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Introduction

The flavour-changing neutral current decays K± → π±`+`− (denoted Kπ``), with ` = e, µ

have been the focus of extensive theoretical work [1–4]. Dominant contributions to the
Kπ`` decays are mediated by virtual photon exchange K± → π±γ∗ → π±`+`− and involve
long-distance hadronic effects described by a vector interaction form factor.

Studies of the Kπee and Kπµµ decay form factors contribute to experimental tests of
lepton flavour universality [5, 6]. The first lattice QCD calculation of the form factor value
at a specific lepton pair mass (lying outside theKπµµ kinematic region) using physical light-
quark masses is presented in [7]. Future methodology optimizations together with advances
in computing technology are expected to provide competitive lattice QCD predictions of
the form factor.

The E787 collaboration at the Brookhaven National Laboratory reported the first
observation of the Kπµµ decay in 1997 [8], which was followed by the E865 [9] and Hy-
perCP [10] measurements. The E865 result established the vector nature of the decay form
factor, while HyperCP studied both K+

πµµ and K−
πµµ decays and measured the CP violating
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decay rate asymmetry, found to be compatible with zero. The most precise study [11] of
Kπµµ was performed by the NA48/2 collaboration at the CERN SPS. The Kπee decay was
first observed at the CERN PS by the Geneva-Saclay collaboration in 1975 [12], and sub-
sequently measured by the E777 [13], E865 [14] and NA48/2 [15] experiments. A summary
of form factor measurements can be found in [16].

Improved measurements of the Kπµµ model-independent branching fraction and form
factor parameters, based on the dataset collected in 2017–2018 by the NA62 experiment at
the CERN SPS, are presented in the following. The forward-backward asymmetry of the
decay with respect to angle θKµ between the K+ and the µ− three-momenta in the µ+µ−

rest frame, is also measured.

1 Beam, detector and data sample

The layout of the NA62 beamline and detector [17] is shown schematically in figure 1.
An unseparated secondary beam of π+ (70%), protons (23%) and K+ (6%) is created by
directing 400GeV/c protons extracted from the CERN SPS onto a beryllium target in
spills of 3 s effective duration. The target position defines the origin of the NA62 reference
system: the beam travels along the Z axis in the positive direction (downstream), the Y
axis points vertically up, and the X axis is horizontal and directed to form a right-handed
coordinate system. The central beam momentum is 75GeV/c, with a momentum spread
of 1% (rms).

Beam kaons are tagged with a time resolution of 70 ps by a differential Cherenkov
counter (KTAG), which uses nitrogen gas at 1.75 bar pressure contained in a 5 m long vessel
as radiator. Beam particle positions, momenta and times (to better than 100 ps resolution)
are measured by a silicon pixel spectrometer consisting of three stations (GTK1,2,3) and
four dipole magnets. A toroidal muon sweeper, called scraper (SCR), is installed between
GTK1 and GTK2. A 1.2 m thick steel collimator (COL) with a 76×40 mm2 central aperture
and 1.7 × 1.8 m2 outer dimensions is placed upstream of GTK3 to absorb hadrons from
upstream K+ decays; a variable aperture collimator of 0.15× 0.15 m2 outer dimensions
was used up to early 2018. Inelastic interactions of beam particles in GTK3 are detected
by an array of scintillator hodoscopes (CHANTI). A dipole magnet (TRIM5) providing a
90MeV/c horizontal momentum kick is located in front of GTK3. The beam is delivered
into a vacuum tank evacuated to a pressure of 10−6 mbar, which contains a 75 m long
fiducial volume (FV) starting 2.6 m downstream of GTK3. The beam angular spread at
the FV entrance is 0.11 mrad (rms) in both horizontal and vertical planes. Downstream
of the FV, undecayed beam particles continue their path in vacuum.

Three-momenta of charged particles produced in K+ decays are measured by a mag-
netic spectrometer (STRAW) located in the vacuum tank downstream of the FV. The
spectrometer consists of four tracking chambers made of straw tubes, and a large aperture
dipole magnet (M), located between the second and third chamber, that provides a horizon-
tal momentum kick of 270MeV/c. The momentum resolution is σp/p = (0.30⊕0.005 ·p)%,
with the momentum p expressed in GeV/c.
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Figure 1. Schematic side view of the NA62 detector.

A ring-imaging Cherenkov detector (RICH) consisting of a 17.5 m long vessel filled with
neon at atmospheric pressure (with a Cherenkov threshold of 12.5GeV/c for pions) provides
particle identification, charged particle time measurements (to a 70 ps accuracy for particles
well above the Cherenkov threshold), and the trigger time. Two scintillator hodoscopes
(CHOD), which include a matrix of tiles and two planes of slabs arranged in four quadrants
located downstream of the RICH, provide trigger signals and time measurements. The tile
matrix hodoscope has a time resolution of 1 ns, while the slab hodoscope measures time
with 200 ps precision.

A 27X0 thick quasi-homogeneous liquid krypton (LKr) electromagnetic calorimeter is
used for particle identification and photon detection. The calorimeter has an active volume
of 7 m3 segmented in the transverse direction into 13248 projective cells of 2× 2 cm2 size,
and provides an energy resolution σE/E = (4.8/

√
E ⊕ 11/E ⊕ 0.9)%, with E expressed in

GeV. To achieve hermetic acceptance for photons emitted in K+ decays in the FV at angles
up to 50 mrad from the beam axis, the LKr calorimeter is supplemented by annular lead
glass detectors (LAV) installed in 12 positions inside and downstream of the vacuum tank,
and two lead/scintillator sampling calorimeters (IRC, SAC) located close to the beam axis.
An iron/scintillator sampling hadronic calorimeter formed of two modules (MUV1,2) and
a muon detector consisting of 148 scintillator tiles located behind an 80 cm thick iron wall
(MUV3) are used for particle identification. The eight smaller tiles of MUV3 adjacent to
the beam pipe are referred to as the inner tiles, while the remaining 140 regular tiles are
called the outer tiles.

The data sample used for this analysis is obtained from 0.84 × 106 SPS spills col-
lected in 2017–2018, with the typical beam intensity increasing over time from 1.5× 1012

to 2.2× 1012 protons per spill. The latter value corresponds on average to a 500 MHz
instantaneous beam particle rate at the FV entrance, and a 3.7 MHz K+ decay rate in the
FV. The main trigger of NA62 is dedicated to the collection of the very rare K+ → π+νν̄

decays [18]. Multi-track (MT) and di-muon multi-track (2µMT) triggers considered in this
analysis operate concurrently, downscaled by typical factors of 100 and 2, respectively.
The downscaling factors of both triggers were varied throughout the data taking. The MT
trigger line selects the K+ → π+π+π− (K3π) decays, used for normalization, while the
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2µMT line selects the Kπµµ signal decays. The low-level hardware (L0) trigger [19] for
both lines is based on RICH signal multiplicity and coincidence of signals in two opposite
CHOD quadrants. The 2µMT line additionally involves a requirement of signal coincidence
in two outer MUV3 tiles. The high-level software (L1) trigger requires K+ identification
by KTAG, and reconstruction of a negatively charged STRAW track for both MT and
2µMT trigger lines. A detailed description of the NA62 trigger system and its performance
is given in [20].

Monte Carlo (MC) simulations of particle interactions with the detector and its re-
sponse are performed using a software package based on the Geant4 toolkit [21]. In addi-
tion, the accidental activity is simulated, and the response of both trigger lines is emulated.

2 Event selection

Kinematic similarities of the signal (Kπµµ) and normalization (K3π) decays allow for sub-
stantial overlap between the signal and normalization event selections, which results in
first-order cancellation of most detector and trigger inefficiencies, thus reducing the sys-
tematic uncertainties in the measurement.

The following selection criteria are common to the Kπµµ and K3π event selections.

• Each STRAW track is assigned a time computed as a weighted average of the associ-
ated CHOD hodoscope signals. The weights are obtained from the time resolutions
of the CHOD hodoscopes. Triplets of STRAW tracks compatible with a common
origin in the FV are combined into three-track vertices. Vertex time is defined as the
weighted average of the times of CHOD signals associated with the vertex tracks.

• Exactly one three-track vertex with the following properties is required to be present:
total charge q = 1, time within 6 ns of the trigger time, Z position between 110 m
and 180 m from the target, total momentum compatible with the mean beam mo-
mentum within 2.5GeV/c, total transverse momentum with respect to the beam axis
below 30MeV/c, and vertex distance from the beam axis below 5 cm. The beam
axis and momentum are monitored throughout the data taking with fully recon-
structed K3π decays. Only the three tracks forming the chosen vertex are considered
in the following.

• All track times must be within 12 ns of the vertex time, and the vertex time is
required to be within 6 ns of a KTAG kaon signal.

• The tracks must be within the geometrical acceptance of all STRAW chambers, and
extrapolate to lie within the CHOD, LKr, and MUV3 acceptances.

• The track momenta should exceed 10GeV/c to ensure track reconstruction efficiency
above 90%. The angles between each track and the beam axis must be smaller
than 9 mrad to reduce background to the Kπµµ sample from K3π decays followed by
π± → µ±ν decays.
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• The spatial separation between each pair of vertex tracks must be at least 15 mm
in the plane of the first STRAW chamber and 200 mm in the LKr front plane to
suppress photon conversions and the overlap of energy deposits.

The following particle identification criteria are employed.
• A track is identified as a charged pion if it has no spatially associated MUV3 signals

within 10 ns of the vertex time, and the ratio of the associated LKr cluster energy to
the track momentum is E/p < 0.9.

• A track with E/p < 0.2 is identified as a muon if it has a spatially associated MUV3
signal in an outer tile within 6 ns of both the vertex and the trigger times.

The following criteria are specific to the Kπµµ event selection.
• Only vertices with tracks identified as π+µ+µ− are considered.

• To reduce the background from K3π decays occurring upstream of the FV, the track
identified as a π+ is extrapolated backward to the COL plane, taking into account
the TRIM5 magnetic field. The extrapolated position is required to lie outside a
rectangle defined by |X| < 40 mm and |Y | < 25 mm.

• Further K3π background suppression is achieved by requiring the momenta of both
muon tracks to be below 45GeV/c.

• The invariant mass m(πµµ) of the three selected tracks is reconstructed with a
1.1MeV/c2 resolution and must be within 8MeV/c2 of the nominalK+ massmK [22].

The following criteria are specific to the K3π event selection.
• In order to minimize differences between the signal and normalization selections, only

one positive track, chosen at random, is required to be identified as a π+.

• The identified π+ track extrapolated to the COL plane must satisfy the same require-
ments as the π+ in the Kπµµ selection.

• The invariant mass m(3π) of the three selected tracks is reconstructed with a
0.8MeV/c2 resolution and must be within 8MeV/c2 of mK .

For both selections, simulated events are required to be accepted by a set of software
algorithms emulating the conditions employed in the online trigger system.

3 Signal and normalization samples

The reconstructed mass spectra of the data and simulated events passing the signal and
normalization event selections are shown in figure 2. The selected K3π data sample, con-
taminated by background decays to a negligible level of 10−6, is used together with the
simulated K3π events with inner bremsstrahlung included [23], to obtain the effective num-
ber of kaon decays in the FV

NK = 1
A3π · B3π

·
∑
i

N i
3π ·Di

MT
Di

2µMT
= (3.48± 0.09syst ± 0.02ext)× 1012, (3.1)
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Figure 2. Top: reconstructed mass distributions of events satisfying the signal (left) and normal-
ization (right) selections. The arrows indicate the selected mass regions. The contribution from the
simulated Kπµµ decays is scaled according to the PDG branching fraction [22]. Bottom: ratios of
data and simulated spectra for signal (left) and normalization (right).

where the index i runs over data taking periods defined by constant trigger downscaling
factors, N i

3π are the numbers of K3π events selected with the MT trigger with downscaling
factor Di

MT, Di
2µMT are the downscaling factors of the 2µMT trigger, and A3π = (6.58 ±

0.16)% and B3π = (5.583±0.024)% are the acceptance (obtained from simulation) and the
branching fraction [22] of the K3π decay, respectively. The statistical errors in A3π and
NK are negligible, while the systematic uncertainties are dominated by the accuracy of
the CHOD detector efficiency in the simulation. The external error on NK stems from the
uncertainty on the K3π branching fraction.

Them(πµµ) signal region contains 27679 data events with a background contamination
of about 8 events, estimated from simulation.

4 Interpretation of the data

4.1 Decay width and form factor parameterization

The one-photon-inclusive Kπµµ differential decay width expressed in terms of the normal-
ized µ+µ− invariant mass squared z = m2(µ+µ−)/m2

K reads [2–4, 24]

dΓ(z)
dz = dΓ3-body(z)

dz + dΓ4-body(z)
dz = g(z) · |W (z)|2 + dΓ4-body(z)

dz , (4.1)
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where (2mµ/mK)2 < z < (1 −mπ/mK)2, W (z) is the form factor of the K+ → π+µ+µ−

transition, and g(z) is a function describing the decay kinematics [3] and including next-
to-leading order electromagnetic effects in terms of radiative corrections. While the µ+µ−

interactions are fully taken into account by virtual and bremsstrahlung corrections for
the lepton and meson contributions, discussed in [4] and extended beyond the soft-photon
approximation, the semi-classical Coulomb corrections, summarized for example in [25],
are applied to the π+µ+ and π+µ− pairs. These last corrections have opposite sign and
the same average magnitude; their combined effect on the results of the present analysis is
found to be negligible. The hard-photon 4-body (K+ → π+µ+µ−γ) part of the phase-space
is separated from the soft-photon 3-body (K+ → π+µ+µ−) part by the condition (Pπ +
Pγ)2−m2

π > 100MeV2, where Pπ and Pγ are 4-momenta of the π+ and γ, respectively. The
cutoff value is optimized with respect to the experimental resolution. The resulting ratio
of the 4-body to 3-body integrated decay widths is (1.64± 0.02)%, where the uncertainty
comes mainly from the accuracy of the theoretical description dΓ4-body(z)/dz of the 4-body
decay [24]. In the present analysis, the 4-body decay width, depending non-trivially on the
form factor, is approximated by a unique function displayed in figure 3-left. Effects of this
approximation are treated as systematic uncertainties.

The Chiral Perturbation Theory parameterization ofW (z) at O(p6), introduced in [2],
is used in the present paper:

W (z) = GFm
2
K(a+ + b+z) +W ππ(z), (4.2)

where a+ and b+ are real parameters, and W ππ(z) is a complex function describing the
contribution from a two-pion loop. The termW ππ(z) depends on additional real parameters
α+ and β+; the values α+ = (−20.40± 0.18)× 10−8 and β+ = (−2.05± 0.06)× 10−8 [26]
are used.

4.2 Measurement of the model-independent branching fraction and form factor

The selected Kπµµ signal sample with negligible background contamination is distributed
in 50 equipopulated bins in z with widths ranging from 0.004 for z ≈ 0.25 to 0.066 for
the last bin. The resolution in z increases linearly from zero to 0.0035 within the allowed
kinematic range, and is always several times smaller than the corresponding bin width.

The reconstructed differential decay width, shown in figure 3-left, is given by(dΓ(z)
dz

)
i

= Nπµµ,i

Aπµµ,i
· 1

∆zi
· 1
NK
· ~
τK
, (4.3)

where for each bin i: Nπµµ,i is the number of Kπµµ signal candidates, ∆zi is the bin width,
Aπµµ,i is the signal selection acceptance of the Kπµµ decay (obtained from simulation,
and equal to zero at both kinematic bounds of z while reaching the maximum of 12.5%
around z = 0.2, see also figure 4-left), NK is the effective number of kaon decays in
the FV collected by the 2µMT trigger (eq. (3.1)), ~ is the reduced Planck constant, and
τK = (1.238± 0.002)× 10−8 s is the mean charged kaon lifetime [22].

The model-independent Kπµµ branching fraction

Bπµµ = (9.15± 0.06stat)× 10−8
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is obtained from the reconstructed binned differential decay width (eq. (4.3), figure 3-left)
by integrating the spectrum over z and multiplying by τK/~.

The Kπµµ data sample is also used to extract the |W (z)|2 form factor (figure 3-right).
The values of the |W (z)|2 function are reconstructed from the differential decay spectrum
(figure 3-left) under the assumption that |W (z)|2 is linear in each bin of z. This assumption
defines the horizontal positions of the data points in figure 3-right, which are different from
the positions in figure 3-left.
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The form factor parameters a+ and b+ best describing the data are determined by a
χ2 fit of the data points shown in figure 3. Fits of dΓ(z)/dz and |W (z)|2 give identical
results. The theoretically-preferred [16] negative solution with both a+ and b+ negative
and χ2/ndf = 45.1/48 (p-value = 0.59) is

a+ = −0.575± 0.012stat, b+ = −0.722± 0.040stat, with correlation ρ(a+, b+) = −0.972.

A second χ2(a+, b+) minimum is found, corresponding to the positive solution: χ2/ndf =
56.4/48 (p-value = 0.19), a+ = 0.373±0.012stat, b+ = 2.017±0.040stat, ρ(a+, b+) = −0.973.
Only the negative solution is considered in the following.

4.3 Forward-backward asymmetry measurement

The forward-backward asymmetry AFB of the Kπµµ decay is defined in terms of the angle
θKµ between the K+ and the µ− three-momenta in the µ+µ− rest frame, as

AFB = N (cos θKµ > 0)−N (cos θKµ < 0)
N (cos θKµ > 0) +N (cos θKµ < 0) , (4.4)

where the numbers of eventsN are obtained after correction for the non-uniform acceptance
in the (cos θKµ, z) plane (figure 4-left). The resulting cos θKµ spectrum of the data events
and the distribution expected from the Standard Model (SM) are displayed in figure 4-right.

The asymmetry is measured to be

AFB = (0.0± 0.7stat)× 10−2

and shows no significant dependence on z. The statistical precision is at the level of the
upper limits on AFB predicted by the Minimal Supersymmetric Standard Model [28] and
by the calculation of the two-photon intermediate state K+ → π+γ∗γ∗ → π+µ+µ− [29].

5 Systematic and external uncertainties

The individual contributions to the total uncertainties are discussed in the following and
listed in table 1.

5.1 Trigger efficiency

The trigger behaviour is emulated with a set of software algorithms applied to simulated
events. The algorithms are tuned and validated on K3π events. The L0 RICH, L0 CHOD,
L0 MUV3 and L1 KTAG trigger efficiencies (equal to 99.8%, 98.2%, 98.9% and 99.8%,
respectively) are found to be independent of the decay kinematics. Data and simula-
tion efficiencies agree within 0.3%. The L1 STRAW trigger efficiency is 94.7% and varies
as a function of decay kinematics within O(1%). Data and simulation efficiencies agree
within 0.5%.

The similarity of the MT and 2µMT trigger lines results in substantial cancellation of
trigger-related systematic effects. The residual systematic uncertainties are estimated by
either disabling the software trigger emulators in simulation (in the case of the L0 RICH
and L0 CHOD conditions), or replacing them with simplified emulators (L0 MUV3, L1
KTAG, L1 STRAW).
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5.2 Reconstruction and particle identification

The similarity of the signal and normalization selections allows for significant cancellation of
most systematic effects coming from reconstruction and particle identification efficiencies.

Systematic uncertainties arising from differences between event reconstruction efficien-
cies in data and simulation are dominated by the three-track event reconstruction in the
STRAW spectrometer. A dedicated K3π event selection, relying on a reconstructed kaon
track in the GTK and two pion tracks in the STRAW, is used to measure the efficiency of
reconstructing the third pion track. The average measured efficiency is 84% and depends
on the decay kinematics. The observed differences of up to 2% between the efficiencies in
data and simulation are considered in evaluating the systematic effects resulting from the
STRAW track reconstruction efficiency.

The CHOD and MUV3 reconstruction efficiencies are above 99%, with no more than
0.6% difference between data and simulation.

The differences between data and simulation in the hadronic shower development and
energy reconstruction in the LKr are another source of systematic uncertainty. No signifi-
cant difference is observed in the efficiency of the muon identification. The efficiency of the
pion identification measured on data is 99%. The agreement between data and simulation
varies with pion momentum within 1%. Residual effects due to different Kπµµ and K3π
pion kinematics are treated as systematic uncertainties.

5.3 Beam and accidental activity simulation

Systematic uncertainties stemming from the quality of the simulation of the beam momen-
tum spectrum and intensity profile, and from the accuracy of the simulation of the halo
muons accompanying the beam, are combined into a single systematic uncertainty. The
selected normalization sample of K3π events is used for the beam momentum and intensity
studies. The halo muons are selected from out-of-time STRAW tracks that have associated
signals in MUV3 and are not compatible with originating from decays in the FV.

5.4 Background

The number of background events is estimated using simulation to be 7.8± 5.6, where the
error comes from the limited statistics of simulated background decays. The background
arises mainly from the K3π contribution with two π± → µ±ν decays in flight. More details
on the methods employed in the K3π background estimation can be found in [30].

Systematic uncertainties from the background contamination are estimated conserva-
tively as differences between the results obtained with background neglected and back-
ground subtracted.

5.5 External uncertainties

External uncertainties in the measured quantities originate from the K3π branching frac-
tion [22], from the accuracy of the radiative corrections to the Kπµµ decay, including the
numerical approximation of dΓ4-body/dz, and from the pion loop term parameters α+ and
β+ [26].
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δa+ δb+ δBπµµ × 108 δAFB × 102

Statistical uncertainty 0.012 0.040 0.06 0.7
Trigger efficiency 0.002 0.008 0.02 0.1
Reconstruction and particle identification 0.002 0.007 0.02 0.1
Size of the simulated Kπµµ sample 0.002 0.007 0.01 0.1
Beam and accidental activity simulation 0.001 0.002 0.01 —
Background 0.001 0.001 — —
Total systematic uncertainty 0.003 0.013 0.03 0.2
K3π branching fraction 0.001 0.003 0.04 —
Kπµµ radiative corrections 0.003 0.009 0.01 0.2
Parameters α+ and β+ 0.001 0.006 — —
Total external uncertainty 0.003 0.011 0.04 0.2
Total uncertainty 0.013 0.043 0.08 0.7

Table 1. Summary of uncertainties.

6 Comparison with earlier measurements

A comparison of the present results with those from previous measurements by E787, E865,
HyperCP and NA48/2 is shown in figure 5, table 2, and table 3.

Note that the NA48/2 measurement [11], until now the most precise, used a different
K3π branching fraction [31], and did not simulate the inner bremsstrahlung radiation of
K3π decays. Implementing these conditions in the NA62 analysis has minor impact on the
results, which would change by δa+ = −0.001, δb+ = −0.002, and δBπµµ = +0.03× 10−8.

Furthermore, the analysis by NA48/2 did not simulate inclusive radiative corrections
and the 4-body radiative decayK+ → π+µ+µ−γ in theKπµµ sample, but implemented only
the soft-photon Coulomb corrections for all pairs of theKπµµ decay products. Adopting this
approach changes the NA62 results by δa+ = −0.006, δb+ = +0.034, and δBπµµ = −0.06×
10−8, where the 0.7% relative change in the branching fraction comes from the increase of
the signal acceptance measured with the 3-body simulatedKπµµ sample including Coulomb
corrections.

In addition, previous experiments employed values of α+ = −20.6 × 10−8 and β+ =
−2.8 × 10−8, taken from [2]. Using these values instead of the revised ones (α+ =
−20.40×10−8, β+ = −2.05×10−8 [26]), the NA62 results would change1 by δa+ = −0.011,
δb+ = +0.026.

7 Summary

A sample of 27679 Kπµµ candidates with negligible background contamination was collected
by the NA62 experiment in 2017–2018. The size of the Kπµµ data sample is the main factor
limiting the precision of the present analysis.

1The measured slopes are δa+/δα+ = +0.004×108, δb+/δα+ = −0.029×108, δa+/δβ+ = +0.013×108,
and δb+/δβ+ = −0.027 × 108.
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Figure 5. Comparison with earlier measurements. Left: the Kπµµ branching fraction, with the
PDG [22] average shown as a shaded band. Right: combined statistical and systematic 68% CL
contours in the (a+, b+) plane for the muon and electron modes. The NA48/2 value of ρ(a+, b+) for
the electron mode is used to construct the E865 contour, as E865 [14] does not quote the correlation.
The systematic uncertainties in a+ and b+ are not provided by E865 [14].

Measurement Kπµµ candidates Bπµµ × 108

E787 [8] 207 5.0 ± 0.4stat ± 0.7syst ± 0.6ext = 5.0 ± 1.0
E865 [9] 430 9.22± 0.60stat ± 0.49syst = 9.22± 0.77
HyperCP [10] 110 9.8 ± 1.0stat ± 0.5syst = 9.8 ± 1.1
NA48/2 [11] 3120 9.62± 0.21stat ± 0.11syst ± 0.07ext = 9.62± 0.25
NA62, this result 27679 9.15± 0.06stat ± 0.03syst ± 0.04ext = 9.15± 0.08

Table 2. Comparison with the previous measurements of the Kπµµ branching fraction.

Measurement Signal candidates a+ b+ ρ(a+, b+)
E865, Kπee [14] 10300 −0.587± 0.010 −0.655± 0.044 —
NA48/2, Kπee [15] 7253 −0.578± 0.016 −0.779± 0.066 −0.913
NA48/2, Kπµµ [11] 3120 −0.575± 0.039 −0.813± 0.145 −0.976
NA62, Kπµµ, this result 27679 −0.575± 0.013 −0.722± 0.043 −0.972

Table 3. Comparison with the previous measurements of the K± → π±`+`− form factor param-
eters. The E865 Kπee measurement [14] does not provide the systematic uncertainties, nor the
correlation coefficient of the form factor parameters.

TheKπµµ model-independent branching fraction is measured to be (9.15±0.08)×10−8,
consistent with previous measurements and at least a factor of three more precise.

The form factor parameters in the framework of the Chiral Perturbation Theory at
O(p6) are measured as a+ = −0.575 ± 0.013, b+ = −0.722 ± 0.043. Values and statistical
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errors of parameters in any other form factor model can be obtained from the reconstructed
values of the |W (z)|2 function. The present measurement is the first to employ inclusive
radiative corrections in the simulation of the signal channel. The form factor parameters
are consistent with those measured by NA48/2, as well as with the results obtained in the
electron mode by other experiments, suggesting agreement with lepton flavour universality
in the Kπ`` decays.

The forward-backward asymmetry of the Kπµµ decay is measured to be AFB = (0.0±
0.7)× 10−2, a factor of 2.6 improvement in the precision with respect to NA48/2. The ex-
perimental precision reaches the level of the upper limits on AFB predicted by the Minimal
Supersymmetric Standard Model and by the calculation of the two-photon intermediate
state K+ → π+γ∗γ∗ → π+µ+µ−.
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