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A B S T R A C T

The accurate assessment of tsunami-induced damage to coastal roads is crucial for effective disaster risk man-
agement. Traditional approaches, reliant on univariate fragility functions, often fail to capture the complex 
interplay of variables influencing road damage during tsunami events. This study addresses this limitation by 
employing machine learning techniques on an extensive dataset compiled after the 2011 Great East Japan 
tsunami. The dataset, enriched with additional explicative variables accounting for the hydraulic features of the 
event and the physical characteristics at roads’ location, enables a comprehensive analysis of road damage 
mechanisms. Results indicate that while inundation depth remains a significant predictor, factors such as wave 
approach angle, road orientation and potential overflow from inland watercourses also play critical roles.

1. Introduction

The accurate estimation of tsunami-induced damage to roads poses a 
challenge for disaster risk management in coastal areas, emphasizing the 
need for comprehensive approaches and tools to assess and mitigate 
tsunami impacts on roads (Ballantyne, 2006; Edwards, 2006; Tang et al., 
2006; Fritz et al., 2011; Kazama & Noda, 2012; Unjoh, 2012; Williams 
et al., 2019, 2020; Paulik et al., 2021). Roads, integral to the daily 
functioning of society, assume a critical role during response and re-
covery phases following major events. Indeed, as observed in past events 
(e.g., 2004 Indian Ocean tsunami, 2011 Great East Japan tsunami, 2015 
Illapel tsunami in Chile), beyond merely facilitating access to impacted 
communities, road integrity considerably influences the efficiency of 
repair works on other essential lifelines (e.g., electricity, telecommuni-
cations), each with a widespread damage and loss of service to 
transportation.

While some literature and practical approaches exist for modeling 
flood-induced direct damage to roads (Davis et al., 2013; Mallick et al., 
2017; Rebally et al., 2021; Van Ginkel et al., 2021; Haque et al., 2023; 
Samela et al., 2023), similar methodologies have not received an 

equivalent attention for tsunamis. Due to the limited availability of 
specific empirical data for model development and validation, prevail-
ing literature for tsunamis has primarily focused on developing 
modeling tools for buildings (Tarbotton et al., 2015; Charvet et al., 
2017). In the few examples existing for roads, the most frequent 
approach involves the use of fragility functions (Maruyama & Itagaki, 
2017; Williams et al., 2020), which establish a relationship between the 
damage state and the hazard intensity, typically represented by tsunami 
inundation depth (Koshimura et al., 2009). While practical, relying on 
inundation depth as the sole hazard intensity measure represents a 
principal drawback of fragility functions, due to their inability to fully 
capture the complex mechanisms leading to damage (Vescovo et al., 
2023; Scorzini et al., 2024). Morphological attributes of roads and their 
surrounding environment, coupled with factors like flow velocity, 
entrained debris and erosion, are known as significant influencing fac-
tors for road damage (Ratnasooriya et al., 2007; Rossetto et al., 2007; 
Kreibich et al., 2009; Mikami et al., 2012; Chen et al., 2013; Williams 
et al., 2019, 2020; Haque et al., 2023). Despite their importance, con-
ventional uni-variable fragility functions often neglect these critical 
factors and their complex, non-linear interactions, posing a question 
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regarding the reliability of such tools.
In this context, recent advancements in machine learning present a 

promising solution to these drawbacks (Di Bacco et al., 2023; Mar-
ín-García et al., 2023; Vescovo et al., 2023; Scorzini et al., 2024). 
Nevertheless, a downside of such approaches is their dependency on 
extensive empirical datasets to develop effective and generalizable 
models. In this regard, the road damage dataset compiled by the Japa-
nese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) 
after the 2011 Tōhoku tsunami may offer a valuable resource (MLIT, 
2012). The 2011 Great East Japan earthquake triggered an extremely 
large tsunami that adversely affected the eastern Pacific Coast of the 
country, causing casualties and severe damage in coastal cities of Miyagi 
and Iwate prefectures (Mimura et al., 2011; Kazama & Noda, 2012; 
Mikami et al., 2012). The MLIT conducted field surveys across the entire 
tsunami-affected area to gather data on damaged assets, resulting in a 
comprehensive dataset accessible through their website (MLIT, 2012). 
While the building dataset has been widely employed in the literature 
for developing fragility functions (e.g., Tarbotton et al., 2015; Macabuag 
et al., 2016) and, more recently, machine learning-based models (Di 
Bacco et al., 2023; Vescovo et al., 2023; Scorzini et al., 2024), the road 
dataset has received comparably less attention, with only a few studies 
still relying exclusively on fragility-based approaches (Maruyama & 
Itagaki, 2017; Williams et al., 2020).

In the present study, the MLIT road dataset has been extended by 
incorporating supplementary explanatory variables, with the aim of 
obtaining insights into the multi-variable nature of tsunami damage 
mechanisms to roads within a machine learning framework. These 
additional factors include the hydraulic characteristics of the event 
(inundation depth and flow velocity), the morphological/topographical 
features at the road location and proxy variables accounting for 
shielding effects and debris impacts generated by adjacent structures.

2. Materials and methods

2.1. Extended MLIT dataset for roads

The main data source in this study originated from the comprehen-
sive ground survey carried out by the Japanese Ministry of Land, 
Infrastructure, Transport and Tourism (MLIT) in the weeks following the 
2011 Tōhoku tsunami (MLIT, 2012). The dataset comprised a line 
shapefile representing the actual length of each damaged road segment, 
with an assigned damage state (Table 1), categorized as “minor” (class 1, 
ds1), “moderate” (class 2, ds2), or “severe” (class 3, ds3). It also included 
information on road-use type based on jurisdiction, distinguishing be-
tween state roads, main local roads, general prefectural roads, and 
municipality roads, providing a proxy for road capacity and design level.

In this study, to ensure a comprehensive representation of the road 
network within the inundated area, the MLIT dataset was combined with 
the undamaged (ds0) road layer developed by Williams et al. (2020)
using information from OpenStreetMap or digitized from aerial imagery. 
This integration resulted in approximately 4300 km of inundated roads 
distributed across four damage states (including the undamaged one), as 
shown in Fig. 1.

The hydrodynamic data for the event were obtained using TUNAMI- 
STM, a two-dimensional nonlinear shallow water model coupled with a 
sediment transport model, whose accuracy and reliability have been 
tested and documented in previous studies (Sugawara & Goto, 2012; 
Sugawara et al., 2014; Sugawara, 2018; Yamashita et al., 2016, 2017, 
2022). To efficiently manage computational demands, the impacted 
region was divided into multiple nested domains, labeled as R6-R1, each 
with distinct spatial resolution and extent. Domains R6 to R2 had res-
olutions ranging from 5 to 405 m, maintaining a constant ratio of 1/3. 
Domain R1 extended over the entire interplate tsunami source region 
along the Japan Trench, with a resolution of 1215 m. Digital elevation 
models were generated using high-resolution data sources, including 
pre-2011 tsunami records, LIDAR and photogrammetry provided by the Ta
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Geospatial Information Authority of Japan. To enhance model’s accu-
racy and minimize uncertainties from coarser grid sizes, our analysis 
specifically focused on roads within Regions R6-R4, covering approxi-
mately 3790 km of inundated roads. The investigated region included 
the coastal areas of Miyako, Rikuzentakata, Kesennuma, 
Minami-Sanriku, Ishinomaki and Sendai plain (Fig. 1). Simulations 
reproduced the tsunami’s propagation and inundation over a 3-hour 
period following the earthquake, capturing both the primary wave 
and subsequent backflow effects.

Roads in the inundated area were divided into segments of approx-
imately 50 m. At each segment’s centroid, corresponding attributes were 
assigned, including simulated values for inundation depth (h) and flow 
velocity (v) obtained through grid sampling. The sampled values at these 
locations represent the maximum estimated values from the numerical 
simulation, thus implying that observed damage is triggered by overall 
maximum demands, regardless of the potential variation in the timing of 
occurrence for the maximum depth and velocity at a given location.

Beyond hazard information, to gain more insights into the multi- 

variable nature of tsunami damage, geospatial algorithms were 
employed to characterize each road segment with additional site-related 
features that could play a critical role as damage explanatory factors 
(Table 2).

These included the distance between each road’s centroid and the 
coastline (Distance), the direction of tsunami wave approach (WDir), 
road orientation (ROrient), and a binary factor (CoastType) distinguish-
ing between ria and plain coastal typologies characteristic of the Tōhoku 
region, with a mountainous, indented coastline in the northern part and 
flat, sandy shoreline in the South of Miyagi and Fukushima prefectures 
(Mikami et al., 2012; Suppasri et al., 2013, 2015).

Given the significant impact of obstacles and building density on 
inundation propagation and consequent damage (Rossetto et al., 2007; 
Reese et al., 2011; Mikami et al., 2012; Röbke & Vött, 2017; Moris et al., 
2021; Bernardini et al., 2021; Di Bacco et al., 2023; Zhu et al., 2023), the 
synthetic variables proposed by Di Bacco et al. (2023) were introduced 
in this study as proxies to capture potential information on shielding and 
debris impact mechanisms resulting from the interaction of tsunami 

Fig. 1. Pairwise relationships between hazard, main velocity proxies and distance variables across the damage states in the extended MLIT dataset for roads. The 
definitions of the variables are provided in Table 2. The pie chart summarizes the distribution of the various damage states within the original and resampled 
datasets, including respectively 129,557 and 57,454 items.

M. Di Bacco et al.                                                                                                                                                                                                                              Sustainable Cities and Society 115 (2024) 105856 

3 



propagation with built surfaces. Specifically, following the methodology 
outlined in Di Bacco et al. (2023), Sh and SW represent the fraction of 
the area within a buffer region around the road’s centroid (as defined 
below) occupied by buildings and seawalls, respectively: 

Sh =

∑Ntot

i=1
Ai

Ab
and SW =

∑Nsw

i=1
Lihi

Ab
(1) 

where Ntot and NSW denote the total number of buildings and seawalls 
within a buffer area Ab, with Ai, Li and hi respectively indicating the 
footprint area of the i-th building in the buffer, the length and the height 
of the i-th seawall element. Building information, including reported 
damage states, was sourced from the corresponding MLIT dataset 
(2012), while details regarding seawalls were obtained from Di Bacco 
et al. (2023).

Similarly, to account for the potential impact of collapsed buildings 
as a source of debris, the variable DI was calculated as a function of only 
washed-away buildings (Nwa) within the buffer area: 

DI =

∑Nwa

i=1
Ai

Ab
(2) 

The analysis was expanded to include potential effects induced by 

inundation caused by the backwater effect of rivers in more inland 
sections of the affected area (Tanaka et al., 2012; Tanaka & Sato, 2015). 
To this aim, analogous “river” variables (denoted with a subscript R) 
were computed in the direction of the nearest inland watercourse: Dis-
tanceR represents the distance from each road centroid to the nearest 
inland watercourse, while ShR and DIR indicate the fractions of the area 
from each considered road segment to the nearest inland watercourse 
occupied, respectively, by standing and washed-away buildings.

The coastal and river buffer geometries (Fig. 2) used to calculate the 
proxy variables were adapted from the approach proposed in Di Bacco 
et al. (2023) for building damage. The shape of coastal buffers was 
designed to account for both run-up and backflow mechanisms (Naito 
et al., 2014; Koiwa et al., 2014; Tachibana, 2015; Röbke & Vött, 2017), 
by combining a frontal coastal buffer and one accounting for the reverse 
flow (Fig. 2a). In detail, frontal coastal buffers were represented as 
irregular hexagons, with two sides perpendicular to the line connecting 
the road centroid and the point of minimum distance to the coastline. 
The length of each side was assumed to be proportional to Distance, 
except for the side on the centroid, which was limited to a maximum 
length of 100 m (i.e., the minimum between Distance/4 and 100 m). 
Backflow buffers were only computed when Distance was less than 1000 
m, as the backflow effect tends to diminish with increasing distance from 
the coastline. These buffers were trapezoidal in shape and shared one 
side with the frontal coastal buffer, using the side adjacent to the 
centroid as their smaller base. The length of the larger base was set equal 
to the smaller base plus one-third of the height, calculated based on the 
centroid-coast distance, as follows: Distance/4 if Distance was less than 
800 m, 1000 − Distance otherwise.

The river buffer (Fig. 2b), oriented towards the nearest inland 
watercourse, mirrored the design of the frontal coastal buffer, but 
excluded the geometry for backflow, which is less significant in this 
direction. Furthermore, the variables ShR and DIR were specifically 
computed only for road segments where river-induced effects were 
likely to be relevant, i.e. when DistanceR was less than 500 m and the 
road was closer to the watercourse than to the coastline (DistanceR >

Distance).
For visualization purposes, Fig. 1 summarizes the key elements of the 

extended MLIT dataset, by showing the pairwise relationships and dis-
tributions among a subset of features, including hazard (h, v), main 
velocity proxies (Sh, DI and SW) and distance metrics across the different 
damage states.

2.2. Model development and feature importance analysis

Extra-Trees (XT) (Geurts et al., 2006) and Random Forest (RF) (Ho, 
1995) models were developed for the prediction of the damage state 
using the variables outlined in the previous section as input. These 
models were selected due to their demonstrated effectiveness in similar 
exercises on building damage classification for the same tsunami event 
(Di Bacco et al., 2023) and for general damage prediction, as in the case 
of floods (Paulik et al., 2024).

To address the dataset’s imbalance arising from the significant pro-
portion of elements in class 0 (no damage), a random resampling 
strategy was employed to obtain a more even distribution of the data 
among the four damage states (Fig. 1). Specifically, we sampled and 
utilized a number of data points from the original elements in class 
0 (95,391) that is 25 % greater than the size of the second most repre-
sented class in the sample (class 1, with 18,631 elements). After this 
process, the final dataset for model training comprised 57,454 data 
points, with 40.5, 32.4, 15.1 and 11.9 % assigned to damage state 
0 through 3, respectively. This operation ensures that each class is 
adequately represented during model training, preventing the model 
from being skewed towards the majority class; consequently, it promotes 
a more accurate and robust learning process, enabling the model to 
generalize effectively and make informed predictions across the entire 
spectrum of possible outcomes.

Table 2 
Variables in the extended roads MLIT dataset used in this study.

Variable Description Data source type

h Inundation depth at road segment’s 
centroid [m]

Hydrodynamic 
simulation

v Flow velocity at road segment’s centroid 
[m s-1]

Hydrodynamic 
simulation

Sh Proxy for shielding effect generated by 
buildings within the buffer area created at 
road segment’s centroid – buffer in the 
coastline direction (“coastal buffer”) [-]

Geospatial analysis

ShR Proxy for shielding effect generated by 
buildings within the buffer area created at 
road segment’s centroid – buffer in the 
inland watercourse direction (“river 
buffer”) [-]

Geospatial analysis

SW Proxy for shielding effect generated by 
the presence of seawalls (SW) within the 
buffer area created at road segment’s 
centroid [-]

Geospatial analysis

DI Proxy for the debris impact (DI) effect 
generated by washed-away buildings 
within the buffer area created at road 
segment’s centroid – buffer in the 
coastline direction (“coastal buffer”) [-]

Geospatial analysis

DIR Proxy for the debris impact (DI) effect 
generated by washed-away buildings 
within the buffer area created at road 
segment’s centroid – buffer in the inland 
watercourse direction (“river buffer”) [-]

Geospatial analysis

Distance Minimum distance between the road 
segment’s centroid and the coastline [m]

Geospatial analysis

DistanceR Minimum distance between the road 
segment’s centroid and the closest inland 
watercourse [m]

Geospatial analysis

WDir Probable direction of tsunami wave 
approach, calculated as the direction of 
the line of minimum distance between the 
road segment’s centroid and the coastline 
[◦]

Geospatial analysis

ROrient Road orientation, referring to the 
directional alignment of a road segment, 
calculated as the rotation angle between 
the vertices at its two endpoints within a 
cartesian coordinate system (in this case, 
EPSG: 2452 – JGD2000) [◦]

Geospatial analysis

CoastType Indicator for coast morphology [plain / 
ria coast]

Surveyed – based on 
geographical location

M. Di Bacco et al.                                                                                                                                                                                                                              Sustainable Cities and Society 115 (2024) 105856 

4 



The implementation of XT and RF models was carried out in Python, 
utilizing the scikit-learn library (Pedregosa et al., 2011). Model devel-
opment was based on the following procedure: a portion (5 %) of the 
observed data was holdout as a validation set for hyperparameter tuning 
and the remaining data were then divided into training (95 %) and test 
(5 %) sets. For each model, an initial random search was conducted to 
fine-tune models’ hyperparameters, which included: the impurity 
measure criterium, number of estimators, maximum depth of the trees, 
minimum number of samples per leaf and minimum decrease in impu-
rity for splitting.

The assessment of model accuracy on the test set, averaged over ten 
training iterations, was based on the relative hit rate (HR), a metric 
quantifying the proportion of correct predictions to the total number of 
predictions made. A normalized confusion matrix was also computed for 
each model to gain deeper insights into the error patterns.

A comparative analysis was conducted to evaluate the performances 
of various models trained using different combinations of input features. 
These combinations varied in terms of data type, enabling an investi-
gation into the sensitivity of model accuracy to the comprehensiveness 
and complexity (in terms of retrieval and/or pre-processing costs) of the 
input data considered for model development. In detail, the reference 
Run 1 served as the initial benchmark, encompassing the minimum set 
of variables retained across all subsequent models. This baseline incor-
porated only inundation depth information (h) and coast-related geo-
spatial features requiring a straightforward calculation (Distance, WDir, 
and ROrient) or imputation (CoastType). Starting from this reference run, 
additional model configurations were generated to account for further 
potential explanatory aspects of the damage mechanisms. First, hydro-
dynamic information was included, either directly through flow velocity 

(v, Run 2) or indirectly via the two proxy variables Sh and DI (Run 3). 
Then, the following two models incorporated into the baseline the fea-
tures describing the potential contribution of the river network to the 
inundation, starting with only DistanceR in Run 4 and then including also 
the shielding and debris effects in the direction of the nearest water-
course (ShR and DIR, Run 5). Finally, Run 6 integrated the drivers 
identified as strong predictors in the previous model configurations, 
with a preference, in case of features providing equivalent information 
(such as velocity and its proxies), to those characterized by a less 
demanding computation for their assessment. In this analysis, the 
consideration of road type information was omitted due to the limited 
number of elements associated with this attribute in the dataset.

The relative mean decrease in accuracy (mda) was employed to 
assess the importance of the individual features within the models. This 
involved systematically shuffling each feature in ten iterations and 
quantifying the resulting change in accuracy compared to the original 
one.

2.3. Insights from explainable machine learning: converting model 
outcomes into fragility functions

The analysis proceeded with an additional phase, aimed at providing 
a physical interpretation of the cause-effect relationships in tsunami 
damage on roads while also addressing a common critique of machine 
learning as a “black-box” approach (Marcinkevičs & Vogt, 2023). This 
was achieved by transforming model outcomes into visually interpret-
able plots, resembling the classical fragility functions, with associated 
uncertainty bands to reflect the multi-variable nature of tsunami 
damage.

Fig. 2. Calculation of shielding and debris impact proxies: example of buffer geometries for an impacted road. a) Coastal buffer; b) River buffer. Distance and 
DistanceR denote the minimum distance from the road segment’s centroid to either the coastline or the nearest inland watercourse.
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In this phase, the most complete and performing model was selected 
to represent the output across key informative features, hereinafter 
referred to as “Investigated Feature” (IF). These included topographical 
and geographical factors, such as CoastType, Distance, DistanceR, as well 
as direct (v) or indirect (Sh and SW) velocity-related features of the 
event.

To visualize the fragility functions, the trained model was applied to 
sampled data points from the extended MLIT dataset, which ensures a 
robust representation without assuming any correlation among the 
input features. For illustrative purposes, the fragility functions were 
generated using fixed values of the IF. For CoastType, both possible 
classes were considered, while for continuous features, these values 
were selected based on the lower, median and upper quartiles of the IF in 
the dataset.

Consistently with conventional practices in tsunami literature 
(Koshimura et al., 2009; Charvet et al., 2017; Williams et al., 2020), 
inundation depth was selected as the primary intensity measure for 
constructing the fragility functions. Percentiles of inundation depth (h) 
were computed at 5 % intervals, resulting in 21 distinct values, 
including minimum and maximum h values, totaling 20 values by 
averaging interval extremes. For each h interval, 200 road segments 
were sampled with replacement, and desired values for the IF (e.g., 
CoastType = “Ria” / “Plain”, or fixed values for continuous variables) 
were assigned. This process generated a dataset comprising 200 data ⋅ 20 
intervals ⋅ n values for investigation. Subsequently, for each (h, IF) pair, 
200 damage state predictions were produced. The probabilities of 
reaching each damage state were then calculated by determining the 
relative number of times a specific damage state was reached or 
exceeded across the 200 predictions. This procedure was iterated 200 
times for each (h, IF) combination to ensure a stability of the generated 
fragility functions. Finally, for each (h, IF) pairing, values representing 
the 10th percentile, median, and 90th percentile were computed and 
integrated into monotonically increasing functions and confidence 

intervals to provide an informative representation of predictive uncer-
tainty. The number of samples and iterations for deriving the fragility 
functions and associated bands was determined in a preliminary phase 
aimed at ensuring result stability while keeping feasible computational 
times.

3. Results and discussion

3.1. Model performance and analysis of feature importance

Fig. 3 provides a comprehensive overview of the results, summari-
zing the feature importance and relative hit rate (HR) for XT and RF 
models trained with six different input configurations (Run 1 to 6), as 
described in Section 2.2. The radial plots report the mean decrease in 
accuracy (mda) associated with each feature across the different models. 
Each wedge’s radius represents the degree to which the model’s accu-
racy decreases when a specific feature is randomly shuffled during 
model training. Features with higher mda values are considered more 
crucial for the model’s performance. The color scheme in the plot dis-
tinguishes between the RF and XT models, with the overlapping area 
appearing in green as a result of using a transparent yellow fill and 
dashed border for RF and transparent cyan fill and solid border for XT. 
Gray shading indicates the variables that are not included in the 
different model configurations.

In addition to the overall results, Fig. 4 presents the confusion 
matrices for Runs 1 and 6. These matrices, describing hit and misclas-
sification rates among the different damage states, indicate that damage 
states 0, 1, and 3 are more easily identified, whereas class 2 exhibits 
higher misclassification rates, as typical in central damage classes sub-
ject to larger identification uncertainties in post-event field surveys 
(Endo et al., 2018; Lin et al., 2018). The results in Figs. 3 and 4 reveal 
highly comparable performance between XT and RF, maintaining a 
consistent hierarchy of feature importance across models’ 

Fig. 3. Results of the feature importance analysis and global accuracy (HR) for RF (transparent yellow fill) and XT (transparent cyan fill) models trained with 
different combinations of input variables (Run 1–6). Overlap region between the two models appears in green. Gray shading indicates the features that are not 
included in each model configuration.
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configurations. The major differences between the two models stems 
instead from the random nature of the splitting procedure in XT, which 
tends to favor categorical or categorical-like features, such as CoastType 
and ROrient, with the latter, albeit continuous, exhibiting data clustering 
at multiples of 90◦ and then effectively resembling a distribution with 
four distinct classes (Fig. 5, left panel).

Overall accuracy ranges between 0.79 and 0.83, aligning with 
analogous models developed for buildings for the same tsunami event 
(Di Bacco et al., 2023).

Based on the relative mean decrease in accuracy (Fig. 3), inundation 
depth (h) and its closely related variable, the distance from the coastline 
(Distance), emerge as important predictors, being them descriptive of the 

tsunami intensity (Rossetto et al., 2007; Röbke & Vött, 2017). This 
confirms the well-known critical need for detailed information on 
inundation scenarios for both ex-ante and ex-post damage assessments 
(Scorzini et al., 2022). Other variables hold nearly comparable impor-
tance in predicting damage to roads, in a more pronounced manner than 
observed in similar tests conducted in the case of buildings (Di Bacco 
et al., 2023; Scorzini et al., 2024). Indeed, the models consistently 
highlight the importance of the wave approach angle relative to the 
coast (WDir) and road orientation angle (ROrient), with their combined 
effect providing meaningful information on the road’s orientation in 
relation to tsunami’s direction. Specifically, the continuous variable 
WDir (Fig. 5, right panel) stands out as one of the most influential fea-
tures, while ROrient (Fig. 5, left panel), especially in the case of RF, re-
tains strong but slightly lesser importance, comparable to that observed 
for DistanceR. These quantitative findings align with narratives from 
previous studies on tsunami events. For instance, Ratnasooriya et al. 
(2007) documented severe damage for roads parallel to the coastline 
compared to those running perpendicular to it for the 2004 Indian Ocean 
tsunami in Sri Lanka, while Tanaka et al. (2012) and Tanaka and Sato 
(2015) described river-induced inundation mechanisms observed for the 
Tōhoku tsunami.

Unlike damage models for buildings, where shielding and debris 
effects are considered crucial (Reese et al., 2011; Di Bacco et al., 2023; 
Scorzini et al., 2024), the impact of such factors on roads appears to be 
more limited, although still not negligible (Fig. 3). The minor impor-
tance of such factors, which can be seen as proxies for local hydrody-
namic factors of tsunami propagation on land (Scorzini et al., 2024), is 
further confirmed by the comparable lower importance of direct velocity 
information from the detailed numerical simulation of the event (v). In 
this context, a more significant role is observed for the shielding effect 
induced by buildings (Sh) and seawalls (SW), with the second described 

Fig. 4. Normalized confusion matrices for run 1 and 6 (input variables as in Fig. 3) for RF (left) and XT (right) models.

Fig. 5. Density plots for road orientation (ROrient) and the probable direction 
of tsunami wave approach (WDir) in the extended MLIT dataset.
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in other studies to have a controversial effect on tsunami damage, i.e. 
with a positive mitigating impact in some cases and null or negligible in 
others (Rossetto et al., 2007; Mimura et al., 2011; Mikami et al., 2012).

Furthermore, it can be observed that as the number of predictors 
increases, the accuracy does not undergo substantial improvements 
(Fig. 3). The minimal set of features necessary to achieve an HR of 
approximately 0.8 includes only the inundation depth and other geo-
spatial variables that can be efficiently derived even at large scale (and 
ex-ante) through simple geoprocessing operations and not requiring 
extensive data collection efforts.

In detail, the inclusion of velocity (Run 2) to the baseline model (Run 
1, with HR ~ 0.80) does not result in an overall performance 
improvement (Fig. 3), as the information brought by v is intrinsically 
contained in h, given that they are theoretically related through the 
shallow water equations (v ∼

̅̅̅̅̅
gh

√
), as also visible in Fig. 1. However, 

the introduction of velocity-related proxies (Sh, DI, and SW - Run 3), 
characterized by a negligible correlation with h (Fig. 1), raises the HR to 
0.82, highlighting the significance, although to a modest extent, of hy-
drodynamic aspects for road damage estimation. In Run 4, mirroring 
Run 1 with the addition of DistanceR, a noticeable increase in accuracy is 
observed (HR ~ 0.83), suggesting the potential contribution of local 
flooding from inland watercourses, as described in Tanaka et al. (2012)

and Tanaka and Sato (2015). On the other hand, the incorporation of 
shielding and debris impact information in the direction of inland wa-
tercourses (Run 5) does not improve the performance compared to the 
previous run. This indicates that such effects in secondary directions are 
less influential and, therefore, negligible for tsunami damage modeling. 
The combined effect of all variables, identified incrementally as good 
predictors, is represented in Run 6, which maintains a consistent accu-
racy of about 0.83, thus emphasizing their suitability in describing 
tsunami damage mechanisms to roads.

Overall, an interesting result is that no single variable distinctly 
stands out as key explicative feature for road damage. This confirms that 
relying on univariate models, as often seen in the literature through 
fragility functions expressing damage based solely on inundation depth, 
may offer substantial limitations, even in a more critical way than 
occurring for buildings (Di Bacco et al., 2023; Vescovo et al., 2023; 
Scorzini et al., 2024).

3.2. Insights from explainable machine learning: converting model 
outcomes into fragility functions

Building upon the insights gained from the feature importance 
analysis, the focus now shifts to emphasizing the complex, multi- 

Fig. 6. XT-derived fragility functions with 10th-90th confidence intervals for fixed values of CoastType, Distance and DistanceR.
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variable relationships influencing damage mechanisms, thereby high-
lighting the limitations of standard univariate approaches in damage 
modeling. To illustrate this, outcomes from the most complete XT-based 
Run 6 were utilized to construct traditional fragility functions. These 
functions were generated here for fixed values of the investigated 
feature and included, in addition to the central values, 10th - 90th 
confidence intervals to provide a comprehensive understanding of the 
associated predictive uncertainty.

As examples, Figs. 6 and 7 show the resulting fragility functions for 
the “minor” (ds1), “moderate” (ds2), and “severe” (ds3) damage states, 
considering fixed values of geographical and velocity-related features. 
For the latter, to isolate the individual contribution to the fragility 
functions of the three homologous variables (v and its proxies, Sh and 
SW), the configuration of Run 6 was adapted by excluding each of them 
in turn from model development.

The fragility functions derived for the two coastal settings in the 
study area reveal interesting patterns (Fig. 6, left panel). Roads in 
“plain” coasts exhibit higher vulnerability, especially for shallower 
water depths (up to 5 m), diverging from findings in previous studies on 
building damage, where “ria” coasts have been described to be subject to 
amplifying damage mechanisms due to their specific morphological 
features (Suppasri et al., 2013, 2015; De Risi et al., 2017). This greater 

vulnerability of roads in plain coastal settings may stem from the sub-
stantial importance of road’s geometric layout in relation to the direc-
tion of wave approach, as revealed from the results of the feature 
importance analysis as well as from empirical observations in other 
events (Ratnasooriya et al., 2007). This highlights that geometric factors 
can play a more crucial role in predictive accuracy than hydrodynamic 
variables. However, an inversion of this trend emerges for higher water 
depths (>6 m), mirroring a similar pattern observed in the literature for 
building damage, but in the opposite direction (Suppasri et al., 2013, 
2015). This suggests that the influence of geometric factors related to 
road layout diminishes when the event’s intensity is particularly high, 
with hydraulic aspects becoming more influential on the damage 
mechanism. For the most severe damage states, although distinct trends 
for the median functions can be detected for the two coastal typologies, 
the broad and overlapping uncertainty bands in Fig. 6 indicate that 
reaching a certain damage state results from a combination of several 
factors, challenging the use of univariate fragility functions for reliable 
damage assessment.

Distance from the coast emerged as a key factor influencing predic-
tive accuracy (Fig. 3) and this is further evident in the corresponding 
fragility functions obtained for Distance values of 170, 1260, and 3470 m 
(Fig. 6, central panel). A negative correlation exists between Distance 

Fig. 7. XT-derived fragility functions with 10th-90th confidence intervals for fixed values of velocity-related variables: v, Sh and SW.
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and inundation depth, with roads closer to the coast being more sus-
ceptible to damage (Figs. 1 and 6). More pronounced differences in the 
fragility patterns are observed for less severe damage states; conversely, 
in ds3, the resulting functions for roads beyond 1 km from the coastline 
are nearly overlapping, while a substantial increase in the probability of 
reaching this state is observed only in close proximity to the coast. 
Similarly, the possible influence of inundation caused by the backflow of 
watercourses is also evident in Fig. 6 (right panel), with roads closer to 
them exhibiting higher susceptibility, particularly for DistanceR below 
700 m. This effect significantly diminishes (especially for ds2 and ds3) 
with increasing DistanceR, except for ds1, where a different trend is 
observed for h > 6 m, although probably influenced by specific local 
factors.

The mitigation effect exerted by the presence of built-up areas and 
seawalls is evident in the fragility functions represented in the central 
and right panels of Fig. 7, where a reduced probability of reaching a 
specific damage state can be observed with increasing values of Sh and 
SW (i.e., with a higher incidence of buildings and seawalls within the 
buffer areas at roads’ centroids). The differences are less marked for SW, 
especially for ds2 and ds3, while in ds1 the protective effect of seawalls 
appears to become negligible in case of high inundation depths (h > 5 
m), in line with qualitative observations reported in Mimura et al. 
(2011) and Mikami et al. (2012). Only slight differences are also visible 
in the median fragility functions derived for different velocity values 
(Fig. 7, left panel), with considerable overlap across all damage states, as 
well as within all associated uncertainty bands, especially for v ≤ 2 m s-1.

However, the most interesting result from Figs. 6 and 7 is that, in all 
cases, despite the general trends, the impact of other features tends to 
blur the distinctions among the central values of the fragility functions.

This reaffirms the findings from the feature importance analysis, 
emphasizing that there is no dominant variable governing the damage 
mechanisms for roads, rendering the expression of a model based solely 
on inundation depth less meaningful. This observation underscores the 
critical need to move beyond traditional univariate fragility functions in 
favor of multi-variable models, which are inherently capable of ac-
counting for the complex interactions among key features influencing 
the damage process.

4. Conclusions

The present study aimed to enhance understanding of road damage 
mechanisms during tsunami events, utilizing a machine learning 
approach on an extended version of the dataset compiled by the Japa-
nese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) in 
the aftermath of the 2011 Great East Japan tsunami.

The developed models provided insights into the multi-variable na-
ture of tsunami-induced damage to roads, highlighting the inadequacy 
of traditional fragility functions and the potential of multi-variable 
vulnerability models for refining tsunami impact assessments. Differ-
ently from buildings, where inundation depth typically dominates as the 
key feature, road damage exhibits a more intricate interplay of variables. 
Although inundation depth remains a crucial factor, the analysis pre-
sented in this study emphasized the significance of other features, 
including the wave approach angle, the road orientation angle and the 
indicator accounting for the presence of seawalls. While information on 
hydrodynamic features associated with tsunami inundation modestly 
influenced overall performance, the distance from inland watercourses 
also demonstrated a noticeable contribution.

These insights can provide modelers and stakeholders with valuable 
information to optimize resource allocation for damage modeling in 
both ex-ante risk assessment phases and post-event emergency response, 
facilitating more efficient and informed decisions. In this context, the 
straightforward computation of most identified key features, which can 
be derived using simple geospatial operations, brings significant added 
value to the efficiency of the modeling process. Furthermore, the pro-
posed modeling framework has also significant potential for replication 

in diverse geographical regions. As new datasets become available, 
machine learning approaches hold promise for widespread applicability, 
making them versatile tools for disaster risk assessment across various 
contexts. Improved model outcomes, coupled with explicit treatment of 
modeling uncertainties and efficient input data retrieval, can then 
contribute to enhanced effectiveness of risk management processes.
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