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Abstract

Background: Long-term renal function after partial nephrectomy (PN) is difficult to
predict as it is influenced by several modifiable and nonmodifiable variables, often
intertwined in complex relations.
Objective: To identify variables influencing long-term renal function after PN and
to assess their relative weight.
Design, setting, and participants: A total of 457 patients who underwent either
robotic (n = 412) or laparoscopic PN (n = 45) were identified from a multicenter
international database.
Outcome measurements and statistical analysis: The 1-yr estimated glomerular fil-
tration rate (eGFR) percentage loss (1YPL), defined as the eGFR percentage change
from baseline at 1 yr after surgery, was the outcome endpoint. Predictors evaluated
included demographic data, tumor features, and operative and postoperative vari-
ables. Bayesian multimodel analysis of covariance was used to build all possible
models and compare the fit of each model to the data via model Bayes factors.
Bayesian model averaging was used to quantify the support for each predictor
via the inclusion Bayes factor (BFincl). High-dimensional undirected graph estima-
tion was used for network analysis of conditional independence between predic-
tors.
Results and limitations: Several models were found to be plausible for estimation
of 1YPL. The best model, comprising postoperative eGFR percentage loss (PPL), sex,
ischemia technique, and preoperative eGFR, was 207 times more likely than all the
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other models regarding relative predictive performance. Its components were part
of the top 44 models and were the predictors with the highest BFincl. The role of
cold ischemia, solitary kidney status, surgeon experience, and type of renorraphy
was not assessed.
Conclusions: Preoperative eGFR, sex, ischemia technique, and PPL are the best pre-
dictors of eGFR percentage loss at 1 yr after minimally invasive PN. Other predic-
tors seem to be irrelevant, as their influence is insignificant or already nested in
the effect of these four parameters.
Patient summary: Kidney function at 1 year after partial removal of a kidney
depends on sex, the technique used to halt blood flow to the kidney during surgery,
and kidney function at baseline and in the early postoperative period.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Partial nephrectomy (PN) is the standard treatment for T1
renal masses [1]. In comparison to radical nephrectomy,
PN is associated with a lower incidence of chronic kidney
disease (CKD) while maintaining similar oncologic and
safety outcomes [2]. Preservation of kidney function is crit-
ical in patients with pre-existing comorbidities, solitary
renal malignancies, or bilateral cancers, as it can influence
the risk of mortality from other causes [3].

Immediate and long-term renal function after PN is
affected by several modifiable and nonmodifiable variables,
including demographic, disease-related, intraoperative, and
postoperative factors, often intertwined in complex rela-
tions [4].

In this study we sought to identify which variables influ-
ence long-term renal function and to assess their relative
weight in determining the percentage change in estimated
glomerular filtration rate (eGFR) at 1 yr after minimally
invasive PN.

A Bayesian multimodel comparison was applied to
objectively compare the predictive performance of all possi-
ble combinations of predictors while balancing estimation
errors and overfitting risks. Using Bayesian model averag-
ing, it was possible to weight each predictor across all mod-
els and give information on its overall predictive
performance and plausibility.
2. Patients and methods

2.1. Patient population

An international, multicenter, institutional review board–approved, ret-

rospective study including patients undergoing laparoscopic or robot-

assisted PN at five academic institutions (three from Europe and two

from USA) between 2013 and 2019 was conducted. Inclusion criteria

were (1) adult patients diagnosed with a localized renal tumor (T1 or

T2); (2) undergoing robotic or laparoscopic PN; and (3) with a complete

description of preoperative and postoperative characteristics, including

up to 1-yr follow-up data. The following exclusion criteria were applied:

(1) patients undergoing radical nephrectomy or nonsurgical treatments;

(2) pediatric patients; and (3) patients with a transplanted kidney or a

history of multiple PNs on the same kidney.
2.2. Data collection

Demographic data and baseline characteristics included age, sex, ethnic-

ity, hypertension, diabetes mellitus status, body mass index, American

Society of Anesthesiologists score, solitary kidney status, preoperative

hemoglobin. eGFR was calculated using the CKD-Epidemiology Collabo-

ration equation. Hypertension was defined as systolic blood pressure of

�140 mm Hg or diastolic blood pressure of �90 mm Hg or taking anti-

hypertensive medication. Information on tumor and operative details

included pathological tumor size, Radius, Endophytic, Nearness to col-

lecting system, Anterior/posterior, and Location (RENAL) score, surgical

approach, clamping technique, warm ischemia time (WIT), operative

time, estimated blood loss (EBL), and intraoperative complications. Post-

operative data included eGFR at discharge, length of stay, and postoper-

ative complications. eGFR postoperative percentage loss (PPL) was

calculated as the percentage difference between baseline eGFR and eGFR

at discharge: (preoperative eGFR � postoperative eGFR) � 100 / preop-

erative eGFR.

The functional outcome endpoint was the 1-yr eGFR percentage loss

(1YPL), defined as the eGFR percentage change from baseline at 1 year

after surgery: (eGFR at 1 yr � preoperative eGFR) � 100 / preoperative

eGFR.
2.3. Statistical analysis

To predict 1YPL, analysis of covariance (ANCOVA) with multiple contin-

uous and categorical variables was performed. To objectively identify

models that balance estimation errors and overfitting risk, a Bayesian

multimodel comparison was used. In Bayesian statistics, the prior beliefs

(prior distribution of the model and the parameter probability) are

updated with inclusion of the likelihood of data in the posterior beliefs

(posterior distributions). The likelihood of data is the relative support

from data for alternative hypotheses and is quantified using Bayes fac-

tors (BFs). With Bayesian multimodel ANCOVA it is possible to overcome

the uncertainty derived from the use of only one model by comparing

the predictive performance of all possible combinations of predictors

and calculating the relative plausibility of each model relative to the

others. Furthermore, Bayesian model averaging can be used to weight

each predictor across all models and give information on its overall pre-

dictive performance and plausibility [5]. In the first step, we performed a

Bayesian model comparison and calculated the posterior model proba-

bility P(M|data) to evaluate the relative plausibility of each model across

the entire model space; we used the model BF (BFM) as an indicator of

model predictive performance, or model likelihood, which measures

how many times the data were more likely to occur under a specific

model than all the others averaged across the space. BF01 was used to
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Table 1 – Demographics and baseline characteristics for the 457
patients.

Variable Result a

Age (yr) 61 (17)
Body mass index (kg/m2) 26.1 (5.11)
Preoperative hemoglobin (g/dl) 14.3 (1.9)
Preoperative eGFR (ml/min/1.73 m2) 87.36 (25.34)
eGFR at discharge (ml/min/1.73 m2) 76.52 (33.22)
PPL (%) 9.11 (25.41)
eGFR at 1 yr (ml/min/1.73 m2) 71.78 (23.59)
PPL at 1 yr (%) 10.31 (13.04)
RENAL score 6 (3)
Tumor size (cm) 2.8 (1.9)
Operative time (min) 144 (63)
Warm ischemia time (min) 16 (10)
Length of stay (d) 5 (3)
Sex
Male 286 (62.6)
Female 171 (37.4)

Race (Black)
Yes 29 (6.3)
No 428 (93.7)

Hypertension b

Yes 166 (36.3)
No 291 (63.7)

Diabetes mellitus
Yes 46 (10.1)
No 411 (89.9)

Solitary kidney
Yes 19 (4.1)
No 438 (95.8)

Partial nephrectomy approach
Robot-assisted 404 (88.4)
Laparoscopic 53 (11.6)

Ischemia technique
Clampless 47 (10.3)
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represent the relative predictive performance (likelihood) of the best

model with respect to the model considered [6]. For the model prior

probability P(M), we chose a uniform model prior and imposed that all

models were equally likely before seeing the data [7]. In the second step,

we used a Bayesian model averaging approach to choose which variable

is useful in predicting 1YPL and quantified the support for each predictor

as its posterior inclusion probability P(incl|data), which is the probability

of including it in a model after observing the data. P(incl|data) is the sum

of P(M|data) for the models including a given variable. We compared the

predictive performance of predictors in terms of BFexcl, which is the ratio

between the likelihood of models excluding a predictor and models

including it. In this way, the data are BFexcl times more likely to occur

under the models that do not include a predictor than the models that

include it. BFincl represents the reciprocal of BFexcl. The percentage error

was used to quantify the proportional error associated with BF estima-

tion and reflects the percentage accuracy in predicting the value of each

BF. We also reported the model-averaged effect size for each parameter

(regression coefficient b) to assess the weight of each predictor in esti-

mating 1YPL. The mean b was calculated by averaging the b values

assumed for the predictor across all models and weighted by the P(M|-

data). Standard deviation (SD) and the 95% credible interval for esti-

mates are also reported. We chose the Jeffrey-Zellner-Siow distribution

for the b prior probability. To explain the mutual dependence between

variables, we performed a network analysis of conditional independence

between relevant predictors using the high-dimensional undirected

graph estimation method; in the resulting acyclic graph, variables are

shown as nodes and conditional dependences as edges [8]. All statistical

analyses were carried out using JASP (version 0.14; JASP Software Ltd.,

Warrington, UK).
Selective 107 (23.4)
Full 303 (66.3)

PPL = postoperative percentage eGFR loss; eGFR = estimated glomerular
filtration rate.
a Results are presented as mean (SD) for continuous variables and n (%)
for categorical variables.

b Defined as systolic blood pressure of �140 mm Hg or diastolic blood
pressure of �90 mm Hg or taking antihypertensive medication.
3. Results

Data were collected for 1359 patients. Six patients were
excluded because of pediatric age, and 896 were excluded
because of incomplete preoperative, postoperative, or
follow-up data. A total of 457 patients undergoing robotic
(n = 412) or laparoscopic PN (n = 45) were thus included
in the study cohort. Demographic data and baseline charac-
teristics are shown in Table 1. There were no differences in
available characteristics between the included and excluded
patients. No violation of model assumptions for ANCOVA
was observed (Supplementary Fig. 1).

The analysis showed that several models of varying com-
plexity are plausible for estimation of 1YPL (Table 2). The
best model, comprising sex, preoperative eGFR, ischemia
technique, and PPL, was 207 times more likely than all the
others averaged across the model space. For all the predic-
tors in this model, the likelihood increased after seeing
the data. The second-best model includes the same predic-
tors with the addition of age (BFM 122.6). The relative pre-
dictive performance of the third-best model (comprising
ischemia technique, PPL, and preoperative eGFR) is 81 times
higher than the average performance of the other models.
The components of this model (ischemia technique, PPL,
and preoperative eGFR) are part of the top 44 models with
the highest P(M|data) values.

Comparison between the group of models not including
PPL and the group of models including PPL showed that
the data were extremely less likely (BFexcl 4.441E-16) to
occur under the former (Table 3). The data were less likely
to occur under the group of models not including preoper-
ative eGFR (BFexcl 0.02), ischemia technique (BFexcl 0.034),
and sex (BFexcl 0.458). The other variables (preoperative
hemoglobin, hypertension, diabetes, tumor size, RENAL
score, WIT, and EBL) were all worse predictors than those
mentioned above.

Mean b coefficients supported the importance of PPL,
preoperative eGFR, sex, and ischemia technique in predict-
ing 1YPL; specifically, the 95% credible interval for the
regression coefficient did not include 0 for any of these vari-
ables (Supplementary Table 1). For sex, the 95% credible
interval ranged from �4 to �0.4, demonstrating that male
sex is a protective factor for renal function because it
reduces the extent of 1YPL. The 95% credible interval for
all the other variables included the null effect.

Network analysis of conditional independence showed
that 1YPL was highly dependent on PPL and moderately
dependent on preoperative eGFR and EBL; inverse depen-
dence was observed between 1YPL and male sex (Fig. 1).
4. Discussion

This study demonstrates that several models are plausible
for predicting renal loss at 1 yr after minimally invasive



Table 2 – Model comparison for the top 20 models in predicting eGFR percentage loss at 1 yr after minimally invasive partial nephrectomy.

Models P(M) P(M|data) BFM BF01 Error (%)

Sex (male) + ischemia technique + PPL + PeGFR 8E-06 0.00158 207.1 1
Sex (male) + ischemia technique + PPL + PeGFR + age 8E-06 0.00093 122.6 1.57 1.573
Ischemia technique + PPL + PeGFR 8E-06 0.00062 81.45 2.28 1.689
Ischemia technique + PPL + PeGFR + age 8E-06 0.00033 43.75 4.1 1.467
DM + sex (male) + ischemia technique + PPL + PeGFR 8E-06 0.0003 38.74 4.61 1.842
Sex (male) + ischemia technique + HTN + PPL + PeGFR + age 8E-06 0.00026 34.67 5.14 1.702
Sex (male) + ischemia technique + HTN + PPL + PeGFR 8E-06 0.00026 34.64 5.14 1.86
Sex (male) + ischemia technique + PPL + PeGFR + WIT 8E-06 0.00022 29.23 6.06 1.57
Sex (male) + ischemia technique + PPL + PeGFR + age + WIT 8E-06 0.0002 26.33 6.71 1.602
Sex (male) + ischemia technique + PPL + PeGFR + tumor size 8E-06 0.0002 26.01 6.79 1.57
DM + sex (male) + ischemia technique + PPL + PeGFR + age 8E-06 0.00018 24.09 7.32 1.699
Sex (male) + ischemia technique + PPL + PeGFR + EBL 8E-06 0.00017 22.91 7.68 1.569
DM + ischemia technique + PPL + PeGFR 8E-06 0.00016 20.59 8.53 1.858
Ischemia technique +iHTN + PPL + PeGFR 8E-06 0.00015 19.82 8.86 1.729
Sex (male) + ischemia technique + PPL + PeGFR + tumor size + age 8E-06 0.00015 19.15 9.16 1.604
Ischemia technique + HTN + PPL + PeGFR + age 8E-06 0.00014 18.76 9.35 1.574
Sex (male) + ischemia technique + PPL + PeGFR + age + EBL 8E-06 0.00013 16.62 10.5 1.616
Ischemia technique + PPL + PeGFR + WIT 8E-06 9.3E-05 12.22 14.3 1.464
DM + ischemia technique + PPL + PeGFR + age 8E-06 8.6E-05 11.28 15.4 1.584
Ischemia technique + PPL + PeGFR + tumor size 8E-06 8.1E-05 10.62 16.4 1.465

eGFR = estimated glomerular filtration rate; PeGFR = preoperative eGFR; PPL = postoperative percentage eGFR loss; HTN = hypertension; DM = diabetes mellitus;
WIT = warm ischemia time; EBL = estimated blood loss; P(M) = prior model probability; P(M|data) = posterior model probability; BFM = model Bayes factor;
BF01 = relative Bayes factor of the best model against the model considered.

Table 3 – Analysis of effects.

Effects P(incl|data) P(excl|data) BFexcl BFincl

PPL 1 4.44E-16 4.44E-16 2.25E+15
Preoperative eGFR 0.98 0.02 0.02 50.000
Ischemia technique 0.967 0.033 0.034 29.412
Sex (male) 0.686 0.314 0.458 2.183
Age 0.378 0.622 1.646 0.608
Body mass index 0.331 0.669 2.021 0.495
Preoperative hemoglobin 0.234 0.766 3.278 0.305
Diabetes mellitus 0.185 0.815 4.411 0.227
Hypertension 0.183 0.817 4.478 0.223
Warm ischemia time 0.181 0.819 4.524 0.221
Operative time 0.174 0.826 4.734 0.211
Surgical technique 0.155 0.845 5.453 0.183
Tumor size 0.132 0.868 6.564 0.152
Estimated blood loss 0.123 0.877 7.104 0.141
ASA score 0.094 0.906 9.614 0.104
Length of stay 0.048 0.952 19.747 0.051
RENAL score 0.025 0.975 39.493 0.025

ASA = American Society of Anesthesiologists; eGFR = estimated glomerular filtration rate; PPL = eGFR postoperative percentage loss; P(incl|data), posterior
inclusion probability (the probability of including the predictor in a model after seeing the data); P(excl|data) = posterior exclusion probability, reciprocal of P
(incl|data); BFexcl = relative likelihood of the models excluding the predictor against the models including it; BFincl = reciprocal of BFexcl.
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PN. We found that the best model includes sex, preopera-
tive eGFR, ischemia technique, and PPL. All the models con-
taining these four variables exhibited an increase in
probability after seeing the data and showed greater predic-
tive performances than the models including all or some of
the remaining variables. Model averaging and network
analysis of conditional independence confirmed these
results. Several points regarding these findings deserve
more detailed consideration.

Unlike most studies in the literature, we chose percent-
age eGFR loss to evaluate functional loss after minimally
invasive PN. Several previous models used the ultimate
eGFR or progression to stage III CKD as the endpoint
[9–12]. Choice of a similar criterion might lead to deceptive
results because the dependent variable is directly calculated
from the same variables (ie, age, sex, or serum creatinine)
that it is tested against. This always results in identification
of those variables as important predictors of the outcome.
Other studies evaluated predictors of significant eGFR
loss, defined as a reduction of >25% from baseline eGFR
[13–15]. This endpoint resolved the above-mentioned limi-
tation, as it is not necessarily influenced by variables used in
eGFR formulas. Nonetheless, those studies chose only a sub-
set of predictors to build a model containing the covariates
considered relevant. Consequently, inference in all previous
studies was carried out without taking into account the
uncertainty derived from the use of only one model among
all possible models; furthermore, the weight of each predic-
tor was specific to a particular model and cannot give infor-
mation on its overall predictive performance (likelihood)
provided by the data [5]. This process can ultimately lead
to overestimation of model precision and may provide
biased estimates.

We took account of model space uncertainty by using
Bayesian model averaging, in which the full range of models
contribute to estimates and predictions. In this way, a



Fig. 1 – Network analysis of conditional independence between the
variables evaluated using high-dimensional undirected graph estimation.
Variables are shown as nodes and conditional dependences as edges, with
direct dependences as solid lines and inverse dependences as dashed lines.
PPL = postoperative percentage estimated glomerular filtration rate (eGFR)
loss; HTN = hypertension; DM = diabetes mellitus; WIT = warm ischemia
time; EBL = estimated blood loss; BMI = body mass index; Hb = hemoglobin;
RENAL = RENAL nephrometry score; 1Y = 1 yr.
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summary of the importance and consistency of each predic-
tor can be provided. Regression coefficients that have a
mean value close to zero will have very limited importance
in predicting the independent variable; furthermore, pre-
dictors with a 95% credible interval that includes the null
effect will influence the outcome in an opposite way,
depending on the model considered, thus proving to be
inconsistent. Specifically, calculation of the posterior mean
and the 95% credible interval for the regression coefficients
showed that PPL, preoperative eGFR, and sex retained their
predictive performance throughout the entire model space:
possible values for their regression coefficients were all
above or below the null effect (b = 0). Interestingly, b values
for sex ranged from �4 to �0.4, demonstrating that male
sex is a protective factor for renal function because it
reduces the extent of 1YPL. All the other variables proved
unreliable, with a 95% credible interval whose extreme val-
ues were of opposite signs.

Previous studies tested the use of the acute kidney injury
(AKI) categories of the Acute Dialysis Quality Initiative as
predictors of long-term renal failure after PN. The Risk,
Injury, Failure, Loss, and End-stage (RIFLE) criteria define
AKI as an abrupt loss of kidney function resulting in a
>25% reduction in eGFR from baseline [16]. It has been
shown that AKI increases the risk of mortality and CKD
development in patients with underlying medical condi-
tions [17,18] but it was not thought to affect these out-
comes when occurring in patients undergoing PN [19,20].
However, recent studies showed that both the presence
and duration of AKI increase the risk of long-term renal fail-
ure in this type of patient as well [14,21]. Nonetheless, the
RIFLE criteria may be inappropriate for patients undergoing
renal surgery; in these patients the increase in eGFR may be
due to both surgical excision and ischemic damage, with
relative contributions that are difficult to differentiate diag-
nostically and prognostically [18].

We did not use a cutoff value to define AKI in our study;
instead, we evaluated acute renal failure in terms of PPL.
This choice might offer some benefits, including avoiding
the negative consequences of dichotomization such as loss
of effect size and the risk of misclassification, allowing com-
parison with other continuous covariates of long-term eGFR
and yielding a more detailed prediction of functional recov-
ery [22].

We not only confirmed that PPL has noticeable repercus-
sions for long-term function but also demonstrated that PPL
is the most important factor affecting 1YPL. Unlike AKI, PPL
seems to be useful for predicting long-term functional dete-
rioration even when the percentage eGFR loss is <25%;
moreover, it is essential to precisely quantify the extent of
PPL as a continuous variable, as it is linearly related to the
outcome (Supplementary Fig. 2). An interesting difference
between our study and the current literature is that PPL is
a better predictor than all the other surgical variables
tested, including WIT, tumor size, RENAL score, and EBL.
In addition, all these variables showed little support from
the data, because models that do not include them are more
likely than models that use them as predictors. Finally, it
should be considered that renal function decline related to
postoperative acute injury could be influenced by conse-
quent hypertrophy of the remnant healthy kidney parench-
yma. Studies with longer follow-up have shown that the
impact of these modifiable parameters has a progressively
lower influence on functional outcomes, while other comor-
bidities or de novo vascular diseases may have a significant
impact on long-term outcomes [13,23].

Several studies found that WIT was a crucial factor in
predicting eGFR change [24–27]. Other studies downgraded
its role and concluded that as long as WIT is below a safe
threshold (25–30 min) its duration does not significantly
affect long-term eGFR [10,28–30].

A large body of literature has focused on the percentage
of parenchymal mass preserved (PPMP) as the key determi-
nant of remaining renal function, with WIT playing only a
minor role [28,31]. For instance, both Simmons et al [10]
and Ginzburg et al [15] found that PPMP and baseline eGFR,
but not WIT, were independently associated with long-term
renal function after PN. Other authors found that inclusion
of PPMP in multivariable linear regression led to loss of sig-
nificance for WIT in predicting eGFR at 3 mo [31] or later
[32]. It must be noted that PPMP assessment is not immedi-
ate and requires dedicated three-dimensional rendering
software to compare preoperative and postoperative renal
computed tomography scans performed with intravenous
contrast.

WIT and PPMP are closely related and difficult to decou-
ple [33]. Large and complex tumors are usually associated
with great parenchymal excision, extensive devasculariza-
tion, and secondary damage due to reconstruction
[9,34,35]. All of these factors are associated with longer
WIT and smaller PPMP, which in turn are strongly related
to PPL [35–37], thus causing multicollinearity between all
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these variables. This is clearly shown by analysis of the net-
work structure for variable dependence. Specifically, each
node in the network graph represents a single variable
and each edge represents the conditional dependence of
two variables given all the others. Two variables initially
found to be correlated (ie, marginally dependent) can
become conditionally independent (no direct edge between
the two nodes) when their correlation is explained by a
third variable that is strongly related to both. For instance,
after introducing PPL into the model, WIT and 1YPL become
conditionally independent, because WIT influences the out-
come via PPL. In addition, when conditionally independent
predictors are added to a model already containing condi-
tional dependent variables, they are unlikely to increase
model predictivity. In our analysis, models containing both
WIT and PPL performed worse than models containing only
PPL because the influence of WIT on 1YPL is already nested
in the PPL effect.

Our database does not have complete data for PPMP,
so we did not evaluate this variable. However, PPMP
should not add any benefit to our models; when several
variables related to PPMP, including pathological size,
RENAL score, and tumor stage [35], were added to a
model containing PPL, the derived models did not have
higher likelihood. In other words, these variables related
to PPMP are unable to explain the residual variance,
achieving a worse overall predictive performance. This
does not mean that WIT and PPMP are not important in
determining long-term renal function, but most of their
effect is mediated by PPL, which represents the best pre-
dictor of eGFR at 1 yr after surgery.

Age, hypertension, body mass index, and diabetes mel-
litus have all been identified as risk factors for CKD onset
and could also be involved in greater long-term functional
loss [9,11,31]. Contrasting results have been found for the
role of sex [11,31,38]. We believe that these findings may
be strongly influenced by the study design and choice of
endpoint, as they are all associated with lower baseline
renal function. We evaluated the role of clinical variables
including age, diabetes, obesity, hypertension, and preop-
erative hemoglobin in determining 1YPL. Model averaging
analysis showed that only age was clearly related to
1YPL; its effect is largely mediated by PPL and it retains
a marginal effect if it is added as an independent
predictor.

Some studies suggest that selective clamping of artery
branches [39] or the zero-ischemia approach [40] gives a
significantly higher chance of parenchymal sparing com-
pared to hilar clamping. Our results indicate that ische-
mia technique is a useful predictor of 1YPL as shown
by its BFincl of 29.4, which means that its inclusion
increased the predictive performance of models nearly
30-fold.

Several reports found no significant difference in the
reduction in eGFR between surgical approaches [31,38,41].
Our study confirms these findings by demonstrating that
the data were less likely to occur under the group of models
including surgical technique as a predictor.

Our study is characterized by several limitations. It is a
retrospective study and thus selection and detection biases
cannot be excluded. Our population came from high-
volume centers and all PNs were performed by highly
experienced surgeons; therefore, our findings may not
apply to other health care settings. In this study, data for
1359 patients were collected, with 896 excluded owing
to incomplete data. This is largely because of the strict
inclusion criteria applied; a large proportion of these
patients lacked 1-yr follow-up data and no statistical infer-
ence for these patients is possible; This might introduce a
selection bias and impact the generalizability of the find-
ings. We were not able to draw any conclusions regarding
the role of cold ischemia, solitary kidney status, surgeon
experience, or renorraphy techniques; the likelihood and
magnitude of long-term functional loss may be affected
by each of these.
5. Conclusions

Several models are plausible for predicting renal loss at 1 yr
after minimally invasive PN. Our analysis suggests that the
best model should include sex, ischemia technique, preop-
erative eGFR, and PPL. All the predictive models containing
these four variables had higher probability and showed
greater predictive performance than models including all
or some of the remaining variables. Compared to other
tools, these predictors are immediate and readily available.
PPL is useful for predicting long-term functional decline
even when the percentage loss is less than 25%, since it is
linearly related to 1YPL. Other predictors seem to be irrele-
vant, as their influence is insignificant or already nested in
the effect of these four parameters.
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