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Failure diagnosis with multiple non-stationary signals: a data-driven framework 1 

Abstract 2 

Due to higher reliability and safety requirements, the importance of condition monitoring and failure 3 

diagnosis has progressively cleared up. In this context, to be able to properly deal with noise and data 4 

reduction is fundamental to improve failure diagnosis and to assure safe operations. Accordingly, this 5 

paper aims to develop a failure diagnosis methodology that integrates Empirical Mode 6 

Decomposition (EMD) and Neighborhood Component Analysis (NCA) to separate the noise from 7 

the monitored signals and to determine the most relevant features. While noise detection and 8 

reduction techniques are established to reduce the uncertainties integrated with data acquisition and 9 

collection, traditional estimation approaches that cannot capture the non-stationary and nonlinear 10 

nature of data might result in higher uncertainty. As a validated denoising method, EMD is applied 11 

in this study to cope with the aforementioned limitations. The NCA overcomes typical limitations 12 

such as imposing class distributions. After data pre-processing, the diagnosis is performed through a 13 

Random Forest, one of the most renowned Machine Learning algorithms. The methodology is tested 14 

on real data coming from a compressor, showing an accuracy higher than 97% for both the training 15 

and test set. The developed framework could assist practitioners in evaluating the condition of assets 16 

and, accordingly, planning maintenance.  17 

Keywords: Condition monitoring, Failure diagnosis, Empirical Mode Decomposition, Neighborhood 18 

Component Analysis, Supervised Classification 19 

1. Introduction 20 

During recent decades, Condition Monitoring (CM) and the related failure diagnosis have seen 21 

widespread adoption in many engineering fields such as wind turbines [1, 2], induction motors [3, 4], 22 

and railways [5, 6]. This trend is related to the relevance of CM, which allows the early detection of 23 

industrial equipment failures [7]. This feature is aligned with the safety and reliability requirements, 24 

that are becoming more stringent for process industries [8]. CM, continuous or periodic [9], could be 25 

defined as monitoring the working condition of a given system to evaluate its health status and, 26 

accordingly, define maintenance tasks [10]. CM approaches could be divided into three main phases, 27 

respectively known as data acquisition, data preprocessing, and data processing. During the first 28 

stage, data related to relevant Process Variables (PVs) are acquired. The data preprocessing stage 29 

consists of noise reduction and feature selection. Finally, data processing aims at analyzing data with 30 

appropriate tools that enable diagnosis or even prognosis. Adopting a proper CM approach is pivotal 31 

to assure that the monitored equipment could fulfill its mission while guaranteeing the safety of the 32 



operations. Indeed, the health state of a machine is strongly related to reliable and safe operations, 33 

thus being able to determine its operating condition with a high degree of confidence could be helpful 34 

to intervene whenever the operations are considered unacceptable from a safety perspective. To this 35 

end, noise removal and data reduction are of prominent importance to improve the accuracy and 36 

reduce the calculation time of the subsequent data processing, especially if a component is monitored 37 

by a high number of non-stationary and dynamic PVs. As a result, a CM framework must include 38 

proper noise removal and data reduction techniques to accurately evaluate the health of a system and 39 

perform failure diagnosis.  40 

Despite the advances in sensors and related technologies, most actual signals contain noise, defined 41 

as an undesired component that alters the true signal. Accordingly, to obtain a better understanding 42 

of the true signal, noise should be detected and removed. In this sense, the main objective of denoising 43 

approaches is to extract the noise while preserving all relevant information hidden within the signal 44 

itself [11]. Signal denoising techniques could be classified based on the working domain, either time, 45 

frequency, or time-frequency. Among the time-domain techniques, are worth mentioning the filter-46 

based methods, which exploit appropriate filters to extract the noise from the acquired signal [12]. 47 

Although filter-based methodologies are easy to implement, they present two significant drawbacks 48 

[13]: (i) they require prior knowledge of the spectrum and (ii) the signal must be stationary. On the 49 

other side, frequency domain techniques are more suited compared to time-domain approaches to 50 

deal with fault detection since several machines are characterized by different frequencies in the 51 

normal and faulty states [14]. Within frequency domain methodologies, the Fast Fourier Transform 52 

(FFT) has attracted significant attention for CM, fault detection, and failure diagnosis purposes [15-53 

18]. Despite their low computational complexity, frequency domain techniques have a significant 54 

limitation related to the very dynamic nature of noise [19], making them unable to deal with 55 

nonstationary signals. To overcome this problem, time-frequency analyses, such as Short-Time 56 

Fourier Transform (STFT) and Wavelet Transform (WT), are adopted [14]. As a result, there is an 57 

ongoing effort on STFT and WT within signal denoising, health condition assessment, and CM 58 

applications [20-24].  59 

STFT and WT can face non-stationarity signals; however, STFT is only employable under linear 60 

conditions of the acquired data [25], while WT is usable only under local nonlinearity. Furthermore, 61 

WT requires the specification of a basis function, which could be a challenging task, while the STFT 62 

needs piecewise stationarity whose scale is equal to the length of the adopted sliding window [13]. 63 

To overcome the aforementioned limitations, Huang et al. [26] developed the Empirical Mode 64 

Decomposition (EMD), which is very suitable for dealing with the non-stationarity and nonlinearity 65 

of time series. Also, EMD does not need the indication of a basic function such as most WTs [27]. 66 



Due to its advantages, EMD and its derivative approaches have become popular tools to perform CM 67 

and failure diagnoses [28-33]. A recent study by Yan et al. [34] proposed a methodology to predict 68 

the temperature of a train axle. Specifically, the authors employed Complementary EMD to 69 

decompose the signal into a set of Intrinsic Mode Functions (IMFs), which were fed to a Long Short-70 

Term Memory Neural Network (LSTMNN), tasked with the prediction. Then, they adopted a Particle 71 

Swarm Optimization and Gravitational Search Algorithm (PSOGSA) to improve the forecast 72 

accuracy. Another recent work by Gao et al. [35] presented a methodology to predict bearing failure. 73 

The authors exploited Ensemble EMD to decompose the signal into its IMFs, and subsequently, they 74 

retained only the most relevant ones. Next, the most informative IMFs were inserted as input in an 75 

LSTMNN to learn the failure behavior.  76 

CM applications could be characterized by several data sources, leading to large datasets. Although 77 

having a lot of data could generate better results; a greater amount of data will result in a higher 78 

impact of the curse of dimensionality [36]. Consequently, selecting a subset of relevant features or 79 

PVs is crucial to improve the subsequent calculation steps. Several techniques have been adopted to 80 

deal with data reduction problems, among which Principal Component Analysis (PCA) [37], Linear 81 

Discriminant Analysis (LDA) [38], and Sequential Feature Selection (SFS) [39] are worth 82 

mentioning. The techniques mentioned above present critical drawbacks. In fact, PCA could produce 83 

information loss, and it does not provide labeled data, while LDA performs optimally when data are 84 

normally distributed. Finally, SFS techniques are unable to either determine whether a feature has 85 

become useless when a new feature is added or if a feature is valid after it has been discarded [40]. 86 

Meanwhile, Neighborhood Component Analysis (NCA) as a linear nonparametric feature selection 87 

approach has been introduced by Goldberger et al. [41], overcoming the limitations related to 88 

imposing a class distribution or decision boundaries. Moreover, NCA does not lose any information 89 

within the data reduction process [42]. Thanks to its advantages, NCA has been successfully applied 90 

within CM, failure diagnosis, and fault detection frameworks [43-45]. Yaman [43] used NCA for 91 

extracting the most relevant features, which are subsequently fed to classification techniques for 92 

performing diagnosis of an induction motor. A similar work has been proposed by Zhou et al. [44], 93 

who presented a methodology to evaluate bearing failure through the integration of NCA and Couple 94 

Hidden Markov Model (CHMM).  95 

After data reduction and denoising, a CM process requires data processing, which analyzes the 96 

obtained data to determine the health state of the monitored system. This last step allows for detecting 97 

possible anomalies or abnormal states, and subsequently, making decisions to restore safe and reliable 98 

conditions. Within this context, there is a fundamental distinction between classification and 99 

regression. The first identifies the state of the asset and is characterized by a categorical response 100 



variable, while the second aims to predict the evolution of a given response variable (e.g., a safety or 101 

reliability indicator), which is real-valued [46]. In a CM or failure diagnosis problem, Machine 102 

Learning (ML) and related techniques such as Deep Learning (DL) are among the most common 103 

approaches. Examples of ML algorithms used for this purpose are Support Vector Machine (SVM) 104 

[47], Neural Network (NN) [48], Decision Tree (DT) [49], and Random Forest (RF) [50]. Due to the 105 

relevance of the topic, there is an ongoing effort on ML-based or DL-based CM, failure diagnosis, 106 

anomaly detection and Remaining Useful Life (RUL) prediction frameworks [51-54]. A relevant 107 

example is a work presented by Zhu et al. [55], who exploited at first t-SNE-DBSCAN to reduce the 108 

dimension of data and, in particular, aggregate the data coming from different sensors and extract a 109 

health indicator. Finally, they employed an LSTMNN to predict the RUL. In another recent study by 110 

Xu et al. [56], the authors proposed an advanced methodology to predict the life cycle of lithium-ion 111 

batteries. In their work, a clustering by fast search is first exploited for feature selection and, 112 

subsequently, they adopted a stacked denoising autoencoder for prediction purposes.  113 

Despite all the ongoing efforts, there is still space to develop a methodology capable of determining 114 

in real-time the health of a system characterized by highly fluctuating PVs, allowing to identify 115 

dangerous operations and determine the actions requires to repristinate safety conditions. To this end, 116 

this paper aims to present a novel failure diagnosis methodology based on the integration of EMD 117 

and NCA. EMD is adopted for its capability of dealing with nonlinear and non-stationary signals. 118 

The noisy IMFs are detected through Statistical Significant Testing (SST). On the other side, NCA is 119 

exploited for its ability to preserve information. Finally, the denoised most relevant signals are fed to 120 

an RF to classify the state of the system. The RF was chosen for its ease of implementation, 121 

explainability, and reliability in classification [57]. Furthermore, the joining of multiple individual 122 

classifiers, such as the RF, improves performance [58]. To demonstrate the applicability of the 123 

methodology, a compressor operating in a geothermal plant is chosen as a case study. To the best of 124 

the authors' knowledge, up to now, EMD and NCA were used to determine the most relevant features 125 

of a signal rather than identifying the most relevant PVs that affect the health of a given system. 126 

Moreover, EMD was used for feature extraction instead of noise removal. To the best of the authors' 127 

knowledge, up to now, EMD and NCA were used to determine the most relevant features of a signal 128 

rather than identifying the most relevant PVs that affect the health of a given system. Moreover, EMD 129 

was used for feature extraction instead of noise removal. 130 

The remainder of this paper is organized as follows; Section 2 introduces the material and methods, 131 

while Section 3 describes the developed framework. Section 4 describes the application of the novel 132 

approach to a case study. Finally, in Section 5, the results are discussed, while in Section 6, the 133 

conclusions are drawn.  134 



2. Materials and Methods 135 

2.1 Empirical Mode Decomposition 136 

Data acquired from sensors are characterized by two main parts, usually denoted as true signal and 137 

noise. The last one is a disturbing component that must be identified and removed during the 138 

preprocessing phase to improve the succeeding analysis. The EMD is a data-driven filtering approach 139 

whose introduction is based on the Hilbert-Huang transform [26]. The EMD decomposes the acquired 140 

signal into a series of components named IMFs and a residual term [59], as shown by Eq. 1.  141 

𝑥(𝑡) =  ∑ 𝑐𝑖(𝑡) + 𝑟(𝑡)𝑛
𝑖=1                                                                                                                              (1) 142 

where 𝑛 is the number of IMFs, while 𝑐𝑖(𝑡) is the i-th IMF. Finally, 𝑟(𝑡) is the residual term. The 143 

process of generating the IMFs is called sifting. It allows us to obtain a set of IMFs which fulfills the 144 

following requirements [60]: i) the difference between the number of extrema and zero-up crossings 145 

is zero or equal to one; ii) the mean value defined through the local minima envelope and local 146 

maxima envelope is zero in every point.  147 

An IMF could either belong to the noise component or the true signal component, therefore the IMFs 148 

which determine the true signal are distinguished from the IMFs related to the random noise, as 149 

illustrated by Eq. 2 [28]: 150 

𝑥(𝑡) = ∑ 𝑐𝑖,𝑇𝑆
𝑛
𝑖=1 (𝑡) + ∑ 𝑐𝑖,𝑁

𝑚
𝑖=1 (𝑡) + 𝑟(𝑡)                                                                                             (2) 151 

where 𝑐𝑖,𝑇𝑆(𝑡) and 𝑐𝑖,𝑁(𝑡) identify a true signal IMF and a noise IMF respectively, while 𝑟(𝑡) denotes 152 

the residual term.  153 

2.2 Neighborhood Component Analysis 154 

Feature selection reduces the starting set of features by discarding the irrelevant or redundant ones, 155 

leading to an increase in accuracy, comprehensibility, and execution speed [61]. The NCA was 156 

introduced by Goldberger et al. [41], considering as a reference the well-known K-Nearest Neighbors 157 

(KNN) algorithm. NCA is a nonparametric feature selection approach whose objective is to find the 158 

weight denoting the importance of every feature [62]. This task is accomplished through the 159 

maximization of the leave-one-out classification accuracy.  160 

The following paragraphs summarize the procedure for performing NCA, which is widely described 161 

by Goldberger et al. [41], Yang et al. [62], and Raghu and Sriraam [42]. Given a training dataset 162 

denoted by 𝐷 =  {(𝑿𝑖, 𝑦𝑖), 𝑖 = 1,2, … 𝑛}, where 𝑿𝑖 and 𝑦𝑖 ∈ {1,2, … 𝐶} represent the m-dimensional 163 



feature matrix and the class label of the i-th observations respectively, the weighting distance in terms 164 

of weighting vector can be found through Eq. 3 [42]. 165 

𝑊𝐷𝑤(𝑥𝑖 , 𝑥𝑗) = ∑ 𝑤𝑘
2 |𝑥𝑖,𝑘 − 𝑥𝑗,𝑘|𝑚

𝑘=1                                                                                                               (3) 166 

where 𝑥𝑖 and 𝑥𝑗 are two observations, while 𝑤𝑘 is the weight associated with the k-th feature. Finally, 167 

𝑚 identifies the number of features. To maximize the classification accuracy through the leave-one-168 

out technique, an observation is randomly extracted from 𝐷 as a reference point. Specifically, the 169 

probability distributions that are used to select the reference point are illustrated in Eq. 4 [42]. 170 

𝑝𝑖,𝑗 = {

𝑘𝑒𝑟(𝑊𝐷𝑤(𝑥𝑖,𝑥𝑗))

∑ 𝑘𝑒𝑟(𝑊𝐷𝑤(𝑥𝑖,𝑥𝑗))𝑛
𝑗=1

   𝑖𝑓 𝑖 ≠ 𝑗

0                                   𝑖𝑓 𝑖 = 𝑗

                                                                                                                    (4) 171 

where 𝑘𝑒𝑟(𝑧) = exp (−𝑧 𝜎⁄ ) is the kernel function with width denoted by 𝜎. According to Eq. 4, the 172 

probability of the reference point 𝑥𝑖 to be correctly classified is found through Eq. 5 [42]. 173 

𝑝𝑖 = ∑ 𝑝𝑖,𝑗𝑦𝑖,𝑗      𝑖 ≠ 𝑗𝑛
𝑗=1                                                                                                                                   (5) 174 

where 𝑦𝑖,𝑗 = 0 for every 𝑖 but 𝑖 = 𝑗 which is characterized by 𝑦𝑖,𝑗 = 1. Thus, as reported by Yang et 175 

al. [62], the leave-one-out classification accuracy is expressed by Eq. 6 and it can be maximized after 176 

the introduction of a regularization term as denoted by Eq. 7: 177 

𝐶𝐴(𝑤) =
1

𝑛
∑ 𝑝𝑖

𝑛
𝑖=1 =

1

𝑛
∑ ∑ 𝑝𝑖,𝑗𝑦𝑖,𝑗      𝑖 ≠ 𝑗𝑛

𝑗=1
𝑛
𝑖=1                                                                                                     (6) 178 

𝐶𝐴(𝑤) =  ∑ ∑ 𝑝𝑖,𝑗𝑦𝑖,𝑗 − 𝜆 ∑ 𝑤𝑘
2𝑚

𝑘=1      𝑖 ≠ 𝑗𝑛
𝑗=1

𝑛
𝑖=1                                                                             (7) 179 

where 𝜆 > 0 is the regularization parameter. After taking the derivative of Eq. 7 and reordering some 180 

terms, Eq. 8 is obtained [42]: 181 

𝜕𝐶𝐴(𝑤)

𝜕𝑤
=  2 (

1

𝜎
∑ (𝑝𝑖 ∑ 𝑝𝑖,𝑗 |𝑥𝑖,𝑘 − 𝑥𝑗,𝑘|𝑗≠𝑖 − ∑ 𝑝𝑖,𝑗𝑦𝑖,𝑗 |𝑥𝑖,𝑘−𝑥𝑗,𝑘|𝑗 ) −𝑖 𝜆) 𝑤𝑘                                                 (8) 182 

2.3 Random Forest 183 

Several algorithms and techniques could be adopted for classification purposes. An RF is a well-184 

known ML approach based on DT. Specifically, an RF is an ensemble classifier that combines a set 185 

of DTs through a bagging process [63]. Specifically, each DT is obtained by drawing with 186 

replacement a random sample from the original dataset, meaning that some observations can be 187 

considered more than once, while others could not be considered at all [64]. Also, each DT could 188 

consider different sets of features. Two relevant user-selected parameters are the number of DTs and 189 

the number of splits for each DT. Each DT assigns a class to an observation, for both the training and 190 



the test phase. During the training phase, the final class is obtained through an arithmetic mean of 191 

each result arising from a single DT, while for the testing, the predicted class is the one which has 192 

been determined by most of the DTs. An example of RF is shown in Fig. 1. 193 

 194 

Fig. 1 Schematic example of RF prediction with n classes  195 

3. Developed Methodology 196 

The structure of the proposed methodology is illustrated in Fig. 2. 197 

 198 

Fig. 2 Schematic representation of the steps required to perform the developed framework 199 

3.1 Stage 1: Data acquisition 200 

The starting stage consists of acquiring the data required to perform the failure diagnosis. First, a set 201 

of parameters is selected, and the respective sensors are installed (Step 1). Then, data are extracted 202 



from the sensors during operations (Step 2), and, finally, are classified into different operating 203 

conditions (Step 3). 204 

3.2 Stage 2: Data preprocessing 205 

The second stage is devoted to noise removal and data reduction. Each acquired signal is decomposed 206 

into its IMFs through EMD (Step 4). Next, each IMF goes through an SST to point out the noisy 207 

IMFs (Step 5), which are removed from the original signal (Step 6). To conclude this stage, NCA is 208 

exploited to depict the most relevant PVs of the denoised signal (Step 7).  209 

3.3 Stage 3: Data processing 210 

The final stage is required to develop a model to perform diagnosis based on the monitored 211 

parameters. First, the reduced and denoised set of signals is processed through an ML classification 212 

tool (step 8). Finally, the ML classification approach is tested on data not used for the training (step 213 

9). 214 

4. Results: Application of the methodology 215 

To demonstrate the applicability of the methodology, we considered a case study consisting in a 216 

compressor operating in a geothermal plant in Italy. The system is a three-stage centrifugal 217 

compressor devoted to extracting non-condensable gases. The mass flow of the system is between 218 

10,000 kg s⁄  and 22,000 kg s⁄ , while the temperature and pressure of the gas flow at the outlet are 219 

170 °C and 1.013 bar. A schematic representation of the considered system is shown in Fig. 3.  220 



 221 

Fig. 3 Representation of the analyzed compressor within its operating system. 222 

4.1 Stage 1: Data extraction and classification 223 

Due to the importance of the plant, there are several sensors, each of which monitors a distinct PV. 224 

For this work, 27 different sensors (i.e., 27 PVs) monitoring the compressor operating condition are 225 

considered (Step 1) and listed in Table 1. The selected sensors measure either thermodynamic PVs 226 

of the elaborated fluid or relevant physical variables. After this selection, data related to different 227 

periods are extracted (Step 2). A total of 11,195,120 data points, belonging to eleven distinct time 228 

series, were collected. It is worth mentioning that the PVs are characterized by a distinct nature, and 229 

the sampling frequency could be slightly different as well. Thus, a synchronization process is applied 230 

to align the data coming from different sensors. The extracted data are classified by expert judgments 231 

in two distinct operating conditions by analyzing the inlet pressure of the first stage of the compressor 232 

(Step 3). Specifically, the two operating conditions are denoted as follows: I) regime or good working, 233 

II) surge. The last operating condition could be considered a failure mode since it is an undesired state 234 

that could lead to the failure of the entire compressor if it is prolonged over time. Among the 235 

11,195,120, observations, only a total of 391,393 points were defined as surge observations, while 236 

the remaining 10,803,227 points were identified as the regime. To gain a better insight into the 237 

available dataset, Fig. 4 shows some of the collected signals for the 11 surge events and the eleven 238 

regime events. It is a reduced example due to the limited space and company policies.  239 



Table 1 Selected process variables 240 

#   Monitored process variable 

1   Net active power 

2   Wet bulb temperature 

3   Flow rate - low pressure stage 

4   Flow rate - high pressure stage 

5   Suction gas pressure - low pressure stage 

6   Suction gas pressure - medium pressure stage 

7   Suction gas pressure - high pressure stage 

8   Outlet high pressure stage gas pressure 

9   Exhaust gas pressure 

10   Interstage pressure gas extractor 

11   Interstage pressure gas extractor 

12   Interstage pressure gas extractor 

13   Suction gas temperature - low pressure stage 

14   Suction gas temperature - low pressure stage 

15   Suction gas temperature - high pressure stage 

16   First stage temperature 

17   Second stage temperature 

18   Third stage temperature 

19   Outlet capacitator temperature 

20   Outlet third stage temperature 

21   Interstage gas temperature 

22   Interstage gas temperature 

23   Interstage gas temperature 

24   Interstage gas temperature 

25   Position of the first anti-surge valve  

26   Position of the second anti-surge valve  

27   Capacitator absolute pressure 

 241 



 242 

Fig. 4 Example of collected signals for distinct surge and regime events 243 

4.2 Stage 2: Noise removal and data reduction 244 

4.2.1 EMD application to detect noisy IMFs 245 

Most of the acquired signals include a strong noise component, especially for the surge operating 246 

condition with highly dynamic and fluctuating PVs. The acquired data also have a strong 247 

nonstationary and nonlinear nature. Consequently, removing random noise is a fundamental step in 248 

improving the accuracy of the methodology. This task is performed for each sensor through the EMD 249 

(Step 4) by setting a maximum number of IMFs equal to 20. An SST is conducted to distinguish noisy 250 

IMFs from the true signal IMFs (Step 6). First, the mean period of each extracted IMF is estimated 251 

according to Eq. 9 [28]. 252 

𝑇𝑖 =
𝑛

𝑃𝑖
                                                                                                                                                     (9) 253 

where 𝑛 and 𝑃𝑖 denote the number of acquired data points and the number of peaks of the i-th IMF, 254 

respectively. Next, the energy density of each IMF is estimated through Eq. 10 [65]. 255 

𝐸𝑖 =
1

𝑛
∑ |𝑐𝑖

2(𝑡)|𝑛
𝑡=1                                                                                                                             (10) 256 

The mean period and the energy density could be seen as the mean and the variance of the IMFs, 257 

respectively. The first IMF is characterized by the highest order of fluctuations, and it is chosen as a 258 



reference for the hypothesis test. The hypothesis test used to identify the noisy IMF is based on Eq. 259 

11, whose null hypothesis is that every IMF is a noisy IMF. 260 

𝑙𝑛 (
1

3
𝐸1) + 𝑙𝑛𝑇1 < 𝑙𝑛𝐸𝑖 + 𝑙𝑛𝑇𝑖 < 𝑙𝑛(3𝐸1) + 𝑙𝑛𝑇1    𝑖 = 2,3, … , 𝑚                                                      (11) 261 

where 𝑚 is the number of IMFs. Consequently, the first IMF is consistently recognized as noise. 262 

Furthermore, all IMFs for which the null hypothesis is accepted are defined as noisy IMFs.  263 

As an example, the EMD of one of the sensors related to a surge event is considered. First, the 264 

monitored signal is decomposed into its corresponding IMFs and a residual through the sifting 265 

process. The sifting ends as soon as either the maximum number of IMFs is obtained or the computed 266 

residual is monotonic. For the signal considered, ten IMFs are extracted, as depicted in Fig. 5. 267 

 268 

Fig. 5 Example of EMD for one of the PV monitored during a surge event. 269 

For each IMF the mean period and energy density are calculated according to Eq. 9 and Eq. 10. 270 

Subsequently, based on the computed values, the null hypothesis of Eq. 11 is tested for each IMF to 271 

detect noisy IMFs. Among the ten IMFs, the first, the second, the third, the fifth, and the seventh 272 

resulted as noisy, while the remaining IMFs belong to the true signal (see Fig. 6). Finally, the denoised 273 

signal is reconstructed as the sum of the true signal IMFs and the residual, as illustrated by Eq. 12. 274 

𝐷𝑆(𝑡) = ∑ 𝑐𝑖,𝑇𝑆(𝑡)𝑛
𝑖=1 + 𝑟(𝑡)                                                                                                              (12) 275 

where 𝑐𝑖,𝑇𝑆(𝑡) and 𝑟(𝑡) denote the i-th true signal IMF and the residual, respectively, while 𝐷𝑆(𝑡) 276 

identifies the denoised signal. The original monitored signal and the denoised signal of the illustrated 277 

example are shown in Fig. 7.  278 



 279 

Fig. 6  Noisy and true signal IMFs for one of the PVs monitored during a surge event 280 

 281 

Fig. 7 Original and denoised signal of the considered PV during a surge event 282 

The signal of the example is highly dynamic and nonstationary. However, the filtering process can 283 

both capture the trend of the signal and reduce its peaks. It is worth mentioning that the combination 284 

of EMD and SST also performs well for less complex signals characterized by fewer fluctuations and 285 

variability. Indeed, for this kind of signal, the filter identifies a lower number of noisy IMFs, thus, the 286 

denoised signal could result very similar to the original one. As an example, the denoised signals and 287 

the original monitored signals for two less fluctuating PVs are shown in Fig. 8. 288 



 289 

Fig. 8 Monitored and denoised signal of two PVs characterized by low fluctuations.  290 

 4.2.2 NCA application to determine the most relevant PVs 291 

The collected data are highly unbalanced since 391,893 observations were collected for the surge 292 

operating condition, whereas the regime data points are 10,803,227. Thus, before applying the NCA, 293 

the dataset was balanced. Indeed, it is essential to adopt a well-balanced data set in a prediction model 294 

[66]. Nevertheless, it is worth mentioning that this was possible thanks to the large available dataset 295 

concerning regime observations. Based on the previous statements, 391,893 observations were 296 

randomly extracted from the regime dataset and fed to the NCA along with all surge data. The results 297 

arising from the application of the NCA are depicted in Fig. 9 and Table 2, where the relative weight 298 

of the i-th PV is obtained through the ratio of the absolute weight associated with the i-th PV (𝑊𝑖) 299 

and the sum of all the estimated absolute weights (see Eq. 12).  300 

𝑅𝑊𝑖 =  
𝑊𝑖

∑ 𝑊𝑗
𝑛
𝑗=1

                                                                                                                                              (12) 301 



 302 

Fig. 9 Weight associated with the NCA to each PV. 303 

Table 2 Ranking, weight and relative weight of each PV. 304 

Monitored process variable Ranking Weights 
Relative 

Weight 

Cumulative 

Weight 

Suction gas temperature - high pressure stage 1 3.67 16% 16% 

Interstage gas temperature 2 3.49 15% 31% 

Interstage pressure gas extractor 3 2.66 11% 42% 

Interstage pressure gas extractor 4 2.25 10% 52% 

Third stage temperature 5 2.07 9% 61% 

Interstage pressure gas extractor 6 1.96 8% 70% 

Capacitator absolute pressure 7 1.93 8% 78% 

Outlet third stage temperature 8 1.37 6% 84% 

Suction gas pressure - high pressure stage 9 1.15 5% 89% 

Flow rate - low pressure stage 10 1.00 4% 93% 

Suction gas pressure - medium pressure stage 11 0.90 4% 97% 

Position of the first anti-surge valve  12 0.35 2% 98% 

First stage temperature 13 0.18 1% 99% 

Exhaust gas pressure 14 0.07 0% 100% 

Suction gas pressure - low pressure stage 15 0.05 0% 100% 

Outlet high stage gas pressure 16 0.03 0% 100% 

Wet bulb temperature 17 0.02 0% 100% 

Net active power 18 0.01 0% 100% 

Interstage gas temperature 19 0.00 0% 100% 

Second stage temperature 20 0.00 0% 100% 

Outlet capacitator temperature 21 0.00 0% 100% 

Interstage gas temperature 22 0.00 0% 100% 

Position of the second anti-surge valve  23 0.00 0% 100% 

Interstage gas temperature 24 0.00 0% 100% 



Suction gas temperature - low pressure stage 25 0.00 0% 100% 

Suction gas temperature - low pressure stage 26 0.00 0% 100% 

Flow rate - high pressure stage 27 0.00 0% 100% 

 305 

It emerges that the most relevant PV is the suction gas temperature of the high-pressure stage, while 306 

the least important is the flow rate of the high-pressure stage. Furthermore, it could be seen that the 307 

contribution of the PVs after the thirteenth is almost equal to 0. Finally, the first four PVs explain 308 

more than 50% of the cumulative weight. Therefore, we decided to consider these PVs for the 309 

subsequent analysis steps, to reduce the time required by the calculation, especially for online 310 

monitoring purposes. 311 

4.3 Stage 3: Classification through Machine Learning 312 

The initial data set was reduced to consider the first four most relevant PVs, which were identified as 313 

the suction gas temperature of the high-pressure stage, the gas temperature between stages, and the 314 

two interstage gas pressures. Moreover, the available data are split into a training and a test set to 315 

verify the generalization capability of the obtained model. To this end, 75% of the surge observations 316 

are randomly extracted as a training set. Furthermore, the same amount of data points was considered 317 

as a training set for the regime. Accordingly, 587,840 observations (equally divided between surge 318 

and regime conditions) were chosen and used as the training set. On the other hand, the remaining 319 

10,607,280 observations were used as a test set. We decided to adopt 75% of the data as a training 320 

set since 75-25 is a common proportion for training and test set. Moreover, since many data were 321 

available for the regime operating state, we decided to have a balanced training dataset, considering 322 

a small subset of the regime observations. This allows us to better verify the generalization capability 323 

of the regime conditions. On the other hand, since fewer data were available for the surge event, the 324 

standard proportion aforementioned between training and test was exploited.  325 

The optimization of an ML approach was out of the scope of this work. Therefore we adopted an RF 326 

with the characteristics highlighted in Table 3. 327 

Table 3 Characteristics of the adopted RF 328 

Characteristic   Value 

Ensemble Method   Bag 

Split criterion   Gini index 

Number of learners   30 

Max. number of splits   20 
 329 



The training was conducted through a 5-fold cross-validation, which resulted in the confusion matrix 330 

of Table 4. The calculation depicted that 13,585 surge observations were classified as regime, while 331 

only 2,039 regime observations were misclassified as a surge. Defining the accuracy as the ratio 332 

between the number of correctly classified observations and the total number of observations, the 333 

training accuracy resulted equal to 97.34%. Based on this value, it is possible to state that the model 334 

is reliable for the classification purposes of the training set. 335 

Table 4 Confusion matrix of the training set. Dark cells represent correctly classified observations. 336 

   Predicted class 

   Regime Surge 

True 

class 

Regime 291,881 2,039 

Surge 13,585 280,335 

 337 

One of the main issues that could arise from ML approaches is the lack of generalization. In other 338 

words, a model could be very accurate for the training dataset but, in turn, it could not predict new 339 

observations accurately. This is a scenario that is related to an overlearning of the training dataset, 340 

which results in poor generalization. To avoid this issue, the algorithm is constantly tested on a new 341 

dataset called a test set. Consequently, the trained algorithm is adopted to predict the class of the test 342 

set, which was previously mentioned. The confusion matrix related to the test set is shown in Table 343 

5. 344 

Table 5 Confusion matrix of the training set. Dark cells represent correctly classified observations. 345 

   Predicted class 

   Regime Surge 

True 

class 

Regime 10,233,530 275,777 

Surge 4,914 93,059 

 346 

The RF correctly predicted 97.35% of the observations, denoting a high degree of generalization.  347 

5. Discussion 348 

Based on the results illustrated in Section 4, it is possible to state that the proposed methodology is 349 

capable of removing noise from the monitored signal and, after selecting the most relevant PVs, it 350 

performs a diagnosis of the condition of the monitored equipment. Indeed, the model resulted to be 351 

very accurate and efficient since about 97% of the time the health of the system was correctly 352 

predicted. Moreover, the undesired operating condition (that is, the surge) was correctly classified 353 

95% of the time, while the regime condition was incorrectly identified as a surge 3% of the time in 354 

the test set and only 1% of the time for the training set. This difference could be related to the nature 355 



of the surge events which could be very different. Despite that, these results look promising, since 356 

there is a high degree of generalization for the surge operating condition. Indeed, misclassification 357 

cost related to the surge condition is higher compared to the regime operating state being classified 358 

as a surge. Indeed, the priority is detecting a dangerous operating state and subsequently activating 359 

appropriate procedures to restore a normal working condition. Accordingly, a false negative (i.e., 360 

classifying a surge state as a regime) could increase the time the system runs in an abnormal state, 361 

leading to a shorter useful life and simultaneously mining the safety of the operations. On the other 362 

hand, a false positive (i.e., classifying a regime as a surge) could result in performing unnecessary 363 

maneuvers or stopping the operations to reduce the amount of time that the system is spending in an 364 

unwanted operating state.  365 

The developed approach is also quite practical since there is no need of specifying any opinion or 366 

information during the classification process. Indeed, the proposed model can classify on its own the 367 

observations based on the current monitored signals without any external interference. This peculiar 368 

feature allows to perform online diagnosis and accordingly define the actions to perform based on the 369 

detected state. The real-time evaluation of the operating condition is pivotal to further improve the 370 

safety of the operations since it could assist in reducing the time that the equipment is spending in a 371 

risky and undesired state.  372 

To have a more in-depth insight into the obtained results, the scatter plots related to the considered 373 

most relevant variables are shown in Fig. 10. 374 

 375 

 376 

Fig. 10 Scatter plots for all four most relevant PVs. The blue and orange dots represent regime and surge observations respectively. 377 



As depicted in Fig. 10, there are some regions where the surge and regime conditions overlap, leading 378 

to a classification error. The overlapping could be related to the transition from a regime operating 379 

condition to a surge one. Another possible explanation is that the starting data were classified through 380 

expert judgments, thus, there is the possibility of including uncertainty and errors from the beginning. 381 

Anyway, the proposed model can distinguish a surge condition from a regime operating point even 382 

when they are very similar or there is a strong merge between the classes. This task is not easy, and 383 

it cannot be considered a normal routine. Therefore, the implementation of the model allows one to 384 

perform a tough diagnosis without considering any external input such as expert opinions or physical 385 

laws.  386 

Finally, the number of PVs to consider was selected through the cumulative weight without 387 

considering any sensitivity analysis. Accordingly, varying the number of PVs adopted for the 388 

classification could be a viable option to improve the accuracy of the classification. Even though the 389 

selection of the best number of PVs was out of the scope of this work, as an example, the classification 390 

with the first five most relevant PVs is considered. The inclusion of the fifth PV resulted in the 391 

confusion matrices of Table 6 for the training set and Table 7 for the test set. Accordingly, the training 392 

and test accuracy are equal to 97.68% and 97.87%, respectively. Therefore, it is possible to state that 393 

the prediction accuracy of new observations is slightly increased; however, the complexity of the 394 

classification increases as well. A trade-off between accuracy and calculation time should be 395 

considered to determine the number of PVs to adopt for the prediction. Another important aspect is 396 

that the prediction accuracy of the surge event increases when adopting five PVs, while the prediction 397 

accuracy of the regime condition is slightly lower.  398 

Table 6 Confusion matrix of the training set composed of five PVs 399 

   Predicted class 

   Regime Surge 

True 

class 

Regime 287,507 6,413 

Surge 7,215 286,705 

 400 

Table 7 Confusion matrix of the test set composed of five PVs 401 

   Predicted class 

   Regime Surge 

True 

class 

Regime 10,285,150 224,157 

Surge 2,219 95,754 

 402 

6. Conclusions 403 



This paper presents a novel methodology capable of performing failure diagnosis of a system based 404 

on a set of monitored PVs. In the proposed approach, a number of signals equal to the number of 405 

considered PVs are extracted from sensors, and their noise is filtered out through EMD. Next, the 406 

most relevant PVs are selected through NCA. Finally, the remaining PVs are exploited to implement 407 

a supervised RF classification model. The framework was tested on a real case study of a compressor 408 

operating in a geothermal plant. The obtained results are factual since the training and test accuracy 409 

were estimated as 97.34% and 97.35%, respectively. 410 

The proposed approach could be used for online condition monitoring purposes of equipment with 411 

highly non-stationary and dynamic PVs. Specifically, it could assist in the decision-making process 412 

related to maintenance planning. Indeed, the methodology facilitates online failure diagnosis, 413 

providing the current operating condition of the monitored equipment. In case the monitored 414 

equipment is identified in an undesired state, it is possible to intervene to repristinate the normal 415 

operating condition. This characteristic allows assuring the safety of the operations, limiting the time 416 

that the system spends in a dangerous state (e.g., the surge).  417 

In this work, the optimization of the ML parameters and the selection of an optimum number of PVs 418 

was not considered. Accordingly, future works could include such aspects. Moreover, the exploitation 419 

of distinct ML techniques could be taken into account. Finally, further developments could also be 420 

related to adopting the methodology for distinct case studies. Indeed, testing the framework on 421 

different applications could be helpful to analyze its strengths, capabilities, and limitations.  422 
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