
Decomposing the Verification
of Interlocking Systems

Anne E. Haxthausen1(B) , Alessandro Fantechi2 , and Gloria Gori2

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

2 University of Florence, Firenze, Italy
{alessandro.fantechi,gloria.gori}@unifi.it

Abstract. This paper considers model checking the safety for mem-
bers of a product line of railway interlocking systems, where an actual
interlocking system is modelled as an instance of a generic model config-
ured over the network under its control. For models over large networks
it is a well-known problem that model checking may fail due to state
space explosion. The RobustRailS tools that combine inductive reason-
ing with SMT solving using Jan Peleska’s powerful RT-Tester tool suite
have pushed considerably the limits of the size of networks that can
be handled. To further push these limits, we have proposed a compo-
sitional method that can be combined with RobustRailS to reduce the
size of networks to be model checked: the idea is to divide the network
of the system to be verified into two sub-networks and then model check
the model instances for these sub-networks instead of that for the full
network. In this paper we propose a strategy for applying such network
divisions repeatedly to achieve a fine granularity decomposition of a given
network into a number of small sub-networks. Under certain conditions,
these sub-networks all belong to a library of pre-verified elementary net-
works, so model checking of the sub-networks is no longer needed.

Keywords: Formal Methods · Model Checking · Compositional
Verification · Interlocking Systems

1 Introduction

Formal methods have successfully been applied to development and verification
of railway systems [3,5,6]. In particular, it has been popular to use model check-
ing techniques for formal verification of interlocking systems (controlling train
movements inside a railway network) as these are fully automated. Interlocking
systems are configured with application data that reflect the elements and topol-
ogy of the railway network layout. Hence, formal verification aims to verify both
the generic application with its algorithms for safe allocation of routes to trains,
and the specific application produced by the configuration with application data
for the network under control.

c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 96–113, 2023.
https://doi.org/10.1007/978-3-031-40132-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_7&domain=pdf
http://orcid.org/0000-0001-7349-8872
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-8482-2612
https://doi.org/10.1007/978-3-031-40132-9_7


Decomposing the Verification of Interlocking Systems 97

Model checking is subject to state space explosion, which limits scalability
of the approach so that automatic verification of interlocking systems for large
networks is demanding in terms of computing resources, and may even fail [4].

Abstraction techniques have typically been adopted to limit state space explo-
sion in model checking: abstraction should preserve the desired properties, hence
the adopted abstraction technique should be defined specifically for the kind of
system and properties under examination. For interlocking systems, a conve-
nient abstraction can be based on the locality principle: properties concerning
the allocation of a route to a train are typically not influenced by train move-
ments over networks elements that are distant from, and not interfering with,
the considered route. Locality of a safety property can be used to limit the
state space by abstracting away such “distant movements”. In [26] this principle
supports domain-oriented optimisation of the variable ordering in a BDD-based
verification; it also enables property-directed model slicing, ([4,10,11]), in which
verification is performed only over the portion of the model that concerns the
property of interest (cone of influence), allowing for an efficient verification of
a property, but requiring to perform slicing and verification for every property
(plus checking that that slicing preserves the related property).

It has also been suggested to use bounded model checking to perform k-
induction proofs of safety properties expressed as state invariants to avoid explor-
ing the whole state space. In the RobustRailS verification tools [25] for inter-
locking systems this technique was implemented using the powerful SMT-based
bounded model checker of Jan Peleska’s RT-Tester tool1; this made it possible
to considerably push the bounds of the size of networks that can be verified
without state space explosion [25].

Locality has also enabled our proposal of a compositional approach for
addressing verification for very large networks: the idea is to divide the network
to be verified into two (or more) sub-networks and then model check the model
instances for these sub-networks instead of model checking the model instance
of the full network [2,8,15,16]. For model checking, we use the RobustRailS ver-
ification tools. The soundness result for compositional safety verification given
in [8] guarantees that, when properly cutting a network, proving safety for the
sub-networks suffices to prove safety for the full network. In this way, the task of
proving safety for a large network can be reduced to the task of verifying safety
for sub-networks of a size manageable by the model checker.

The idea of compositional verification is also shared by the approach
described in [12–14]. This approach that is based on the criteria of functional
decomposition of interlocking systems defined by the Belgian railways in order
to deal with the control of large networks by dividing the network into sub-
networks, each possibly controlled by separate interlocking systems. A compari-
son of this approach with ours is presented in [1]. Indeed, it appears that decom-
position of a network in this approach is grounded on pragmatic domain-related
criteria, while our approach is more general. Furthermore, this approach uses an

1 https://www.verified.de/products/rt-tester/.

https://www.verified.de/products/rt-tester/


98 A. E. Haxthausen et al.

assume-guarantee approach for verification which requires not only verification
for the sub-networks as in our approach, but also verification of contracts.

The question of where to divide a network during compositional verification
has triggered the contribution of this paper: an iterative decomposition strategy
to achieve a fine granularity decomposition of a network into a number of small
sub-networks, that under certain conditions belong to a library of pre-verified
elementary networks. The soundness result for compositional safety verification
guarantees that safety for the full network is given by the pre-verified safety of
sub-networks. Therefore, to verify a network, it is in principle no more needed to
run a model checker, independently of the size of the network, if specific network
conditions are met.

The paper is structured as follows: First, in Sects. 2 and 3, short descriptions
of the RT-Tester tool suite and of the RobustRailS verification method, built on
top of RT-Tester, are given. Then, in Sect. 4, our compositional method using
the RobustRailS tools is presented and a strategy for performing decomposition
is discussed. The latter is the main, novel contribution of this paper. Section 5
draws some conclusions and ideas for future work.

2 The RT-Tester Tool Suite

In 1998 Jan Peleska and Cornelia Zahlten founded the company Verified Sys-
tems International GmbH, and Jan has been head of Research & Development
in the company since then. The company provides tools and services in the field
of safety-critical system development, verification, validation and test, and has a
wide variety of customers including Siemens, Airbus and its suppliers. Verified’s
flagship product is RT-Tester 2 , a very comprehensive model-based test automa-
tion tool suite for automatic test generation, test execution and real-time test
evaluation. RT-Tester can not only be used for testing (see e.g. [19]), but also
for bounded model checking (BMC) of which we will give an example in next
section. RT-Tester’s automation capabilities are discussed in [18], and special
test case generation strategies implemented in RT-Tester are described in [9].
In 2015, the company was awarded the runner-up trophy of the EU Innova-
tion Radar Prize due to the special testing strategy that was developed by Jan
Peleska and Wen-ling Huang.

3 The RobustRailS Verification Method and Tools

In the RobustRailS research project3 that was accompanying the Danish re-
signalling programme on a scientific level in 2012–2017, a formal method with
tools support for automated, formal verification of railway interlocking systems
was developed [22–25] by Linh Hong Vu under supervision of Jan Peleska and
Anne Haxthausen. This section gives a short description of the RobustRailS
method and tools.
2 https://www.verified.de/products/rt-tester/.
3 http://robustrails.man.dtu.dk.

https://www.verified.de/products/rt-tester/
http://robustrails.man.dtu.dk


Decomposing the Verification of Interlocking Systems 99

Fig. 1. A railway network layout example. From [23].

The Considered Interlocking Systems. An interlocking system is a sig-
nalling system component that is responsible for safe routing of trains through
(a fraction of) a railway network under its control. An interlocking system is
traditionally specified by a layout of the railway network that it controls and
a so-called interlocking table that specifies allowed routes through the network
and conditions for these routes to be exclusively reserved by a train. In Fig. 1
an example of a railway network layout for a small station is given. As it can
be seen it consists of (1) train detection sections that are either linear sections
(like t10) or switchable points (like t11) having a stem side and two branching
sides (e.g. t11 has its stem next to t10 and its branches next to t20 and t12,
respectively) and (2) markerboards4 (like mb10) placed at the ends of linear sec-
tions and only visible in one direction (e.g. mb10 is visible in direction UP). As
a general rule for the networks considered in this paper, there is at most one
markerboard in each end of a linear section and it can only be seen when leaving
the section. Furthermore, at the borders of a network, there are always two linear
sections (like b10 and t10) with a signal configuration having an entry signal on
the border section and an exit signal on the section next to the border section.
Furthermore, networks are assumed to be loop-free5.

The Tools and Method. The RobustRailS tools are centred around two inter-
related DSLs (domain-specific languages):

– IDL: a DSL [23] for specifying (1) a generic, behavioural, formal model of a
product line of interlocking systems and their environment and (2) generic
safety properties in the form of state invariants, and

– ICL: a DSL [22] for specifying configuration data (a railway network layout
and an interlocking table) that can be used to instantiate generic models and
properties.

The RobustRailS tools can be used to formally verify the design of an inter-
locking system in the following steps, summarized in Fig. 2:

1. A generic model and generic properties are specified in IDL.
4 We are considering modern ERTMS level 2 based interlocking systems for which
there are no physical signals. They are replaced by markerboards, and in the control
system there are virtual signals associated with the markerboards. Throughout the
paper we use the term signal as a synonym for markerboard.

5 A network is loop-free, if there are no physically possible path through the network
containing the same section more than once.



100 A. E. Haxthausen et al.

Fig. 2. The RobustRailS tool suite. From [23].

2. A railway network layout and its corresponding interlocking table are specified
in ICL in the following order: first the network layout, and then the inter-
locking table. The creation of the latter is either done manually or generated
automatically from the network layout.

3. A static checker verifies whether the configuration data is statically well-
formed [7] according to the static semantics [24] of ICL.

4. Generators instantiate a generic behavioural model and generic safety prop-
erties with the well-formed configuration data to generate a model and safety
properties for the network and routes described in the configuration data.

5. The generated model instance is then checked against the generated proper-
ties by a bounded model checker performing a k-induction proof.

The static checking in step (3) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (5) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool chain associated with the method has been implemented using Jan
Peleska’s RT-Tester framework [18,21]. The bounded model checker in RT-Tester
uses the SONOLAR SMT solver [20] to compute counterexamples showing the
violations of the base case or induction step.

Applications. The RobustRailS method and tools have been used to success-
fully verify the safety of several interlocking systems. The first application was
the Danish interlocking system for EDL, the first regional line in Denmark com-
missioned in the Danish Signalling Programme. First, the IDL language was
used to specify a generic model for the novel family of Danish interlocking sys-
tems and generic safety conditions expressing that there are no train collisions
(i.e. there must at most be one train on each section at the same time) and no



Decomposing the Verification of Interlocking Systems 101

derailments (i.e. when a train traverses a point, the point must be switched in
the right direction for the train to pass). Then the network for the complete
EDL line consisting of eight stations of various complexity was specified in the
ICL language and an interlocking table was automatically generated from this.
Then method steps 3–5 were performed. The verification metrics can be found
in Table 1. For more details on this case study, see [25]. Other applications are
mentioned in Sect. 4.2.

This achievement of model checking an interlocking system for such a big
railway network was quite remarkable. A key reason for that was the use of
RT-Tester’s SMT based bounded model checker to perform an induction proof.
That pushed considerably the limits of the size of networks for which interlocking
systems can be verified.

4 Compositional Verification

However, networks of very large stations still exceed the model checking capacity.
Therefore, to be able to perform verification for any size of networks, we have
previously [2,8,15,16] suggested to use a compositional verification method on
top of the RobustRailS verification method.

The idea of our compositional method is as follows: Assume given a generic
model and generic safety properties for no collisions and no derailments. To ver-
ify an interlocking system instance for a specific network N , divide the network
into two parts (sub-networks) N1 and N2, and then verify the interlocking sys-
tem instances for these two networks using the RobustRailS method and tools.
This division process can be applied repeatedly until all sub-networks are small
enough to be verified.

In Sect. 4.1, we explain the compositional method in more detail, and in
Sect. 4.2 we report on some case studies applying the method. Using our com-
positional method rises the question: which decomposition of a given network
should be made? In Sect. 4.3 we explain an idea for that.

4.1 A Method for Compositional Verification
To introduce the compositional method, we first need to define what is a cut of
a network, and how the sub-networks should be generated by the cut.

Cut Specifications. A single cut is a cut that can be performed between any
two neighbouring, non-border sections t1 and t2 in a network N . An example
of a single cut is shown in Fig. 3. The specification of that single cut is the pair
(t1, t2). To divide a network into two parts, it is not always enough to perform a
single cut, but a cluster cut consisting of several single cuts may be needed. An
example of a cluster cut is shown in Fig. 4. The specification of a cluster cut is
the set of specifications of each of its single cuts. A cut is legal, if it divides the
network into exactly two parts, no route is cut by more than one single cut, and
no flank/front protecting elements6 are separated by the cut from the sections
they protect. In this paper we assume that flank/front protecting is not adopted.
6 In the end of Sect. 4.3 the notion of flank protection is explained.



102 A. E. Haxthausen et al.

Fig. 3. An example of a single cut. From [8].

Fig. 4. An example of a cluster cut. From [8].

Decomposing a Network According to a Cut Specification. Given a net
N and a legal cut specification, the network is decomposed into two networks as
follows:

– if a single cut is between linear sections t1 and t2, first divide the network N
between t1 and t2, obtaining two sub-networks N−1 and N−2, and then add
to N−1 and N−2 at the respective cut a border section and also an entry and
an exit signal at that border, if there were not already signals placed around
the cut. By doing so, two well-formed networks are obtained: N1 and N2.
Figure 5 shows how a network is decomposed into two networks by a single
cut (t1, t2). It can be seen how N1 is obtained from the sub-network N−1

on the left-hand side of the cut by adding a border section b1 and border
signals sentry1 and sexit1 . N2 is obtained in a similar way. When it is clear
from the context, sometimes we also call the resulting networks N1 and N2

sub-networks;
– if a single cut is between a linear section t1 and a point p, the decomposition
is treated as if there was an additional linear section t2 between t1 and p, and
the cut specification was (t1, t2);

– if a single cut is between two points p1 and p2, the decomposition is treated
as if there were two additional linear sections t1 and t2 between p1 and p2,
and the cut specification was (t1, t2).

– if the cut is a cluster cut, the above rules are simultaneously applied to each
of its single cuts.

A tool that takes a network and a cut specification as arguments and returns
the two networks obtained by decomposing the network according to the cut
specification has been developed [17]. This tool is called the RobustRailS Network
Cutter.



Decomposing the Verification of Interlocking Systems 103

Fig. 5. An example of a decomposition of a network into two networks. From [8].

Method Steps. Using a legal cut allows to perform compositional verification
in the following steps:

1. Decompose a network N according to a legal cut specification, achieving two
networks N1 and N2.

2. For i = 1, 2, apply the interlocking table generator to Ni, check the resulting
specification by the static checker, and generate a model mi and properties
φi from that.

3. For i = 1, 2, verify that mi satisfies φi.

In [8] it is proved that this method is sound. This means that in order to prove
safety of the model generated from the whole network, it is suffcient to verify
safety for each of the models generated from the two sub-networks formed by a
legal cut.

4.2 Case Studies

A number of case studies applying the presented compositional verification app-
roach to different networks with different characteristics and layouts have been
carried out. Table 1 shows the savings in verification time and needed memory
obtained applying the compositional method to non-trivial cases. For each case,
the statistics are shown first for each sub-network, then the global consumption
of time and memory of the compositional approach and its reduction are shown
in comparison with that of a monolithic verification for the full network. The
first three examples have been presented at international conferences [1,2,16];
in particular the first one is the already mentioned EDL line, which has been
decomposed in sub-networks related to each station of the line, among which the



104 A. E. Haxthausen et al.

Table 1. Verification statistics for the compositional verification method applied to
some interlocking examples.

Example Linears Points Signals Routes Time (s) Memory (MB)
NFM2017 [16]
Gadstrup 14 3 16 21 62 567
Havdrup 10 2 12 14 19 264
L. Skensved 15 3 16 21 72 616
Køge 58 23 62 75 5170 9243
Herfølge 6 2 10 14 13 210
Tureby 6 2 10 14 11 203
Haslev 10 2 12 14 14 256
Holme-Olstrup 12 2 16 20 22 352
Compositional 5383 9243
Full EDL 110 39 126 179 14352 22476
Reduction % 72.49% 68.88%

SEFM2017 [2]
Low 28 13 26 56 12895.35 12176.6
High 25 10 24 66 8052.92 9517.9
Compositional 20948.27 12176.6
Full Fismn 49 23 46 124 51770.64 42483.7
Reduction % 59.54% 71.34%

RSSRail22 [1]
LVR7A Left 20 7 31 30 670 2083
LVR7B Right 15 5 23 18 108 846
Compositional 778 2083
Full LVR7 26 12 42 48 2387 5467
Reduction % 67.41% 61.90%

Tramway line
Down 12 5 12 12 81.42 462.8
Middle 9 4 8 12 55.77 392.2
Up 8 3 8 10 22.40 266.7
Compositional 159.59 462.8
Full line 22 12 20 62 28206.00 22762.7
Reduction % 99.43% 97.97%

Flying junction
Each of 4 subnetworks 12 4 12 20 108.47 max 600.2 max
Compositional 369.69 600.2
Full junction 24 16 16 40 55853.76 23587.2
Reduction % 99.34% 97 .45%



Decomposing the Verification of Interlocking Systems 105

Køge station maintains its own high complexity. The second example is a single
cut of a large network whose layout has been extracted from a portion of the
main Florence station, while the third is a Belgian station on which a cluster cut
has been applied, with the aim to compare the method with the decompositional
approach of [14]. The remaining two have been purposedly defined to explore
different layout characteristics: one is inspired by a tramway network, that is,
a single track tramway line with several branches and passing loops; the other
is a complex flying junction, that allows grade-separated crossing of two double
track lines, as well as full interconnection among the tracks of the two lines.

The highest savings are obtained when, in the full network, several routes
do not conflict and therefore can be used concurrently, contributing to the state
space explosion, due to interleaving of concurrent train movements over such
routes: if the cut is made such that the number of independent routes inside
a sub-network is low, the concurrency degree is dramatically decreased. This
is the case of the tramway line example, divided into three sub-networks, and
of the flying junction example, where the cut produces four almost isomorphic
sub-networks of far lower complexity.

A deeper study on the correlation between full network topology, cut strategy,
and verification savings by decomposition is planned as future work.

4.3 A Decomposition Strategy

Using the presented compositional verification method leaves the question: which
cuts should be made in order to decompose a network into small networks that
are fast to verify? In this section we will exploit the idea of providing a library
of pre-verified, elementary networks and a strategy for dividing a given network
into sub-networks of which as many as possible are elementary.

Elementary Networks. As elementary networks we allow one of the network
patterns shown in Fig. 6: an elementary network can be a sequence of linear
sections having only the required signals at the two borders (see a) and b)). It can
alternatively (see c) and d)) be a network containing just one point surrounded
by at least two linear sections on each of its three sides. There are only the
required signals at the three borders and optionally zero, one, two or three of
the signals shown directly facing the point. All patterns admit an unbounded
number of linear elements at specific positions. In c) there is only one linear
section between the the point and each of the three border sections, while in d),
there are two (or more) linear sections between the point and the border section
on the stem side. In a similar way it is allowed to have two (or more) linear
sections between the point and the border sections on the branching sides of the
point.

Model instances of the networks of Fig. 6 have been model checked to be
safe, for all the admitted combinations of presence of markerboards, but without
the presence of the admitted extra linear sections. Moreover, a result from [8]
allows us to add an unbounded number of linear sections at the indicated specific



106 A. E. Haxthausen et al.

Fig. 6. Patterns for elementary networks.

positions without impacting safety. Hence, we can conclude that model instances
for all elementary networks are safe.

Decomposing a Network. Given a network, now the idea is to search for
places to make legal cuts, one by one, such that the network can be divided into
parts that are either elementary networks or non decomposable networks (that
is, they cannot be cut without breaking the rules for legal cuts). In the ideal
case that the decomposition leads to networks that are all elementary, no model
checking is needed.

As an example, consider the network shown in Fig. 7. By making the three
cuts (two single cuts (083, PM02U) and (PM02U,PM03U) and the cluster cut
{(802, PM04U), (801, PM04U)}) shown by green lines, one by one, one achieves
the four elementary networks N1

1 , N2
1 , N3

1 , and N3
2 shown in Fig. 8.

Fig. 7. Cuts shown on a network (LVR1).

In practice, a possible process of finding such cuts for a loop-free network N
is as follows, provided that there are no flank/front protecting elements:



Decomposing the Verification of Interlocking Systems 107

Fig. 8. Decomposition of the LVR1 network in three steps according to the three
cuts shown in Fig. 7. The four resulting green sub-networks N1

1 , N2
1 , N3

1 , and N3
2 are

elementary.

1. Start searching from the neighbour (linear section) l of some border section
b of N . The search direction is from l towards the next adjacent element in
the direction opposite to b.

2. Follow the sections from l one by one as long as they are linear and do not
have any signals attached until one of the following happens:
(a) If a linear section having an exit signal is found, we have reached a border

and no cut should be made, as the considered network is an elementary
linear network.

(b) If two consecutive, linear sections l1 and l2 are found, and at least one
of them has a signal facing the other, then a decomposition using the cut
(l1, l2) should be made. By this the generated sub-network containing
l1 will by construction be an elementary linear network. The search for
further cuts should then continue from l2 in the other sub-network.

(c) If a point p is found, then we should continue to search for cuts on the two
other sides of p. This search depends on from which side p was found: the



108 A. E. Haxthausen et al.

stem or one of the branching sides. In both cases the search also depends
on whether the two other sides are connected or not.7
i. If coming from the stem of p, and the two branching sides are not

connected, then we should search for cuts in each of the two branches.
The search here is similar to the search starting from a border, except
that if a second point is found, a single cut must be made just before
that point. The two searches may hence lead to totally zero, one or two
single cuts, dividing the network into (1) an elementary point network
containing p and (2) zero, one or two additional sub-networks in which
a search for cuts must be performed. For instance, when searching for
a cut in network N1

2 in Fig. 8 (a), starting from PM02U_ex_stem,
a single cut, cut2 : (PM02U,PM03U), will be found in the lower
branch, while no cuts are found in the upper branch (as a border is
met before any further points or non-border signals), so it results in
two sub-networks.

ii. If coming from the stem, and the two branching sides are connected,
then a similar search is made in each of the branches. In this case
two single cuts (one in each branch) will be found and these must
be combined in a cluster cut (in order to divide the network into
two parts) leading to an elementary point network containing p and
one additional sub-network to which search for cuts must be recur-
sively applied. That is e.g. the case when searching for a cut (cut3 )
in network N2

2 in Fig. 8 (b), starting from PM03U_ex_stem.
iii. If coming from a branching side of p, and the stem and the other

branching side are not connected, searches for cuts in the other branch
and on the stem side must be performed in a similar way to case i)
above. That happens e.g. when searching for the first cut in Fig. 7
starting from linear section 533.

iv. If coming from a branching side of p, and the stem and the other
branching side are connected, the search to be performed is similar
to case ii), except that in some cases it is not possible to find a legal
cluster cut: that happens if a potential cluster cut divides a route
into three parts8, as shown in Fig. 9, where the cluster cut shown
by a red, dotted line is found when searching from L1 on the upper
branching side of point P1. In such a case we should then start a
search from another border to see if a cut can be found from there. It
is our conjecture that it is always possible to find a border from which
it is possible to find a legal cluster cut through the connected sub-
component, provided that the network is loop-free. For instance, in
Fig. 9, the legal cluster cut {(P2, P1), (L24, P4)} shown by a dashed,
green line can be found when searching from L2. Figure 10 gives an

7 By connected we mean that by navigating the graph of the not yet visited part of
the network starting from the two sides we eventually reach a common point.

8 Note that when coming from the stem, we do not have such a problem, as a route
cannot pass through a point via its two branches.



Decomposing the Verification of Interlocking Systems 109

example of a network that cannot be decomposed into elementary
networks as the network is not loop-free.

Fig. 9. The cluster cut {(P1, P2), (L13, P3)} shown by a red, dotted line is illegal
as it divides the route shown as a blue, solid arrow in three parts. The cluster cut
{(P2, P1), (L24, P4)} shown by a green, dashed line is legal. (Color figure online)

Fig. 10. An example of a non-loop-free, non-decomposable network.

In railway interlocking systems, specific additional mechanisms may be
included to enforce safety also in the case in which trains do not strictly respect
signals, due to a driver’s misbehaviour or accidental inability to brake. In the
Flank Protection mechanism points and signals not belonging to the route are
properly set in order to avoid hostile train movements into the route at an inci-
dent point. In the example of Fig. 11 locking of route r requires the point t20
to be in the straight position in order to protect the flank of route r by a train
accidentally missing the closed mb20 signal. If both point t20 and route r lie in
the same sub-network when a cut is operated, the extra condition on the point
position has no impact on compositionality: but this is not the case for the drawn
cut, which separates the protecting and the protected points. As discussed in [8],
in this case compositional verification results do not fully hold, so we consider
such a cut as not legal: both elements should instead be in the same sub-network,
which is therefore not elementary, since it contains two points. In the presen-
tation of our approach, we have assumed that there is no flank protection. If
flank protection was adopted, legal cuts would not be allowed to separate the
protecting and the protected points. However, then we would no longer be able
to decompose a loop-free network into networks that are all elementary.



110 A. E. Haxthausen et al.

Fig. 11. Cut through a flank protection.

5 Conclusions and Future Work

In this paper we have presented a compositional method for model checking
the safety of interlocking systems. The idea of the compositional method is to
divide the network under control into some sub-networks and then model check
the model instances for these networks instead of model checking the model
instance of the full network. The paper suggests a novel strategy for decomposing
a network into a number of small sub-networks that, under certain conditions,
all belong to a library of pre-verified elementary networks, so no model checking
is actually needed for the specific application.

This strategy will be the subject of further work, including its implementation
in a tool for the automatic decomposition of a network: this will be accompa-
nied by a deeper assessment of its soundness and completeness, as well as of its
tractability, and on the other end will enable experimenting it on several com-
plex layout examples. Also, this study will address a consolidated definition of
the conditions under which the conjecture of full decomposition in elementary
networks holds, and the impact of flank protection or other analogous protection
mechanisms on the applicability of the decomposition algorithm.

Dedication and Acknowledgements

We dedicate this paper to Jan Peleska who we admire so much for his brilliant
research in applicable formal methods for safe industrial products. The first
author (Anne Haxthausen) would like to express her gratitude to Jan for more
than 25 years of the most enjoyable, inspiring, and fruitful collaboration.

The RobustRailS tools used in the work presented in this paper were devel-
oped by her PhD student, Linh H. Vu, under co-supervision by Jan Peleska
who came with brilliant ideas and generously provided the possibility of using
RT-Tester as backend. All three authors are very indebted to Peleska and Vu.
Furthermore, the authors would like to thank Hugo D. Macedo, who contributed
to the initial work on the compositional method used in this paper, and to thank
Anna Nam Anh Nguyen and Ole Eilgaard for their network cutter tool which
we have also used in this paper.



Decomposing the Verification of Interlocking Systems 111

References

1. Fantechi, A., Gori, G., Haxthausen, A.E., Limbrée, C.: Compositional verifica-
tion of railway interlockings: comparison of two methods. In: Dutilleul, S.C., Hax-
thausen, A.E., Lecomte, T. (eds.) Reliability, Safety, and Security of Railway Sys-
tems. Modelling, Analysis, Verification, and Certification: Fifth International Con-
ference, RSSRail 2022, Paris, France, June 1–2, 2022, Proceedings. Lecture Notes
in Computer Science, vol. 13294, pp. 3–19. Springer Nature Switzerland AG (2022).
https://doi.org/10.1007/978-3-031-05814-1_1

2. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of inter-
locking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 236–252. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1_15

3. Ferrari, A., Ter Beek, M.H.: Formal methods in railways: a systematic mapping
study. ACM Comput. Surv. 55(4), 1–37 (2022)

4. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: FORMS/FORMAT 2010 - Formal Methods for Automation and
Safety in Railway and Automotive Systems. pp. 107–115. Springer (2010). https://
doi.org/10.1007/978-3-642-14261-1_11

5. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H.: Systematic evaluation and
usability analysis of formal methods tools for railway signaling system design. IEEE
Trans. Softw. Eng. 48(11), 4675–4691 (2022)

6. Ferrari, A., Mazzanti, F., Basile, D., Ter Beek, M.H., Fantechi, A.: Comparing for-
mal tools for system design: a judgment study. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pp. 62–74. ICSE 2020,
Association for Computing Machinery, New York, NY, USA (2020)

7. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verifi-
cation of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3_19

8. Haxthausen, A.E., Fantechi, A.: Compositional verification of railway interlocking
systems. Form. Asp. Comput. 35(1) (2023). https://doi.org/10.1145/3549736

9. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int. J.
Softw. Tools Technol. Transfer 18(3), 265–383 (2016)

10. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne,
H.: Decomposing scheme plans to manage verification complexity. In: Schnieder,
E., Tarnai, G. (eds.) FORMS/FORMAT 2014–10th Symposium on Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems, pp. 210–220.
Institute for Traffic Safety and Automation Engineering Technische Univ., Braun-
schweig (2014)

11. James, P., et al.: Verification of solid state interlocking programs. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05032-4_19

12. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of Railway Inter-
locking - Compositional Approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_10

13. Limbrée, C., Pecheur, C.: A framework for the formal verification of networks of
railway interlockings - application to the Belgian railway. Electr. Commun. Eur.
Assoc. Study Sci. Technol. 76 (2018)

https://doi.org/10.1007/978-3-031-05814-1_1
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1145/3549736
https://doi.org/10.1007/978-3-319-05032-4_19
https://doi.org/10.1007/978-3-319-33951-1_10


112 A. E. Haxthausen et al.

14. Limbrée, C.: Formal verification of railway interlocking systems. Ph.D. thesis, UCL
Louvain (2019)

15. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-
station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 279–293. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3_20

16. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of
interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8_11

17. Nguyen, A.N.A., Eilgaard, O.B.: Development and use of a tool supporting com-
positional verification of railway interlocking systems. Master’s thesis, Technical
University of Denmark, DTU Compute (2020)

18. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) 8th Workshop on Model-Based
Testing, Rome, Italy. vol. 111, pp. 3–28. Open Publishing Association (2013)

19. Peleska, J., et al.: A real-world benchmark model for testing concurrent real-time
systems in the automotive domain. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0_11

20. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5_22

21. Verified systems international GmbH: RT-Tester model-based test case and test
data generator - RTT-MBT - User Manual (2013). http://www.verified.de

22. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014–
10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Institute for Traffic Safety and Automation
Engineering Technische Universität, Braunschweig (2014)

23. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for
generic interlocking models and their properties. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems. Mod-
elling, Analysis, Verification, and Certification: Second International Conference,
RSSRail 2017, Pistoia, Italy, November 14–16, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10598, pp. 99–115. Springer Cham (2017). https://doi.
org/10.1007/978-3-319-68499-4_7

24. Vu, L.H.: Formal development and verification of railway control systems - In the
context of ERTMS/ETCS Level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

https://doi.org/10.1007/978-3-319-47169-3_20
https://doi.org/10.1007/978-3-319-47169-3_20
https://doi.org/10.1007/978-3-319-57288-8_11
https://doi.org/10.1007/978-3-642-24580-0_11
https://doi.org/10.1007/978-3-642-24580-0_11
https://doi.org/10.1007/978-3-642-20398-5_22
http://www.verified.de
https://doi.org/10.1007/978-3-319-68499-4_7
https://doi.org/10.1007/978-3-319-68499-4_7


Decomposing the Verification of Interlocking Systems 113

25. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Programm. 133, Part
2, 91–115 (2017)

26. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp.
246–260. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-
1_24

https://doi.org/10.1007/978-3-642-34032-1_24
https://doi.org/10.1007/978-3-642-34032-1_24

	 Preface
	 Organization
	 Jan Peleska – The Admirable Expert in Applicable Formal Methods for Safe Industrial Products (Laudatio)
	 Contents
	Testing
	On Testing Ethical Autonomous Decision-Making
	1 Introduction
	2 Architecture for Testing Ethics
	2.1 Test Input Generation
	2.2 Test Oracle Identification

	3 Ethical Theories for Conformance Analysis
	3.1 Deontological Ethics
	3.2 Consequentialism
	3.3 Virtue Ethics

	4 Related Work
	4.1 Ethical Oracle Identification
	4.2 Ethical Representation

	5 Conclusion and Future Research Roadmap
	References

	Bringing RoboStar and RT-Tester Together
	1 Introduction
	2 RoboStar Technology
	3 RT-Tester
	4 RoboSim and RT-Tester
	4.1 Platform-Independent Code Generation
	4.2 Connecting to RT-Tester

	5 Example: Testing the Simple Ranger Robot
	6 Conclusions and Vision for the Future
	References

	Implementation Relations for Distributed Testing
	1 Introduction
	2 Preliminaries
	3 Distributed Testing
	4 Implementation Relations
	5 Related and Future Work
	6 Conclusions
	References

	Conformance Relations Between Input/Output Languages
	1 Introduction
	2 Preliminaries
	3 Conformance Relations
	3.1 Equivalence, Quasi-equivalence, Reduction, Quasi-reduction, and Strong-Reduction
	3.2 Semi-equivalence, Strong-semi-equivalence, Semi-reduction, Strong-semi-reduction
	3.3 Comparing Conformance Relations

	4 Conformance Testing
	4.1 A Fundamental Criterion for Conformance Testing
	4.2 Quasi-equivalence, Quasi-reduction and Strong-Reduction as Reductions

	5 Conclusions
	A  Proofs
	References

	On Scenario-Based Testing of Cyber-Physical Systems
	1 Introduction
	2 Defect Hypotheses for ``Good'' Test Cases
	3 (Regression) Testing with Recorded Drives
	4 Generating Test Cases
	4.1 Levels of Abstraction
	4.2 Big Picture
	4.3 Scenario Types Derived by Experts and by Clustering
	4.4 From Clusters to Descriptions of Scenario Types
	4.5 Completeness of Recorded Drives W.r.t. Relevant Scenario Types
	4.6 Test Case Generation with Heuristic Search

	5 Non-optimality of Tests Generated by Heuristic Search
	6 Completeness
	7 Summary and Outlook
	References

	Railway Verification and Safety and Security
	Safety vs. Security – Why Separation of Concerns is a Good Strategy for Safety-Critical Systems
	1 Introduction
	1.1 Standardization Background
	1.2 Differences Between Safety and Security

	2 Co-engineering of Safety and Security
	2.1 Security from a Safety Perspective, and Vice Versa
	2.2 Process Interfaces
	2.3 Responsibility for Security

	3 The Cybersecurity Case
	3.1 Principles
	3.2 Contents
	3.3 Modularization

	4 Implementation Examples
	4.1 The Importance of Architecture
	4.2 The “Detect Single Faults” Pattern
	4.3 The “Safety Channel” Pattern
	4.4 The “Mixed Architecture” or “EN 50159” Pattern

	5 Discussion and Conclusion
	References

	Decomposing the Verification of Interlocking Systems
	1 Introduction
	2 The RT-Tester Tool Suite
	3 The RobustRailS Verification Method and Tools
	4 Compositional Verification
	4.1 A Method for Compositional Verification
	4.2 Case Studies
	4.3 A Decomposition Strategy

	5 Conclusions and Future Work
	References

	Pattern-Based Risk Identification for Model-Based Risk Management
	1 Introduction
	2 Background
	2.1 CORAS
	2.2 RIQ Method

	3 Modeling Method
	3.1 Defining Modeling Hints
	3.2 How to Set up Threat Models from RIQs with Modeling Hints
	3.3 Validation Conditions

	4 Example
	5 Tool Support
	5.1 Metamodel
	5.2 Graphical Editor
	5.3 Implemented Validation Conditions

	6 Related Work
	7 Conclusion and Outlook
	References

	Software Model Checking of Interlocking Programs
	1 A Signalling Problem and Our Approach to Solving It
	2 Theoretical Foundations
	2.1 Textbook Knowledge on Verifying Finite Transition Systems
	2.2 Verifying Propositional Safety Properties of Ladder Logic Programs
	2.3 Translating Generic Safety Principles to Track Plan Specific Ones

	3 Technology Prototype
	3.1 Automatising Translations
	3.2 First Academic Experiments
	3.3 Improving Verification Through Slicing

	4 Technology Transfer
	4.1 Logic Rework
	4.2 Data Formats, Interoperability and Efficiency
	4.3 Technicalities of Real World Constraints
	4.4 Fully Functional Prototype at Siemens Mobility

	5 Future Development
	5.1 IC3 Algorithm
	5.2 Invariant Finding via Reinforcement Learning
	5.3 Measuring Cost and Benefit

	6 Summary
	References

	Formal Modelling to Improve Safety and Security
	1 Introduction
	2 Terminology
	3 Ensuring Safety with Formal Methods
	4 Software and Hardware Security Attacks
	5 Formal Techniques for Security
	6 Conclusion and Perspectives
	References

	Intelligent Systems and Cyber-Physical Systems
	Time for Traffic Manoeuvres
	1 Introduction
	2 Preliminaries
	2.1 Multi-lane Spatial Logic with Scopes
	2.2 State Clock Logic
	2.3 SC Automata
	2.4 Timed Multi-lane Spatial Logic

	3 Example
	4 Formalisation
	5 Conclusion
	References

	Safer Than Perception: Assuring Confidence in Safety-Critical Decisions of Automated Vehicles
	1 Introduction
	2 A Simple Example
	3 Boolean Formulae as Classifiers
	3.1 Probabilistic Preliminaries and Assumptions
	3.2 Estimating Classification Rates for Complex Boolean Formulae
	3.3 An Exemplary Computation

	4 Related Work
	5 Conclusion
	A Proofs
	References

	Supervision of Intelligent Systems: An Overview
	1 Introduction
	2 Examples of Supervised Intelligent Systems
	3 Background
	4 Supervision
	4.1 A Taxonomy of Supervision
	4.2 Fundamental Approaches to Supervision
	4.3 Supervision of Intelligent Systems
	4.4 Relationship to Safety Verification and Controller Synthesis
	4.5 Relationship to Digital Twins

	5 Synthesis of Supervisors
	5.1 Dynamic Programming of Supervisors
	5.2 Game-Based Supervisor Synthesis

	6 Modelling for Supervisor Construction
	7 Certifiable Assurance of Supervisors
	7.1 Correct-by-Construction Supervisors
	7.2 Industrial Certification of Supervisors

	8 Conclusions
	References

	Fault Injection in Co-simulation and Digital Twins for Cyber-Physical Robotic Systems
	1 Introduction
	2 Background: Co-simulation and Digital Twins
	2.1 Co-simulation
	2.2 Digital Twins

	3 Fault Injection in Co-simulations
	4 A Case Study: The Desktop Robotti
	4.1 Platform Description
	4.2 Parallel Operation and Monitoring
	4.3 Hardware-in-the-Loop Fault Injection
	4.4 Emergency Stop at the DT Level

	5 Looking Forward
	References

	Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems
	1 Introduction
	1.1 Uncertainty in Robotics
	1.2 A Unifying Framework for Uncertainty?
	1.3 Candidate Theory for Unification: POMDPs
	1.4 Unifying Semantics for Prism
	1.5 This Paper

	2 A Prism Example
	3 Why Do We Need Another Formal Semantics for Prism?
	3.1 Prism Action Labels Are Not CSP Events
	3.2 Prism Deadlock Is Not CSP Deadlock
	3.3 Prism Hiding Is Not CSP Hiding
	3.4 Refinement Theory
	3.5 Programming Logic
	3.6 Testing Theory
	3.7 Example: Decision Support
	3.8 How Do We Assess Your Strategy?

	4 Unity
	4.1 Kripke Structures
	4.2 Unity Module Semantics
	4.3 Unity Single Command Semantics

	5 Prism System Module Semantics
	6 Predicative Programming
	6.1 Notation

	7 Probabilistic Predicative Programming
	8 Example: Killer Robots
	9 Related Work
	10 Conclusions and Further Work
	References

	Tools and Techniques for Specification, Verification and Code Generation
	Source-Code-to-Object-Code Traceability Analysis for Airborne Software: A Case for Tool Support
	1 Introduction
	1.1 Objectives and Contributions
	1.2 Outline

	2 Control Flow Traceability
	2.1 From CFGs to Finite Automata
	2.2 Deciding CFG Isomorphism
	2.3 Limitations of Branching Analysis Using DFAs

	3 Additional Analyses
	3.1 Hidden Call Detection
	3.2 Memory Allocation Analysis
	3.3 Store Analysis

	4 Verification Sheets and Application
	5 Tool Qualification
	6 Related Work
	7 Conclusion
	References

	Space Telemetry Analysis with PyContract
	1 Introduction
	2 The PyContract Core Library
	3 Data Analysis Scripts
	3.1 The Sample Counting Monitor
	3.2 The Missed Event Monitor
	3.3 The File Uplink Monitor
	3.4 The Command Execution Monitor
	3.5 The Sample Rate Monitor

	4 Conclusion
	References

	An Intermediate Language-Based Approach to Implementing and Verifying Communicating UML State Machines
	1 Introduction
	2 Communicating UML State Machines
	2.1 Modelling the GRC in UML
	2.2 UML Metamodel and Semantics

	3 Smile
	4 Representing UML State Machines in Smile
	4.1 Deferring and Acknowledging
	4.2 Choice Pseudostates
	4.3 History Pseudostates

	5 Code Generation and Verification
	6 Conclusions
	References

	Polynomial Formal Verification of Complex Circuits Using a Hybrid Proof Engine
	1 Introduction
	1.1 Related Works

	2 Background
	2.1 Verification Using Bit-Level Techniques
	2.2 Verification Using Word-Level Techniques

	3 PFV Using a Hybrid Proof Engine
	3.1 Overview
	3.2 Case Study I: PFV of an ALU
	3.3 Case Study II: PFV of a Structurally Complex Multiplier

	4 Conclusions
	References

	Debugging Frame Conditions
	1 Introduction
	2 A System Model in Alloy
	3 A New Feature
	4 Specification Validation
	5 Approaches to Debugging
	6 Systematic Frame Equation Debugging
	6.1 Instrumentation
	6.2 Process
	6.3 Generalization and Automation

	7 Related Work
	8 Discussion
	References

	Author Index

