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Abstract: Zebrafish has become an essential model organism in modern biomedical research. Owing
to its distinctive features and high grade of genomic homology with humans, it is increasingly
employed to model diverse neurological disorders, both through genetic and pharmacological in-
tervention. The use of this vertebrate model has recently enhanced research efforts, both in the
optical technology and in the bioengineering fields, aiming at developing novel tools for high spa-
tiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined
with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at
different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and
down to structural features (cellular and subcellular). In this work, we present a review of the
imaging approaches employed to investigate pathophysiological mechanisms underlying functional,
structural, and behavioral alterations of human neurological diseases modeled in zebrafish.

Keywords: zebrafish; functional imaging; behavior; neurological disorders; brain disease models;
epilepsy; Alzheimer’s; Parkinson’s; autism spectrum disorders; myelination

1. Introduction

Neurological disorders nowadays represent the leading cause of disability and the
second cause of mortality worldwide [1]. As a result of population growth and aging, in the
coming decades, the number of people suffering from pathologies affecting the nervous sys-
tem will substantially increase, making research on neurological disorders a social priority.
In this context, the identification of the cellular and molecular pathophysiological processes
underlying the onset and progression of neurological diseases represents a fundamental
goal of research efforts aimed ultimately at the discovery of effective treatments.

In this framework, zebrafish (Danio rerio) has recently emerged as an extremely valu-
able animal model. Besides its well-known features such as external fertilization, small
dimensions, tissue transparency, short generation time and reduced rearing costs that made
this organism so appealing to researchers in the most diverse application fields, zebrafish
exhibit a few other interesting properties that provide unique advantages for basic and
translational neuroscience research. Even though evolutionary history of humans and fish
diverged about 450 million years ago [2], as a vertebrate, zebrafish present a considerable
degree of conservation. Indeed, the zebrafish central nervous system (CNS), albeit originat-
ing from different neuro-morphogenetic processes [3], shares a similar organization with
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that of mammals, showing the same major brain subdivisions—forebrain, midbrain, hind-
brain, and spinal cord. Similarity exists even at the cellular level, where cell types such as
astrocytes [4], motor neurons [5], and cerebellar Purkinje cells [6] are closely related to their
mammalian counterparts. Homologies between zebrafish and humans are not only limited
to neuroanatomical and cytoarchitectonic aspects, but also extend to myelination [7] and
neurochemical pathways. This organism shares the common neurotransmitter pool with
mammals, and those molecules (e.g., glutamate, dopamine, serotonin, acetylcholine, glycin,
GABA, etc.) exert the same biological functions as in humans [8]. In addition, multiple stud-
ies showed a conserved effect of psychoactive drugs commonly acting on human molecular
targets, demonstrating the presence of shared pharmacological pathways, too [9,10]. These
aspects allow many drug treatments commonly adopted in mammals to interfere with
specific molecular targets to be employed in zebrafish to proficiently model phenotypic
features of diverse human pathologies such as epilepsy [11] and Parkinson’s [12] and
Alzheimer’s diseases [13]. Moreover, a decade ago, zebrafish genome sequencing revealed
that more than 80% of genes associated with diseases in humans have an orthologous ver-
sion in zebrafish [14]. This pivotal feature, combined with the ease of genetic manipulation
typical of this animal model, allows for the rapid generation of mutant zebrafish lines
carrying, on orthologous genes, human or de novo mutations associated with a patholog-
ical phenotype. It is thus feasible to model in zebrafish a great number of both common
and rare hereditary pathologies affecting human CNS, such as epilepsies [15–18], familial
Alzheimer’s disease [19], and autism spectrum disorder (ASD) [20,21], to cite just a few.
Furthermore, zebrafish show homologies with humans concerning the behavioral sphere,
too. Starting from a few days after fertilization and continuing through development and
up to the adult stage, this organism is able to perform behaviors of increasing complexity,
such as startle response and predation, to show sophisticated cognitive states, such as fear,
stress and anxiety, and to perform cognitive tasks such as learning and memory recall.
Interestingly, increasing evidence shows that the neural circuits controlling many of these
behaviors and cognitive outputs are conserved across vertebrate classes [22–24], suggesting
that what we investigate in zebrafish can be relevant for our comprehension of related
human circuits and pathological disorders.

What we have described so far, however, are features shared by most vertebrates.
Hence, what makes zebrafish an essential benchmark in today’s neuroscience? What can
be performed in this organism that cannot be performed in humans or other vertebrate
models such as rodents? The main answer to these questions is one: whole-brain real-time
imaging at single-neuron resolution. Indeed, the possibilities glimpsed a few decades ago
in this animal model sparked a massive interdisciplinary effort for the development of
novel optical and biological technologies aiming at performing whole-brain functional and
structural imaging in vivo. The larval zebrafish brain, which is optically transparent, is
not enclosed into a bone skull and is three orders of magnitude smaller than the murine
brain, represents to date the only vertebrate CNS entirely explorable in real time at submi-
cron resolution with state-of-the-art imaging technologies. This fact, combined with the
conserved features described before (from genome to behavior), represents a true game
changer for neuroscience research aiming at unraveling the pathophysiological mechanisms
of human disease.

In this work, we review the applications of different optical imaging techniques
which have been employed to dissect the multifaceted features of human neurological
disorders modeled in zebrafish. Particularly, we examine the contribution of diverse
imaging approaches to decipher critical aspects of zebrafish cerebral function/structure
and behavior linked to neuropathologies.

2. Functional Imaging

In recent years, the availability of an ever-expanding palette of genetically encoded
fluorescent sensors making neuronal activity visible [25] has enhanced research efforts
in developing and improving optical methods to record the said neuronal activity with
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high sensitivity and temporal resolution. Fluorescence microscopy, combined with state-of-
the-art indicators, has emerged as an optimal tool to investigate vertebrate physiological
neuronal activity and its alterations due to pathological conditions on the road towards un-
raveling the mechanisms ruling brain functioning. Owing to their high grade of versatility,
fluorescence microscopy techniques have recently opened the possibility to explore brain
functionality at multiple spatio-temporal scales.

Among the various versions of fluorescence microscopy, wide-field (epi)fluorescence
microscopy (WFFM) is probably the simplest and cheapest configuration that can be
attained. In this scheme, a single objective is employed to generate a uniform illumination
of the sample and to collect the emitted fluorescence at the same time, while a spatially
resolved detector (typically a camera) records the signal of interest (Figure 1a).

Since each frame is acquired as a single snapshot, detection speed is limited only
by the camera acquisition rate and by the fluorescence photon budget. However, due to
the complete lack of optical sectioning in this method, the in-focus signal is completely
overwhelmed by out-of-focus contributions, with resulting images being the integration
of fluorescence light coming from the whole illuminated depth of the sample. Neverthe-
less, this limitation in axial resolution inherent to wide-field fluorescence microscopy is
typically exploited to obtain an integrated measure of the activity of entire cortex depth
in mice [26,27]. Turrini and colleagues [28] first demonstrated the applicability of this
microscopy technique to study the brain-wide alterations occurring in larval zebrafish
CNS during pharmacologically induced seizures. Furthermore, the wide field of view
obtainable with this method allowed to image the entire body of the animal, thus recording
brain activity along with tail deflections, and so enabling the study of neural correlates
underlying motor seizures [28] (Figure 1b).

To obtain a more thorough description of the neuronal dynamics occurring in the
zebrafish brain in pathological contexts, three-dimensional (3D) imaging should be used. A
prerequisite for 3D imaging is that the optical system used be capable of optical sectioning,
namely the non-invasive ability to distinguish between in-focus signal and out-of-focus
background. In fluorescence microscopy, two alternative strategies are typically employed
to achieve optical sectioning. The first one is to illuminate the whole specimen and reject
out-of-focus fluorescence (using, for example, a pinhole mask placed before the detector),
as happens in confocal laser scanning microscopy (CLSM, Figure 1a). The second one is to
confine the excitation only in the focus plane so as not to generate out-of-focus fluorescence
contributions. This can be achieved by either exploiting non-linear interaction between
light and matter to excite fluorescence only in a small volume confined at the focus of the
objective, as it happens in two-photon fluorescence microscopy (TPFM, Figure 1a) [29], or
illuminating the sample with a thin sheet-shaped beam: the case of light-sheet fluorescence
microscopy (LSFM, Figure 1a) [30,31].

Laser scanning microscopy (LSM) comprises epifluorescence techniques which exploit
the use of a focused laser rapidly pointed at different consecutive positions across a plane
inside the specimen. A detector (typically a photomultiplier tube, PMT) collects the
fluorescence emitted by each excited point, and a dedicated software reconstructs the image
by attributing to each pixel the gray values measured by the PMT along the scanning path
(Figure 1a). Due to scanning, both CLSM and TPFM present a necessary tradeoff between
spatial and temporal resolution. Indeed, the more pixel-dense the image produced, the
longer the time to generate it.

For this reason, apart from a few exceptions, CLSM and TPFM are typically employed
for functional studies in zebrafish limited to a single medial brain plane encompassing most
of the cerebral districts. Indeed, the time necessary to complete the scanning of several
planes at different depths (thus performing what can be termed “volumetric imaging”)
would not be compatible with functional imaging at sufficient temporal resolution for real-
time neuronal activity measurements. Despite this limitation, both CLSM and TPFM are
proficiently employed to study functional alterations occurring in the larval zebrafish brain
in a pathological context. After the first study by Tao and colleagues [32] which employed
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confocal imaging to map at low spatio-temporal resolution the changes in functional
connectivity occurring in the brains of zebrafish larvae expressing the ratiometric calcium
indicator cameleon Y2.1 when exposed to the chemo-convulsant pentylenetetrazole (PTZ),
several works followed. In fact, many other studies employed single-plane confocal
imaging (yet at single-neuron resolution) on larvae expressing single-fluorescent-protein-
based calcium sensors to describe the functional alterations occurring in the zebrafish
brain of both pharmacological [33,34] and genetic models of epilepsy [35–37]. Among
these works, interestingly, Liao and Kundap and colleagues [36] performed single-plane
confocal calcium imaging describing the early emergence of light-induced seizures in larvae
knockout for the γ2 subunit of the GABAA receptor ortholog gene (Figure 1c).

Recently, a few research groups employed two-photon imaging to investigate larval
zebrafish brain activity in pathological contexts. With respect to confocal microscopy,
TPFM (Figure 1a), using near infrared (IR) light instead of visible light as an excitation
source allows for a less invasive imaging, free from unwanted visual stimulation (IR light
is by and large not perceived by the larval visual system [38]) which would be highly
detrimental in delicate pathological models. Diaz Verdugo and colleagues [39] performed
inspiring imaging experiments highlighting the critical role of the glia–neuron interaction
in the initiation of an overt PTZ-induced seizure, with glial activity rising prior to the
manifestation of an ictal event (Figure 1d). Two other groups employed single-plane TPFM
in combination with local-field-potential (LFP) recordings to characterize the modifications
in neuronal dynamics occurring after PTZ treatment [40,41]. Interestingly, Niemeyer and
colleagues [41] employed a double transgenic line expressing GCaMP in all neuronal nuclei
and dsRED in excitatory neurons so as to investigate the excitatory–inhibitory imbalance
leading to seizures. As an exception to the use of two-photon imaging on a single larval
medial brain plane, Hadjiabadi et al. [42] performed volumetric TPFM to reconstruct the
changes in brain functional connectivity during seizures. Moreover, Andalman and col-
leagues [43] performing volumetric calcium imaging using TPFM identified the habenular
neuronal ensembles recruited during stress encoding in the transition between active and
passive coping to stressors. In addition, Haney and colleagues [44] employed volumetric
TPFM functional imaging to identify the neurons of the area postrema associated with
nociceptive stressors.

As anticipated, light-sheet fluorescence microscopy (LSFM) is a technique intrinsi-
cally endowed with optical sectioning. Its founding principle is the illumination of the
transparent sample from the side using a thin sheet of light and the recording of the flu-
orescence emitted from the almost bidimensional excited plane using a second objective,
its focus overlapping with the light sheet (Figure 1a). Thus, by progressively displacing
the illuminated plane and coherently adapting the focus of the detection objective, the 3D
reconstruction of the specimen can be obtained. Furthermore, owing to the parallelization
of the detection process within each frame (each image is acquired as a single snapshot,
as in WFFM), the iteration of the different illuminated planes can be achieved sufficiently
fast to enable, in the most advanced setups, real-time functional imaging over the entire
larval brain [45]. Despite the potential breakthrough that light-sheet imaging could bring to
the investigation of the functional features characterizing different pathological zebrafish
models, the full use of this technique exploiting its volumetric vocation is still in its in-
fancy, so we expect a strong growth in the near future. LSFM was employed by Rosch
and colleagues [46] to image a single medial brain plane of zebrafish larvae undergoing
PTZ-induced seizures and by Winter et al. [47,48] to perform sparse volumetric sampling
of the larval brain while testing the effect of several compounds on chemically induced
seizures. Recently, de Vito and Turrini and colleagues [49] employed a light-sheet fluo-
rescence microscope with double-sided non-linear excitation to investigate at high-speed
and single-neuron resolution the neuronal dynamics occurring in the larval brain during
PTZ-induced seizures. Besides the aforementioned advantages of employing IR light as an
excitation source, the exploitation of high-speed volumetric imaging allowed the authors
to describe, for the first time, a peculiar propagation pattern of ictal activity traveling in
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caudo-rostral direction (Figure 1e). The same group employing the same imaging system
in a second work described that midbrain regions, owing to their convulsant susceptibility
and early synchronous activity, could be involved in the initiation of an overt seizure [50].
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Figure 1. Functional imaging. (a) Top, schematics of the main imaging techniques adopted to
perform functional imaging in zebrafish larvae: wide-field fluorescence microscopy (WFFM), confocal
laser scanning microscopy (CLSM), two-photon fluorescence microscopy (TPFM), and light-sheet
fluorescence microscopy (LSFM). Abbreviations: objective lens (OL), dichroic mirror (DM), tube lens



Int. J. Mol. Sci. 2023, 24, 9833 6 of 23

(TL), photomultiplier tube (PMT), detection pinhole (DP). Bottom, table reporting the main imaging
modalities achievable (green check) or not (red prohibition symbol) with each of the above techniques.
The table also reports typical drawbacks (i.e., photobleaching and system complexity) quantified on a
scale from one to four (black plus). Asterisk indicates that LSFM can employ IR excitation yet only
in its multiphoton version. (b) Example of WFFM imaging performed on a pharmacological model
of acute seizure. The wide field-of-view achievable with this technique enables to record calcium
activity from four main brain districts (∆F/F0 colored traces; telencephalon in blue, optic tectum in
orange, cerebellum in yellow and hindbrain in purple) along with tail movements (black trace) in both
physiological conditions (upper panels) and acute motor seizures (lower panels). Asterisks indicate
the point of the traces shown, with expanded time scale, in the central panels of the figure. Images on
the left represent maximum intensity projections of a motor behavior typical of physiological (upper)
and pathological (lower) conditions. Scale bar: 500 µm. Figure adapted from [28], distributed under
the terms of the Creative Commons Attribution License (CC-BY). (c) Representative single brain
plane functional imaging performed using CLSM on GCaMP6f larvae expressing normal GABAA

receptor (upper row) and larvae knockout for the γ2 GABAA receptor subunit (lower row). As
visible in the temporal sequences and in the lower plot, knockout larvae (red data in the plot) show
hyperexcitability to light which produces a transient seizure focused in the optic tectum. Figure
taken from [36], distributed under the terms of the Creative Commons Attribution License (CC-BY).
(d) Left, example of single-brain plane functional imaging using TPFM on larval zebrafish expressing
GCaMP6s in thalamic neurons (upper red dotted outline) and periventricular glial cells (lower red
dotted outline). Right, glial cells show increased activity (warmer colors) in the minutes preceding
overt neuronal seizures. Scale bar: 100 µm. Figure taken from [39], distributed under the terms of the
Creative Commons Attribution License (CC-BY). (e) Representative results obtained using 2P-LSFM
whole-brain functional imaging on zebrafish larvae pan-neuronally expressing GCaMP6s. Above, 3D
rendering of the temporal propagation dynamic of an ictal event during pharmacologically induced
seizure. Colder and warmer colors represent regions reaching the peak of ictal activity earlier and
later, respectively, with respect to the whole-brain average dynamic, as indicated by the color bar.
Below, fluorescence traces highlighting the difference in temporal dynamic of the activity coming
from different brain districts (color-coded as in the legend). Figure adapted with permission from [49]
© The Optical Society.

3. Structural Imaging

Despite the fact that the functional connectivity of the brain cannot be explained
only considering the anatomical substrate, it is true that brain structure and function
are closely tied [51]. For this reason, the comprehension of the mechanisms underlying
pathogenesis often requires an integrated approach, combining structural analyses with
functional investigations. Structural alterations characterizing a pathological state of the
CNS may range from the subcellular to the whole-organ level. Thus, according to the
features the research aims to highlight, different techniques should be used. In addition to
the imaging technique, a fundamental role in structural investigations is played by the way
the sample is processed to highlight structures of interest.

The first great difference between sample processing methods is based on the need of a
labeling step versus label-free methods (Figure 2a). A wide range of methods are available
for the specific labeling of proteins or selected nucleic acid sequences with fluorescent or
colorimetric reporters. All these techniques (e.g., immunostaining, in situ hybridization,
and so on) can also be performed on the entire animal, adopting the so-called “whole-
mount” protocol, with no need to mechanically section the specimen owing to the tissue
transparency and the small size of larval zebrafish.

Indeed, the possibility to image, with great microscopic contrast, a fixed animal in
its entirety represents an important chance for thorough structural investigations. This
is why zebrafish has proven to be extremely useful in detecting cellular or anatomic dis-
tributions of proteins/mRNAs associated with the pathogenesis of diverse neurological
disorders ranging from autism spectrum disorders and Alzheimer’s disease to epilepsy
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and myelinopathies. Pathological mechanisms of autism spectrum disorders were exten-
sively investigated employing ex vivo staining [52–55]. Liu and colleagues [56] applied
whole-mount in situ hybridization (ISH) to profile ASD-associated shank3 transcription and
its regulation by valproic acid exposure. Lüffe and colleagues [57] performed whole-mount
ISH in larvae mutant for foxp2, a gene associated in humans to a spectrum of neurodevelop-
mental disorders comprehending ASD (Figure 2b). They found that foxp2 mutation affects
larval behavior through disruption of GABAergic signaling. Kozol et al. [58] employed
whole-mount immunofluorescence (IF) with pERK staining (as a proxy for neuronal activity)
in shank3ab mutants to demonstrate that restoring gene function rescues sensory deficits
(Figure 2c). Additionally, Elsen and colleagues [59] used ISH and fluorescence in situ hy-
bridization (FISH) to investigate the role of the met gene (implicated in autism in humans)
during cerebellar development in zebrafish. The authors described the importance of this
signaling in coordinating growth and cell type specification, functions that may underlie
the correlation between altered met regulation and autism spectrum disorders. Furthermore,
Miller et al. [60], using IF staining for the quantitation of electrical and chemical synaptic
components in zebrafish larvae, found that the autism-associated gene neurobeachin (nbea)
is required for both synapse formation and to maintain dendritic complexity.

Specific labeling imaging is commonly employed also in research regarding neurode-
generative pathologies such as Alzheimer’s and Parkinson’s diseases. Bhattarai et al. [61]
exploited immunohistochemistry (IHC) and ISH on adult zebrafish telencephalon to demon-
strate that the neuron–glia interaction mediated by both growth factors and serotonin en-
ables regenerative neurogenesis in an Alzheimer’s disease model. Vaz and colleagues [62]
employed anti-tyrosine hydroxylase IF to validate isradipine for rescuing dopaminergic
cell loss in a pharmacological model of Parkinson’s disease. The same IF staining was
employed by Kim et al. [63] to reveal that inhibitors of the renin–angiotensin system have a
neuroprotective action in dopamine neurons.

Ex vivo specific labeling and imaging are also employed in studies regarding epilepsy.
Podlasz and colleagues [64] employed IF on adult zebrafish brain to localize the production
of galanin, a neuropeptide whose overexpression is correlated with potent anticonvulsant
effect in the zebrafish PTZ seizure model. Interestingly, galanin was investigated through
IHC and ISH by Corradi et al. [65] to identify its role in stress regulation. They determined
that, in the hypothalamus of zebrafish larvae, galanin has a self-inhibitory action on galanin-
producing neurons, playing an important role in the prevention of potentially harmful
overactivation of stress-regulating circuits.

Whole-mount IF and FISH are also used to study the pathological mechanisms un-
derlying myelinopathies. With those techniques, Zada and colleagues [66] monitored
myelin-related processes and structural synaptic plasticity in a zebrafish model for psy-
chomotor retardation.

Labeling of the structure of interest can also be achieved through genetic encoding
(Figure 2a). Owing to the ease of genetic handling, countless transgenic zebrafish reporter
lines have been generated [67]. Those strains typically express, under specific promoters,
a fluorescent protein or a fusion protein composed of the protein target of the study
(transcription factor, soluble protein, membrane channel, etc.) and a fluorescent protein
tag. The use of reporter lines enabled the longitudinal imaging of an astonishing number
of signaling pathways. Reporter lines have been so far applied to the investigation of
pathophysiological mechanisms in many disease models. Paquet et al. [68] generated a
reporter line carrying the human tau protein gene fused to the DsRed gene as a model of
tauopathy recapitulating several clinical features of neurodegenerative diseases such as
Alzeimer’s disease and chronic traumatic encephalopathy [69]. This line was employed to
study the mechanisms leading to pathological tau protein aggregation [70,71], microglial
activity against tauopathic neurons [72] and the role of brain-derived neurotrophic factor
signaling in tauopathy progression [73].

Imaging on transgenic reporter lines proved useful also in the investigation of ASD
models. Jamadagni et al. [74] employed a strain expressing GFP in GABAergic interneurons
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on a background mutant for the chd7 gene responsible for CHARGE syndrome, an ASD-
related disorder. They showed that chd7 functions are required for the correct development
of GABAergic neurons. Interestingly, a reduction in GABAergic neurons was reported
also by Hoffman and colleagues [20] on a different genetic background (autism risk gene
cntnap2) using transgenic expression of GFP under the GABAergic promoter dlx5a/6a
(Figure 2d). The pan-neuronal promoter HuC was exploited for generating transgenic lines
to investigate the way in which the autism-related genes met [59] and shank3b [21] affect
brain development.

Reporter lines have been applied also to study myelination. Jung and colleagues [75]
generated the transgenic line Tg(mbp:gfp), specifically tagging oligodendrocytes and Schwann
cells with GFP (under the control of myelin basic protein promoter), thus allowing the vi-
sualization of myelin sheaths from embryos to adults. This line was employed to identify
compounds promoting myelination [76], served as a background for chemogenetic demyeli-
nation zebrafish models [77], allowed to identify an enzyme involved in the synthesis of
sphingolipids crucial for myelination [78], and was used to assess efficacy of targeted gene
therapy in a model of hypomyelination [79]. Xiao et al. [80] selectively expressed GFP in
Schwann cells to study axon–glia interactions during the repair process in a zebrafish model
of peripheral nerve injury.

Reporter lines have proved particularly useful in the investigation of the pathological
mechanisms leading to Parkinson’s disease [81,82] as well. Xi and colleagues [81] produced
the transgenic line Tg(dat:EGFP) expressing EGFP gene under the dopamine transporter
promoter. The in vivo tagging of dopaminergic neurons allowed, for example, the study
of L-DOPA selective toxicity [83]. Moreover, Godoy and colleagues [84] used this line
as a background to develop a chemogenetic ablation model of dopaminergic neurons.
Weston et al. [85] expressed human α-synuclein in zebrafish larvae as a fusion protein
with GFP to study its presynaptic aggregation. Interestingly, Lopez and colleagues [86]
employed zebrafish larvae expressing α-synuclein fused to the photoconvertible fluorescent
protein Dendra2 to investigate the α-synuclein clearance through longitudinal imaging.

Specific applications for the study of zebrafish models of human diseases at very high
resolution and magnification have recurred to transmission electron microscopy (TEM,
Figure 2a). TEM employs an accelerated beam of electrons which is focused through mag-
netic lenses onto an ultrathin section of the specimen, normally endowed with contrast for
biologically relevant features (e.g., membranes or other targeted structures) by staining with
heavy metals (typically Pb and/or U). Electrons passing through the samples (i.e., transmit-
ted electrons) are collected by a detector to form an image where stained electron-dense
structures appear darker while unstained electron-lucent ones appear lighter [87]. Early
and colleagues [76] employed TEM imaging to evaluate the myelination grade of the axonal
projection in the larval spinal cord (Figure 2e). Similarly, Turcotte et al. [88] used TEM
to highlight the increasing coherence of myelin sheaths during zebrafish development.
Aspatwar et al. [89] using TEM imaging investigated the apoptotic effects of mutation
of the carbonic anhydrase-related protein VIII gene, associated in humans with mental
retardation and ataxia.

As we previously mentioned, there are also structural imaging techniques which do
not require any labeling of the structures of interest. Interestingly, these optical methods
offer the ability to image living zebrafish embryos, often at high spatial resolution and with
reduced or absent photodamage. Among those techniques, optical coherence tomography
(OCT, Figure 2a), originally developed for ophthalmological applications, has proven to
be a powerful tool in various biomedical research fields [90]. OCT optimally works on
translucent and thin specimens, and this is the reason why it is successfully applied to
zebrafish imaging. OCT represents a non-invasive method to perform in vivo structural
investigations in both the larval and adult zebrafish CNS [91,92] and was applied to diverse
pathological models ranging from brain tumors [93] (Figure 2f) to β-amyloid induced brain
atrophy [94] and chemically induced notochord developmental defects [95].
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Figure 2. Structural imaging. (a) Tree diagram reporting a classification of structural imaging meth-
ods. Abbreviations: antibodies (Ab), immunohistochemistry (IHC), immunofluorescence (IF), in situ
hybridization (ISH), fluorescence in situ hybridization (FISH), optical coherence tomography (OCT),
coherent anti-Stokes Raman scattering (CARS), third harmonic generation (THG). (b) Representative
whole-mount ISH showing the spatial distribution of foxp2-positive neuronal populations into the
developing zebrafish brain. Scale bars: 100 µm. Figure taken from [57], distributed under the terms of
the Creative Commons Attribution License (CC-BY). (c) Activity maps (z-projections) obtained from
whole mount immunofluorescence staining of pERK, used as a proxy of neuronal activity. Magenta in-
dicates neurons with increased activity in the lights-off transition while green indicates those showing
increased activity during lights-on transition. Compared to wild type, shank3ab mutants show normal
activation of the pineal gland (P) but fail to show activation of the medulla oblongata (MO) and
spinal cord (sc) during the lights-off transition. This indicates that shank3ab mutant models sense light
normally but fail to activate downstream brain regions underlying sensorimotor integration. Scale
bars: 50 µm. Figure taken from [58], distributed under the terms of the Creative Commons Attribution
License (CC-BY). (d) Reporter line showing GABAergic (green) and glutamatergic (magenta) neurons
and axonal projections (cyan) on both wild type and cntnap2ab mutant. The autism risk gene produces
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a significant reduction in GABAergic neurons in the telencephalon (white arrowheads). Figure
reprinted from [20], with permission from Elsevier (please see Acknowledgements for details). (e) TEM
micrographs of larval zebrafish spinal cord portion showing the increase in myelinated axons upon
treatment with splitomicin. Red box in the cartoon on the right indicates the approximate spinal
region where the micrographs were taken. Scale bar: 1 µm. Figure taken from [76], distributed under
the terms of the Creative Commons Attribution License (CC-BY). (f) Representative polarization
sensitive OCT acquisition of an adult zebrafish showing intensity (grays) and birefringence (colors)
signals. Birefringence signal provides a measure of tissue organization (warmer colors, higher level
of organization). For both signals, a sagittal cross section and two en face images at the position
indicated by the dotted lines are presented. Figure adapted from [92], distributed under the terms
of the Creative Commons Attribution License (CC-BY). (g) Polarization-resolved CARS imaging
of a zebrafish larva allows the visualization of Mauthner axons. Different light polarizations (as
indicated by double headed arrows) differently modulate CARS signals of myelin sheaths. Figure
taken from [88], distributed under the terms of the Creative Commons Attribution License (CC-BY).

Another label-free optical technique enabling in vivo structural imaging is coherent
anti-Stokes Raman scattering (CARS, Figure 2a) [96]. CARS signal is generated from the
stimulated vibrational motion of molecular bonds in the sample. In its most common
two-color variant, two infrared lasers, a “pump” beam and a Stokes beam, interact with
the sample to selectively and coherently excite specific molecular bonds. A third photon
(usually from the pump beam) interacts with the excited bonds to induce their relaxation
back to the ground state. This step is accompanied by the emission of a fourth photon (anti-
Stokes emission) which represents the detected signal. CARS microscopy enables imaging
based on chemical contrast, guaranteeing long-term observation without photodamage or
photobleaching effects. Turcotte and colleagues [88] performed polarization-resolved CARS
imaging in zebrafish larvae to investigate promyelinating treatments on reticulospinal
neurons axons (Figure 2g). This CARS variant enables the all-optical label-free detection
of the degree of order of the myelin sheath molecular architecture [97], a quantity that is
linked to myelin health [98,99].

Among label-free imaging techniques applied on the transparent larval zebrafish
brain, it is also worth mentioning the third harmonic generation (THG, Figure 2a). THG
microscopy, using infrared lasers, exploits the light–matter nonlinear interaction properties
which induce the generation of a new component of the electromagnetic field at the focal
point of a laser beam passing through local sharp transitions in third-order nonlinear
susceptibility or refractive index. The new wave is produced in the forward direction and
is characterized by a wavelength equal to a third of the wavelength of the illumination
beam [100]. The THG signal is typically produced in biological samples by water–lipid and
water–protein interfaces. THG imaging was employed in zebrafish larvae, for example, to
study neural development [101,102] and myelination [103].

The imaging approaches discussed so far in this section represent the main method-
ologies applied to date to investigate the structural features of zebrafish CNS in the context
of pathological models. Despite not yet been reported as being applied to investigate
specific zebrafish cytoarchitectonic aspects in pathological contexts, there are a few other
imaging techniques which are worth mentioning owing to their potential. Super resolution
microscopy (SRM) [104] includes several fluorescence imaging techniques linked by the
ability to surpass the diffraction limit of optical resolution. SRM has progressively pulled
down the spatial resolution barrier towards nanometer scales, enabling imaging of cellular
structures with a level of detail that was previously exclusive to electron microscopy. Yet,
compared to the latter, SRM methods retain the advantages of fluorescence microscopy both
in terms of target specificity and sample preservation, thus also enabling in vivo imaging.
Among SRM techniques, structured illumination microscopy (SIM) [104] and its deriva-
tives have been employed to study synaptic structures of spinal projection neurons [105],
microtubule organization in midbrain and hindbrain neurons [106] and the posterior lateral
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line primordium [107] in living transgenic zebrafish larvae and embryos. A different type
of SRM, stimulated emission depletion (STED) [108] microscopy, was instead employed
to investigate the spatial localization of different ribbon synapse proteins in zebrafish
larvae after IF staining [109]. Moreover, among the label-free imaging methods enabling
investigations about structural features of neural tissue, it is also worth mentioning micro
computed tomography (micro-CT) [110] and matrix-assisted laser desorption/ionization
mass spectroscopy imaging (MALDI-MSI) [111]. Micro-CT is the analogue of clinical CT,
yet on a smaller spatial scale and with greatly increased spatial resolution. It employs
X-rays and sample rotation to obtain submicrometric 3D reconstructions of samples that
are up to 20 cm wide. Micro-CT was proficiently employed to reconstruct volumetric
whole-body structures of juvenile zebrafish and to count neuronal nuclei in the entire
brain of zebrafish larvae [112]. On the other hand, MALDI mass spectroscopy imaging
employs a laser to perform a pixel-wise scan of thin sample slices. In this way, it is able
to produce a compound-specific mass spectrum map, where pixel intensities reflect the
local abundance of a detected analyte. This technique, capable of analyzing the molecular
composition and spatial distribution in biological samples, has been used to assess potential
brain accumulation of anticancer agent compounds [113] and synthetic cannabinoid [114]
in zebrafish larvae and to investigate clozapine brain metabolism in adult zebrafish [115].

4. Behavioral Imaging

The ability of zebrafish larvae to perform several behaviors appears early during
ontogenesis (as early as 17 h after fertilization, zebrafish embryos produce typical coiling
movements inside the chorion [116]). Therefore, behavior has been widely employed
to characterize zebrafish phenotype in diverse pathological models, with a multitude of
behavioral imaging methods designed according to the specific aims. Indeed, due to
important changes in size and behavioral repertoires from larval to adult stage, the setups
are typically designed for a specific developmental window and sometimes even for a
specific behavior. These systems typically comprise a behavioral arena, an illumination
system (visible and/or infrared) and one or more imaging cameras. Arenas can have many
different shapes specifically designed to evaluate peculiar aspects of behavior.

Starting from the larval stage, probably the most widely diffused behavioral imaging
method is represented by high-throughput imaging systems (Figure 3a). Whether cus-
tom [28,117] or commercial, these setups generally have a wide-angle lens capable of a large
enough field-of-view to image the surface of a conventional multi-well plate (>80 cm2).
High-throughput systems are typically employed to assess larval locomotor activity on
as many as 96 larvae in parallel. Moreover, owing to their parallelization and segregation
of individual larvae in separate wells, these systems are very effective for preliminary
screening on large libraries of drugs. This approach allows brute force testing of a huge
number of compounds without any prior knowledge on their effects, followed by more
in-depth investigations on the most promising candidates [118]. It should be noted that this
approach is radically different, at least in the initial selection step, from traditional drug
design approaches and it has opened new and complementary pathways in drug discovery.
The behavioral parameters obtained are typically aggregated measurements (such as aver-
age speed, total distance traveled, time spent in movement, etc.) along the entire recording
duration or temporal sub-windows, useful to identify quantitative differences in larval
locomotor activity. Out-of-the-box solutions (such as DanioVision by Noldus and ZebraBox
by ViewPoint) come with proprietary software which automatize several analysis steps,
thus significantly reducing post-processing time. On the other hand, custom solutions are
typically much less expensive and much more versatile yet requiring basic technological
knowledge to be set up. High-throughput systems are applied to investigate alterations in
larval locomotor activity in many different models recapitulating salient features of human
brain diseases such as autism spectrum disorders [20,21,57,74], myelinopathies [78], Parkin-
son’s disease [63,82,119], psychiatric disorders [89] and anxiety-related disorders [120].
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In particular, Hoffman and colleagues [20] identified, among 550 psychoactive screened
molecules, the phytoestrogen biochanin A to reverse the nocturnal hyperactivity phenotype
in an ASD-associated mutant zebrafish line. Notably, Vaz and colleagues [62] screened
1600 bioactive drugs on a 6-hydroxydopamine zebrafish model of Parkinson’s disease and
determined isradipine to proficiently rescue the bradykinetic and dyskinetic-like behaviors.
Richendrfer et al. [120] employed a custom high-throughput assay coupled to a visually
induced stressor (bouncing balls presented on a display beneath the arena) to character-
ize anxiety-related behaviors in zebrafish larvae. Moreover, high-throughput assays are
widely employed in epilepsy research, both in behavioral characterizations and in drug
screening assays. Wasilewska and colleagues [121] reported that a zebrafish line carrying a
human mutation (stxbp1 gene) associated with epilepsy shows spontaneous seizures and
increased sensitivity to PTZ effects. Suo et al. [122] found that a mutation in the stim2b
gene (encoding a protein involved in the regulation of store-operated Ca2+ entry) induces
increased locomotor activity, thigmotaxis, PTZ and glutamate susceptibility as well as
disruption of physiological phototaxis in zebrafish larvae. Dinday and Baraban [123], after
screening more than a thousand compounds, determined that dimethadione is able to
suppress the behavioral seizure component in a zebrafish genetic model of Dravet syn-
drome. Interestingly, Turrini and colleagues [28] devised an optical system combining
high-throughput behavioral recording (yet with a custom honeycomb arrangement of the
wells) with the integrated recording of brain calcium transients in parallel on 60 larvae
pan-neuronally expressing GCaMP6s. With this system tested on the PTZ model of seizures,
they demonstrated an increased selectivity in identifying the effects of different compounds
with respect to behavioral recording alone (Figure 3b).

A finer and more thorough description of larval swimming often requires recording
individual animals with the possibility to test the effects of non-chemical stimulations on
behavior. In fact, zebrafish larvae are sensitive to a variety of stimulus modalities, including
touch, auditory and vestibular inputs, heat, and vision.

With respect to high-throughput setups, these systems often have a single larger
behavioral arena and additional components such as a display for visual stimulation [50],
ambient lights of multiple colors [43] or devices for tactile stimulations [124] (Figure 3a).
Sometimes, these systems are equipped with cameras that have enhanced performances,
enabling high-speed tracking necessary to characterize larval swimming kinematic. Despite
the small size, zebrafish larvae can exhibit a peak acceleration of 20,000 mm/s2 and a peak
velocity of 200 mm/s [125], thus representing a demanding task in terms of tracking
capabilities. Gauthier and colleagues [124] reported that zebrafish larvae mutant for the
autism- and schizophrenia-associated gene shank3 show defective or reduced touch-induced
escape response. Similar results were presented by Miller and colleagues [60] on a zebrafish
line mutant for the autism-associated gene nbea. Andalman and colleagues [43] exploited a
larval tracking system to show that animals exposed to stressors (electric current) make
a transition from active to passive behavior (Figure 3c). A similar result was obtained
by Haney et al. [44] who investigated the effects of a nociceptive stressor on zebrafish
larvae light–dark preference, reporting that prolonged stressor exposure suppresses larval
typical exploratory behavior. Turrini and colleagues [50] employed high-speed tracking (at
300 fps) to describe the critical features of larval swimming kinematic at increasing seizure
stage. The system they used performs imaging in the infrared wavelength range, thus also
allowing visual stimulations employing a display underneath the arena without unwanted
visual interference.

As larvae grow, their cognitive abilities improve, thus making the larvae amenable to
be employed in a variety of tests aiming at evaluating more complex behavioral manifesta-
tions such as learning and memory, social preference, and anxiety, to cite just a few. In this
type of experiments usually performed on later-stage larvae (21–30 days post-fertilization—
dpf), juveniles (30–90 dpf) and adults (>90 dpf), custom behavioral arenas are typically
employed. The shape of the arenas is typically a maze specifically designed to evaluate a
certain behavior (Figure 3a). While T-maze [126] and Y-maze [127] are usually employed
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to assess learning and memory [128] as well as place preference [129], plus-maze [130] is
predominantly used to evaluate anxiety-related behaviors [131]. Interestingly, some of these
mazes also allow the study of social preference, which is pivotal in those neuropathologies
linked to alterations in social interactions. Amongst all shapes, three-chambers maze [132]
is the one that better enables the investigation of social preference in zebrafish [133]. Owing
to its shape, three-chambers maze allows an accurate quantification of the time an animal
spends near to or away from its fellows. In addition to these maze types, there exist peculiar
multi-chamber shapes, the so-called alternative-maze [134] shapes typically designed to
evaluate learning and memory skills (Figure 3a).

Zimmermann and colleagues [135] employed a three-chamber maze to show that
embryological treatment with valproic acid induces deficit in social interaction, anxi-
ety, and hyperactivity both in juvenile (70 dpf) and adult zebrafish (120 dpf). Similarly,
Dwivedi et al. [136] tested social preferences on 21 dpf larvae early-treated with valproic
acid employing an alternative maze with an “s” shape. Liu et al. [21] and Zheng et al. [55]
reported that zebrafish mutant for genes shank3 and katnal2, respectively, when tested
for social preference in a three-chamber maze showed autism-like behaviors (Figure 3d).
Fulcher and colleagues [137] employed a three-chamber maze on adult zebrafish subjected
to unpredictable chronic mild stress following developmental isolation (model of major de-
pression) to evaluate social preference. Kumari and colleagues [138] employed T-maze and
three-chamber maze on a pharmacological model of chemical kindling in adult zebrafish,
highlighting that the kindling-like state alters spatial cognition but not social novelty
recognition. Jarosova and colleagues [139] employed an adult zebrafish pharmacological
model of Alzheimer’s disease (okadaic acid) showing impaired learning and decreased
motivation in reaching the goal chamber in an alternative maze. This peculiar type of maze
was also employed by the same group to describe the locomotor and cognitive deficiencies
in a rotenone Parkinson’s disease model in adult zebrafish [140] (Figure 3e). Cleal and
colleagues [141] tested 24-month-old zebrafish performance in a Y-maze, demonstrating
that the aging-related cognitive decline is related to dopaminergic activity.

Starting from the juvenile stage (>30 dpf), zebrafish produce a significant modification
of their swimming behavior. Indeed, if during the larval stage zebrafish tend to occupy
the layers of water closer to the bottom (excluding foraging periods), from the juvenile
stage, they permanently occupy the entire water column. From this stage, apart from
experiments using mazes with shallow waters, complete behavioral imaging cannot rely on
a single camera placed on top of the arena. The use of a second camera, placed orthogonally
to the first, allows the discrimination of fish movements in the water column. Thus, 3D
behavioral imaging systems (Figure 3a) not only enable the fine description of zebrafish
swimming behavior in their environment (such as their home tank, Figure 3f), but also
allow the characterization of complex adult social behaviors (and their alterations) such
as shoaling, aggression or mating [142]. Furthermore, this experimental scheme also
enables specific behavioral assays, such as the novel tank diving test which uses the vertical
distribution in a novel environment as a measurement of anxiety-like behaviors in adult
zebrafish [143]. Maaswinkel and colleagues [144] employed 3D behavioral imaging to
track the shoaling behavior of adult zebrafish. They highlighted that the treatment of
a single fish with an NMDA receptor antagonist, previously shown to mimic aspects of
autism and schizophrenia (MK-801), drastically reduces the shoal cohesion (Figure 3g).
The same group, employing the same experimental apparatus, reported an increase in
anxiety, locomotor activity and stereotypy in an adult zebrafish knockout for the fmr1
gene, model of fragile X syndrome [145]. Zheng et al. [55] performed behavioral imaging
on adult zebrafish knockout for the ASD-associated gene katnal2, describing increased
thigmotaxis and geotaxis, as well as peculiar swimming behaviors such as big circling,
small circling, walling, and cornering. Similar results were obtained by Liu et al. [21] on a
shank3b knockout line.
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Figure 3. Behavioral imaging. (a) Schematic representation of the manifold behavioral imaging
methods employed on zebrafish depending on the developmental stage and on the behavioral
features to be studied. (b) High-throughput behavioral assay combining measurement of locomotor
activity and calcium activity of the brain of 60 GCaMP6s larvae exposed to different pharmacological
treatments in combination with PTZ. Image is a maximum intensity projection of a 13 min recording.
Warmer colors indicate higher brain activity. Figure taken from [28], distributed under the terms
of the Creative Commons Attribution License (CC-BY). (c) Behavioral imaging system specifically
designed to study active/passive coping behavior in response to a stressor (electrical shock). Larval
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trajectories before (purple) and after (orange) shock are presented. The stressor produces an active-to-
passive coping. Figure reprinted from [43], with permission from Elsevier (please see Acknowledge-
ments for details). (d) Example of a three-chamber maze employed to evaluate social preference in a
zebrafish line knockout for the gene katnal2. Mutant fish show impaired social preference with respect
to wild type animals. Figure taken from [55], distributed under the terms of the Creative Commons
Attribution License (CC-BY). (e) Example of an alternative maze employed on adult zebrafish treated
with rotenone as a model of Parkinson’s disease. Heatmap overlays (the warmer the colors, the longer
the time spent in that position of the maze) show that treated animals (third map from left) spent more
time in the close arm than in the goal chamber with respect to untreated and vehicle animals (first
and second map from left, respectively), indicating a decrease in cognitive abilities. Plots show an
overall reduction in locomotor activity in treated animals with respect to both untreated and vehicle
fish. Figure reprinted with permission from [140] © American Chemical Society. (f) Representative
3D tracking of adult zebrafish exposed to either anxiogenic (first plot from left) or anxiolytic (second
plot from left) treatments. Fish treated with anxiogenic compound (alarm pheromone) display typical
geotaxis behavior. Trajectories are color-mapped according to fish swim velocity (warmer colors
indicate higher velocities). Figure taken from [142], distributed under the terms of the Creative Com-
mons Attribution License (CC-BY). (g) Example of 3D trajectories of shoaling adult zebrafish. The
first plot from left shows in different colors the swimming trajectories of a homogeneous quadruplet
of control fish. The second plot shows trajectories of a heterogeneous quadruplet composed by three
control fish and one zebrafish (blue line) treated with a compound mimicking behavioral features of
autism/schizophrenia. Heterogeneous quadruplet does not show increased locomotor activity with
respect to a homogeneous one. However, treated fish swim far apart from control ones and typically
also produce a reduced cohesion of the shoal (increased interindividual distance in the heterogeneous
quadruplet). In the bar plot, white refers to a homogeneous shoal while black to a heterogeneous
one. Figure adapted from [144], distributed under the terms of the Creative Commons Attribution
License (CC-BY).

5. Discussion

Functional, structural, and behavioral optical imaging comprehends a series of tech-
nologies which have been revolutionizing the approach to biomedical research and in
particular to the field of neuroscience both for basic research and for the study of models of
human diseases. Part of the credit for this success is undoubtedly due to the ever-increasing
adoption of zebrafish as an animal model. This small vertebrate, owing to its unique
features, has fostered research efforts in developing novel technologies, both optical and
biological, able to exploit the full research potential of this organism.

Among the functional imaging applications we reviewed in this paper, light-sheet
fluorescence microscopy plays a crucial role in zebrafish research. Indeed, this microscopy
technique whose architecture was conceived at the very beginning of the twentieth century
has been at the heart of a true renaissance which started in the last decade of the twenty-first
century thanks to the combination with the larval zebrafish model. In fact, we can say that
LSFM found its perfect match in this tiny vertebrate, to the point that after a few decades
this technique has benefited from many as well as dramatic improvements [146–152]
which contributed to pushing further its spatio-temporal resolution abilities until reaching
unparalleled mapping capabilities of the entire larval brain in real time [45,49,153]. So far,
LSFM, and functional imaging techniques in general, in pathological contexts have been
mainly applied to the investigation of epilepsy models. If on the one hand this aspect
depends on paroxysmal alterations of neuronal activity being the specific signature of
epilepsy, on the other hand, a lot of research on other pathologies such as autism spectrum
disorders could strongly benefit from fast whole-brain functional investigations. Moreover,
in recent years, cellular resolution whole-brain atlases of larval zebrafish neuroanatomy
have been set up [154,155]. These informatic tools are providing precious help both in the
neuroanatomical identification of functional areas and in comparing data obtained across
diverse laboratories with different imaging techniques.
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In this context, optical and biological methods for the detailed study of structural aspects
of the larval brain did not lag behind. The production of reporter lines expressing fluorescent
proteins in a cell/time-specific manner provided the unprecedented possibility to see biologi-
cal processes and signaling pathways happening in the entire CNS of a living vertebrate [67].
While the use of these transgenic lines opened the way to longitudinally investigate patho-
logical alterations by common confocal imaging, ex vivo investigations employing diverse
labeling methods have undergone important advancements as well. In recent years, there
has been a great interest around the specific labeling of protein/nucleic targets in zebrafish.
Proof of this is the fact that several companies have flourished offering antibodies specifically
developed to bind zebrafish isoform targets. Moreover, structural investigations exploiting
fluorescent tags (e.g., fluorescent proteins, fluorophore-conjugated antibodies/nucleotidic
probes, etc.) result extremely versatile since they can be performed using a wide range of
fluorescence microscopy setups (such as WFFM, CLSM, TPFM and LSFM) also employed in
functional imaging applications. In addition to this, great efforts have been recently made
to produce synaptic resolution reconstructions of the structural connectivity of the larval
zebrafish brain using electron microscopy [156]. Furthermore, the combination of brain-wide
functional imaging with nanometric structural descriptions of the entire organ [157] repre-
sents a unicum for vertebrates and could be a game-changing approach in the investigation
of the pathological structural alterations characterizing brain disorders.

In the framework of imaging approaches, both larval and adult zebrafish lend them-
selves to the study of pathological alterations of behavior. The extensive behavioral reper-
toire of zebrafish enables the investigation of phenotypic aberrations typical of patholog-
ical contexts ranging from epilepsy and autism spectrum disorders to Parkinson’s and
Alzheimer’s diseases. While the high-throughput capabilities enabled by larval small size
have been proficiently applied to discover novel promising therapies, high-speed tracking
and the kinematic analysis of swimming [158] so far have not been particularly employed
in neurological disease models while representing a promising approach.

6. Conclusions

In this review, we discuss several imaging approaches which are increasingly used
in zebrafish research on neurological diseases. Optical techniques applied to this animal
model offer a unique chance for translational neuroscience research at different scales
ranging from the whole organism (behavioral) to brain activity (functional) and even its
subcellular alterations (structural). Despite the ever-increasing adoption of optical methods
to investigate pathological mechanisms in zebrafish, the impression is that the enormous
technological improvement we have witnessed has yet to make a complete transition from
basic to applied research. Indeed, we deem that in the next decade, the widespread use
of the most advanced methods we discussed, together with the use of groundbreaking
technologies such as genetically encoded fluorescent sensors for neurotransmitters imag-
ing [159–161], optogenetic intervention [162–164] and whole-brain functional imaging in
freely-swimming larvae [125,165] will foster a deeper understanding of pathophysiological
mechanisms underlying translational zebrafish neuropathological models.
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