claim to
deliver the pomace to the distillery for the production of Grappa, while they dispose of
the waste stalks, lees, and wastewater [15–17]. As foreseen in ISO_14000 and ISO_14001,
the wine trade is required to downsize its ambient impact, by adopting environmentally
friendly technologies and strategies, which allow, for instance, the lowering of water
consumption, the recycling of by-products, and the lowering of waste [18,19].

Fortunately, the scientific community has recently invested an increasing amount of
energy into projects sensitive to this issue. The bio-compost obtained by sheep manure (Ovis
aries L.), grapevine marc (Vitis vinifera L.), and mango (Mangifera indica L.) leaves was rated
in its performance (i.e., microbiological, physical–chemical, and nutritional parameters) for
agriculture use [12]. In Stellenbosch, South Africa, wine-filter and pruning wastes added to
berry skins and seeds were successfully composted (21.25 C (%), 1.86 N (N%), 0.86 Ca (%),
31.15 B (%), and 52.59 Mn (%)) [14]. A good quality compost (NH4

+-N/NO3—N < 0.5, low
levels of heavy metals, 0.2–0.6 dS m−1, and high germination index) was produced with
winery wastewater sludge + grape stalks [20]. In Serra Gaucha, the impact in terms of heavy
metals (copper, zinc, and chromium) was assessed during the composting process of the
grape industrialization by-products; the study established that the product represented a
skilled raw material that could be employed for certifiable organic agriculture: satisfactory
ranks of organic matter and adequate essential components [21]. On the one hand, grape
marc vermicompost application counteracted the low pH of the grape marc and attenuated
the high phytotoxicity and polyphenol content, and on the other, it increased the α- β-
variegation of the bacterial population at the taxonomic/phylogenetic levels [22].

Intimately interconnected with the problem of residue management is that of the
preserving of the expression of the European wine heritage in the scenario of the delicate
issue of global warming by coping with the alterations and imbalances originating from the
unpredictable climatic conditions [23]. Temperature and water balance are the uppermost
drivers of vine growing and regulate the flowering, the pre-closure of the bunch, veraison,
and harvest [24,25]. Owing to the ongoing global warming, in many wine-growing regions,
there has been unbalance in the ripening, with tricky harvests (i.e., in Bordeaux, Spain, Italy,
and India) [26–30]. In fact, excessive temperatures impoverish the acidic content of the
must [31] and stimulate the gathering of (PAL) phenylalanine ammonia-lyase mRNA [32]
(an environmental stress marker [33]), while the serious water deficits do not allow a correct
development of the berry, stopping its growth processes. In fact, it was demonstrated that
water stress (deficit threshold, more than 50% of ETc-evapotranspiration during the bud
break and bloom step) can reduce the yield [34]. Furthermore, water scarcity, depending
on the level and period, can also affect the technological composition of the berries [35–37].
From the point of view of sugars, two distinct scenarios open up: on the one hand, a
possible accumulation due to concentration was found [38], and on the other, in prolonged
periods there was an inhibition due to the sudden decrease in photosynthesis, with the
consequent arrest or slowing of maturation [39].

Water deficit also affects the phenylpropanoid, isoprenoid, and carotenoid metabolic
pathways activating the expression of the transcripts correlated to glutamate and proline
biosynthesis. For example, in the Chardonnay grapevine, water stress enhanced the anther-
axanthin and flavonol concentrations; in the Cabernet Sauvignon, it swayed the abscisic
acid metabolic pathway (9cis-epoxy carotenoid dioxygenase transcript copiousness) [40].
With high ambient light levels, the berries had the maximum Quercetin-3-glucoside levels
(a harmful compound in Sangiovese grapes with a possible precipitate in the wine after
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the hydrolysis of glycosides with aglycon supersaturation [41]) and a lesser proportion
of Malvidin-3-cumarylglucoside, compared to the shaded ones. In warm and arid cli-
mates, overhead bunch degree exposure is not helpful to excellent anthocyanin storage
and synthesis [42].

Therefore, a polite approach to water resources turns out to be a component of primary
importance for plant and berry development. For these reasons, zeolite soil application
was investigated in a lot of research, in which the effects on land hydraulic capacities were
fixed [43]. In fact, Bernardi et al. (2013) [44] indicated that joining zeolitic Brazilian sedi-
mentary rocks to soils can sharpen their water-holding capacity (WHC). These hydrated
tectoaluminosilicates of alkaline/alkaline earth elements [45] are retained as an important
natural inorganic soil improver that can enhance the land’s physical/chemical properties
(i.e., infiltration rate [46], cation exchange capacity [47], and saturated hydraulic conduc-
tivity [48]). It was made extensively clear that soil adaptation using zeolitic equipment
refines water holding and minimizes the percolation which lowers water enforcement in
agricultural management [49–52].

Considering the above, this experiment was created to improve soil management,
the well-being of the vine, and the quality of the grapes through the application to the
soil of a new land conditioner called “Zeowine”, derived from the compost processes of
industrial wine, waste, and zeolite. The interaction of the beneficial results of Zeowine (soil
+ grapevines) was evidenced by the embellishment of nutritional and water efficiency, the
minimizing of the need for fertilizers, the closure of the production cycle of waste material
from the supply chain, and the improvement of the quality of the wines.

2. Results
2.1. Weather Parameters

Figure 1 highlights the weather patterns of the area in the 2021 and 2022 growing seasons.
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Figure 1. Weather patterns of the experiment location. Daily mean, maximum, and minimum air
temperature (◦C) and rainfall (mm) were measured from April to September (2021–2022, (A) and (B)).
The arrows indicate the days during which the maximum temperature exceeded 34 ◦C.

Daily minimum, average, and maximum air temperatures were registered in both
seasons of 2021–2022 (from April to September). The 2022 grape harvest unfolded as being
more scorching and less rainy during the trial months (from April to July). The rainfall
summation was as follows: 128.90 mm in April 2021, 98.10 mm in May 2021, 23.20 mm in
June 2021, 61.00 mm in July 2021, 39.40 mm in August 2021, and 72.30 mm in September
2021; 74.70 mm in April 2022, 25.70 mm in May 2022, 11.60 mm in June 2022, 3.20 mm
in July 2022, 103.10 mm in August 2022, and 114.00 mm in September 2022. In 2022, the
rainfall was concentrated in the final phase, late August and September. The monthly
averages of the max temperatures were as follows: 17.52 ◦C in April 2021, 21.32 ◦C in May
2021, 29.52 ◦C in June 2021, 30.73 ◦C in July 2021, 31.53 ◦C in August 2021, and 28.03 ◦C
in September 2021; 18.31 ◦C in April 2022, 28.11 ◦C in May 2022, 31.48 ◦C in June 2022,
34.55 ◦C in July 2022, 32.79 ◦C in August 2022, and 25.98 ◦C in September 2022.

2.2. Ecophysiological Survey (Gaseous Exchange), Midday Stem Water Potential, and Leaf
Chlorophyll a Fluorescence

The Vitis vinifera ecophysiological parameters according to three different land treat-
ments (Zeowine, zeolite, and compost) are indicated in Figures 2–5.

Stomatal conductance and net photosynthesis follow the seasonal trend. Significant
differences in net photosynthesis and stomatal conductance during the seasons were found.
Generally, no differences were ever found between the Zeowine and the zeolite treatments.
Observing the 2022 vintage in stomatal conductance, differences emerge as early as June.
In both years, the compost recorded lower values in net photosynthesis in each measure of
the season (2021 and 2022).

The transpiration rates reflect the trend of temperatures and rainfall during the two
years. Particularly in the hottest moments, significant differences in leaf temperatures,
eWUE, and transpiration during the seasons were found. During the less torrid vintage,
there were almost never differences between the treatments in the transpiration. Signifi-
cantly higher leaf temperatures were found in the compost treatment (from June to August
2021 and 2022).

In the Zeowine and zeolite grapevines in both vintages, higher values of Fv/Fm were
customarily found. No differences were recorded in June 2021 and 2022 and in September 2022.
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Figure 2. Physiological parameters (semel). Net photosynthesis (PN) and stomatal conductance (gs)
of Vitis vinifera with three different soil management treatments. Measurements were conducted from
May to September (2021 and 2022, (A)–(D)). Data (mean ± SE, n = 10) were subjected to one-way
ANOVA. The bars represent the standard deviation. Different letters indicate significant differences
between Zeowine, Zeolite, and Compost (LSD test, p ≤ 0.05).
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Figure 3. Physiological parameters (bis). Leaf temperature (◦C), transpiration (E), and extrinsic water
use efficiency (eWUE) of Vitis vinifera with three different soil management treatments. Measurements
were conducted from May to September (2021 and 2022, (A)–(F)). Data (mean ± SE, n = 10) were
subjected to one-way ANOVA. The bars represent the standard deviation. Different letters indicate
significant differences between Zeowine, Zeolite, and Compost (LSD test, p ≤ 0.05).
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Figure 4. Physiological parameters (ter). Fluorescence of chlorophyll (Fv/Fm) of Vitis vinifera with
three different soil management treatments. Measurements were conducted from June to September
(2021 and 2022, (A,B)). Data (mean ± SE, n = 10) were subjected to one-way ANOVA. The bars
represent the standard deviation. Different letters indicate significant differences between Zeowine,
Zeolite, and Compost (LSD test, p ≤ 0.05).
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Figure 5. Physiological parameters (quater). Stem water potential (Ψstem) of Vitis vinifera with
three different soil management treatments. Measurements were conducted from June to September
((A) 2021 and (B) 2022). Data (mean ± SE, n = 10) were subjected to one-way ANOVA. The bars
represent the standard deviation. Different letters indicate significant differences between Zeowine,
Zeolite, and Compost (LSD test, p ≤ 0.05).

Significant discrepancies in the water potential parameters (Ψstem) in the 2021–2022
seasons were registered. The compost treatment from July showed clearly more negative
values of water potential. The 2022 vintage was classified as the driest and most torrid of
the two years, reaching water potentials of less than −2.0 MPa (August 2022). During 2021,
the following decrements were found in the compost compared to the Zeowine and the
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zeolite, respectively: 10.71% and 13.87% (28 June), 8.50% and 9.62% (12 July), 10.19% and
11.61% (29 July), 6.32% and 6.93% (18 August), 8.54% and 13.20% (31 August), and 7.54%
and 10.00% (14 September). During 2022, the following decrements were found in the
compost compared to the Zeowine and the zeolite, respectively: 2.38% and 2.87% (27 June),
8.44% and 9.86% (4 July), 12.37% and 10.31% (18 July), 17.88% and 18.39% (4 August),
28.49% and 23.96% (17 August), and 27.77% and 24.89% (5 September).

2.3. Berry Quality

Figures 6–8 and Tables 1 and 2 expose, over the two years, the typesetting of the berries
of Vitis vinifera: technological maturity and phenolic maturity.

Basically, no difference was found between the Zeowine and the zeolite. Instead,
differences were seen between the compost and the other two treatments. The compost
treatment proved to be the one characterized by a smaller berry, lower sugar content, and
higher acidic content. Regarding the weight of the berry, the following increases in Zeowine
and zeolite were found compared to the compost treatment on the harvest date: 29.69%
and 18.62% (14 September 2021) and 11.70% and 12.89% (5 September 2022). While in the
sugar content, the following increases in Zeowine and zeolite were found compared to the
compost treatment on the harvest date: 10.52% and 11.51% (14 September 2021) and 8.32%
and 8.60% (5 September 2022).

A difference was found between the compost and the Zeowine/zeolite treatments.
The treatments with clinoptilolite added proved to be the two characterized by a higher
anthocyanin and polyphenol content (both total and extractable). In the extractable an-
thocyanin content, during 2021, the following increments were found in the Zeowine and
zeolite treatments, respectively, as compared to the compost one: 43.30% and 37.93% (29
July), 52.31% and 23.21% (18 August), 1.46% and 19.99% (31 August), and 10.27% and
8.67% (14 September). While during 2022, the following were found: 28.22% and 23.43%
(18 July), 32.75% and 28.13% (4 August), 1.58% and 6.47% (17 August), and 14.86% and
8.65% (5 September).

During harvest, the yeast assimilable nitrogen content proved to be significantly higher
in the zeolite treatment in 2021 (117 mg/L) and in the Zeowine treatment in 2022 (164 mg/L).

The study shows that the anthocyanin profile of Sangiovese grapevines is characterized
by the prevalence of Malvidin-3-glucoside over the other di-oxygenated and tri-oxygenated
anthocyanins. In fact, the sum of the trisubstituted anthocyanins (Delphinidol-3-glucoside,
Malvidol-3-acetylglucoside, Malvidol-3-cumarylglucoside, Petunidin-3-glucoside, and
Malvidol-3-glucoside) was higher than that of the disubstituted ones (Cyanidol-3-glucoside,
Peonidol-3-acetylglucoside, Peonidol-3-cumarylglucoside, and Peonidol-3-glucoside). The
disubstituted anthocyanins were as follows: 3 August 2021: 25.1 ZW, 29.5 Z, 31.1 C; 17
August 2021: 33.6 ZW, 35.0 Z, 26.4 C; 3 September 2021: 30.8 ZW, 14.7 Z, 35.8 C; and 14
September 2021: 28.8 ZW, 21.9 Z, 31.9 C. The trisubstituted anthocyanins were as follows: 3
August 2021: 74.9 ZW, 70.4 Z, 68.9 C; 17 August 2021: 66.4 ZW, 64.9 Z, 73.7 C; 3 September
2021: 69.3 ZW, 85 Z, 64.2 C; and 14 September 2021: 71.3 ZW, 78.1 Z, 68.2 C. Significant
differences joined to the treatments in Cyanidin-3-glucoside, Malvidin-3-acetylglucoside,
Malvidin-3-cumarylglucoside, Malvidin-3-glucoside, Peonidin-3-glucoside, and Petunidin-
3-glucoside were recorded; whereas, conversely, their amount was not interesting in the
phenological stage. The malvidin + peonidin + petunidin (methoxylated anthocyanins)
to cyanidin + delphinidin (non-methoxylated anthocyanins) ratios were as follows: 3 Au-
gust 2021: 2.76 ZW, 2.10 Z, 2.12 C; 17 August 2021: 1.72 ZW, 1.89 Z, 2.15 C; 3 September
2021: 2.04 ZW, 7.01 Z, 1.95 C; and 14 September 2021: 2.53 ZW, 3.33 Z, 1.97 C. No hy-
droxycinnamic acids derivatives were observed. In fact, in the 2021 vintage, no ferulic,
caffeic, or coumaric acid content was found in the grapes. Instead, the flavonol deriva-
tives of quercetin (glucoside, rutinoside, glucuronide, and galactoside) and kaempferol
(glucoside) were identified. Here, the derivatives of quercetin were the most depicted. No
myricetin derivatives were detected. The compost treatment showed a greater accumula-
tion of quercetin during ripening and at harvest (Quercetin-3-O-glucoside, Quercetin-3-O-
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galactoside, and Quercetin-3-O-glucuronide); furthermore, it showed a higher content of
Kaempferol-3-Oglucoside.
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Measurements were conducted four times: full veraison (29 July 2021 and 18 July 2022), mid-
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2022), and harvest (14 September 2021 and 5 September 2022). Data (mean ± SE, n = 10) were
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Measurements were conducted four times: full veraison (29 July 2021 and 18 July 2022) and (18
August 2021 and 4 August 2022), full maturation (31 August 2021 and 17 August 2022), and harvest
(14 September 2021 and 5 September 2022). Data (mean ± SE, n = 10) were subjected to one-way
ANOVA. The bars represent the standard deviation. Different letters indicate significant differences
between Zeowine, zeolite, and compost (LSD test, p ≤ 0.05).

The 2022 vintage confirmed the characterization of the anthocyanin profile of San-
giovese and its division into anthocyanidins. No difference was found in the fractionation
percentages. The disubstituted anthocyanins were as follows: 3 August 2021: 27.9 ZW,
29.3 Z, 15.9 C; 17 August 2021: 25.0 ZW, 32.3 Z, 29.5 C; 3 September 2021: 24.1 ZW, 22.7 Z,
26.8 C; and 14 September 2021: 29.9 ZW, 31.2 Z, 33.4 C. The trisubstituted anthocyanins
were as follows: 3 August 2021: 72.0 ZW, 70.8 Z, 84.2 C; 17 August 2021: 74.9 ZW, 67.7 Z,
70.5 C; 3 September 2021: 76.0 ZW, 77.4 Z, 73.2 C; and 14 September 2021: 69.9 ZW, 68.8 Z,
66.6 C. Significant differences joined to the treatments in Cyanidin-3-glucoside, Malvidin-3-
acetylglucoside, Malvidin-3-cumarylglucoside, and Peonidin-3-glucoside were recorded;
whereas, conversely, their amount was not interesting in the phenological stage. The
malvidin + peonidin + petunidin (methoxylated anthocyanins) to cyanidin + delphinidin
(non-methoxylated anthocyanins) ratios were as follows: 3 August 2021: 2.11 ZW, 2.38 Z,
4.21 C; 17 August 2021: 2.18 ZW, 2.41 Z, 2.22 C; 3 September 2021: 3.03 ZW, 3.06 Z, 2.54 C;
and 14 September 2021: 2.68 ZW, 2.35 Z, 2.32 C. Traces of ferulic, coumaric, and caffeic
acids were monitored. The compost treatment showed a greater accumulation of quercetin
during ripening and at harvest (Quercetin-3-O-glucoside, Quercetin-3-O-galactoside, and
Quercetin-3-O-glucuronide). Irrespective of the treatment, in 2022 the amount of quercetin
was more abundant with respect to 2021.
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Table 1. Phenolic maturity. Fractionation of anthocyanins (Cyanidin-3-glucoside, Delphinidin-3-glucoside, Malvidin-3-acetylglucoside, Malvidin-3-cumarylglucoside,
Malvidin-3-glucoside, Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside, Peonidin-3-glucoside, and Petunidin-3-glucoside) and Coumaric Acid, Gallic
Acid, Caffeic Acid, Ferulic Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-glucoside, Quercetin-3-O-rutinoside, Quercetin-3-O-galactoside, and Quercetin-3-O-
glucuronide of Vitis vinifera treated with Zeowine, Zeolite, and Compost during the 2021 season. Measurements were conducted four times: full veraison (29 July
2021 and 18 July 2022), mid-maturation (18 August 2021 and 4 August 2022), full maturation (31 August 2021 and 17 August 2022), and harvest (14 September 2021
and 5 September 2022). Data (mean ± SE, n = 10) were subjected to one-way ANOVA. Different letters indicate significant differences between Zeowine, Zeolite, and
Compost (LSD test, p ≤ 0.05).

6 August 2021 18 August 2021 31 August 2021 14 September 2021 u.m.

Zeowine Zeolite Compost Zeowine Zeolite Compost Zeowine Zeolite Compost Zeowine Zeolite Compost

Cyanidin-3-
glucoside 12.90 ±4.25 a 17.30 ±6.18 a 18.10 ±2.12 a 20.80 ±1.66 a 19.20 ±3.52 a 15.00 ±3.04 a 17.20 ±3.31 a 5.50 ±3.47 b 19.90 ±2.88 a 14.20 ±5.12 a 10.20 ±4.21 b 17.60 ±3.07 a %

Delphinidin-3-
glucoside 13.70 ±1.37 a 14.90 ±2.14 a 13.90 ±2.25 a 15.90 ±2.15 a 15.30 ±2.47 a 16.70 ±1.07 a 15.70 ±4.18 a 7.00 ±3.52 a 13.90 ±3.47 a 14.10 ±5.01 a 12.90 ±3.92 a 16.10 ±2.17 a %

Malvidin-3-
acetylglucoside <0.10 ±0.00 a 1.70 ±0.62 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 b 7.40 ±3.44 a 0.80 ±0.12 b <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a %

Malvidin-3-
cumarylglucoside <0.10 ±0.00 a 1.20 ±0.53 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a 0.40 ±0.22 b 10.60 ±2.74 a 0.90 ±0.18 b <0.10 ±0.00 a 0.60 ±0.19 a <0.10 ±0.00 a %

Malvidin-3-
glucoside 42.90 ±5.78 a 35.40 ±6.24 b 37.60 ±3.56 ab 32.50 ±4.18 a 32.30 ±4.36 a 37.90 ±4.42 a 35.30 ±4.69 b 50.50 ±4.25 a 32.50 ±4.81 b 39.70 ±4.65 b 47.30 ±4.21 a 33.50 ±4.16 b %

Peonidin-3-
acetylglucoside <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a 0.50 ±0.11 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a %

Peonidin-3-
cumarylglucoside <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a 0.70 ±0.19 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a %

Peonidin-3-
glucoside 12.20 ±1.47 a 12.20 ±1.37 a 13.00 ±1.98 a 12.80 ±2.96 a 15.80 ±3.04 a 11.40 ±2.38 a 13.60 ±2.93 ab 8.50 ±2.27 b 15.90 ±2.45 a 14.60 ±3.86 a 11.70 ±2.04 a 14.30 ±2.12 a %

Petunidin-3-
glucoside 18.30 ±3.67 a 17.20 ±3.23 a 17.40 ±2.37 a 18.00 ±4.23 a 17.30 ±4.04 a 19.10 ±3.34 a 17.90 ±2.50 a 9.50 ±2.13 b 16.10 ±2.32 a 17.50 ±2.45 a 17.30 ±2.61 a 18.60 ±1.44 a %

Caffeic Acid n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a mg kg−1

Coumaric Acid n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a mg kg−1

Ferulic Acid n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a n.d. ±0.00 a mg kg−1

Gallic Acid 3.28 ±1.04 a 3.18 ±0.65 a 1.02 ±0.85 a 1.48 ±0.87 a 2.39 ±0.93 a 1.78 ±0.67 a 1.60 ±1.23 a 2.02 ±1.55 a 1.24 ±1.23 a 1.17 ±1.27 a 1.78 ±1.89 a 0.94 ±1.03 a mg kg−1

Quercetin-3-O-
glucoside 25.47 ±4.26 b 33.70 ±5.27 b 47.17 ±5.18 a 49.77 ±4.21 a 29.85 ±4.55 b 41.93 ±6.36 a 48.71 ±12.73 a 34.53 ±14.45 b 48.31 ±15.76 a 64.05 ±16.34 b 55.25 ±17.28 b 76.96 ±14.61 a mg kg−1

Quercetin-3-O-
galactoside 5.75 ±3.56 a 8.57 ±3.78 a 12.73 ±4.56 a 9.18 ±2.46 a 5.80 ±3.68 a 8.15 ±4.76 a 8.06 ±3.45 a 5.98 ±3.23 a 9.46 ±2.87 a 13.50 ±4.23 ab 10.11 ±4.36 b 22.04 ±4.11 a mg kg−1

Quercetin-3-O-
glucuronide 72.48 ±10.32 c 89.04 ±15.95 b 115.55 ±18.32 a 66.60 ±11.87 b 48.06 ±14.77 c 90.05 ±18.39 a 60.71 ±12.32 b 74.67 ±17.14 a 67.80 ±15.94 ab 58.52 ±12.62 b 44.51 ±13.46 c 70.02 ±18.46 a mg kg−1

Quercetin-3-O-
rutinoside 2.69 ±1.23 a 3.56 ±1.83 a 6.96 ±2.27 a 2.50 ±1.22 a 1.44 ±1.63 a 2.85 ±1.85 a 1.74 ±1.24 a 0.49 ±0.12 a 3.33 ±1.38 a 1.73 ±0.92 a 0.96 ±0.21 a 2.92 ±0.99 a mg kg−1

Kaempferol-3-
O-glucoside 4.87 ±1.04 b 6.17 ±2.39 b 12.79 ±2.82 a 7.99 ±3.28 ab 2.28 ±1.92 b 10.15 ±3.58 a 6.27 ±2.47 a 6.61 ±2.86 a 5.92 ±2.16 a 7.53 ±4.34 ab 6.08 ±3.52 b 12.08 ±6.78 a mg kg−1
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Table 2. Phenolic maturity. Fractionation of anthocyanins (Cyanidin-3-glucoside, Delphinidin-3-glucoside, Malvidin-3-acetylglucoside, Malvidin-3-cumarylglucoside,
Malvidin-3-glucoside, Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside, Peonidin-3-glucoside, and Petunidin-3-glucoside) and Coumaric Acid, Gallic Acid,
Caffeic Acid, Ferulic Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-glucoside, Quercetin-3-O-rutinoside, Quercetin-3-O-galactoside, and Quercetin-3O-glucuronide
of Vitis vinifera treated with Zeowine, zeolite, and compost during the 2022 season. Measurements were conducted four times: full veraison (18 July 2022),
mid-maturation (4 August 2022), full maturation (17 August 2022), and harvest (5 September 2022). Data (mean ± SE, n = 10) were subjected to one-way ANOVA.
Different letters indicate significant differences between Zeowine, Zeolite, and Compost (LSD test, p ≤ 0.05).

18 July 2022 4 August 2022 17 August 2022 5 September 2022 u.m.

Zeowine Zeolite Compost Zeowine Zeolite Compost Zeowine Zeolite Compost Zeowine Zeolite Compost

Cyanidin-3-
glucoside 16.80 ±5.21 a 16.30 ±3.17 a 7.40 ±2.85 b 14.80 ±3.70 a 16.70 ±4.72 a 16.50 ±2.00 a 12.10 ±3.64 a 12.10 ±1.53 a 13.90 ±4.20 a 14.70 ±2.70 a 16.30 ±3.91 a 17.80 ±4.04 a %

Delphinidin-3-
glucoside 15.30 ±2.00 a 13.30 ±1.80 a 11.80 ±2.38 a 16.60 ±2.00 a 12.60 ±1.06 a 14.50 ±1.88 a 12.70 ±3.01 a 12.50 ±1.73 a 14.30 ±1.56 a 12.60 ±2.18 a 13.50±1.22 a 12.30±1.09 a %

Malvidin-3-
acetylglucoside <0.10 ±0.00 b <0.10 ±0.00 b 7.10 ±1.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a 2.50 ±0.60 a <0.10 ±0.00 a <0.10 ±0.00 a 0.40±0.00 a <0.10±0.00 a %

Malvidin-3-
cumarylglucoside <0.10 ±0.00 b <0.10 ±0.00 b 9.4 ±1.50 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a 0.9 ±0.10 a 3.4 ±0.15 a 0.6 ±0.10 a 0.70 ±0.04 a 0.60±0.01 a 0.50±0.01 a %

Malvidin-3-
glucoside 38.50 ±6.10 a 40.20 ±5.16 a 42.70 ±4.11 a 38.90 ±4.78 a 39.40 ±5.42 a 38.80 ±4.05 a 45.50 ±5.78 a 42.70 ±4.44 a 40.40 ±6.89 a 40.60 ±3.66 a 37.70±5.23 a 37.90±6.10 a %

Peonidin-3-
acetylglucoside <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10±0.00 a <0.10±0.00 a %

Peonidin-3-
cumarylglucoside <0.10 ±0.00 a <0.10 ±0.00 a 1.40 ±0.10 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a <0.10 ±0.00 a 0.50 ±0.05 a 0.40±0.05 a <0.10±0.00 a %

Peonidin-3-
glucoside 11.10 ±1.05 ab 13.00 ±1.55 a 7.10 ±0.80 b 10.20 ±1.67 a 15.60 ±3.34 a 13.00 ±2.06 a 12.00 ±2.00 a 10.60 ±2.77 a 12.90 ±1.08 a 14.90 ±3.66 a 14.50±2.98 a 15.60±1.05 a %

Petunidin-3-
glucoside 18.20 ±2.11 a 17.30 ±3.28 a 13.20 ±1.44 a 19.40 ±4.55 a 15.70 ±4.20 a 17.20 ±3.05 a 16.90 ±2.11 a 16.30 ±2.06 a 17.90 ±2.99 a 16.00 ±3.36 a 16.60±3.77 a 15.90±1.50 a %

Caffeic Acid <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a mg kg−1

Coumaric Acid <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a mg kg−1

Ferulic Acid 0.08 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a 0.06 ±0.00 a 0.08 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a mg kg−1

Gallic Acid 10.74 ±3.23 b 21.68 ±8.15 a 11.02 ±3.05 b 8.11 ±1.20 b 23.86 ±6.63 a 8.94 ±4.60 b 19.46 ±2.21 b 23.08 ±4.32 a 16.00 ±2.01 b 32.73 ±1.67 a 24.32 ±5.60 b 11.48 ±2.36 c mg kg−1

Quercetin-3-O-
glucoside 36.79 ±5.25 b 57.51 ±7.53 a 62.13 ±7.29 a 46.51 ±9.11 b 82.38 ±10.72 a 77.40 ±13.03 a 82.06 ±19.81 b 87.54 ±19.43 b 101.23 ±22.61 a 125.44 ±20.75 b 133.77 ±21.30 b 202.32 ±15.88 a mg kg−1

Quercetin-3-O-
galattoside <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a <0.05 ±0.00 a mg kg−1

Quercetin-3-O-
glucuronide 79.34 ±13.25 c 131.30 ±18.31 b 166.59 ±15.71 a 60.18 ±15.17 b 115.61 ±19.70 a 110.77 ±21.31 a 77.67 ±16.13 b 85.53 ±20.11 b 129.22 ±25.42 a 91.41 ±22.72 b 102.17±23.16 b 147.48 ±29.42 a mg kg−1

Quercetin-3-O-
rutinoside 4.73 ±0.85 b 9.28 ±1.17 ab 11.62 ±2.73 a 2.58 ±0.35 b 13.32 ±1.26 a 12.65 ±2.00 a 2.32 ±0.38 b 2.97 ±0.38 b 9.56 ±2.51 a 1.48 ±0.33 c 7.56 ±1.37 b 13.53 ±2.90 a mg kg−1

Kaempferol-3-
O-glucoside 22.63 ±1.81 a 13.86 ±2.30 b 11.64 ±1.42 b 12.67 ±1.36 b 18.56 ±1.72 a 20.21 ±2.20 a 18.62 ±2.95 b 27.57 ±3.23 a 15.60 ±1.04 b 28.39 ±3.02 b 42.93 ±3.44 a 21.85 ±1.92 b mg kg−1
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(164 mg/L). 

Figure 8. Yeast assimilable nitrogen (YAN). Yeast assimilable nitrogen (YAN) of Vitis vinifera treated
with Zeowine, zeolite, and compost during two seasons (2021–2022, (A) and (B)). Measurements were
conducted four times: full veraison (29 July 2021 and 18 July 2022), mid-maturation (18 August 2021
and 4 August 2022), full maturation (31 August 2021 and 17 August 2022), and harvest (14 September
2021 and 5 September 2022). Data (mean ± SE, n = 10) were subjected to one-way ANOVA. The bars
represent the standard deviation. Different letters indicate significant differences between Zeowine,
Zeolite, and Compost (LSD test, p ≤ 0.05).

2.4. Principal Component Analysis

The PCA analyses were examined in order to synthetize all the details in an indi-
vidual elucidatory graph. The PCA described almost 40% of the variability of the data
(Figures 9–12). As is illustrated, the PCA bracketed the variables into three specific clusters,
depending on their bearing during the season.

The compost treatment was to the upper part of the distribution and positively related
to the transpiration and leaf temperature and negatively related to eWUE and Fv/Fm
(Dim1 45.2%). Instead, PC 2 (Dim2) explained 24.4% of the data variability.

The Zeowine and zeolite treatments were to the left part of the distribution and
negatively related to PN and eWUE and positively related to TLeaf (Dim1 41.0%). Instead,
PC 2 (Dim2) explained 28.7% of the data variability.

The compost treatment was to the down part of the distribution and positively related
to the phenolic parameters and negatively related to acidity, Fv/Fm, E, and water potential
(Dim1 43.6%). Instead, PC 2 (Dim2) explained 18.7% of the data variability.

The Zeowine and zeolite treatments were to the right part of the distribution and
negatively related to E, acidity, and TLeaf and positively related to the phenolic parameters
(Dim1 47.6%). Instead, PC 2 (Dim2) explained 13.9% of the data variability.
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Figure 9. PCA ecophysiology 2021 season. PCA of the following variables (27 May, 9 June, 28
June, 12 July, 29 July, 18 August, 31 August, and 14 September): stem midday water potential, net
photosynthesis, transpiration, leaf temperature, stomatal conductance, the fluorescence of chlorophyll,
and water use efficiency.
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photosynthesis, transpiration, leaf temperature, stomatal conductance, the fluorescence of chlorophyll,
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Figure 11. PCA ecophysiology and grape parameters 2021 season. PCA of the following variables
(29 July, 18 August, 31 August, and 14 September): stem midday water potential, net photosynthe-
sis, transpiration, leaf temperature, stomatal conductance, the fluorescence of chlorophyll, water
use efficiency, sugar content, pH, acidity, total and extractable polyphenol, total and extractable
anthocyanins, and YAN.
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Figure 12. PCA ecophysiology and grape parameters 2022 season. PCA of the following variables
(18 July, 4 August, 17 August, and 5 September): stem midday water potential, net photosynthe-
sis, transpiration, leaf temperature, stomatal conductance, the fluorescence of chlorophyll, water
use efficiency, sugar content, pH, acidity, total and extractable polyphenol, total and extractable
anthocyanins, and YAN.
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2.5. Production

The production of the treatments was measured at the harvest stage (14 September
2021 and 5 September 2022, Figure 13).
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Figure 13. Productive parameters. Cluster weight, yield per vine, and the number of clusters per vine
(2021 and 2022 seasons, (A)–(F)). Measurements were at the harvest stage (14 September 2021 and 5
September 2022). Data (mean ± SE, n = 10) were subjected to one-way ANOVA. The bars represent
the standard deviation. Different letters indicate significant differences between Zeowine, Zeolite,
and Compost (LSD test, p ≤ 0.05).
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In both seasons (2021 and 2022), no difference in the number of bunches was monitored.
The Zeowine and zeolite treatments differed significantly from the compost one by the
following factors: total yield per grapevine and bunch weight. The lower values of these
two parameters were noted in the compost one.

3. Discussion

Global warming and inaccurate agricultural habits are the main factors biassing
berries and wine esteem in Mediterranean viniculture [53]. These factors can provoke
a soluble solid discharge, together with a decline in anthocyanin content, acidity, and
productivity [54]. The aftermath produces slacking (or stuck) fermentations and economic
shrinkage in the winery [55]. Furthermore, insensitivity and non-respect for the vineyard
ecosystem conservation induced by agronomic choices not aimed at recycling or revaluing
the product lead to environmental pollution (the use of synthetic products) [56] on one
hand and on the other to greater waste production (the non-closed loop approach) [57,58].
This experimentation was created to improve vine welfare and berry quality through the
Zeowine application, a new amendment derived from the compost processes of industrial
wine waste and zeolite.

In our study, it was confirmed that environmental agents, such as temperature, soil
moisture, and light radiation affect water potential [59,60]. In the water potential parameter,
in both seasons, significant differences were recorded between the compost and the two
treatments with zeolite owing to the clinoptilolite property (i.e., augmented H2O retention
capacity [61]). The compost treatment during the driest times recorded the following
negative percentage decreases compared to the other two (Zeowine and zeolite): vintage
2021, −10.19% and −11.61% on 29 July, −6.32% and −6.94% on 18 August; vintage 2022,
−12.39% and −10.31% on 18 July, 17.88% and −18.39% on 4 August. In fact, we suppose
that thanks to the zeolitic ability to retain and release water [62] (up to 60% of its weight)
in a reversible way without changing its microporous and crystalline structure [63], the
treatments with clinoptilolite alleviated the unfavorable results of water stress thanks to
the better management of rainwater and water reserves by increasing the availability of
water for the vines [64] in drought conditions [65].

From the point of view of gas exchanges, constant monitoring from May to September
highlighted significant differences, especially between the compost treatment and the other
two, respectively. The stomatal conductance in the days where the maximum temperatures
reached critical values underwent a significant decrease in the compost, recording the
following stress values: 74.10 mmol m−2s−1 on 18 August 2021, 98.53 mmol m−2s−1 on 31
August 2021, 62.10 mmol m−2s−1 on 18 July 2022, 56.60 mmolm−2s−1 on 4 August 2022,
and 96.30 mmolm−2s−1 on 17 August 2022. This stomatal regulation is most probably
primed by the abscisic acid in the leaves (ABA), in partnership with other quicker hydraulic
signals (cavitations or embolisms) [66]; these markers happen in the xylem vessels when
the atmospheric request cannot be satisfied by the water content of the vineyard soil. This
generates a tightness inside the tracheid or xylem vessel and an excess of gas molecules
from the water (i.e., hydraulic conductivity dwindling) [67]. Moreover, we hypothesized an
association with advanced VPD (vapor pressure deficit) that leads to reduced carbon assim-
ilation (lower stomatal conductance) [68] without necessarily reducing the transpiration (E)
rate to the same measure. On the other hand, Scholasch et al. (2009) [69] highlighted that
for a given water supply rank, elevated VPD rates tend to enhance grapevine transpiration
when solar radiation is continuous. In Spain, with arid regimes, Balbontín (2015) [70] re-
ported morning minimum (0.5–1.5 kPa data range) and maximum noon data (4.5–6.0 kPa).

Overall, the photosynthesis rates were lesser in the non-treated plants compared with
the Zeowine and zeolite grapevines. The desirable rates of PN per unit/leaf/area for basal
health in uncovered vine leaves fluctuate from 6 to 18 µmol m−2 s−1 [71,72]. During the
elevated temperature spell, the PN in the compost leaves declined remarkably; it was
shown that as a consequence of the high radiation a 30–50% drop in PN can occur, with
markedly declining rates during the occurrence of heatwaves [73,74]. Although there was
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also a physiological declension in photosynthesis in the Zeowine and zeolite plants, this
flexure did not affect the performance of the electron transport chain. In fact, the monitored
values did not reach stress thresholds, probably thanks to the help of the zeolite [75] being
able to soak up the carbon dioxide molecules [76], increasing the total CO2 adjacent to the
stomata. Furthermore, we surmise that this improvement was also related to the mitigating
outcome of the zeolite at high leaf temperatures [77], which would negatively influence the
trek of the carbohydrates from the leaf by affecting their photosynthetic activity (feedback
down-regulation) [78].

Transpiration during the hottest periods also showed differences; Zeowine and zeolite
were the treatments with the highest transpiration rate. Even though a full mechanistic
comprehension of the transpiration rate under elevated temperature stress status is missing,
the literature states that such a rejoinder involves different biophysical or physiological
processes [79], such as a modification in membrane permeability [80], a rise in cuticle perme-
ability [81], and a lower water viscosity [82]. As demonstrated by Naveed et al. (2020) [83],
in their work developed to assess the occurrences of an endophytic bacterium (Caulobac-
ter sp.) added to the zeolite on Sesamum indicum L., the gaseous exchange values (e.g.,
transpiration) and water connections were tightened by the co-application of compost
and zeolite.

A further limitation was monitored in the compost treatment. The significant abate-
ment in the Fv/Fm (chlorophyll fluorescence parameter) resulted in an increase in energy
dissipation in the antenna complex with the probable degradation of the D1 protein [84]
(reduction in photosystem II efficiency, i.e., photoinhibition) [85].

As indicated in several works, technological maturity was swayed by water stress
(a significant difference in midday water potential) [86] and by temperature stress (a
significant difference in leaf temperature) [87]. The results found by Wang et al. (2003) [88]
showed that high water deficiency obstructs sugar unloading in the berry. Additionally, the
discharging of sugar phloem during the maturation is through the apoplastic system, and
this scheme demands energy input [89]. In accordance with these explanations, the compost
treatment showed a more delayed ripening than the other two: a lower sugar content, an
acidic content unsuitable for a grape harvest (10.14 g/L during the 2021 harvest against the
canonical 5–8 g/L) (Frost et al., 2017), and undeveloped berry weight. The disposability
of water influences the sugar concentration of the berries in a different and complex way
since, on the one hand, a greater availability leads to a major concentration of sugar due to
a greater PN activity [90] and, on the other hand, it can lead to a lower concentration by
dilution with the berry growth [91]. After an alteration of the water supply, even in the most
recent genomic and transcriptomic approach (deep RNA sequencing approach; [92]), when
sampling is performed on the same date [93], as in our trial, gene expression modifications
were reported. Our results are confirmed in the test realized by Santesteban and Royo
(2006) [94], where in order to reach a correct maturation it is necessary to have ratios
between the leaf area and the production of at least 5–10 cm2/g up to 15–17 cm2/g to allow
the correct photosynthesis.

The plants that had clinoptilolite applications showed a greater weight of the berry,
confirming the beneficial effect of these tectoaluminosilicates on production [95,96]. Prob-
ably in addition to the better management of the water resource, the zeolites increased
the substrate cation exchange capacity [97], allowing a better and gradual granting of
nutrients [98,99] and avoiding losses due to leaching [100]. The effect on the weight of the
berries involves cell division or/and cell expansion modifications [101].

The yeast assimilable nitrogen amount denotes changes according to the year; only
during 2022, the values reached congruous thresholds to avoid the additions of inorganic
nitrogen (diammonium phosphate DAP) or inorganic ammonia added to the primary amino
nitrogen (AMM + PAN) [102] (> 140 mgNL− 1; necessary for efficient fermentation) [103].
The zeolite intake improved the YAN concentrations in both growing seasons. This result
is attributable to the zeolitic ability to exchange cations such as the ammonium cation [104]
(NH4+), one of the main parameters soaked up by the plants’ plasma membrane [105].
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As suggested by González-Sanjosé and Diez (1992) [106], berry skin sugars show a
role as regulators in anthocyanin synthesis and, generally, of phenols. We found that the
treatments (Zeowine and zeolite) with greater sugar accumulation in parallel recorded a
greater content of polyphenols and anthocyanins (both total and extractable). In general,
comparing the two vintages, during 2022 we measured lower absolute values compared
to the less torrid vintage. In fact, the temperature (high and low) during maturation,
particularly during the 3◦ stage, presumably conditioned the abscisic acid degradation
and production in the berry skins; the endogenous abscisic acid levels sway the VvmybA1
gene expression that drives anthocyanin biosynthetic expression [107]. In addition, high
nocturnal temperatures can quell the gene expression of dihydroflavonol 4-reductase, leu-
coanthocyanidin dioxygenase, chalcone synthase, flavanone 3-hydroxylase, and flavonoid
3-O-glucosyltransferase, causing minor expression levels of anthocyanin biosynthetic genes
during the beginning of ripening [108]. Moreover, another factor in addition to anthocyanin
degradation could be represented by the mRNA transcription inhibition of the anthocyanin
biosynthetic genes [109].

This study shows that the anthocyanin profile of (SG) Sangiovese grapevines is typified
by the preponderance of Malvidin-3-glucoside [110] over the other di-oxygenated and tri-
oxygenated anthocyanins. In fact, the sum of the trisubstituted anthocyanins (Delphinidol-
3-glucoside, Malvidol-3-acetylglucoside, Malvidol-3-cumarylglucoside, Petunidin-3-
glucoside, and Malvidol-3-glucoside) was higher than that of the disubstituted ones
(Cyanidol-3-glucoside, Peonidol-3-acetylglucoside, Peonidol-3-cumarylglucoside, and
Peonidol-3-glucoside). In addition, the acylated pigments in the Sangiovese berries are
scarce [111]. Contrary to what de Rosas et al. (2022) [112] pointed out, the treatments did
not affect either the percentage of anthocyanins or the acylated forms. In our study, we
cannot suggest acylation as an eventual stress-response gear for reducing the unfavorable
incidents caused by high temperature.

The 2022 severe climatic context may have caused a superior ratio of methoxylated/
non-methoxylated anthocyanins in berry skins with respect to 2021 (17 August and 3
September 2022). In fact, high temperature and solar radiation precipitate the changeover
from the hydroxylated (delphinidin and cyanidin) [113] to the methoxylated derivatives of
anthocyanins (malvidin, petunidin, and peonidin) [114]. The methoxylation activity depicts
a metabolic process that affects the stability of the different anthocyanins, giving them
minor susceptibility to non-enzymatic or enzymatic oxidation under tricky and stressful
regimes [115], stabilizing the phenolic B ring and causing a red shift in the absorption
spectrum [116]. The treatments, generally, did not sway the ratio between methoxylated
and non-methoxylated. Contrary to what Tarara et al. (2008) [117] demonstrated, the
absolute concentrations of the dihydroxylated anthocyanins (cyanidin and peonidin; red
anthocyanins) and the trihydroxylated (delphinidin, malvidin, and petunidin; purple and
blue anthocyanins) [118] did not undergo substantial changes in either the treatment or the
vintage effect.

Among the non-flavonoid polyphenols, gallic acid (a hydroxybenzoic acid—GA;
3_4_5-trihydroxy benzoic acid) [119], which is chiefly stored as galloylated flavan-3-
ols [120], showed an increment during the 2022 season for all treatments. In fact, its
content is biased by preharvest environmental status [121]. Contrary to what Del Castillo
Alonso et al. (2020) [122] found, we saw that hydroxybenzoic acids were probably sus-
ceptible to temperature variations. Additionally, in agreement with Xi et al. (2010) [123],
their content was enhanced by improving land management habits (at harvests, ZW and Z
showed superior content). Therefore, these applications could increase the co-pigmentation
between GA and malvidin-3-Oglucoside in red wine (stabilizing role) [124].

Four glycosylated forms of quercetin (flavonols class) (glucosides, galactosides, rutino-
sides, and glucuronides) as 3-O-glycosylated were found [125]. In both years, significantly
higher doses of quercetin in the compost treatment were found. We suppose that this
high quantity was correlated to their biosynthesis being influenced by temperature stress
and sunlight exposure; in fact, the concentration was found to be 4–8 times less in the
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shaded cluster [126] (photo-protector role). However, considering the recent studies on this
compound in Sangiovese grapes [127,128], this increase was found to be depleted in the
finished product. Sangiovese wine can produce a quercetin precipitate during its aging
from the glycosides hydrolysis (i.e., supersaturation of the aglycons) [41]. Conversely, the
grapes that underwent clinoptilolite applications recorded lower quercetin contents.

Many authors showed that the absorption and checked relief of moisture by zeolite
ameliorated the growth and plant yield under drought stress conditions [129–131]. In
conformity with these results, in our experiment we also noticed an increase in production
in the Zeowine and zeolite treatments. The greater yield of both vintages was attributed to
a greater weight of the bunch and not to a different number of bunches. The clinoptilolite
porous framework might have helped to keep the ground moist and ventilated [132] (less
compactness and greater humidity in the periods of development of the berry). In addition,
it might have retained principal nutrients (N, Mg, P, B, and K) in the root zone [133] for
reuse by the vine when requested.

4. Materials and Methods
4.1. Experimental Project, Place of Setting, and Composting Process

The trial was organized at CMM (Cosimo Maria Masini Estate) (Lat 43◦41′ N—Long
10◦53′ E), Italy. CMM is nestled in the San Minato hills, Poggio a Pino Street (PI), in Tuscany:
an antique medieval hamlet, located along the route of the historic Via Francigena. Since the
end of MCMXCVIII, it has belonged to the Masini family, Tuscan entrepreneurs engaged in
activities related to the environment and research in the name of sustainable development.
The attention to sustainability directed the property to apply, from the very beginning,
cultivation and winemaking methods without the use of chemicals.

The experiment was executed on 21-year-old organic vines (Vitis vinifera L., 1753) in
two plant cultivation vintages (i.e., 2020 and 2021). The plants taken into consideration are
of the red Sangiovese cultivar (clonal selection CCL 2000/3), on Kober 5 BB rootstock (Vitis
berlandieri × Vitis riparia); they are cultivated with a vertical upward trellis and pruned as a
spurred cordon.

From the analysis of the company’s soil, a clayey-calcareous soil with the presence of
a rocky skeleton emerges (clay 51.9%; sand 17.4%; silt 30.7%; active limestone 170 g/kg; pH
8.1; CSC 21.5 meq/100 g; organic matter 2.1%).

Using an experimental randomized block design, ten blocks per treatment were
established; every block consisted of 4 rows; 10 vines per treatment were selected for
the measurements. The experiment with three treatments, the Zeolite (Z), Compost (C),
and Zeowine (ZW), was set up. Zeowine is a product made by combining the properties
of zeolite (clinoptilolite) with the stable organic substance of a compost obtained on a
company scale from the reuse of processing waste from grapes, pomace, and stalks. CMM
provided the wastes from the 2020 and 2021 harvest (grape skins, stalks, and vineyard
pruning waste), which were shredded to 4–5 cm and processed for their composting. The
optimal dimensions and typology of the zeolite (Zeocel Italia, PI, Italy) to be used for the
production of Zeowine was selected (85% clinoptilolite) with a granulometry of 0.2–2.5 mm,
which was identified in order to ensure better aeration of the heaps during composting. For
the first composting cycle (start of composting, 11/11/2020) CMM proceeded to prepare
three different kinds of composting heaps: the 3 heaps of about 9 tons each with zeolite
and organic residues at the ratio 1:2.5 w:w of fresh weight; a heap with zeolite and organic
residues at the ratio 1:10 w:w of fresh weight; and a control heap (without zeolite). The
two additional kinds of composting heaps were prepared with about 2 tons of waste to
demonstrate the efficiency of the presence of zeolite at different rates in improving the
composting system and the quality of the end product during the whole experimentation,
with respect to the control heap without zeolite.

On the basis of the results obtained from the first composting cycle at CMM, in the
second composting cycle (start of composting, 12/12/2021), the following piles were
prepared at CMM: n. 2 piles of about 9 tons each with zeolite and vine wastes at the ratio
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1:10 w/w; n. 1 piles of about 9 tons each with zeolite and vine wastes at the ratio 1:2.5 w/w;
n. 1 control piles of about 9 tons with 100% vine wastes (Figure 14).
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Briefly, to facilitate the aerobic compost-making success, mechanical turnings were
performed every 30 days for the 150 days of composting with periodical irrigations until
the moisture content was >40% [134,135].

The temperature of all the heaps rapidly increased from the beginning of the experi-
mentation. In the control heap, the thermophilic phase (temperature higher than 55 ◦C) was
reached after two weeks, while in the heaps with zeolite it was recorded after three–four
weeks. A temperature greater than 55 ◦C during this stage is extremely important to kill
the pathogens, thus achieving the sanitization of the raw material [136,137]. The maximum
temperature was measured in the control heap after 18 days (65 ◦C), while in the heaps with
zeolite it was reached after about 34–38 days from the beginning of composting (60–63 ◦C).
The thermophilic phase was maintained for 12 days in the control heap (days 16 to 28), for
24 days in the heap with 1:2.5 zeolite:compost (days 24 to 48), and for 32 days in the heap
with 1:10 zeolite:compost (days 22 to 54).

Similar results were also reported by Himanen and Hänninen (2009) [138], who
claimed that the duration of the thermophilic stage increased from 2 to 3 weeks following
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the addition of commercial elements (i.e., zeolite, ashes, kaolinite, chalk, and sulfates) to a
biowastes + peat mixture.

In the control heap, the temperature decreased and reached the mesophilic stage
(temperature lower than 50 ◦C) after 30 days from the beginning of the composting process.
However, this stage was reached after 52 and 64 days in the heaps with zeolite 1:2.5 and 1:10,
respectively. During the mesophilic stage, the zeolite heaps showed a higher temperature
with respect to the control heap. In fact, Venglovsky et al. 2005 [139] demonstrated that the
presence of zeolite during the composting system, enhancing the porosity of the compost,
can enable better aeration for metabolic heat generation by aerobic microorganisms with
respect to the control heap. At the end of the thermophilic period, from the turning
operations, it was possible to observe the actual state of maturation of the material in which
neither the grape stalks nor the pomace were still recognizable, and the assumed consistency
was that of mature compost. The complete maturation of Zeowine was achieved after
roughly 150 days of composting (Table 3).

Table 3. Zeowine traits. The analyses were carried out by the CNR-IRET—National Research
Council-Research Institute on Terrestrial Ecosystems (PI), Italy.

Zeowine
1:2.5

Zeowine
1:10 Control

D. Lgs. N◦

75/2010
Green

Compost

pH 8.26 7.95 7.37 6–8.8

EC dS m−1 0.22 0.35 1.51

CSC C mol c kg−1 45.9 43.8 36.4

TOC C % 25.68 29.41 27.01 ≥ 20

TN TN % 1,48 1.55 1.28

N-NO3 mg kg−1 73 118 196

N-NH4 mg kg−1 611 540 469

C/N 17.35 18.98 21.1 ≤ 50

Humic
carbon C % 3.5 3.6 3.2 ≥ 2.5

TK % 1.19 0.738 0.559

TP % 0.144 0.172 0.116

Available K mg K kg−1 317 531 453

Available P mg P kg−1 328 370 568

Cu mg Cu kg−1 44 70 78 < 230

Zn mg Zn kg−1 35 45 49 < 500

Cd mg Cd kg−1 < 0.1 < 0.1 < 0.1 < 1.5

Ni mg Ni kg−1 13 23 27 < 100

Pb mg Pb kg−1 7.9 8.84 8.26 < 140

Cr mg Cr kg−1 21 33 46 < 100

Germination
Index % 142 126 72 > 60%

Salmonella CFU g−1 absent absent absent absent

Escherichia
Coli CFU g−1 100 100 100 ≤ 1000
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The application of treatments was executed on 1.2 ha of vineyard in production with
a spreader manure (Figures 15 and 16) in the spring: Zeowine 30 t/ha, zeolite 10 t/ha,
and compost 20 t/ha [140]. A surface tillage (15–20 cm) for the burial of the treatments
was carried out. After the date reported in Table 3, 1:2.5 treatments were selected for the
experiment. In fact, the objective of the preliminary implemented experiments was to
define the best zeolite:compost ratio to be used in the experiment and to scrupulously
follow the composting process.

Plants 2023, 12, x FOR PEER REVIEW 27 of 35 
 

 

  
Zeowine 

1:2.5 

Zeowine 

1:10 
Control 

D. Lgs. N° 75/2010 

Green Compost 

Salmonella CFU g−1  absent absent absent absent 

Escherichia Coli CFU g−1  100 100 100 ≤ 1000 

The application of treatments was executed on 1.2 ha of vineyard in production with 

a spreader manure (Figures 15 and 16) in the spring: Zeowine 30 t/ha, zeolite 10 t/ha, and 

compost 20 t/ha [140]. A surface tillage (15–20 cm) for the burial of the treatments was 

carried out. After the date reported in Table 3, 1:2.5 treatments were selected for the ex-

periment. In fact, the objective of the preliminary implemented experiments was to define 

the best zeolite:compost ratio to be used in the experiment and to scrupulously follow the 

composting process. 

 

Figure 15. Treatment applications at CMM. 

 

Figure 16. Treatment application results at CMM. 

Figure 15. Treatment applications at CMM.

Plants 2023, 12, x FOR PEER REVIEW 27 of 35 
 

 

  
Zeowine 

1:2.5 

Zeowine 

1:10 
Control 

D. Lgs. N° 75/2010 

Green Compost 

Salmonella CFU g−1  absent absent absent absent 

Escherichia Coli CFU g−1  100 100 100 ≤ 1000 

The application of treatments was executed on 1.2 ha of vineyard in production with 

a spreader manure (Figures 15 and 16) in the spring: Zeowine 30 t/ha, zeolite 10 t/ha, and 

compost 20 t/ha [140]. A surface tillage (15–20 cm) for the burial of the treatments was 

carried out. After the date reported in Table 3, 1:2.5 treatments were selected for the ex-

periment. In fact, the objective of the preliminary implemented experiments was to define 

the best zeolite:compost ratio to be used in the experiment and to scrupulously follow the 

composting process. 

 

Figure 15. Treatment applications at CMM. 

 

Figure 16. Treatment application results at CMM. Figure 16. Treatment application results at CMM.

The agro-meteorological system Pre-meteo (Mybatec S.R.L., NO, Italy) monitored the
main parameters such as rainfall (mm) and air temperatures (◦C).
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4.2. Ecophysiological Survey (Gaseous Exchange), Midday Stem Water Potential, and Leaf
Chlorophyll a Fluorescence

Ecophysiological surveys (between 10:55 a.m. and 12:55 p.m.) were conducted on the
tagged vines (10 replicates per treatment) every week, from May to the harvest: in 2021,
27 May, 9–28 June, 12–29 July, 18–31 August, and 14 September; in 2022, 20 May, 13–27
June, 4–18 July, 4–17 August, and 4 September. The following parameters were accounted
for with the following method, ◦C (leaf temperature), gs (stomatal conductance), PN
(photosynthesis), and E (transpiration), adopting Ciras 3PP Systems, USA (390–400 ppm
CO2, surrounding temperature IR Thermometry, RGBW Control Red 38%, Green 37%, Blue
25%, White 0%, automatic zero/diff bal mode, and 1300 µmol m−2s−1 photon flux) [141].
eWUE (extrinsic water use efficiency) was estimated from the PN/E ratio [142].

On the same leaves between 12:45 and 13:45 p.m., the stem midday water potential
(Ψstem) was valued by a Scholander pressure chamber (600-type, PMS Instrument Co,
Albany, OR, USA) [143]. The surveys were conducted on the tagged vines (10 replicates
per treatment) every week, from June to the harvest (the beginning of the summer period
with higher temperatures): in 2021, 28 June, 12–29 July, 18–31 August, and 14 September; in
2022, on 27 June, 4–18 July, 4–17 August, and 4 September.

On the same days, chlorophyll fluorescence (Fv/Fm) was gauged with a fluorometer
(Handy-PEA®, Hansatech Instruments, Norfolk, UK), adapting leaves in the dark for
30 min, following the Maxwell and Johnson calibration [144].

4.3. Berry Quality

In each treatment, 100 berries (per replication) were arbitrarily chosen to develop the
technological maturity. Firstly, the berries of each treatment were independently weighed
with the Kern PCD model (a precision digital scale). The sample was squeezed to analyze
the sugar content (expressed in Brix degree), total acidity (expressed in g L-1 tartaric acid),
and pH. The following tools and products were employed for technological analysis: a
portable optical refractometer (RHA-503), a pH meter (HHTEC), bromothymol blue, glass
burettes, and a sodium hydroxide solution (NaOH-0.1 M).

In each treatment, 100 more berries (per replication) were arbitrarily chosen to develop
phenolic maturity. Total and extractable polyphenols and total and extractable anthocyanins
were estimated by the Glories method [145].

The determination of nine major anthocyanins (Cyanidin-3-glucoside, Delphinidin-3-
glucoside, Malvidin-3-acetylglucoside, Malvidin-3-cumarylglucoside, Malvidin-3-glucoside,
Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside, Peonidin-3-glucoside, and
Petunidin-3-glucoside) in the musts was performed according to OIV MA AS315 11: R2007
1 Method OIV MA AS315 11 TypeII method HPLC-Determination, by an external laboratory
(ISVEA), under the analysis conditions proposed by Resolution Oeno 22/2003, changed
by Oeno 12/2007 [146]. In addition, with high-performance liquid chromatography-high
resolution mass spectrometry (HPLC-HRMS) [147], Coumaric Acid, Gallic Acid, Caffeic
Acid, Ferulic Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-glucoside, Quercetin-3-O-
rutinoside, Quercetin-3-O-galactoside, and Quercetin-3-O-glucuronide were evaluated.
The berry samples were kept at −80 ◦C until they demanded analysis. The determination
of yeast assimilable nitrogen (as the sum of amino and ammoniacal nitrogen) in musts was
performed with an enzymatic colorimetric kit (Steroglass, S. Martino Campo—Pg, Italy).

Finally, the cluster number per vine, the weight of the bunch per vine, and the total
yield/vine were determined at harvest with a digital scale (VAR model, Italy) (10 grapevines
per treatment).

4.4. Statistical Analysis

The data and graphs were processed with R version 4_0_3.—RStudio (R Development
Core Team) (Tidyverse packages [148]), first with the Shapiro–Wilk and Levene tests, then
with one-way ANOVA (p ≤ 0.05). The means comparison was performed with the Tukey
HSD test [149] (p ≤ 0.05). PCA [150] (principal component analysis) was exploited to fix
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the connections among specific variables under investigation and to distinguish between
the different treatments [151].

5. Conclusions

Global warming and inaccurate agriculture can provoke soluble solid discharge,
together with a decline in anthocyanin content, acidity, and productivity. Furthermore,
non-respect for the vineyard ecosystem conservation induced by agronomic choices not
aimed at recycling or revaluing the product leads to environmental pollution on one hand
and, on the other, to greater waste production. Our results seem to argue that, in the years
marked by low water disposability, severe water deficiency is a narrowing coefficient for
the anthocyanin potential in Sangiovese grapes and that Zeowine or zeolite applications
could preserve it. The absence of adjuvant in the soil (compost treatment) leads to a lower
production (lower yield per vine), characterized by an excess of quercetin in the must and a
lower color (slowed ripening). The Zeowine and zeolite treatments were the most balanced
ones for the ecophysiological parameters (water potential and net photosynthesis), grape
quality (sugar and anthocyanin content), and berry weight.

On the basis of the following achieved results (the demonstrated efficacy of Zeowine
in improving the performance of the vineyard soils and the characteristics of the grapes)
in operational practice it would be desirable to define and implement protocols for com-
posting waste from the viticultural chain with zeolite and protocols for the application
of the product on vine plants by introducing the culture of the circular economy and the
valorization of waste in companies in order to promote the environmental, economic, and
social sustainability of companies.
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