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ABSTRACT
This study aimed to explore the influence of flight altitude, density, and distribution of ground 
control points (GCPs) on the digital terrain model (DTM) in surveys conducted by unmanned aerial 
vehicles (UAVs). A total of 144 photogrammetric projects consisting of 399 aerial photos were 
carried out in a 2 ha area. These photogrammetric projects involved six GCP distributions (edge, 
center, diagonal, parallel, stratified, and random), six GCP densities, and four flight altitudes (30, 60, 
90, and 120 m). The response surface methodology was used to find interference factors and total 
root-mean-square error (RMSEt) as well. The 60 m flight altitude presented was the most efficient. 
Central GCP distribution was observed to have low precision. Using stratified and random edge 
distributions, 10 GCPs are recommended to achieve geometric precision below 0.07 m at any flight 
height. However, for studies requiring up to 0.07 m precision, the best distribution was parallel with 
4 GCPs at any altitude. Diagonal positioning of the GCPs showed RMSEt values below 0.11 m with 4 
GCPs at any altitude. A good distribution of GCPs was found to be important, but the density of 
GCPs per image was more relevant when obtaining a lower RMSEt.
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Introduction

Precision agriculture is a useful model in the manage-
ment of natural resources and improvement of modern 
agriculture. (Far & Rezaei-Moghaddam, 2018; Orozco & 
Ramírez, 2016). Among precision agriculture techniques, 
aerial remote sensing presents new methods of research 
and work optimization, capturing terrestrial features 
using unmanned aerial vehicles (UAVs). Some applica-
tions of UAVs in agriculture were presented in studies of 
variables related to nitrogen in corn (Corti et al., 2019), 
the evaluation of water stress in agriculture (Gago et al., 
2015), and precision agriculture (Mogili & Deepak, 
2018).

Image collection using UAVs and their photogram-
metric applications offers the possibility to observe 
agricultural fields from a different point of view. 
Therefore, it is possible to observe some field aspects 
that are relatively invisible when monitored from the 
ground (Candiago et al., 2015; Polo et al., 2015; 
Rodríguez-Fernández et al., 2017). In addition, 
UAVs offer other advantages, such as flexibility in 
collecting images, improved spatial resolution, and 
control over temporal resolution.

With the advent and popularization of UAVs for 
agricultural applications, photogrammetry has garnered 
interest and become one of the most modern technolo-
gies in crop management. However, it should be 

considered that the orthomosaic generated by aerial 
images presents geometric errors, which can be attenu-
ated according to the terrain slope, image overlap, crop 
type, and flight altitude. Parameters such as image over-
lap and flight altitude are considered essential to optimize 
UAV flight missions. Variations in flight altitude are 
required in order to fly efficiently and faster.

Flight time is considered an important parameter to 
define flight plans, in some cases even compromising the 
study. One of the restrictions of aerial sensing using 
UAVs is the flight range (Traub, 2011). Aside from the 
work described in Ma et al. (2013), Deery et al. (2014) 
and Erdelj, Saif, Natalizio et al. (2019) explained that 
electric UAVs are unable to operate for long periods 
due to limited battery capacity. Commercial rotary wing- 
type UAVs typically achieve 25–30 min flights, thereby 
limiting continuous operation and large-scale coverage.

The general objective of photogrammetry is to 
represent characteristics of a surface with reliability 
in terms of precision and accuracy. (Daakir, Pierrot- 
Deseilligny, Bosser et al., 2017; Jalandoni et al., 2018). 
Photogrammetric reconstruction can be performed 
using software that applies structure from motion 
(SfM) algorithms (Izumida et al., 2017).

Among the photogrammetric techniques based on 
images, structure from motion (SfM) is one of the 
most used (Rahaman & Champion, 2019). With 2D 
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images, epipolar geometry is estimated with resource 
matching algorithms, for example, the SIFT scale- 
invariant feature transform (SIFT) algorithm (Ding. 
et al., 2018). This technique can be used to estimate 
external orientation on images and 3D object geome-
try reconstruction (Brandolini & Patrucco, 2019). 
Some approaches in the literature emphasize the capa-
city of SfM in the generation of digital elevation mod-
els (DEMs) (Castillo et al., 2012).

On the other hand, research indicated that there 
may be systematic deformations in UAV images 
(Rosnell & Honkavaara, 2012). In UAV applications, 
cameras generally capture images vertically and move 
parallel to the floor. Near-parallel imaging conditions 
and inaccurate self-calibration of unknown radial dis-
tortion can produce distorted reconstruction results 
(Li et al., 2016). These errors are known as a central 
domain (doming effect) and interfere with the geo-
metric quality of the orthomosaic (Javernick et al., 
2014). The doming effect is a fundamental problem 
of digital surface model (DSM) generation by SfM 
analysis associated with sets of almost parallel images 
and inaccurate correction of radial distortion of the 
lens (James & Robson, 2014).

There are two paths to achieving high precision in 
aerial surveys, i.e., aircraft equipped with real-time kine-
matic (RTK) systems or ground control points (GCPs) 
(Chiang et al., 2012; Tsai & Lin, 2017). GCPs can be 
obtained using a topographic or geodetic survey of 
points, for example, by using a total station or a pair of 
high-precision global navigation satellite system (GNSS) 
receivers. This method can support the georeferencing of 
data and geometric correction of images captured by 
UAVs, which are characterized as clearly visible reference 
targets in aerial images (Agüera-Vega, Carvajal-Ramirez, 
Martínez-Carricondo et al., 2018).

Studies such as those performed by Brunier et al. 
(2016) with real-time kinematic differential GPS 
(RTK-DGPS) and a total station generally prove to 
be of high precision and accuracy. However, this 
method requires a high spatial density of points to 
construct the digital elevation model (DEM); there-
fore, this type of work requires time, which increases 
the cost of the project. Ribeiro-Gomes et al. (2016) 
reported that the manual tasks needed to generate 
geometric products control the price of projects. 
Tasks such as walking in a field to collect points can 
slow a survey and require more than one operational 
professional, making the project more expensive.

The tracking system in a UAV consists of a GNSS 
receiver that provides its absolute location in the 
SIRGAS 2000 system. Because it is a navigation recei-
ver, it produces a minimum error, in the order of 
meters (Zhang & Hsu, 2018). Errors in the range of 
meters are expected in GNSS receivers that collect only 
L1 data frequency. Differential GNSS (DGNSS) sys-
tems receive signals via two antennae of L1 and L2 

frequency, thus collecting data from more satellites, 
increasing the number of triangulations, and improv-
ing precision and accuracy (Pervan et al., 2003).

Although control points bring geometric quality to 
the orthomosaic, some GCP investigations remain 
somewhat controversial, causing few studies to use 
this technique. In some cases, incorrect distribution 
and quantity of GCPs are used, i.e., the same precision 
could be achieved with a reduced number of points 
combined with adequate flight planning taking into 
consideration the photo scale, camera calibration, and 
flight project specification. Few studies in the litera-
ture correlate the influence of UAV flight altitude and 
the distribution and density of GCPs.

The time required for fieldwork is significantly 
optimized by the reduction of the number of GCPs 
(Eisenbeiss & Sauerbier, 2011). To increase the relia-
bility of some variables such as flight efficiency and 
geometric precision in the orthomosaic it is essential 
to know the GCP distribution associated with the 
flight parameters. An efficient flight captures more 
images in less flight time maintaining acceptable geo-
metric errors; this could decrease fieldwork time and 
accelerate project execution.

Therefore, this study aimed to evaluate the influ-
ence of the density of GCPs allocated in different 
distributions and submitted to different flight altitudes 
to assess the geometric precision, flight efficiency, and 
number of images in surveys conducted by UAVs.

Materials and methods

The methodology used in this work involves data 
collection steps via UAV and GNNS receivers, data 
processing, and interpretation of results. The pro-
cesses of obtaining results are shown in flowchart 
form (Figure 1) and detailed in the following sections.

Study area

The study was conducted in an experimental area 
consisting of coffee crops at the Federal University of 
Lavras (UFLA) (Figure 2), located in the municipality 
of Lavras, state of Minas Gerais, Brazil, covering an 
area of 2 ha with the geographical coordinates 21° 
13ʹ33.23” south and 44°58ʹ17.63” west.

Acquisition of georeferenced data

The equipment used for data collection in the field is 
presented in Figure 3. In this area, 43 GCPs, pre- 
defined in a grid with 25 × 25 m intersections, were 
georeferenced with high precision and fixed in the 
field. The points were accurately obtained with an 
error of less than 0.03 m using a pair (base and 
rover) of GNSS antennas (Figure 3A), Spectra 
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Precision model SP60, operating in a real-time kine-
matic model (RTK).

To characterize and identify the GCPs, 0.3 × 0.3 m 
targets as shown in Figure 3C were placed at each 
tracked point obtained through the GNSS receivers. 
These GCPs were used to georeference the images 
obtained by the UAV.

EZSurv software and a digital platform of the 
Brazilian Institute of Geography and Statistics (IBGE) 

were used in order to process the collected points. This 
process consisted of transforming signals received 
between satellites and GNSS equipment into coor-
dinates. To improve precision, the geographic coor-
dinates (X, Y, and Z) from the RTK base were sent 
to the IBGE and adjusted by precise point position-
ing (PPP). Table 1 presents coordinates processed 
in the system of PPP. This positioning method 
applies an orbit and clock correction in the GNSS. 

Figure 1. Flowchart of methodological processes.

Figure 2. Location of the study area. A) The positions of ground control points (GCPs) tracked through global navigation satellite 
system GNSS and detail of the plate representing a GCP. b) Digital terrain model (DTM).
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Its main benefit concerning differential positioning 
techniques is its ability to provide a position within 
a global reference frame anywhere in the world 
with a single GNSS receiver (Grinter & Roberts, 
2011).

The coordinates obtained with the GNSS in rover 
mode were processed after processing the base coor-
dinates, as shown in Figure 4. At this stage, the data 
between the GNSS base and GNSS rover were aligned 
in order to adjust the collected data precision. EZSurv 

Figure 3. A) GNSS receiver; b) unmanned aerial vehicle (UAV); c) 0.30 × 0.30 m GCP.

Table 1. IBGE platform post-processing GNSS (BASE) data.
Latitude (gms) Longitude (gms) Alt. Geo. (m) UTM N (m) UTM E (m)

Sirgas 2000 −21° 13´ 35,2339˝ −44° 58´ 15,5406˝ 937,81 7,652,789,482 503,011,078
Survey* −21° 13´ 35,2269˝ −44° 58´ 15,5423˝ 937,81 7,652,789,697 503,011,03
Sigma (95%) 0,004 0,008 0,009
Model Geoidal MAPGEO2015
Ondul. Geoidal (m) −3,97
Alt. Ortométrica (m) 941,78
Central meridian −45

Figure 4. GNSS (Rover) geometric coefficients measurements obtained by coordinate adjustment. a) Vertical precision (m); b) 
horizontal precision (m); c) ellipsoidal distance (m).

62 L. SANTOS SANTANA ET AL.



eliminated faulty incoming signals to achieve greater 
precision.

Acquisition of photogrammetric data

The aerial images were obtained with a DJI Phantom 4 
Advanced aircraft as shown in Figure 3B, with the 
following characteristics: weight, 1,388 g; size, 
350 mm; maximum speed, 72 km/h; maximum angle 
of inclination, 42°; maximum flight time, 30 min. The 
GPS/GLONASS positioning system was equipped, by 
default, with a 1 inch CMOS sensor to capture video 
(up to 4,096 × 2,160 p at 60 fps) and photos up to 
20 megapixels.

With the targets positioned at the tracking sites, the 
flight missions began. The planning was performed 
using the free software Drone Deploy installed on an 
Android 6.0 system. The flight plan was defined 
according to the following characteristics: speed, 
3 m/s; front and side overlap, 60% × 80%, respectively; 
flight direction bearing, 50°; area, 2 hectares. The same 
mission was applied to the different altitudes of 30, 60, 
90, and 120 meters.

Six different CGP distributions were defined: ran-
dom, edge, center, diagonal, parallel, and stratified, as 

shown in Figure 5. The distributions were combined 
with variations in GCP density and different flight 
altitudes, forming a final combination that evaluated 
six distributions of 4, 5, 8, 10, 14, and 20 GCPs and 
flight altitudes of 30, 60, 90, and 120 m, totaling 399 
aerial photos and 144 photogrammetric projects.

Processing of Photogrammetric Data
Photogrammetric processing was performed using 

Agisoft PhotoScan software, version 1.4.3. According 
to Sona et al. (2014), this software, which is based on 
an SfM algorithm, is superior to others in terms of 
precision. It uses multiple camera views to increase 
photogrammetric data accuracy, not so different from 
aerial or terrestrial LiDAR. It can provide three- 
dimensional points and produces a reliable data set 
to create dense point clouds. The input photographs 
can then be mosaicked and orthorectified to create the 
DEM by converting the point clouds into vector mesh 
or raster digital elevation models (DEMs) (Dietrich, 
2016).

The methodology adopted by Flynn and Chapra 
(2014) and Rusnák et al. (2018) was used to generate 
the orthomosaic in six steps. In step 1, the alignment 
of the images was performed using the photo- 
triangulation process and generation of a sparse 

Figure 5. GCPs combination where the x-axis represents the GCPs density and the y-axis represents the GCPs distribution.
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point cloud, which defined the coordinate system of 
the terrain. In step 2, the sparse point cloud generated 
in the previous step was densified for a more detailed 
representation of the mapped area and was also refer-
enced the SIRGAS 2000 Zone 23S local coordinate 
system. In step 3, a model was built that accurately 
represented the three-dimensional mapped terrain. 
Thus, it was possible to represent the digital surface 
model (DSM), and, after filtering the point cloud of 
the soil, it was possible to visualize the digital terrain 
model (DTM). In step 4, the texture was applied to the 
model obtained in the previous step to improve the 
visual appearance and distinction between objects. 
Step 5 consisted of the creation of the DEM. The 
generated products were two-dimensional raster for-
mat representations of the DSM and DTM. Lastly, the 
orthomosaic was generated in step 6.

Precision assessment

The process of geometric correction in images using 
GCPs consisted of a two-dimensional transformation, 
in which the coordinates collected in the pixel were 
replaced with the coordinates of the points obtained 
by receivers (GNSS) in the field (Tawfeik et al., 2016).

The orthomosaics for the altitudes of 30, 60, 90, and 
120 m were georeferenced by PhotoScan 1.4.3. In this 
phase, the processed points obtained by the GNSS 
were exported in a txt file and later loaded into the 
PhotoScan program, thereby allocating GCPs at each 
georeferenced target position, so there was 
a combination of images with the same coordinate 
system. In this process, unfocused images or poorly 
positioned images in the photogrammetric alignment 
were relocated with greater precision, and differences 
are presented as root-mean-square error (RMSE).

RMSE is commonly used to express numerical accu-
racy results. It has the advantage of presenting values of 
errors in some dimensions of the analyzed variable 
(Hallak & Pereira Filho, 2011). It was considered an 
accuracy check to generate the RMSE data. This 
approach consists of validating the adjusted coordinates 
using independent georeferenced points. Each indepen-
dent coordinate served as support to the studied GCP. 
The values used to calculate the total root-mean-square 
error (RMSEt) were the summation of the RMSE coor-
dinate axis (X, Y, and Z), obtained by PhotoScan, and 
the calculation is performed using Equation 1. 

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðXOi � XGNSSiÞ
2
þ ðYOi � YGNSSiÞ

2
þ ðZOi � ZGNSSiÞ

2
q

n

(1) 

where n is the number of GCPs; XOi, YOi, and ZOi are 
the X, Y, and Z coordinates that were respectively 

measured in the DEM; and XGNSSi, YGNSSi, and 
ZGNSSi are the X, Y, and Z coordinates that were 
respectively measured with the GNSS in the field.

The RMSEt value was used to compare all 144 
photogrammetric projects obtained from 399 aerial 
photos in this study.

Statistical analysis

A response surface was obtained to represent the 
experimental data statistically using OriginPro 17 soft-
ware. Response surface methodology (RSM) is one of 
the most widely used multivariate techniques to opti-
mize processes (Nasri & Mozafari, 2018; Ronix et al., 
2017). Based on the adaptation of a polynomial model 
to the experimental data, it is possible to predict the 
responses for all possible combinations of factors 
within a chosen experimental group (Bezerra et al., 
2008), thereby determining a regression model to 
optimize an output variable, which is influenced by 
independent variables (Behera et al., 2018).

The values of the response variable (error) were 
plotted according to the sources of variation (altitude 
and density of points) on a three-dimensional graph of 
X (number of points in each distribution), Y (flight 
altitude), and Z (RMSEt). Then, a response surface 
was calculated to better represent each “position”, as 
well as the surface equation and its respective correla-
tion values.

Results and discussion

The results of the initial post-flight parameters based 
on the different flight altitudes are provided in Table 2. 
For altitudes of 30 to 120 meters, the flight time ranged 
from 2 to 12 min. However, between the altitudes of 
60, 90, and 120 m, the variation was only 2 min.

The existence of a linear correlation between flight 
altitude, number of images, and spatial resolution is 
shown in Table 2, confirming that the higher the 
number of images collected, the better the spatial 
resolution results. This phenomenon, which was 
observed by Mesas-Carrascosa et al. (2016) revealed 
that spatial resolution was directly related to flight 
altitude and could be predefined to achieve greater 
detail in orthomosaic images.

As presented in Table 2, the 60 m flight exhibited 
the highest efficiency among the altitudes assessed, 
collecting 86 images in 4 min. When compared to 
the other flights, this altitude exhibited significantly 

Table 2. Flight parameters and initial mission results.
Altitude Number of images Flight time (min) cm/pixel

30 242 12 0.68
60 86 4 1.44
90 44 3 2.26
120 27 2 2.94
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interesting values regarding flight time, number of 
images, and spatial resolution. This superior perfor-
mance may be related to the focal length of the sensor, 
the size of the analyzed area, and the flying height, 
thereby promoting the best use of complete images.

Perroy et al. (2017) revealed the importance of 
flight altitude on the identification of species of trees 
in a forest compared to field sampling, concluding that 
as a flight reached higher altitudes, the possibility of 
correct identification decreased. In 2016, Quirós and 
Khot developed research relating flight altitude to the 
precision of counting plants in nurseries, highlighting 
the importance of flight altitude in the quality of the 
images and pointing out that above 40 m altitude, 
considerable errors were present in the plant counting 
results.

When observing the error presented by the differ-
ent distributions studied (distribution of GCPs and 
flight altitude) (Figure 6), the low interference of flight 
altitude concerning georeferencing errors is evident. 
This analysis made it possible to identify the distribu-
tion that least met the proposed objectives. Figure 6 
shows that the central distribution differed from the 
others, displaying errors of up to 0.12 m with the 30 m 
flight, which was above the mean of residual errors 
found in the other distributions.

It is also possible to see in Figure 6 the low perfor-
mance of the center distribution. It is worth mention-
ing that the increase in flight altitude favored the 
decrease of RMSEt for this distribution. This situation 
occurred due to the reduction in the number of 
images, consequently increasing the number of geor-
eferenced points in the orthomosaic. Furthermore, it 
was observed that the increase in flight altitude pro-
motes a reduction in RMSEt. Son et al. (2019) studied 
the flight parameters and GCPs in the geometric qual-
ity of the orthomosaic obtained by a UAV and found 
better values of RMSEt in flight altitudes between 80 
and 150 m.

Opposite results of RMSEt values were found at 
different altitudes without the use of GCPs. Rossi 
et al. (2017) observed that RMSEt errors were caused 
by factors such as flight altitude, lack of oblique 
images, low-cost camera, or higher relief. Given this, 
there are some contradictions for different sensors and 
types of terrain; however, in this study, good relation-
ships were found between flight altitude and GCP 
distribution (Figure 6).

Based on the results presented in Figure 7, the den-
sity of GCPs per hectare could be defined. Between 14 
and 20 GCPs, a low variation in RMSEt values was 
verified. It was possible to observe that above 14 

Figure 6. Total root-mean-square error (RMSEt) (m) value according to the different distributions of GCPs and different flight 
altitudes.

Figure 7. Variation in RMSEt distribution of flight altitudes for density of GCPs.
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CGPs, the RMSEt values reduced by only 2 mm. The 
stability between 14 and 20 points in this study area was 
verified, and millimeter differences were observed in 
this interval. According to these observations, it was 
determined that no more than 14 GCPs were needed 
for any distribution studied in this work; therefore, it 
was possible to define a maximum of seven GCPs per 
hectare in fieldwork for flights above 30 meters. In 
2017, Agüera-Vega, Carvajal-Ramírez, and Martínez- 
Carricond (20)o showed that horizontal and vertical 
precision improved as the density of GCPs increased 
and also found a limit of GCPs where the RMESt values 
were shown to stabilize.

Based on the results presented in Table 3, the 
desired precision may be inferred for any distribution 
between altitudes of 30 to 120 m, with GCPs varying 
between 4 and 20 points. RMSEt values can be esti-
mated before executing a flight mission through mul-
tiple nonlinear regression (Equation 2), where Z is the 
desired RMSEt. Thus, the values of the parameters 
shown in Table 3 added in Equation 2 are represented 
in Figure 8 where X is the quantity of GCPs and 
Y represents the flight height. 

Z ¼ Const þ x þ yþ xyþ x2 þ y2 þ x2yþ y2xþ x3

þ y3

(2) 

The correlation coefficient values (R2) range between 
0.72 and 0.86, thereby demonstrating the reliability of 
the presented calculations.

Figure 8 shows the interactions between the inde-
pendent variables, flight altitude, and density of GCPs, 
where the low RMSEt values are represented by cold 
colors (blue) and the highest error values are repre-
sented by warm colors (red). The X-axis shows the 
density of points for any distribution stabilized with 14 
GCPs at approximately 7 GCPs per hectare, thereby 
validating the information presented in Figure 7.

Figure 8 shows that the results related to flight 
altitude for the diagonal and edge distributions 
behaved similarly. As shown in Figure 5, the diagonal 
distribution covered much of the border regions, thus 

providing similar characteristics to the graph pre-
sented in Figure 8.

As shown in the surface response graphs in Figure 
8, the distribution of points in the central region of the 
area resulted in the highest RMSEt values, with the 
error reaching 20 cm in the 30 m flight altitude.

When compared to the 60, 90, and 120 m flight 
altitudes, this error tended to decrease because, at 
higher altitudes, the sensor collected fewer images 
(Table 2), which increased the density of points per 
image and improved adjustments via GCPs.

As seen in Figure 8, the best RMSEt results were 
expressed in the parallel distribution, possibly because 
this distribution model georeferenced images from the 
center to the edge distribution in a constant manner, 
thus covering a greater number of targets per captured 
image. The response results of the parallel distribution 
behaved in a way that improved the RMSEt by increas-
ing the flight altitude. Figure 8 shows that the RMSEt 
values ranged from 3 to 7 cm, respectively, between 30 
and 120 meters.

This research showed that flight altitude influenced 
RMSEt values, thereby counter-corroborating the 
results of Gómez-Candón, De Castro, & López- 
Granados (2014), who concluded in their research 
that flight altitude was an important parameter to 
consider when acquiring images using an UAV. 
However, they found no differences in the RMSEt 
georeferencing in the orthomosaics created by UAVs 
between 30 and 100 m high.

Figure 8 shows that some distributions presented 
similarity between the graphs. Distributions such as 
diagonal, parallel, and stratified presented smaller 
RMSEt values, potentially because of the distribution 
pattern, i.e., the spacing between each GCP followed 
a uniform alignment for each direction, allowing the 
GCPs to be well distributed in the area. The influence 
of a poor distribution of GCPs was described in the 
research of Sanz-Ablanedo et al. (2018), who demon-
strated that GCPs should be evenly distributed 
throughout the area of interest, ideally in an angular 
grid, because any GCP is minimized with maximum 
distance. These results indicated that, for a given 

Table 3. Calculated values to obtain the RMSEt based on the altitude values (Y) and the density of GCPs (X).
Parameters Random Edge Center Diagonal Stratified Parallel

constant 6.30E-02 1.31E-01 4.74E-01 1.62E-01 1.18E-01 6.54E-03
x −2.61E-02 −3.99E-02 −2.06E-02 −3.82E-02 −2.12E-02 −2.61E-03
y 5.38E-03 3.43E-03 −1.08E-02 1.98E-03 1.62E-03 3.80E-03
x^2 2.29E-03 3.55E-03 −2.58E-04 3.08E-03 1.57E-03 1.62E-04
x*y −1.96E-04 −1.90E-04 2.41E-04 −7.24E-05 −8.90E-05 −4.81E-05
y^2 −5.51E-05 −2.97E-05 1.39E-04 −2.22E-05 −1.25E-05 −5.25E-05
x^3 −5.43E-05 −8.54E-05 2.89E-05 −7.29E-05 −3.27E-05 −3.41E-06
x^2*y −2.59E-07 −8.37E-07 −6.13E-06 −1.31E-06 −1.29E-06 −3.52E-07
x*y^2 1.43E-06 1.40E-06 −1.29E-07 8.02E-07 8.77E-07 4.58E-07
y^3 1.40E-07 4.60E-08 −6.45E-07 4.98E-08 −7.85E-09 2.03E-07
R2 0.86 0.72 0.74 0.79 0.78 0.83
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density of GCPs, the precision obtained using optimal 
distribution would be twice as good as when GCPs 
were poorly distributed.

In the work of Martínez-Carricondo, Martínez- 
Carricondo et al. (2018), the authors suggested that to 
achieve more accurate values in orthomosaic georefer-
encing, GCPs should be distributed along the study area 
border in a stratified manner. However, Figure 8 shows 
a better distribution of the GCPs whereby parallel dis-
tribution was the most suitable for generating smaller 

error, i.e., below 7 cm and with a correlation coefficient 
of R2 = 0.83, potentially due to a more uniform dis-
tribution among the models considered.

The center, edge and random models exhibited 
higher RMSEt results, possibly due to the poor distribu-
tion of the GCPs and fewer points per image. Figure 8 
demonstrates the low performance of the center distri-
bution; at any flight altitude, this type of distribution 
georeferenced fewer images, as the number of points 
were clustered in the middle of the area.

Figure 8. Response surface graphs for each distribution. The x-axis represents the density of GCPs, the y-axis represents the flight 
altitude, and the color variation refers to the total root mean square error (RMSEt).
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Figure 9 shows that as a flight increased in altitude, all 
distributions increased the number of GCPs per images 
because the number of images decreased as flight altitude 
increased (Table 2). Therefore, the greater points density 
per image, the better the geometric precision. For exam-
ple, in the central distribution, which was considered the 
least precise distribution, as the altitude increased the 
number of GCPs increased as well, and the error 
decreased. This is because, in high flight altitudes for 
this distribution, it is possible to observe GCPs in the 
image center and also on the edge of the image. This was 
shown by the 120 m altitude flights.

As noted in Figure 9, the number of points per 
image tended to stabilize above 12 GCPs or six GCPs 
per hectare, or when the flight altitude exceeded 
100 m, thereby corroborating the above discussion 
regarding the number of points per image. In the 
center distribution, as the number of points increased, 
the errors decreased, which caused the additional 
points to reach other images. Considering a spacing 
of 20 m at an altitude of 120 m, the center points may 
have georeferenced the edge images, which did not 
occur at low altitudes such as 30 m.

Mission planning prior to flight execution and field 
checkpoint surveys contribute to the objectivity of the 
work by reducing costs and operating time. In this 
research, the distribution of GCPs in the field and the 
previous adjustment of flight altitude were shown to 
contribute to a reduction in the number of GCPs and 
to achieving the previously defined RMSEt. 
Knowledge of the sensors attached to the aircraft 
enables more efficient missions regarding flight time.

Conclusion

The most efficient altitude was 60 m when considering 
the number of images and flight time. Based on the 
surface response analysis, the central distribution of 

GCPs was observed to have low precision. To achieve 
geometric precision below 0.07 m for stratified and 
random edge distributions, 10 GCPs at any flight 
height are recommended. However, for studies requir-
ing up to 0.07 m precision, the best distribution was 
parallel with four GCPs at any altitude. The diagonal 
positioning of the GCPs showed RMSEt values below 
0.11 m with four GCPs at any altitude. Despite good 
relationships between GCP density and distribution 
for the precision range, the number of image points 
had a greater influence on the georeferencing of the 
orthomosaic.
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