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Abstract. We prove a Harnack inequality for positive solutions of a parabolic
equation with slow anisotropic spatial diffusion. After identifying its natural
scalings, we reduce the problem to a Fokker–Planck equation and construct a self-
similar Barenblatt solution. We exploit translation invariance to obtain positivity
near the origin via a self-iteration method and deduce a sharp anisotropic expansion
of positivity. This eventually yields a scale invariant Harnack inequality in an
anisotropic geometry dictated by the speed of the diffusion coefficients. As a
corollary, we infer Hölder continuity, an elliptic Harnack inequality and a Liouville
theorem.

1 Introduction

We are concerned with solutions of the model parabolic anisotropic equation

(1.1) ∂tu =
N∑
i=1

∂i(|∂iu|pi−2∂iu)

satisfied in a suitably weak sense in � × (0,T), � ⊆ R
N for powers pi > 1

for i = 1, . . . ,N. These kind of equations raised increasing interest in the last
decades as they present an interesting feature, namely an anisotropic diffusion
with orthotropic structure. Besides its inherent mathematical interest, the latter is
useful when modelling diffusion in materials such as earth’s crust or wood, where
the velocity of propagation of diffusion varies according to the different orthogonal
directions. From the mathematical point of view, the principal part in (1.1) arises
as the Euler–Lagrange equation of a functional with non-standard growth, i.e., of
the type ∫

F(∇u) dx, where
1
C

(|z|p − 1) � F(z) � C(|z|q + 1)

for some p < q, as opposed to the standard growth condition p = q. Starting from
the pioneering examples in [26, 19], it soon became apparent that the regularity
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theory for solutions of the corresponding Euler-Lagrange elliptic equation is much
more delicate and rich than the standard one. Since then, the elliptic regularity
theory grew in considerable size. Even if this has not always been the case,
the general principle underlying the theory is that most regularity results can be
recovered when the power gap q − p in the non-standard growth condition is
small. Since it would be impossible to collect here all the contributions, we refer
to the surveys [29, Section 6] and [27] for a general overview of the subject and
comprehensive bibliographic references.

As the non-standard elliptic theory matured, its parabolic counterpart became
a research thême as well. The delay in development was considerable, mainly
because already the isotropic problem with pi ≡ p �= 2 presented great difficulties,
solved (with respect to zero-th order regularity issues) in full generality only a
decade ago through the work of DiBenedetto and collaborators; see [14] and the
literature therein. Nevertheless, parabolic equations with non-standard growth
were considered well before that (see, e.g., [24]), giving rise to a large amount
of results on existence, well-posedness, L∞-estimates and diffusion analysis. For
an extensive bibliography on this research, we refer to [4] and for the theory of
variational solutions to [27, Section 12] and the references therein.

Despite some partial results, however, the regularity theory for parabolic
anisotropic equations is largely unknown. Recently, in [17], existence and asymp-
totic behaviour of self-similar solutions of an anisotropic equation of porous
medium type is considered. While these results have some point in common
with our study of Barenblatt solutions of (1.1), the equation in [17] falls within the
framework of fast diffusion, presenting features which in many ways are opposite
to ours. Moreover, we aim at deriving different qualitative properties of general
non-negative solutions of (1.1). Up to our knowledge, local Hölder continuity of
solution of (1.1) was not known, as well as the validity of a suitable (necessarily
intrinsic) parabolic Harnack inequality. The latter is precisely the aim of this paper,
where we are going to prove the following result.

Theorem 1.1. Let u � 0 be a local weak solution to (1.1) in �× [−T,T] and

suppose that

(1.2) ∀i = 1, . . . ,N 2 < pi < p̄
(
1 +

1
N

)
p̄ :=

(
1
N

N∑
i=1

1
pi

)−1

< N

and u(0, 0) > 0. Then, there exist constants C1 � 1,C3 � C2 � 1 depending only

on N and the pi’s such that, letting M = u(0, 0)/C1, we have

(1.3)
1
C3

sup
Kρ(M)

u( · ,−M2−p̄(C2ρ)p̄) � u(0, 0) � C3 inf
Kρ(M)

u( · ,M2−p̄(C2ρ)p̄)
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whenever M2−p̄(C3ρ)p̄ < T and KC3ρ(M) ⊆ �, where

(1.4) Kr(M) :=
N∏
i=1

{|xi| < M(pi−p̄)/pi rp̄/pi/2}.

Let us make some comments on the statement, significance and proof of the
previous theorem.

The intrinsic geometry. A parabolic Harnack inequality for a non-homo-
geneous equation such as (1.1) cannot hold in classical form. This was first realised
for the parabolic p-Laplacian equation

(1.5) ∂tu = �pu

through an analysis of the so-called Barenblatt fundamental solutions, a family of
explicit solution encompassing most of the features which distinguish the classical
heat equation (and its quasilinear non-degenerate counterpart) from (1.5). The
correct formulation of the Harnack inequality for (1.5) was first found in [10]
when p � 2, and it has an intrinsic form. To explain briefly this term let us focus
on the p � 2 case of (1.5). A Harnack inequality for non-negative solutions of a
parabolic equation expresses a point-wise control on the solution (e.g., a pointwise
lower bound) in a full spatial neighbourhood of a point in terms of its value at that
point. The parabolic nature of the equation allows for such a control to hold only
after a positive time delay (in the case of lower bounds) has passed. For the heat
equation this waiting time only depends on the size of the region where we seek the
lower bound and not on the solution, while for the parabolic p-Laplacian equation
(1.5), its length depends on the value of the solution at the chosen point: the word
intrinsic refers (not only, but mainly) to this phenomenon.

In the case of (1.5), the value of the solution at the chosen point only affects
the waiting time, while for the anisotropic equation (1.1), it determines the full
shape, or geometry, of the region where the control is available. This is seen in
the definition (1.4) of the intrinsic cubes: indeed, in Kr(M), r plays the rôle of
an anisotropic radius, while M prescribes the anisotropic geometry. To justify the
first statement, notice that the Lebesgue measure of Kr(M) is always rN , regardless
of M. Regarding the second, one can follow the well-known principle that higher
exponents give slower diffusion, so that lower values of M � u(0, 0) squeeze
Kr(M) in directions of slower-than-average diffusion (pi − p̄ > 0) and stretch it in
directions of faster-than-average diffusion (pi − p̄ < 0).
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Barenblatt solutions. One of the main byproducts of our proof is the con-
struction of a family of self-similar Barenblatt solutions for (1.1) and the analysis
on their basic properties. Self-similar solutions are by now a classical thême and
have been extensively studied in various parabolic nonlinear frameworks; see, e.g.,
[37, Ch. 16] and the literature cited therein. Their rôle turned out to be pivotal in
understanding the general behaviour of solutions and has often been an important
stepping-stone for treating more general equations and formulating sensible state-
ments on the general expected results: compare the classical works of Pini [34]
and Hadamard [20], later generalised in the linear measurable setting by Moser
[32] or, in the singular/degenerate case, the first works [10], [15] employing the
Barenblatt solutions, generalised in [12, 13, 18].

For equation (1.1), the explicit form of the Barenblatt solutions is however
unknown at present, and their existence is obtained through an abstract approach.
Naturally, we cannot assume any a priori regularity and the method relies heavily
on the identification of the natural scalings of (1.1) mentioned above, allowing to
formulate the right notion of self-similarity. More details on the difficulties that
this approach involves will be made in the comments to the proof below.

Assumptions. The main condition required in the Harnack inequality is
(1.2). On one hand, pi > 2 for all i means that we are settling ourselves in the
slow diffusion regime. The main feature of this framework is that, for example,
solutions of (1.5) for p > 2 preserve compactness of the support forward in time
(as opposed to what happens for the heat equation). In the setting of the anisotropic
equation (1.1), the support moves in different directions with different speed, in
a way which has been precisely quantified in [16] and plays a rôle in our proof.
The other condition pi < p̄(1 + 1/N) requires that the powers pi are not too sparse,
following the above-mentioned principle in problems with non-standard growth.
Local boundedness holds in the larger range pi < p̄(1 + 2/N), but we are not aware
of counterexamples if this condition is violated. It would be interesting to know
whether the Harnack inequality holds true also for pmax ∈ [p̄(1 + 1/N), p̄(1 + 2/N))
but, if so, its proof likely requires different techniques than the ones employed
here.

A few comments on the constants Ci in the statement. As mentioned above, the
Barenblatt solution we use is constructed in an abstract way and we do not know if
a uniqueness theorem (up to translation and scaling) holds. The constant depends
on a lower bound on the Barenblatt solution, hence, ultimately on the choice of the
latter. Thus, it is rather undetermined from the quantitative point of view.
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Finally, the number u(0, 0) is not a-priori well-defined for a weak solution.
However, thanks to [16, Corollary 4.3], any solution of (1.1) under assump-
tions (1.2) possesses an essentially u.s.c. representative, allowing to give a mean-
ing to u(0, 0). This ambiguity in the choice will then be eliminated by the a-
posteriori continuity of the solution. Clearly, the theorem is meaningful only when
u(0, 0) > 0, for otherwise the claimed bounds holds trivially (assuming inf ∅ = +∞,
sup ∅ = −∞).

Outline of the proof. As already mentioned, our first task is to build a
family of Barenblatt solutions. We find all the natural scalings of (1.1) and
construct a bijection between solutions of (1.1) and solutions of an anisotropic
Fokker–Plank equation (see, e.g., [7] for a similar approach). We then seek a
stationary solution of the latter, which is found through a fixed point argument
and comparison principles. Here, the slow diffusion regime plays a pivotal rôle in
recovering sufficient compactness to apply a Shauder fixed point theorem. Let us
note that we rely on a weak continuity result (Lemma 3.1, point 3) of independent
interest, which we were not able to find in the literature.

At this stage, the stationary solution of the Fokker–Plank equation is a rather
irregular object of little use. However, exploiting its correspondence to a Barenblatt
self-similar solution of (1.1) and using a self-iteration method based on comparison
principles and translation invariance, we are able to prove a positive lower bound
in a small neighbourhood of the origin. Transferring the bound to the Barenblatt
solution, we find a quantitative expansion of positivity rate for it.

We then proceed in a manner reminiscent of the proof in [10] of the Harnack
inequality for (1.5), namely finding a positivity set and then expanding it forward
in time through comparison with Barenblatt solutions. For the first step, we
actually employ a simplification described in [12], which makes use of the so-
called Clustering lemma of [11]. We have to face two main difficulties: the
intrinsic geometry of the problem, contrary to what happens in most instances of
the theory, involves not only the time variables but also, and mainly, the spatial
ones (in an anisotropic way). Secondly, even disregarding the geometry, the natural
intrinsic cubes as per (1.4) come from a quasi-metric rather than from a metric. To
face the first difficulty we rely heavily on the natural transformations leaving (1.1)
invariant; for the second one, we prove a general abstract version of the so-called
Krylov–Safonov trick, of independent interest (Lemma 4.1).

Consequences of Theorem 1.1. A first corollary of the Harnack inequality
is the Hölder continuity of solutions of (1.1), whose detailed proof is described in
[8]. However, much more regularity is to be expected, as suggested by the ellitpic
case briefly discussed below.
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An intrinsic Harnack inequality immediately follows from Theorem 1.1 for
solutions of

(1.6)
N∑
i=1

∂i(|∂iu|pi−2∂iu) = 0.

Even in the elliptic case, homogeneity is still missing, suggesting that any scale
invariant Harnack inequality must be of intrinsic form, as in the parabolic case.
We state our Harnack inequality for (1.1) in the following corollary.

Corollary 1.2. Let Kr(M) be as in (1.4) and pi as in (1.2). There exist

constants C1,C2 � 1, depending on N and the pi’s, such that if u � 0 weakly
solves (1.6) in KC2ρ(M), where M = u(0)/C1 > 0, then

(1.7) C−1
2 sup

Kρ(M)
u � u(0) � C2 inf

Kρ(M)
u.

Notice that condition (1.2) on the powers pi is in fact of parabolic nature, tied
to the proof of [16]. The proof of the elliptic Harnack inequality under the more
natural condition pmax < Np̄/(N − p̄) is the object of future work. The scale
invariance of the Harnack inequality, i.e., the fact that the constants in (1.7) do not
depend on the radius or the solution, is crucial when dealing with Liouville-type
theorems like the one below, proved in a standard way in the last section.

Corollary 1.3. Under assumption (1.2), any weak solution of (1.6) in the

whole R
N bounded from below is constant.

Comparison with previous results. Local boundedness of the solutions
of (1.1) has been first proved in [30] under the condition pmax < p̄(1 + 2/N).
Some early regularity results in the plane are considered in [31], and regularity
for parabolic problems with non-standard growth of p(x) type are contained in
[1, 3, 38]. The p(x) growth condition does not cover the simple equation (1.1) and
we are not aware of proofs of the Hölder continuity of solutions of the latter in
general dimensions (see [6, Remark 1.4] for a discussion of previous attempts), let
alone of the Harnack inequality.

In the elliptic setting much more is known regarding the regularity of solutions
of (1.6), or for more general non-standard equations; see [27, Sections 5 and 6]
for the relevant literature. The most up-to-date result for (1.6) is in [6], where the
Lipschitz regularity of its bounded solutions is proved for any choice of pi � 2. The
Harnack inequality for non-standard elliptic problems has been the object of vari-
ous works: [2, 5, 33, 25, 22, 21, 36] focus on isotropic equations with non-standard



ANISOTROPIC SLOW DIFFUSION 617

growth of p(x)-type, while [28, 23] deal with energies with Uhlenbeck structure
and non-standard growth. However, none of the frameworks considered therein
cover the anisotropic equation (1.6): indeed, its Euler–Lagrange equation is degen-
erate/singular on the union of the coordinate axes, while non-standard functionals
of p(x)- or Uhlenbeck-type exhibit this problem only at the origin. Moreover, as
already remarked, the relevant feature of (1.7) lies in its scale invariance, while
(quite naturally) this is not to be expected for the problems considered in the cited
works, where either the constant depends on u and r or there is an additional term
of non-homogeneous type.

Structure of the paper. Section 2 collects preliminary results, most of
which are modifications of well-known theorems. The most relevant part is sub-
section 2.2, where we set up the geometry related to the natural scaling of the
equation. In Section 3 we build the Barenblatt solution and study its positivity set.
Section 4 contains the proof of the main theorem, split in several lemmas.

Notations.
- For ξ ∈ R and p > 2 we let (ξ)p−1 = |ξ|p−2ξ.
- If E is a measurable subset of RN , we denote by |E| its Lebesgue measure.
- For r > 0, Kr(x̄) stands for the cube {|xi − x̄i| � r/2 : i = 1, . . . ,N} and we

write Kr = Kr(0); the standard cylinder is denoted by Q−
r = Kr × (−r2, 0].

Notice that |K1| = |Q−
1 | = 1

- Given T ∈ (0,+∞] and � ⊂ R
N a rectangular domain, we let �T=� × (0,T)

while ST denotes the stripe ST = R
N × (0,T); more generally, for s < t we

will set �s,t = � × (s, t) and Ss,t = R
N × (s, t).

- For a measurable u, by inf u and supu we understand the essential infi-
mum and supremum, respectively; when u is defined on all of RN , we let
‖u‖p = ‖u‖Lp(RN ) for 1 � p � ∞; when u : E → R and a ∈ R, we omit the
domain when considering sub/super level sets, letting[

u � a
]

=
{
x ∈ E : u(x) � a

}
;

if u is defined on some �T , we let ut(x) = u(x, t) while ∂iu = ∂
∂xi

u, ∂tu = ∂
∂t u

denote the distributional derivatives.
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2 Preliminaries

In this section we will discuss the functional analytic setting in which we pose
ourselves, the scaling properties of the solutions of (1.1), some basic energy esti-
mates and the resulting anisotropic De Giorgi type lemma, comparison principles
for (1.1) and the associated Fokker–Planck equation and solvability of the Cauchy
problem for (1.1) for suitable initial data. Most of the material is standard, except
maybe the discussion in section 2.2.

2.1 Functional setting. Given p = (p1, . . . , pN), with pi > 1, i = 1, . . . ,N

and � a rectangular domain, we define

W1,p
o (�) := {v ∈ W1,1

o (�)|∂iv ∈ Lpi (�)},
W1,p

loc (�) := {v ∈ L1
loc(�)|∂iv ∈ Lpi

loc(�)},

and for s < t

Lp(s, t;W1,p(�)) := {v ∈ L1(s, t;W1,1(�))|∂iv, v ∈ Lpi(�s,t)},
Lp

loc(s, t;W1,p
loc (�)) := {v ∈ L1

loc(s, t;W1,1
loc (�))|∂iv ∈ Lpi

loc(�s,t)},
Lp

loc(s, t;W1,p
o (�)) := {v ∈ L1

loc(s, t;W1,1
o (�))|∂iv ∈ Lpi

loc(�s,t)}.

A function

u ∈ L∞
loc(s, t;L2

loc(�)) ∩ Lp
loc(s, t;W1,p

loc (�))

is a local weak solution of (1.1) in (s, t) × �, if for almost every s < t1 < t2 < t
and any ϕ ∈ C∞

loc(s, t;C∞
o (�)) we have

∫
�

ut1ϕt1 dx −
∫

�
ut2ϕt2 dx +

∫ t2

t1

∫
�

(
− u∂tϕ +

N∑
i=1

(∂iu)pi−1∂iϕ

)
dx dt = 0.

By an approximation argument the latter actually holds for any test function
ϕ ∈ W1,2

loc (s, t;L2(R)) ∩ Lp
loc(s, t;W1,p

o (R)) for any rectangular domain R ⊂⊂ �.
By a local weak solution of (1.1) in S∞, we mean a function

u ∈ L∞(R+;L
2
loc(R

N)) ∩ Lp
loc(R+;W

1,p
loc (RN))

such that for each T > 0 and � ⊂⊂ R
N , u is a weak local solution in �T . Finally,

by an Lp-solution of (1.1) in ST , we mean a local weak solution u in ST such that
u ∈ ⋂N

i=1 Lpi (ST).

Next we recall the following anisotropic embedding, obtained, e.g., from [16,
Theorem 2.4] with σ = 2, αi ≡ 1, θ = p̄/p̄∗ and the generalised Young inequality.
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Lemma 2.1 (Parabolic anisotropic Sobolev embedding). Let � ⊆ R
N be a

bounded rectangular domain. There exists a constant C = C(N, p) < +∞ such
that for any u ∈ L1(0,T;W1,1

o (�)) we have

(2.1)
∫

�T

|u|l dx dt � C
(

sup
t∈[0,T]

∫
�

|u|2(x, t)dx +
∫

�T

N∑
i=1

|∂iu|pi dx dt
)(N+p̄)/N

whenever

(2.2)
2N

N + 2
� p̄ :=

(
1
N

N∑
i=1

1
pi

)−1

< N, l := p̄
(
1 +

2
N

)
.

By applying the so-called Local Clustering lemma in [11] to min{u, 1} + δ and
letting δ ↓ 0, we get the following alternative form, which will be used in the
following.

Lemma 2.2 (Local clustering). Let u ∈ W1,1(Kρ) satisfy, for some constants
C̄ > 0, ᾱ ∈ (0, 1),

∫
Kρ

|D(u − 1)−| dx � C̄ρN−1 and |[u > 1] ∩ Kρ| � ᾱ|Kρ|.

Then for every λ, ν ∈ (0, 1) there exists y ∈ Kρ and a number

ε = ε(λ, ν, C̄, ᾱ,N) ∈ (0, 1)

such that y + Kερ ⊆ Kρ and

|[u � λ] ∩ (y + Kερ)| > (1 − ν)|Kερ|.
Moreover, ε can be chosen arbitrarily small.

2.2 Scaling properties. We omit the proof of the following proposition,
which is just a direct computation.

Proposition 2.3. Let u weakly solve (1.1) in �T . For θ, ρ > 0 define

Tρ,θ(y, s) = (θ(pi−p̄)/piρp̄/piyi, θ
2−p̄ρp̄s).

Then the transformed function

(2.3) Tρ,θu(y, s) =
1
θ
u(Tρ,θ(y, s))

weakly solves (1.1) in T−1
ρ,θ(�T).
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Due to the latter proposition, it is convenient to set

(2.4) σ := N(p̄ − 2) + p̄ α :=
N
σ

, and αi :=
N(p̄ − pi) + p̄

σpi

(notice that, under assumption (1.2), αi > 0 for all i = 1, . . . ,N), so that

Tρ,θρ−N u(y, s) =
ρσα

θ
u(θ(pi−p̄)/piρσαi yi, θ

2−p̄ρσs).

The following properties of T will be useful throughout calculations:

Tρ1,θ1 ◦ Tρ2,θ2 = Tρ1ρ2,θ1θ2 , T−1
ρ,θ = Tρ−1,θ−1,

and similarly for the trasformation Tρ,θ. The previous scaling suggests the natural
geometry where to settle problem (1.1). More precisely, we define the intrinsic
anisotropic cube as

Kρ(θ) := Tρ,θ(K1), Kρ := Kρ(1)

(here and in what follows we will use the same symbol Tρ,θ to denote the action
of Tρ,θ on the space variables only) and the intrinsic anisotropic cylinders as

Q−
ρ (θ) := Tρ,θ(Q

−
1 ), Q−

ρ := Q−
ρ (1).

Notice that in the anisotropic cubes the parameter ρ prescribes the size, while θ

determines its anisotropic geometry: indeed, the volume of Kρ(θ) does not depend
on θ, since for each θ, ρ > 0,

|Kρ(θ)| = ρN .

The following property can be readily checked:

(2.5) Tρ,θ(KR) = KRρ(Rθ), Tρ,θ(Q
−
R ) = Q−

Rρ(Rθ),

and in particular KR(R) = KR and Q−
R (R) = Q−

R . An important special case of the
transformation (2.3) is obtained when v does not depend on the time variable and
θ = ρ−N : using the notations in (2.4) we define

(2.6) Tρv(y) := Tρ,ρ−N v(y) = ρσαv(ρσαiyi).

By a change of variables one can check that Tρ : L1(RN) → L1(RN) is an isometry,
and moreover

(2.7) (Tρ,ρ−Nu)s = Tρuρσs.
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As we will see, reasonable solutions of (1.1) preserve the L1-norm in time, and
therefore we will say that u is a self-similar solution of (1.1) in S∞ if Tρ,ρ−Nu = u
for all ρ > 0.

Closely related transformations are

(2.8) �u(y, s) :=eαsu(eαisyi, es), and the inverse �w(x, t)= t−αw(t−αi xi, log t).

Clearly if u is defined on R
N × [t0,+∞), t0 > 0, then �u is defined on

R
N × [log t0,+∞), and vice-versa if w is defined on R

N × [s0,+∞), �w is defined
on R

N × [es0,+∞). Due to (2.7),

(2.9) (�u)s = Tes/σues, (�w)t = Tt1/σwlog t.

By [9], � brings solutions of (1.1) in St0,∞, to solutions of the anisotropic
Fokker–Planck equation

(2.10) ∂sw =
N∑
i=1

∂i[(∂iw)pi−1 + αiyiw]

in Slog t0,∞, and � does the opposite. Using (2.7), (2.9) together with Tρ1Tρ2 = Tρ1ρ2 ,
we see that for a solution u of (1.1) in S∞

(�Tρ,ρ−Nu)s = Tes/σ(Tρ,ρ−Nu)es = Tes/σTρuρσes = Tρes/σuρσes = (�u)σ logρ+s

for every ρ > 0, from which we readily infer the following proposition.

Proposition 2.4. A function u is a self-similar solution of (1.1) in S∞ if and
only if �u is a stationary solution of (2.10) in R

N+1.

In the following we will call a self-similar solution to (1.1) in S∞ a Barenblatt
fundamental solution, andwewill denote itwithB, in analogywith the literature
about the p-Laplacian. Moreover, we will henceforth use coordinates (x, t) for the
prototype equation (1.1) and (y, s) for the Fokker–Planck equation (2.10).

2.3 Energy inequality and consequences. The following energy esti-
mate for solutions of (1.1) is well known; see, e.g., [16, Lemma 3.1] for a proof.

Lemma 2.5 (Energy inequality). Let u be a local weak solution of (1.1) in

KR × [s1, s2]. Then, for each test function of the form

η(x, t) =
N∏
i=1

η
pi
i (xi, t), ηi ∈ C∞(s1, s2;C

∞
c (−R/2,R/2))
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we have, for some C = C(N, p) > 0,

(2.11)

∫
KR

(ut − k)2±ηtdx

∣∣∣∣
t=s2

t=s1

+
1
C

N∑
i=1

∫ s2

s1

∫
KR

|∂i(η(u − k)±)|pi dx dτ

� C
{∫ s2

s1

∫
KR

(u − k)2±|∂tη| dx dτ + C
N∑
i=1

∫ s2

s1

∫
KR

(u − k)pi
±|∂iη

1
pi |pi dx dτ

}
.

In a standard way we can prove a de Giorgi-type Lemma.

Lemma 2.6 (De Giorgi Lemma). Let u � 0 be a local weak solution to (1.1)
in Q−

1 and p obey (2.2). Then for every a ∈ (0, 1] there exist μa > 0 depending on
a, p and N such that

|[u � a] ∩ Q−
1 | � μa|Q−

1 | ⇒ inf
Q−

1/2

u � 1
2
a.

If, in addition, u � 1 in Q−
1 ,

|[u � a] ∩ Q−
1 | � μa|Q−

1 | ⇒ sup
Q−

1/2

u � 3
2
a.

Proof. We give a brief proof of the second statement, the first one being
analogous. Let, for n ∈ N,

ρn =
(1
2

+
1

2n+1

)
, kn = a

(3
2

− 1
2n+1

)
, Kn = Kρn Q−

n = Q−
ρn

.

We apply (2.11) to (u − kn)+ with ηn of the stipulated form with ηn = 1 in Qn+1,
ηn = 0 on the parabolic boundary of Q−

n and

0 � ηn � 1, |∂tηn| + |∇ηn| � C2n.

Since ηn(·,−1) ≡ 0, the energy inequality (2.11) together with the bound |u| � 1
yields

∫
Kn

(ut − kn)
2
+(ηn)t dx +

1
C

N∑
i=1

∫
Q−

n

|∂i(ηn(u − kn)+)|pi dx dτ

� C2cn
{∫

Q−
n

(u − kn)
2
+ dx dt +

N∑
i=1

∫
Q−

n

|(u − kn)+|pi dx dτ

}

� C2cn|[u > kn] ∩ Q−
n |

(2.12)

for all t ∈ [−ρ2
n, 0], where C = C(N, p, a) and c = c(p). Let An = [u > kn] ∩ Q−

n .
By Chebyshev’s inequality and the assumptions on ηn, for l given in (2.2)( a

2n+1

)l|An+1| = (kn − kn+1)
l|An+1| �

∫
Q−

n+1

|(u − kn)+|l dx dτ

�
∫

Q−
n

|(u − kn)+ηn|l dx dτ,
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and chaining Sobolev’s embedding (2.1) on the right and (2.12) (notice that
η2

n � ηn) we get

( a
2n+1

)l|An+1|

� C
(

sup
t∈(−ρ2

n,0]

∫
Kn

(ut − kn)
2
+(ηn)tdx +

N∑
i=1

∫
Q−

n

|∂i(ηn(u − kn)+)|pi dx dτ

) N+p̄
N

� C2cn|An|1+p̄/N,

for some bigger C, c. By the fast convergence Lemma [14, Lemma 5.1 chap. 2],
if |A0| is sufficiently small (depending on N, p and a), |An| → 0 for n → ∞,
implying the claim. �

Remark 2.7. Applying the transformation Tρ,θ and recalling (2.5), we get a
similar statement for any solution in Qρ(θ)−. For example, if u � 0 solves (1.1)
in Q−

ρ (θ), there exists μ1 = μ1(N, p) > 0 such that

|[u � θ] ∩ Q−
ρ (θ)| � μ1|Q−

ρ (θ)| ⇒ inf
Q−

ρ/2(θ/2)
u � θ/2.

2.4 Comparison Principles. We consider in this section the Cauchy
problem for (1.1), namely

(2.13)

⎧⎨
⎩

∂tu =
∑N

i=1 ∂i((∂iu)pi−1) weakly in �T

ut → u0 strongly in L2(�)

and a similar one for the Fokker–Planck equation (2.10). Given two solutions
u, v of this problem, we say that u � v on the parabolic boundary of �T if
(u − v)− ∈ Lp(0,T;W1,p

0 (�)) and u0 � v0. From the monotonicity of the principal
part in (1.1) we have the following classical comparison principle.

Proposition 2.8 (Local comparison principle). Let � be a bounded rectan-
gular domain, u, v be weak solutions of (2.13) in �T . If u � v on the parabolic

boundary of �T , then u � v in �T .

Next we provide a comparison principle for the class of Lp-solutions that will
prove to be useful for our next purposes. We sketch the proof inasmuch as the rôle
of greater integrability can be fully exploited.

Proposition 2.9. Let u, v be two Lp solutions of (2.13) in ST, satisfying
u0 � v0 for u0, v0 ∈ L2(RN). Then u � v in ST.
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Proof. First notice that if u is an Lp solution of (2.13) in ST with u0 ∈ L2(RN),
then u ∈ Lp(0,T;W1,p(�)). Indeed, by the energy estimate (2.11) with a standard
cut-off, we deduce that

N∑
i=1

‖∂iu‖Lpi (ST ) � C
(

‖u0‖2
2 +

N∑
i=1

‖u‖Lpi (ST )

)
,

and similarly for v. Secondly, we test the equations for u and v with (v − u)+ζ,
where ζ is a cut-off function between the balls BR and B2R, independent of time
and such that |∂iζ| � C/R, 0 � ζ � 1. Subtracting the resulting integral equalities
and using u0 � v0 we have, for every t > 0,

∫
BR∩[v�u]

ζ(v − u)2(x, t) dx

+
N∑
i=1

∫ t

0

∫
B2R∩[v�u]

ζ((∂iv)pi−1 − (∂iu)pi−1)∂i(v − u) dxdτ

= −
N∑
i=1

∫ t

0

∫
B2R∩[v�u]

(v − u)((∂iv)pi−1 − (∂iu)pi−1)∂iζ dx dτ

�
N∑
i=1

C
R

∫ t

0

∫
B2R∩[v�u]

(|∂iv|pi−1|u|+|∂iv|pi−1|v|+|∂iu|pi−1|v|+|∂iu|pi−1|u|) dxdτ

� C
R

N∑
i=1

‖∂iv‖pi
Lpi (ST ) + ‖v‖pi

Lpi(ST ) + ‖∂iu‖pi
Lpi (ST ) + ‖u‖pi

Lpi(ST )

by Young’s inequality. By the initial argument and the assumptions, the sum on
the right is finite, while by the monotonicity of the operator both terms on the left
are non-negative. Hence for any t < T the left-hand side vanishes for R → +∞,
giving the claim. �

As a corollary, we have the following comparison principle for solutions to the
Fokker–Planck equation.

Corollary 2.10. Let v,w be Lp-solutions of the Cauchy problem for the
Fokker–Planck equation (2.10) satisfying w0 � v0 and w0, v0 ∈ L2(RN). Then

w � v in ST .

Proof. It suffices to recall that the law (2.8) establishes an isomorphism be-
tween Lp(S1,eT )-solutions of the prototype equation (1.1) and Lp(ST)-solutions to
the Fokker–Planck equation (2.10) and the initial data coincide. �



ANISOTROPIC SLOW DIFFUSION 625

Remark 2.11. It is worth noting that, while an elliptic comparison principle
holds true as well for the stationary counterpart of (1.1), this is no longer the
case for the stationary counterpart of the Fokker–Planck equation (2.10). This
can be seen considering (already in the isotropic case), the Barenblatt solutions of
the p-Laplacian equation, which solve the stationary Fokker–Planck equation and
contradict the elliptic comparison principle for (2.10).

2.5 Lp solutions. We next consider the Cauchy problem for (1.1), with
bounded and a compactly supported initial datum, attained in L2. This problem
can be read as

(2.14)

⎧⎨
⎩

∂tu =
∑N

i=1 ∂i((∂iu)pi−1) in ST ,

u0 = g ∈ L2(RN) suppg ⊂ B̄R0, g ∈ L∞(BR0 ).

We show in this section that this problem has a unique Lp-solution, by a standard
approximation technique relying on the monotonicity of the operator.

Proposition 2.12. Problem (2.14) has a unique Lp-solution which takes g as

initial datum in L2.

Proof. We let, for n � diam(suppw0), Bn = {|x| < n} and consider the
boundary value problems

(2.15)

⎧⎪⎪⎨
⎪⎪⎩

vn ∈ C(0,T;L2(Bn)) ∩ Lp(0,T;W1,p
0 (Bn)),

∂tvn − ∑N
i=1 ∂i((∂ivn)pi−1) = 0, in Bn × (0,T),

vn(·, 0) = g.

We regard them as defined in the whole ST by extending them to be zero on |x| > n.
The problems (2.15) can be uniquely solved by a monotonicity method (see for
instance [24, Example 1.7.1]), and give solutions vn satisfying

(2.16) sup
t∈[0,T]

∫
RN

|vn(x, t)|2 dx + 2
N∑
i=1

∫
ST

|∂ivn|pi dx dt = ‖g‖2
2, ∀n ∈ N,

and thus vn ∈ L∞(0,T;L2(RN)) uniformly. Notice that by the local comparison
principle in �T , ‖vn‖∞ � ‖g‖∞, hence by dominated convergence vn(·, t) → g

in L2(RN) implies vn(·, t) → g in Lpi(RN) as t → 0, for i = 1, . . . ,N. In the
weak formulation of (2.15) we take (modulo a Steklov averaging process) the test
function (vn)pj−1, j = 1, . . . ,N, obtaining ∀t ∈ (0,T)

∫
RN

|vn|pj

pj
(x, t) dx + (pj − 1)

N∑
i=1

∫
St

|∂ivn|pi |vn|pj−2 dxdτ =
∫
RN

|g|pj

pj
dx,
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implying

(2.17) vn ∈
N⋂
i=1

L∞(0,T;Lpi(RN)), with a uniform bound.

This estimate, together with (2.16), provides a uniform bound for vn in

Lp(0,T;W1,p(RN)) ∩ L∞(0,T;L2(RN)).

This bound implies that a (not relabelled) subsequence vn converges weakly* to a
function v in these spaces. Moreover, the weak formulation of the equation implies
that

∂tvn =
N∑
i=1

∂i((∂ivn)
pi−1),

and for any m ∈ N the right-hand side is uniformly bounded in

(Lp(0,T;W1,p
0 (Bm)))′ =: Lp′

(0,T;W−1,p′
(Bm))

by Hölder’s inequality. By the Aubin–Lions theorem [35, Chap. III Proposition
1.3], applied to the triple

W1,p
0 (Bm) ↪→ L2(Bm) → W−1,p′

(Bm),

we can select for each m a subsequence vn that converges to a function v in
L2(0,T;L2(Bm)). A diagonal argument provides a subsequence (still not relabeled)
converging in L2(0,T;L2

loc(R
N)) to the weak* limit v and such that

(1)
∫
RN (vn)tϕt dx → ∫

RN vtϕt dx for a.e. t and all ϕ ∈ C∞
loc(0,T;C∞

c (RN)),
(2) ∂i(∂ivn)pi−1 ⇀ ηi, weakly in Lpi (ST) for some ηi, ∀i = 1, . . . ,N.

We can thus pass to the limit in the weak formulation of the equation, identifying
ηi = (∂iv)pi−1 through Minty’s trick. Semicontinuity and (2.17) imply that v is
an Lp solution.

In order to prove uniqueness, let u1, u2 be two Lp-solutions of (2.14). By the
first step of the proof of Proposition 2.9, both belong to Lp(0,T;W1,p(RN)), thus
v := u1 − u2 satisfies

⎧⎪⎪⎨
⎪⎪⎩

v ∈ C(0,T;L2(RN)) ∩ Lp(0,T;W1,p(RN)),

∂tv =
∑N

i=1 ∂i((∂iu1)pi−1 − (∂iu2)pi−1), in ST ,

v0 = 0.

Test the latter with vζ, where ζ ∈ C∞
c (B2R), ζ � 0, ζ = 1 in BR and |Dζ| � C/R.
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For all 0 < t � T we have

1
2

∫
BR

|vt|2 dx +
∫ t

0

∫
B2R

N∑
i=1

((∂iu1)
pi−1 − (∂iu2)

pi−1)(∂iu1 − ∂iu2)ζ dxdτ

= −
∫ t

0

∫
B2R

N∑
i=1

v((∂iu1)
pi−1 − (∂iu2)

pi−1)∂iζ dxdτ.

Using the monotonicity of the principal part on the left-hand side and Hölder’s
inequality on the right, for every t ∈ (0,T)

∫
BR

|vt|2 dx � C
R

N∑
i=1

‖v‖Lpi(ST )(‖∂iu1‖Lpi (ST ) + ‖∂iu2‖Lpi (ST )) → 0,

as R → ∞.
�

3 Barenblatt fundamental solutions

In this section we will build a self similar solution to (1.1), i.e., by the discussion
in section 2.2, a stationary solution to the Fokker–Planck equation (2.10). We will
then study the positivity properties of such a fundamental solution, which, together
with the comparison principle, will be the main tool to expand the positivity set of
non-negative solutions of (1.1).

By the results of section 2.5 we can define, at least for bounded compactly
supported initial data g, the operator

Stg := ut, t � 1,

where u is the unique Lp solution of

(3.1)

⎧⎨
⎩

∂tu =
∑N

i=1 ∂i((∂iu)pi−1) in S1,∞,

u1 = g.

In terms of the Fokker–Planck equation, this also defines through (2.8) the operator

(3.2) S̃sg := (�u)s, s � 0,

giving the solution at the time s ∈ R+, of the problem

(3.3)

⎧⎨
⎩

∂sw =
∑N

i=1 ∂i[(∂iw)pi−1 + αiyiw] in S∞,

w0 = g.

The relation (3.2) implies that

(3.4) S̃sg = Tes/σSesg,

where T is given in (2.6), allowing to prove properties for S̃s by proving them for St.
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3.1 Construction of a Barenblatt solution. In order to state some basic
properties of the operator S̃s we will need the following space:

(3.5) XR,M = {g ∈ L∞(RN) : 0 � g � M, supp g ⊆ KR}, X =
⋃

R,M>0

XR,M .

Lemma 3.1. If (1.2) holds true, the operator S̃s, s � 0 defined in (3.2) has
the following properties:

(1) If g ∈ L2(RN) and suppg ⊆ KR0 then for some c = c(N, p)

(3.6) supp S̃sg ⊆
N∏
i=1

[−Ri(s),Ri(s)], Ri(s) = 2e−sαiR0 + c‖g‖p̄(pi−2)/(piσ)
1 .

(2) If g ∈ X, then ‖S̃sg‖1 = ‖g‖1 and 0 � S̃sg � ‖g‖∞. In particular, S̃s : X → X
for all s � 0.

(3) For any R,M > 0 and s � 0, S̃s : XR,M → X is continuous when XR,M and X

are equipped with the weak-L2 topology.

Proof. Consider the correspondingproblem (3.1) and the therein defined oper-
ator St. By [16, Theorem1.1] (notice that the branchobtained there is anLp solution
and therefore coincides with Stg by uniqueness)we know that if supp g ⊆ KR0 , then

(3.7) suppStg ⊆
N∏
i=1

[−Ri(t),Ri(t)], Ri(t) = 2R0 + c(t − 1)αi‖g‖p̄(pi−2)/(piσ)
1 .

Letting t = es and using (3.4) we get the first assertion, since

supp S̃sg ⊆
N∏
i=1

[−R̃i(s), R̃i(s)], R̃i(s) = e−sαiRi(e
s) � 2e−sαiR0 + c‖g‖p̄(pi−2)/(piσ)

1 .

The second statement follows from its counterpart on the corresponding solu-
tion u of (3.1): to prove conservation of mass we take advantage of the compactness
of the supports of u dictated by (3.7) and test (3.1)with ϕ ∈ C∞

c (RN) such thatϕ ≡ 1
on

⋃
t<T supput, T > 0 arbitrary. The point-wise bounds follow from the local

comparison principle for (3.1), again taking advantage of the compactness of the
support and comparing u with the solutions v ≡ 0 and v ≡ ‖g‖∞, respectively.

It remains to prove the continuity of S̃s : XR,M → X within the weak L2

topologies from departure to arrival, which by (3.4) is equivalent to proving the
same statement for St. Fix T > t � 1 and let

R̄ = max{2R + C(T − 1)αi(|KR|M)p̄(pi−2)/(piσ) : i = 1, . . . ,N}.
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Assume gn → g weakly in L2 with gn ∈ XR,M and let un be the Lp solution of (3.1)
with initial data gn. Notice that thanks to (3.7), supp (un)τ ⊆ KR̄ holds for every
τ ∈ [0,T], n � 1. The boundedness of ‖gn‖2 and standard energy estimates then
give a uniform bound for un in Lp(1,T;W1,p

0 (KR̄)) ∩ L∞(1,T;L2(RN)) and for ∂τun

in Lp′
(0,T;W−1,p′

(KR̄)). Applying the Aubin–Lions theorem as in the proof of
Proposition 2.12, we can extract a subsequence converging weakly∗ to some u in
those spaces and such that

un(·, τ) → u(·, τ) in L2(KR̄), for a.e. τ ∈ [1,T].

We can pass to the limit in the weak form of the equation to get
∫
RN

uτϕτ dx −
∫
RN

gϕ1 dx −
∫

S1,τ

u∂τϕ dxdt +
∫

S1,τ

N∑
i=1

ηi∂iϕ dx dt = 0

for almost every 1 < τ < T , so that it only remains to show that ηi = (∂iu)pi−1. We
cannot directly employ Minty’s trick, since we are missing the strong convergence
of the initial data. However, for any τ such that (un)τ → uτ in L2(KR̄), we look
at {un} as a sequence of solution to (1.1) on [τ,T] with strongly convergent initial
data and now Minty’s trick allows to deduce ηi = (∂iu)p−1 on Sτ,T . Since τ can be
chosen arbitrarily close to 1 we obtain that u is an Lp solution to (3.1) with initial
datum g and from uniqueness we infer that ut = Stg for any t � 1. A standard
sub-subsequence argument concludes the proof of the third statement. �

Theorem 3.2. Under assumption (1.2), there exists a nontrivial stationary

solution w ∈ X1,1 to (3.3), and therefore a Barenblatt Fundamental solution.

Proof. For R0,M0 > 0 consider the convex set

Cε := {g ∈ L2(RN) : supp g ⊂ B1, 0 � g � 1, ‖g‖L1(RN ) = ε} ⊆ X1,1.

If c is given in (3.6), for s̄ sufficiently large and ε̄ sufficiently small we have

2e−s̄αi + cε̄p̄(pi−2)/(piσ) � 1 ∀i = 1, . . . ,N,

so that (3.6) implies that supp S̃s̄g ⊆ B1 for all g ∈ Cε̄. Using also point (2) of
the previous lemma we have that S̃s̄Cε̄ ⊆ Cε̄. Moreover, Cε̄ with the weak L2

topology is compact, and by point (3) of the previous lemma, S̃s̄ : Cε̄ → Cε̄

is continuous, so that Schauder’s theorem ensures the existence of a fixed point
ḡ ∈ Cε̄ for S̃s̄. Therefore the function w̄s = S̃sḡ is a times-periodic, bounded and
compactly supported solution of (3.3), which can therefore be extended to R

N+1 as
an aeternal solution. Consider the bounded, compactly supported function

g(y) = sup
s∈R

w̄(s, y), g ∈ X1,1,
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for which ‖g‖1 � ε̄. Then S̃0g = g � w̄τ for every τ ∈ R, so that by the comparison
principle 2.10, S̃sg � w̄τ+s holds for any s � 0. Taking the supremum in τ ∈ R

gives S̃sg � g, but since ‖S̃sg‖1 = ‖g‖1, this implies S̃sg = g for every s � 0, i.e., g
is a stationary solution of (3.3). �

3.2 Properties of the Barenblatt solutions. Our next aim is to prove
that Barenblatt solutions are positive in a quantitative way, i.e., their positivity
set spreads in time in a way controlled by scaling. This amounts to proving that
stationary non-negative solutions of the Fokker Planck equation are bounded from
below near the origin, which is the content of the next theorem.

Theorem 3.3. Suppose (1.2) holds, let w ∈ X1,1 (see (3.5)) be a nontrivial
stationary solution of the Fokker-Planck equation (2.10) and B the corresponding

Barenblatt solution of (1.1). Then there exists η̄ > 0, depending on w and the
data, such that

B(x, t) � η̄t−α if |xi| < η̄tαi for i = 1, . . . ,N.

Proof. Suppose that B is given by

(3.8) B(x, t) = t−αw(xit
−αi), t � 1.

By [16, Corollary 4.3] we can fix a lower-semicontinuous representative of B and
thus of w. Since w > 0 somewhere, we can pick a point x(0) and numbers δ0, η0 > 0
such that

(3.9) inf
Kδ0 (x(0))

w(y) > η0.

By (3.8), the latter implies that for any t � 1

B(x, t) � η0t
−α, when

{
|xi − x(0)

i tαi | <
δ0

2
tαi

}
.

Consider now
Bλ(x, t) = λt−αw(λ(2−pi)/pi t−αi(x(0)

i − xi)),

which solves (1.1) by translation invariance and Proposition 2.3. Notice that,
since w ∈ X1,1,

‖Bλ(·, t)‖∞ = λt−α, suppBλ(·, t) ⊆ {2|x(0)
i − xi| � tαiλ(pi−2)/pi}.

We seek for λ > 0 such that the comparison principle can be applied between Bλ

and B with starting time t = 1. We need⎧⎨
⎩

‖Bλ(·, 1)‖∞ � η0,

suppBλ(·, 1) ⊆ Kδ0 (x
(0)),

⇐⇒
⎧⎨
⎩

λ � η0,

λ(pi−2)/pi � δ0/2,
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which, with pi > 2 for all i, can be solved for some λ = λ1 ∈ (0, 1). Consequently,
by comparison and (3.9), we have

B(x, t) � Bλ1 (x, t) > λ1t
−αη0, for |x(0)

i − λ(2−pi)/pi
1 t−αi (x(0)

i − xi)| <
δ0

2
.

We let tα1
1 = λ(2−p1)/p1

1 � 1 and, consequently,

η1 = λ1t
−α
1 η0, x(1)

i := x(0)
i (1 − tαi

1 λ(pi−2)/pi
1 ),

δ1 :=
δ0

2
min{tαi

1 λ(pi−2)/pi
1 : i = 1, . . . ,N}

(notice that, by the choice of t1, x(1)
1 = 0), to get

inf
Kδ1 (x(1))

B(·, t1) � η1.

Proceeding by induction, we will find sequences tn, ηn, δn, x(n) with the properties

inf
Kδn (x(n) )

B(·, tn) � ηn, x(n)
i = 0 for i = 1, . . . , n

so that after N steps x(N) = 0 and we find that

inf
KδN

B(·, tN) � ηN.

By (3.8), this implies w(x) � ηNtαN when |xi| < tαi
N δN/2 for i = 1, . . . ,N. We set

η̄ = min{ηN, δN/2} and scale back to B through (3.8) again, to get the claim. �
We will from now on suppose that w is a fixed stationary solution in X1,1 of

(3.3). For future purposes we summarise some properties derived from a scaling
argument for a large family of corresponding Barenblatt solutions.

Corollary 3.4. Let B(x, t) = t−αw(xit−αi) be a fixed Barenblatt Fundamental
solution to (1.1)with w ∈ X1,1. There exists η̄ > 0 such that the family of Barenblatt

solutions

Bλ(x, t) = T1,λ−σ/p̄B(x, t) = λt−αw(λ(2−pi)/pixit
−αi), λ > 0,

has the following properties:

(1) ‖Bλ(·, t)‖∞ = λt−α;

(2) supp Bλ(·, t) ⊆ ∏N
i=1{|xi| � λ(pi−2)/pi tαi};

(3) {Bλ(·, t) � η̄λt−α} ⊇ ∏N
i=1{|xi| � η̄λ(pi−2)/pi tαi}.
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4 Proof of Theorem 1.1

We first consider a generalisation of what is called in literature the Krylov–Safonov
argument. To this end, we make the following observations: for ρ ∈ [0, 1] the
translates of the cylinders Q−

ρ (ρ−N) arise naturally from the quasi-metric1

(4.1) d((x, t), (y, s)) = max{|2−1(xi − yi)|pi/(p̄+N(p̄−pi)), |t − s|1/(p̄+N(p̄−2))}.
Indeed, all the exponents appearing in the previous definition are positive thanks to
condition (1.2) on the spareness of pi’s, therefore the quasi-triangle inequality

d(z1, z3) � γ(d(z1, z2) + d(z2, z3)), ∀z1, z2, z3 ∈ R
N+1,

holds true for a constant γ = γ(N, p) � 1 which is the quasi-metric constant.
Finally, notice that the cylinder z̄+Q−

ρ (ρ−N) is the bottom half part of the ball Bρ(z̄)
with respect to this distance.

Lemma 4.1. Let (X, d) be a quasi-metric space with quasi-metric constant γ

and x0 ∈ X. For any β > 0 there exists a constant ω = ω(γ, β) > 1 such that for

any bounded u : B1(x0) → R with u(x0) � 1 there exist x ∈ B1(x0) and r > 0 such
that

(4.2) Br(x) ⊆ B1(x0), rβ sup
Br(x)

u � ω, rβu(x) � 1/ω.

Proof. Extend u as 0 outside B1(x0) and suppose that the claim is false. For ω,
a parameter to be determined depending only on β and γ, we will construct a
sequence of points contradicting the boundedness of u. Set r0 = 1/(2γ) and choose
ω > (2γ)β. Since rβ

0u(x0) � 1/ω, we must have

rβ
0 sup

Br0 (x0)
u > ω.

Choose x1 ∈ Br0 (x0) such that rβ
0u(x1) � ω and set r1 = r0ω

−2/β, so that

rβ
1u(x1) � 1/ω.

If Br1 (x1) ⊆ B1(x0), we can similarly construct x2 ∈ Br1 (x1) such that

rβ
2u(x2) � 1/ω, r2 = r1ω

−2/β.

Proceed by induction to receive a sequence of points and radii such that, if
Brn(xn) ⊆ B1(x0),

rβ
nu(xn) � 1/ω, rn = rn−1ω

−2/β.

1This terminology is borrowed from Grafakos, but it appears there’s no general consensus on the
term “quasi”: sometimes pseudo-metric is used instead.
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As ω > 1, the first condition contradicts the boundedness of u if all the balls Brn(xn)
are contained in B1(x0). This can be achieved if for any n � 0

d(x0, xn) � γ
n−1∑
i=0

γi d(xi, xi+1) � γr0

+∞∑
i=0

γiω−2i/β < 1,

which holds for γω−2/β < 1/2. �

Lemma 4.2. Let u � 0 solve (1.1) in Q−
1 , and suppose that for some ν̄ ∈ (0, 1)

and a > 0,

(4.3) |[u > a] ∩ Q−
1 | > (1 − ν̄)|Q−

1 |.
Then for every choice of λ, ν ∈ (0, 1) there exist ȳ ∈ K1, t̄ ∈ (−1,−ν̄/4] and
ε ∈ (0, 1) determined only by means of N, p, ν, ν̄, a and λ, such that ȳ + Kε ⊂ K1

and

(4.4) |[ut̄ > λa] ∩ (ȳ + Kε)| > (1 − ν)|Kε|.

Proof. Choose r = r(ν̄) > 1/2 sufficiently near 1 so that

|[u > a] ∩ Qr| > |Qr|(1 − ν̄)/2.

Wewrite down the energy estimates (2.11) for (u−a)− with η of the formprescribed
therein, η � 0, η = 1 on Q−

r , η = 0 outside Q−
1 and |∂tη| + |∂iηi| � C(ν̄), to get,

thanks to supQ−
1
(u − a)− � a,

N∑
i=1

∫
Q−

r

|∂i(u − a)−|pi dx dt � C(ν̄, a).

By the same argument of [12, Lemma 9.1], there exists a time level t̄ ∈ (−1,−ν̄/4]
such that

N∑
i=1

∫
Kr

∣∣∣∂i

(ut̄

a
− 1

)
−

∣∣∣pi

dx � C(ν̄, a)rN−1,
∣∣∣[ut̄

a
> 1

]
∩ Kr

∣∣∣ � (1 − ν̄)|Kr|/4.

By Hölder’s inequality, ut̄/a fulfills the assumptions of Lemma 2.2 in Kr, giving
the claim. �

It is worth emphasizing that the parameter ε in the previous statement can be
made arbitrarily small by eventually changing the point. We further observe that it
is possible to carry the information of Lemma 4.2 into an equivalent formulation
in the anisotropic cubes Qρ(ρ−N) by using (2.6).

In the next Lemma, we suppose that an essentially upper-semicontinuous rep-
resentative for the solution has been chosen, through [16, Corollary 4.3].
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Lemma 4.3. Let u � 0 be a bounded solution of (1.1) in Q−
1 . There

exist C, ε > 0 depending on N and p such that if u(0, 0) � C,

(4.5)
inf

x̄+Kρ(ερ−N )
ut̄ � ερ−N for some (x̄, t̄) ∈ Q−

1 and ρ > 0

with x̄ + Kρ(ερ
−N) ⊆ K1.

Proof. Let C = 1/ω, where ω = ω(N, p) is given in Lemma 4.1 with β = N

(using the quasi-metric in (4.1)). We apply the lemma to u/C and extend u as 0
in the upper half-space. Then, (4.2) implies the existence of a point z1 ∈ Q−

1 and
r ∈ (0, 1) such that

z1 + Q−
r (r−N) ⊆ Q−

1 , rN sup
z1+Q−

r (r−N )
u � 1, rNu(z1) � C2.

The solution v = Tr,r−N u(· + z1) in Q−
1 (with T given in (2.3)) obeys

(4.6) sup
Q−

1

v � 1, v(0) � C2.

We prove that (4.3) holds for ν̄ = 1 − μa given in Lemma 2.6 when a = C2/3
(thus ν̄ depends only on N and p). Indeed, if, by contradiction, we have

|[v � a] ∩ Q−
1 | � μa|Q−

1 |,

then since 0 � v � 1 in Q−
1 , Lemma 2.6 gives

v(0) � sup
Q−

1/2

v � 3
2
a =

C2

2
,

contradicting the last condition in (4.6). Therefore the thesis of Lemma 4.2 holds
true for any ν, λ to be chosen, and for the corresponding point z2 = (x̄, t̄) ∈ Q−

1 the
following measure estimate holds at the time t̄:

|[vt̄ � λa] ∩ (x̄ + Kε)| � ν|Kε|, t̄ ∈ (−1,−ν̄/4].

Recall that this measure estimate is valid for any ν, λ > 0 to be chosen, which in
turn determines an arbitrarily small ε, so we can also suppose that

ν < ν̄, ε−2ν̄ > 1, ε−1a > 2,

where a = C2/3. We choose λ = 1/2 and scale again considering

w = Tε/2,ε/2v(· + z2).
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Since v solves (1.1) in Q−
1 and, by (2.5), Kε = Kε(ε) = Tε/2,ε/2(K2) holds,w

solves (1.1) in K2 × (0, ε−2ν̄] and it satisfies

(4.7) |[w(·, 0) � 2] ∩ K2| � |[w(·, 0) � ε−1a] ∩ K2| � ν.

We propagate forward in time the information in (4.7) as follows. Fix a time
0 < τ < ν < 1, so that we can write down the energy inequality for (w−2)− in the
subcylinder K2 × (0, τ2] with 0 ≤ η ≤ 1 independent of time and such that η = 1
in K1, η = 0 outside of K2 and |∂iη| � C, to get

∫
K1

(wt − 2)2− dx �
∫

K2

(w0 − 2)2− dx + C
N∑
i=1

∫ t

0

∫
K2

(ws − 2)pi− dx ds,

for all t ∈ (0, τ2]. The second term on the right is bounded by C2N+pmaxν, while the
first one is smaller than 4ν due to (4.7). The term on the left bounds |[wt � 1]∩K1|,
hence we get

|[wt � 1] ∩ K1| � Cν ∀t ∈ (0, τ2],

which implies by integration

|[w � 1] ∩ Q| � Cν|Q|, Q := K1 × (0, τ2].

Let τ = 2−n for some n ∈ N to be determined. We partition K1 into 2Nn dyadic cubes
xi +K2−n = xi +Kτ and consider the corresponding cylindersQi = (xi + Kτ) × (0, τ2].
Notice that for any such τ, the latter are intrinsically scaled, since

Qi = (xi, ν) + Q−
τ (τ).

On at least one of these cylinders we must have

|[w � 1] ∩ Qi| � Cν|Qi|,
implying

|[w � τ] ∩ Qi| � Cν|Q−
τ (τ)|.

We thus apply Lemma 2.6 (see Remark 2.7), choosing ν such that Cν � μ1

(determining ε, τ and n in the process, depending only on N and p). This implies

w � τ/2 in (xi, τ
2) + Tτ,τQ

−
1/2 = (xi, τ

2) + Q−
τ/2(τ/2)

and in particular
w � τ/2 in z3 + Kτ/2(τ/2)

for some z3. Scaling back to u = T−1
εr/2,εr−N/2w we get for some z0 ∈ Q−

1 the estimate

u � τεr−N/4 in z0 + Kτεr/4(τεr
−N/4).
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To conclude the proof of (4.5), it suffices to set

ρ =
τεr
4

, ερ−N =
τεr−N

4
,

so that ε = (τε/4)N+1 depends only on N and p. �
We can now prove the Harnack inequality (1.3).

Proof of Theorem 1.1. We begin by setting C1 = C, where the latter is
given in Lemma 4.3. To define C2 and C3, we begin by considering the inequality

(4.8) u(0, 0) � C3 inf
Kρ(M)

u(·,M2−p̄(C2ρ)p̄), M = u(0, 0)/C1.

We claim that there exist D̄ > 0 and functions Ā(·) > 0, B̄(·) > 0 all depending
only on N and p such that, whenever

(4.9) D � D̄, A � Ā(D), B � B̄(D),

then

(4.10)
inf

Kr(M)
u(·,DM2−p̄rp̄) � u(0, 0)/B

if KAr(M) × [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆ �T .

Taking C2 � D̄ and, accordingly, C3 � max{Ā(C2), B̄(C2)} will then give (4.8) as
long as

KC3r(M) × [−M2−p̄(C3r)
p̄,M2−p̄(C3r)

p̄] ⊆ �T .

In order for (4.10) to make sense we start by prescribing Ā(D)p̄ � max{D, 1}.
By assumption, the function v = Tr,Mu solves the equation in QA := KA× [−Ap̄,Ap̄]
and v(0, 0) = C. Then (4.5) holds, namely there exists (x̄, t̄) ∈ Q−

1 , ρ ∈ (0, 1) and
ε = ε(N, p) such that

inf
x̄+Kρ(ερ−N )

vt̄ � ερ−N for (x̄, t̄) + Kρ(ερ
−N) ⊆ K1.

We choose λ > 0, −2 < s < 0 so that the Barenblatt solution centered at (x̄, s)
defined as

bλ,s(x, t) = Bλ(x − x̄, t − s)

is below v in KA, which is implied by
⎧⎨
⎩

supp bλ,s(·, t̄) ⊆ x̄ + Kρ(ερ−N),

‖bλ,s(·, t̄)‖∞ � ερ−N .
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t

x̄

⋃
t>0

Pt

v > C

t̄

s̄
K

K1

D

Figure 1. Scheme of proof of (4.10). The light-gray part is the support of the
Barenblatt starting at (x̄, s̄), while K is Kρ(ερ−N).

By Corollary 3.4, this amounts to
⎧⎨
⎩

λ(pi−2)/pi(t̄ − s)αi � 1
2 (ερ

−N)(pi−p̄)/piρp̄/pi = 1
2ε

(pi−p̄)/piρσαi,

λ(t̄ − s)−α � ερ−N,

which holds true for s = s̄ obeying s̄ = t̄−ρσ with ρ < 1 and λ̄ = λ(N, p) sufficiently
small. Since s̄ > −2, by Corollary 3.4 we have

bλ̄,s̄(x, t) � λ̄η̄(t − s̄)−α � λ̄η̄(t + 2)−α

for all t > 0,

x ∈
N∏
i=1

{|x̄i − xi| < η̄λ̄(pi−2)/pi (t − s̄)αi} ⊇ Pt(x̄) :=
N∏
i=1

{|x̄i − xi| < η̄λ̄(pi−2)/pi tαi}.

We then choose τ̄ > 0 sufficiently large so that Pτ̄(x̄) ⊇ K1 and set D̄ = τ̄ (this
is possible by (1.2), which ensures αi > 0 for each i = 1, . . . ,N). Then, for any
D � D̄ we additionally prescribe

(4.11) Ā(D)p̄ � D + 2 and
⋃

x̄∈K1

suppBλ̄(· − x̄,D + 2) ⊆ KĀ(D).
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Notice that this choice can be made depending only on the parameters N, p
and D, and that if the latter conditions holds for Ā then they hold for any A � Ā. The
prescribed conditions on A permit the use of the comparison principle between v

and bλ̄,s̄ in KA × [t̄,D] (since on the lateral part of its boundary bλ̄,s̄ vanishes),
which then yields

v(·,D) � bλ̄,s̄(·,D) � λ̄η̄(D + 2)−α in K1

We next deal with the other inequality in (1.3), sketching its proof as some
arguments are identical to the previous one. The constant C1 is the same C as
before and we claim that the inequality

(4.12)
sup
Kr(M)

u(·,−DM2−p̄rp̄) � Bu(0, 0)

if KAr(M) × [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆ �T

(with M = u(0, 0)/C) holds true for any A,B,D as in (4.9), for a possibly different
choice of D̄ and of the functions Ā, B̄.

t

x̄

v > C

x0

t̄

⋃
t>0

Pt

K

v = CD−γ

s̄

D1+γ(p̄−2)

Figure 2. Scheme of proof of (4.12). The light-gray part is the support of the
Barenblatt starting at (x̄, s̄) while K is Kρ(ερ−N).

To prove (4.12), we fix γ > N/p̄ and start by prescribing

Ā(D)p̄ � D, B̄(D) � Dγ.
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Next, consider A,B,D fulfilling (4.9) together with

KAr(M) × [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆ �T ,

but such that

(4.13) sup
Kr(M)

u(·,−DM2−p̄rp̄) > Bu(0, 0).

We rewrite the latter in terms of v = Tr,MDγu, which is a solution in QA(D−γ): the
resulting information is

(4.14) v(0, 0) = CD−γ, sup
K1(D−γ)

v(·,−D1+γ(p̄−2)) > Bv(0, 0) � C,

where we used B � B̄(D) � Dγ in the last inequality. We fix a point x0 ∈ K1(D−γ)
such that v(x0,−D1+γ(p̄−2)) > C and suppose that Ā(D) is additionally large enough
so that v is a solution in (x0,−D1+γ(p̄−2)) + Q1. We can then apply Lemma 4.3 and,
proceeding exactly as in the first part of the proof, we find

x̄ ∈ x0 + K1, −D1+γ(p̄−2) − 2 ≤ s̄ < t̄ ≤ −D1+γ(p̄−2)

and λ̄(N, p) > 0 such that the Barenblatt solution bλ̄,s̄ centered at (x̄, s̄) is below v

at the time t̄. As before, for some η̄(N, p)

bλ̄,s̄(·, t) � λ̄η̄(t + D1+γ(p̄−2) + 2)−α in Pt+D1+γ(p̄−2) (x̄), ∀t > −D1+γ(p̄−2).

If needed, we further increase Ā(D) so that v solves the equation in a rectangle
containing the support of any possible bλ̄,s̄ so constructed, up to the time t = 0
(through a condition of the type (4.11)).

So far, the definition of the functions Ā(D) and B̄(D) is concluded, and we now
look for all the values of D such that 0 ∈ PD̄1+γ(p̄−2) (x̄). Since x0 ∈ K1(D−γ) and
x̄ ∈ x0 + K1, this is true if

(4.15) 1 + D−γ(pi−p̄)/pi � η̄λ̄(pi−2)/piD(1+γ(p̄−2))αi, ∀i = 1, . . . ,N.

We claim that the exponent of D on the left is less than the one on the right.
Indeed, from the definition of αi, the claim reduces through elementary algebraic
manipulations to

γp̄(2 − pi) < N(p̄ − pi) + p̄,

which is always true since the left-hand side is negative by pi > 2 and the right-
hand side is positive by (1.2). It follows that (4.15) holds true for any D � D̄1, and
in this case we get by comparison

(4.16) v(0, 0) � bλ̄,s̄(0, 0) � λ̄η̄(D1+γ(p̄−2) + 2)−α.
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Next, we claim that there exists D̄2 such that if D � D̄2, then

(4.17) λ̄η̄(D1+γ(p̄−2) + 2)−α > CD−γ.

Indeed, it suffices to show that the exponent on the left is greater than the one on
the right, which, recalling that α = N/(N(p̄ − 2) + p̄), amounts to

γ − α(1 + γ(p̄ − 2)) =
γp̄ − N

N(p̄ − 2) + p̄
> 0 ⇔ γ >

N
p̄

as we assumed. Thus (4.17) is proved, which in turn contradicts the first condition
in (4.14) via the lower bound in (4.16). All in all, letting D̄ = max{D̄1, D̄2} shows
that if A,B,D obey (4.9), then (4.13) cannot hold, completing the proof of (4.12).
We conclude by choosing the constants C2 and C3 as in the previous step, and
finally pick the largest between the so-defined constants and previous ones. for
any D � D̄. Defining B̄(D) = C(D + 2)α/(η̄λ̄) and scaling back gives (4.10). �

Finally, we prove the Liouville theorem stated in the Introduction.

Proof of Corollary 1.3. We suppose that sup
RN u > infRN u and let

ε ∈ (0, sup
RN u−infRN u). Consider the non-negative solution vε = u−infRN u+ε/2

to (1.6). By continuity, we can pick a point xε such that vε(xε) = ε. Up to trans-
lations, the Harnack inequality (1.7) implies that vε � C2ε in xε + Kρ(ε/C1), for
all ρ > 0. Letting ρ → +∞, we get vε � C2ε in the whole R

N , i.e.,

u � inf
RN

u + (C2 − 1/2)ε

in R
N , and letting ε → 0 we get the claim. �
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[2] Y. A. Alkhutov, The Harnack inequality and the Hölder property of solutions of nonlinear elliptic
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