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1 Introduction

Cosmological phase transitions are of particular interest when they are first order as they

correspond to dramatic changes of the degrees of freedom of the theory and lead, among

other things, to the production of gravitational waves (see ref. [1] for a review). The Stan-

dard Model (SM) predicts the existence of two phase transitions, the QCD and the elec-

troweak one, which however are not first order. Therefore the detection of a signal compat-

ible with a first order phase transition would be a sharp evidence of physics beyond the SM.

Perhaps, the most strongly motivated phase transition beyond the SM is the Peccei-

Quinn (PQ) [2] phase transition associated to the QCD axion. The axion solution of the

strong CP problem [2–4] requires the existence of a U(1)PQ global symmetry anomalous

under QCD that is spontaneously broken at a scale fa > 109 GeV. Even more compelling

is the situation in which the axion provides the whole Dark Matter abundance. This pos-

sibility is connected to how the PQ symmetry is restored in the early Universe. Depending

on the scale of inflation and reheating, two rather different scenarios emerge, in which the

initial value of the axion in the visible Universe is either constant or scans all possible values.

In this work we study in detail the PQ phase transition in several scenarios. In the past

this question raised limited interest, mainly because the low-energy axion phenomenology

relevant for experiments is independent from the nature of the phase transition. Today,

however, the situation is rather different, since the possibility to test gravitational-wave

(GW) signals opened up a powerful way to test the PQ dynamics.

In order to get a detectable signal, we need to assume that the PQ transition took

place after inflation. If this is not the case any possible signal of the unbroken PQ phase
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is completely erased. Moreover we will mostly focus on scenarios in which the axion can

provide the whole dark matter. This happens for fa ∼ 1011 GeV, which we use as our main

benchmark [5–7].

We present concrete examples where the PQ phase transition is first order and a

detectable GW-signal is produced. The way this works is as follows. A first order phase

transition is automatically obtained when the theory is approximately conformal. The PQ

symmetry is broken dynamically through the Coleman-Weinberg mechanism. The small

deviation from conformality implies a suppression of the transition probability, so that a

large amount of supercooling is generic and calculable [8]. Supercooling implies that bubble

collisions take place in the vacuum and increases the duration of the phase transition, thus

enhancing the GW signal.

In this paper we will show that the scenario above can be realized both at weak and

at strong coupling. In the weakly coupled case approximate scale invariance is achieved at

the price of tuning, since we have to require small or vanishing mass terms for the scalar

fields. This can be considered unnatural if there is heavy new physics coupled to the scalar

sector. In the strongly coupled scenario naturalness depends on the unknown dimension of

the deformations of the CFT. Moreover higher dimensional operators can spoil the ‘quality’

of the PQ solution (see [9]) and modify the dynamics of the phase transition. However we

notice that, for the phase transition itself, operators suppressed by the Planck scale will

not affect our conclusions.

While our main focus are scenarios where a detectable GW signal is produced, we take

the opportunity to study the nature of the PQ phase transition in other popular models.

For instance, we show that in the minimal KSVZ model [10, 11] the phase transition

is always second order, while in composite axion models based on renormalizable gauge

theories [12] the phase transition is first order but nucleation proceeds rapidly with small

supercooling, leading to a suppressed GW signal.

The paper is organized as follows. In section 2 we consider weakly coupled theories

where the axion is an elementary scalar. After showing that in KSVZ models the phase

transition is second order, we show that in theories with massless scalars the PQ symmetry

is broken through the Coleman-Weinberg mechanism leading to a first order phase tran-

sition. In section 3 we discuss the realization of this mechanism in spontaneously broken

strongly-coupled conformal field theories and their dual Randall-Sundrum-like incarna-

tions. In both cases we find that the GW signal is within the reach of present and future

Earth-based GW interferometers such as LIGO/VIRGO and the Einstein Telescope (ET).

2 Elementary axions

In this section we study axion models that are described in terms of fundamental scalars

at all energy scales. In this context the axion is the phase of an elementary complex scalar

field whose VEV is fa. We analyze two classes of theories: models of KSVZ type, and

models in which the breaking of the PQ symmetry is radiatively induced.1

1We do not consider DFSZ models because they have domain-wall number greater than one so that in

the minimal scenario PQ symmetry should be broken during inflation.
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2.1 KSVZ-type

In the simplest realization of the QCD axion one introduces a complex scalar field X and

colored fermions charged under a new U(1) PQ symmetry. Taking into account the Higgs

doublet, the most general renormalizable lagrangian includes a potential

V =−µ2|H|2+λ|H|4+λXH |X|2|H|2+λX(|X|2−f2/2)2 , X =
φ√
2

exp(ia/fa) . (2.1)

In order to discuss whether this model displays a first order phase transition it is

convenient to start from the case where the portal coupling is vanishing, λXH = 0. In

this situation the Higgs and the PQ field will follow separate dynamics, and it is easy to

see that PQ transition is of second order. The reasons for this are several: i) radiative

corrections induced by the self-coupling λX at zero temperature do not generate other

minima in the regime where a perturbative expansion applies; ii) temperature corrections

are not able to modify the potential from the ‘mexican hat’ shape, since for X ≈ 0 there

are no light bosonic states that could induce a temperature-dependent barrier between

the origin and the true minimum; iii) the potential for X is always well approximated

by mX(T )2|X|2 + λ(T )|X|4, and no maxima away from the origin are expected. This

conclusion agrees with the analysis of [13].

Then one might wonder if departure from second order can be achieved by exploiting

the inevitable coupling of the field X to the Higgs at the renormalizable level, especially

in the regime where λXH � λX . We argue in the following that this is not the case.

When the Higgs sector is brought into play, we need to ensure that the electroweak

VEV and the Higgs mass are reproduced. Therefore, in addition to the stability of the

potential, which is guaranteed if λ, λX > 0 and λXH > −2
√
λXλ, we have two additional

constraints: µ2 has to be tuned against the contribution from the portal, and a correlation

between the quartics is needed to ensure that λh = 2M2
h/v

2. In the minimum (v, fa), where

both the electro-weak and PQ symmetries are broken, by integrating out the massive singlet

φ we get at leading order in v2/f2

M2
h

2
= µ2 − λXHf

2
a

2
, λh = λ−

λ2
XH

4λX
. (2.2)

These matching conditions strongly constrain the possible sizes of our parameters. In

addition, this configuration is the deepest minimum if µ2 > λXHf
2/2, λ2

XH < 4λλX and

µ2 < 2λλXf
2/λ2

XH (for a positive portal coupling). Notice that if the first two conditions

are satisfied, the third is implied.

Given the separation of scales v � f , it is a good approximation to study the effective

potential along the direction h ≈ 0.2 The needed departure from a pure ‘mexican hat’

potential for X can arise from radiative and thermal contributions. Both the CW one-loop

effective potential and the thermal corrections depend on the masses of the fields involved

in the dynamics. Building on the previous discussion it is necessary to invoke a hierarchy

2This is a good approximation because the Higgs receives larger thermal masses than φ. Even neglecting

the gauge and Yukawa contributions, one can see that the singlet becomes unstable at temperatures higher

than the Higgs field when λXH is not too large.
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λXH � λX , and in this limit the dominant effects comes from the four degrees of freedom

of the Higgs doublet with effective mass λXH(φ2 − f2)/2. Neglecting terms of order λ2
X ,

the potential depends only on one variable

VCW+tree+thermal≈
1

2

λXHT
2

6
s2+

λX
4
s4+

λ2
XHs

4

64π2
log

(
λXH
2µ̄2

∣∣s2
∣∣) , s2≡φ2−f2 , (2.3)

where we take the real part of the logarithm and µ̄ = µe3/4 and we included the leading

high-temperature corrections (see section 2.2). Notice that the variable s2 is bounded

by s2 ≥ −f2. At high-temperature the minimum is at s2
min → −f2, while for lower

temperatures it goes s2
min → 0. When λ2

XH & 16π2λX the potential deviates from a

pure ‘mexican hat’ shape and in this regime two minima coexist. However this hierarchy of

couplings has to be faced with the requirement of the Higgs properties reported in eq. (2.2).

This implies λ� 16π2, which is not viable phenomenologically. If the parameters are not

constrained by Higgs phenomenology a larger parameter space opens up, see for example

the regime discussed in ref. [14].

The KSVZ example suggests how to modify the theory to find a strong first order phase

transition. First the Higgs field should be replaced by a field that does not play a role in

electroweak symmetry breaking. Moreover, to obtain a sizable GW signal, the system

should undergo a phase of supercooling. This is achieved if the theory is approximately

conformal since

CFT =⇒ S3

T
= constant , (2.4)

where S3 is the euclidean tunneling bounce action at finite temperature, which determines

the false vacuum decay rate Γ ∼ e−S3/T .

At weak coupling this can be realized through massless scalar theories where PQ

symmetry breaking is induced by quantum corrections [15, 16].

2.2 Radiative PQ breaking

To realize this scenario we consider theories of (approximately) massless scalars some of

which are charged under the PQ symmetry. The tree level potential is given by

V =
λijkl

4
φiφjφkφl. (2.5)

It is well known that such theories undergo spontaneous symmetry breaking. The way

this works is as follows. Renormalization group equations imply generically that a linear

combination of couplings vanishes at some scale Λ [16]. Starting from this scale one can

identify a “flat” direction in the scalar vacuum manifold parametrized by a unit vector ~n

and spanned by a field σ (~φ = ~nσ). Using perturbation theory with a renormalization scale

µ = Λ, the tree-level effective potential along the σ direction identically vanishes. The

whole dynamics of σ is therefore controlled by radiative effects, and can be described in

terms of an effective quartic coupling

λeff(µ) = λijkl(µ)ninjnknl , with λeff(Λ) = 0 . (2.6)
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At 1-loop the Coleman-Weinberg effective potential is given by

Veff(σ) ≈ βλeff

4
σ4

(
log

σ

f
− 1

4

)
, (2.7)

where βλeff
is the β function associated to the effective quartic coupling. We see that if

βλeff
> 0 the potential has a minimum at f , which is close to the scale where the effective

quartic becomes negative. At the minimum, σ has a mass m2
σ = βλeff

f2. This is the usual

radiative symmetry breaking à la Coleman-Weinberg.

As noted in ref. [8], due to the extremely shallow potential, finite temperature effects

have a dramatic impact on the free-energy along the flat direction, see also [23, 24] for

recent work. In particular, for any T > 0 thermal corrections induce a positive curvature

at the origin, making σ = 0 a metastable vacuum.

The dynamics of the system at finite temperature is described by the free-energy,

which, in a theory of weakly-coupled scalars, is given by3

F (σ;T ) =
T 4

2π2

N∑
i

JB

(
m2
i (σ)

T 2

)
+ Veff(σ) + V0 , (2.8)

where V0 = −Veff(σ = f) is included to eliminate the cosmological constant on the global

minimum.

Due to the absence of tree-level mass terms, close to the origin the thermal function

can be expanded in the high-temperature limit, since all degrees of freedom are massless

there. Notice that for a large number (N) of scalar fields coupled to σ, the variable σ has

an overlap of order 1/
√
N with each of them. It then follows that the σ-dependent masses

of the light degrees of freedom are of order mi ∼ ĝσ/
√
N , where g ∼

√
λ is the typical

interaction strength in eq. (2.5). Therefore for T & ĝσ/
√
N a formally high-temperature

expansion is reliable.

The shallowness of the potential implies that the critical temperature Tc at which F

develops two minima is parametrically smaller than f , namely

T 4
c

f4
≈ 1

8π2

45

(NH −NL)
βλeff

, (2.9)

where NH and NL are the number of light degrees of freedom at the origin and at the

global minimum.

3We recall that the thermal functions are given by

JB/F (y2) =

∫ ∞
0

dt t2 log
(

1∓ exp
(
−
√
t2 + y2

))
.

Their expansions at high temperature |y2| � 1 are

JB(y2) = −π
4

45
+
π2

12
y2 − π

6
y3 − y4

32
log

(
y2

aB

)
, aB = π2e3/2−2γE ,

JF (y2) =
7π4

360
− π2

24
y2 − y4

32
log

(
y2

aF

)
, aF = 16π2e3/2−2γE .
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Figure 1. On the left, free energy along σ for different values of the temperature. For T � f

the origin is the only minimum so that the symmetry is unbroken. At lower temperature a new

minimum develops separated by a barrier of size proportional to T . The Universe is trapped in the

false vacuum up to low temperatures where the relevant region for tunneling is well described by

temperature dependent quartic potential (right panel).

Working in the limit of temperatures smaller than f but larger than ĝσ/
√
N , the

free-energy can be approximated as

F (σ;T ) ≈ −N π2

90
T 4 + a

ĝ2T 2

24
σ2 − βλeff

4
σ4 log

(
M

T

)
+ V0 , (2.10)

where M ∼ ĝf/
√
N is the typical mass of the heavy scalars around the minimum. Here a

is an O(1) coefficient at large N . Notice that the approximated potential is just a quartic

polynomial and no logarithmic dependence on the field σ is present. This feature is a

consequence of a cancellation between the logarithmic term in the CW potential and the

logarithmic piece in the expansion of the thermal functions.

The potential in eq. (2.10) has a minimum at the origin and a barrier whose size is

roughly given by σbarrier ≈
√
a/6(ĝ/

√
βλeff

log(M/T ))T . Thanks to the logarithm, which

becomes sizable for large supercooling, the barrier extends over a region where the approx-

imation of high-temperature is still reliable [8]. At sufficiently low temperature, the field

σ will then tunnel towards the true minimum and acquire a vacuum expectation value.

Thanks to its overlap with the original variable φi, this also breaks the PQ symmetry. An

exemplificative picture of the free energy of the system and of the impact of the thermal

corrections to the vacuum structure is shown in figure 1. Also shown (right panel) is the pa-

rameterization of the barrier in the high-temperature approximation and the corresponding

field tunneling.

Using the approximation in eq. (2.10), the tunneling rate is determined by minimizing

the bounce action,

S3

T
≈ 4π

T

∫ ∞
0

r2dr

[
1

2

(
dσ

dr

)2

+
m2(T )

2
σ2 − λ4(T )

4
σ4

]
(2.11)

which is subject to the conditions σ′(0) = 0 and σ(∞) = 0. Here m2(T ) = aĝ2T 2/12 and

λ4(T ) = βλeff
log(M/T ). This is just the bounce for a potential with a positive quadratic

term and a negative quartic for which the exact result is S3 ≈ 18.897m(T )/λ4(T ) [17]. In

– 6 –



J
H
E
P
0
4
(
2
0
2
0
)
0
2
5

our case, parametrizing 16π2βλeff
= beff ĝ

4, the full result can be expressed as

S3

T
≈ A3

log(M/T )
, A3 =

861.43

ĝ3

√
a

beff
. (2.12)

The bounce action is large at weak coupling due to the approximate scale invariance

of the theory and decreases logarithmically at low temperatures. This generically implies

a phase of supercooling, since the tunneling rate,

Γ ' T 4

(
S3/T

2π

) 3
2

exp(−S3/T ) , (2.13)

is exponentially suppressed for a large range of temperatures. Therefore, when the tem-

perature drops below the critical one, the vacuum energy of the false minimum begins

to dominate over the energy density of radiation. The Universe then enters the so-called

phase of supercooling, where Hubble becomes constant at a value HI and the temperature

starts to drop exponentially T ∼ e−HI t. This phase ends when the value of the bounce

action decreases enough to allow nucleation of bubbles of true vacuum.

The nucleation temperature is commonly defined as when the time-integrated prob-

ability to enucleate one bubble per Hubble volume equals one (see ref.s [18, 19] for more

details). By exploiting the exponential growing of the tunneling rate for the relevant tem-

peratures, one can approximate the nucleation condition by the simpler relation

Γ

H4
= q, q ≥ 1 (usually taken to be 1) . (2.14)

By using eq. (2.13), we obtain the following condition for the nucleation temperature Tn

S3

Tn
− 3

2
log

(
S3

2πTn

)
= 4 log

Tn
HI
− log q . (2.15)

During supercooling HI is given by,

H2
I =

V0

3M2
Pl

=
βλeff

48

f4

M2
Pl

, (2.16)

where MPl = 2.4× 1018 GeV.

It is worth emphasizing that in the case of large supercooling it is inaccurate to simply

assume S3/T ≈ 4 log(MPl/Tc). Since the temperature can drop significantly, the right-

hand side of the nucleation condition in eq. (2.15) can become quite small, requiring to

go to even smaller values of the bounce action. Notice also that we assumed a constant

Hubble value, neglecting the exponentially-decreasing radiation component.

Using (2.12) the nucleation temperature is found to be

Tn ≈
√
MHI exp

(
1

2

√
−A3 + log2(M/HI)

)
. (2.17)

The argument of the square root becomes negative for sufficiently small ĝ, implying that

the nucleation temperature has a limiting value

Tmin
n =

√
MHI ∼ 0.1f

(
f

MPl

) 1
2

. (2.18)

For temperatures above this value we however expect a sizable tunneling rate and the

completion of the phase transition via thermal tunneling.

– 7 –
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Within the above approximation, one can also compute the logarithmic derivative of

the tunneling rate, which is one of the relevant parameters to determine the GW spectrum.

Its expression is given by

β

H
= −4 + T

∂(S3/T )

∂T

∣∣∣∣
Tn

= −4 +
1

log(M/Tn)

S3

T

∣∣∣∣
Tn

, (2.19)

where Tn and Ŝ3(ĝ) are related by eq. (2.17). Since Tn � Tc < λf we see immediately that

β can become O(1), in which case the power spectrum of the GWs is maximized.

Apart from tunneling at finite temperature, nucleation of true vacuum bubbles can

also be driven by 4d bounces. If the O(4) bounce action S4 is smaller than S3/T , quantum

effects can lead to a faster nucleation rate. Repeating the same steps as above we find4

S4 =
2π2

λ4

∫ ∞
0

z3dz

[
1

2

(
dσ̂

dz

)2

+
1

2
σ̂2 − 1

4
σ̂4

]
≈ 25

λ4
≡ Ŝ4(ĝ)

log(M/T )
. (2.20)

This action is larger than S3/T as long as M(T )/T < 1. The expression for the tunneling

rate is

Γ ' 1

R4

(
S4

2π

)2

e−S4 (2.21)

where R is the size of the bubble. Since R . 1/T , and S4 < S3/T , we find that the thermal

nucleation rate always dominates.

The above results show that, for small enough coupling, the thermal transition never

completes. Does this suggest that the inflationary epoch lasts up to arbitrarily small

temperatures? The answer is no, fortunately, because when the temperature of the thermal

bath drops below the Hubble scale in the false vacuum the computation of the tunneling

rate should be modified to take into account the de Sitter curvature [20, 21]. This happens

after a number of e-foldings

Nmax ≈ log
Tc
HI
≈ log

[
MPl

f

(
90

NHπ2βλeff

)1/4
]
. (2.22)

Since Nmax ≈ 15, the model is consistent with the CMB power spectrum.

At sufficiently low temperatures, the height of the barrier will be smaller than HI . In

this regime quantum de Sitter fluctuations in the false vacuum, whose variance is δσ =

HI/(2π), will allow the field to reach its true minimum. We do not study this regime

further in this work.

After the completion of the phase transition the Universe is reheated at a temperature

TRH = TI min

(
1,

Γ

HI

)1/2

, TI =

(
βλeff

16π2

30

NL

)1/4

f . (2.23)

The reheating is controlled by the coupling to PQ fermions. In a large range of parameters

the decay rate is fast, so that TRH ≈ TI . It is however possible to suppress the decay rate

by considering small Yukawa couplings. In this case, the PQ sector gets reheated first and

afterwards the energy is transferred to the SM.

4Strictly speaking the O(4) bounce does not exist for M > 0 because no trajectory starting at finite

φ reaches exactly the false vacuum φ = 0. A small modification of the potential such as a logarithmic

modulation produces a solution whose action is roughly equal to the theory with M = 0.
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2.2.1 An explicit realization

We now discuss an explicit implementation of radiative PQ breaking. We consider a pair

of complex scalar fields, S and X, neutral under the SM and coupled to colored vectorial

fermions Q and Qc. As an example, we assume S to be neutral under PQ and we do not

include tree level couplings to the Higgs doublet. The corresponding Lagrangian is given by

L = − F
2

4g2
+ |DµS|2 + |∂µX|2−V +(yXQQc+h.c) , V = λS |S|4 +λX |X|4 +λXS |S|2|X|2 .

(2.24)

The fermions Q,Qc are assumed to transform in the fundamental and anti-fundamental

representations of color, and to have hyper-charge equal to −2/3 or 1/3. In this way the

domain wall number is equal to one, and they can decay by mixing with the right-handed

quarks. We also included a possible U(1)S gauge symmetry, with a small coupling strength

g, under which only the S field is charged. Very similar type of models have been considered

in the context of the electro-weak phase transition [22–24].

The tree-level scalar potential has a flat direction for λXS =−2
√
λSλX parametrized by

(S ,X) = (sinα , cosα)
σ√
2
, sin2 α =

√
λX√

λX +
√
λS

. (2.25)

Along this trajectory the fields have masses

Mτ = (4λXλS)1/4σ , MA = g sinασ , MQ = y cosα
σ√
2
, (2.26)

where τ is the radial direction orthogonal to σ.

Assuming λXS + 2
√
λSλX to vanish at a scale Λ, the Coleman-Weinberg effective

potential along the direction σ reads

VT=0(σ) =
2λSλX + 3

2g
4 sin4 α− 3

2y
4 cos4 α

16π2
σ4

(
log

σ

f
− 1

4

)
, (2.27)

where, for y sufficiently small, we traded the scale Λ for the minimum of the potential at f .

At the minimum, σ has a loop suppressed mass, while the phase of X is exactly massless

being an exact Nambu-Goldstone boson up to QCD anomalies, the axion. Note that the

axion decay constant is fa = f cosα.

Thermal corrections and 3D bounce. Adding finite temperature corrections, the

free-energy along the flat direction becomes5

V (σ) =
T 4

2π2

[
JB

(
M2
τ

T 2

)
+ 3JB

(
M2
A

T 2

)
− 12JF

(
M2
Q

T 2

)]
+ VT=0(σ, τ = 0) . (2.28)

In terms of the parametrization of the previous section this corresponds to

aĝ2 = 2
√
λSλX + 3g2 sin2 α− 3y2 cos2 α , beff ĝ

4 = 8λSλX + 6g4 sin4 α− 6y4 cos4 α .

(2.29)

5Around the origin all fields are massless so the whole potential is dominated by the thermal effects.

However, not for all values of the quartic couplings the origin is a minimum at high temperatures. For

example when g = 0 we find instabilities for λS > 4λX . On the contrary we find that in presence of the

gauging λS/λX can be arbitrarily small, allowing to align the flat direction with the S axis.
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Using the previous results, the thermal bounce action can be approximated by

S3

T
≈ Max

[
150

(λXλS)3/4
,

250

g3 sin3 α

]
1

log(M/T )
. (2.30)

The approximate formula used to draw the gray dashed lines in all the plots of this section

is the above eq. (2.30), multiplied by 0.8 that takes into account the cubic terms of the

thermal potential, and where M is the maximum between the mass of the radial mode or

the guage boson.

In the fixed-order effective potential the perturbative expansion may break down when

the scalar field explores a region in field space far from the renormalization point. This

happens generically since the quartic couplings are defined at the scale Λ but the bounce

probes the scalar potential near the metastable minimum. The remedy is to use the

renormalization group improved CW effective potential. Being the dynamics uniquely

determined in the σ direction, this simply amounts to the replacement, in the MS effective

potential, of the quartic couplings λi with the corresponding running ones λi(µ) setting

µ = σ. We also assume that the flat direction is not strongly affected by the one-loop

radiative corrections since in the orthogonal direction the tree-level potential dominates.

This is exactly true in the symmetric configuration λS = λX for negligible values of the

gauge and Yukawa couplings.

Explicitly the 1-loop β functions are given by

16π2βλX =λ2
XS+20λ2

X+6y2(2λX−y2) , 16π2βλS =λ2
XS+20λ2

S+6g4−12g2λS

16π2βλXS = 4λ2
XS+8λXS(λX+λS) , 16π2βg = g3/3 , 16π2βy = 5y3/2 .

(2.31)

From the above equations one can extract the running of λeff . Assuming that it vanishes

at tree level (λXS = −2
√
λXλS) one finds

16π2βλeff
= 8λXλS − 3

√
λXλS(g2 + y2) sin2 2α+ 6g4 sin4 α− 6y4 cos4 α , (2.32)

from which eq. (2.27) also follows. Let us note that while the β function of g is positive

the one λXS is always negative around the flat direction. This implies that the breaking of

conformal invariance is driven by a marginally irrelevant (relevant) coupling when quartics

(gauge) couplings dominate. As a consequence the RG improvement is more important

when quartics dominate βλeff
as shown in the plots.

The computation of the parameters of the phase transition in the case of negligible

gauging is shown in figure 2, for three different levels of approximation. It is visible how the

RG-improvement of the effective potential gives different results in the region of extreme

supercooling both for Tn and the parameter β/H(Tn). On the contrary in figure 3, where we

assume dominance of the gauge contribution, we do not show the RG-improved potential,

that we checked to be negligible.

Reheating. After completion of the phase transition the Universe is reheated. In the

minimal scenario the only bridge between X,S and the SM is provided by the coupling to

colored fermions necessary to realize the QCD axion. The decay rate to the SM reads

Γσ =
3

8π
y2 cos2 αMσ , Γτ =

3

8π
y2 sin2 αMτ . (2.33)
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Figure 2. Properties of the phase transition in the scenario with g = 0, y = 0 and λS = λX . Left:

nucleation temperature versus coupling. Right: β/H as a function of the nucleation temperature.

The solid curves correspond to the results using the improved 1-loop potential. The dot-dashed

lines are instead obtained from the usual 1-loop CW potential without improvement. Finally the

dotted gray curves are derived through the analytical approximation in eq. (2.30). The black lines

include the full numerical thermal potential.
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Figure 3. Properties of the phase transition in the gauged scenario with λS = λX � g2 and

y = 0. Left: nucleation temperature versus coupling. Right: β/H as a function of the nucleation

temperature. The solid curves are obtained using the 1-loop CW potential, while the dotted gray

ones are derived through the approximate analytic result. The black lines include the full numerical

thermal potential.

Assuming that the energy is carried by the light field σ, using eq. (2.16) the reheating

temperature is controlled by

Γσ
HI

=
3
√

3

2π
y2 cos2 α

Mp

f
, (2.34)

independently of βλeff
.

Gravitational-wave signals. In the presence of a large amount of supercooling the

energy released while tunneling to the true vacuum can be much larger than the radiation

energy and can dominate the energy of the Universe. In such an empty Universe we only

expect bubble collisions to be a source of GWs, while the effects of turbulence and sound

wave propagation are subdominant. Moreover, the effect of bubble collision is maximized
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during supercooling and reads [1], as a function of the frequency fgw,

h2Ωgw(fgw) ' 1.27× 10−6

(
H(TRH)

β

)2 3.8(fgw/fpeak)2.8

1 + 2.8(fgw/fpeak)3.8
, (2.35)

with the red-shifted peak frequency

fpeak ' 3.83× 102 Hz

(
β

H(TRH)

)(
TRH

1010GeV

)
. (2.36)

The GW spectrum depends on the temperature after the transition and reheating

phases have completed. This generally does not coincide with the nucleation temperature,

since only a small fraction of the energy released by the bubble goes into GWs (their produc-

tion being Planck-mass suppressed). Assuming a sufficiently fast reheating, H(TRH) ' HI ,

the relevant temperature for the GW spectrum can be simply estimated from the energy

conservation condition

(1− Ωgw)(∆V + ρR(Tn)) = ρR(TRH) , (2.37)

which, for strong supercooling, simplifies to T 4
RH = 30/(π2g∗)∆V . A large reheating

temperature can shift the peak of the GW spectrum above the frequency regime where

LIGO [26–28] and the Einstein Telescope (ET) [29, 30] have their optimal sensitivity. On

the other hand, the amplitude is completely controlled by β/H(TRH) ' β/H(Tn), which

has been numerically computed and given in figure 2.

In figure 4 we show the reach on stochastic gravitational background of the ET and

LIGO observatories. At present, the only existing bounds come from the LIGO collabo-

ration [25] from the combination of run O1 and O2. While this is not sufficiently strong

to probe the models discussed here (assuming reasonable values of β/H), it is promisingly

close to test these scenarios in the very near future. Indeed, at the end of the phase O5 [26],

LIGO would be already able to access part of the parameter space.

In order to get preliminary estimates we use the analysis developed in refs. [27, 31]

and adopted in ref. [32] (see also [33]). From the knowledge of the effective noise strain

Snoise(fgw), as provided by the experimental collaborations, and assuming a power-law

family of signals, one obtains the power-law integrated limit by maximising the signal-to-

noise ratio over the spectral index.6

6The signal-to-noise ratio for a signal Ω(fgw) is defined as

SNR =

√
Time

∫ fmax

fmin

df

[
Ω(f)

Ωnoise(f)

]2

, Ωnoise(fgw) =
2π2

3H2
0

f3Snoise(fgw) ,

where the time is the integrated observational time, multiplied by the number of interferometers involved

in the experiment. A common practice for determining conservative bounds is to assume a power-law

family of signals Ωb(fgw) = Abf
b
gw. To extract the sensitivity then one can find, at each frequency fgw, the

largest value of Ωb(fgw) compatible with a given reference value of the signal-to-noise ratio, SNRref ; i.e. we

maximize over b with the constraint that the test spectral density Ωb(f) has a given SNRref (here we take

a value of 10). This gives a Power-Law Integrated (PLI) limit

ΩPLI(fgw) = max
b

Ωb(fgw)
∣∣
SNRref

= max
b

Ab
∣∣
SNRref

f bgw =
SNRref√

Time
max
b

[(∫ fmax

fmin

df̄
f̄2b

Ω2
noise(f̄)

)− 1
2

f bgw

]
.
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Figure 4. Weakly coupled model. Predictions for the GW spectrum for three benchmark models in

the gauge-dominance scenario. We also show the sensitivity curves of the LIGO (current bound [25]

and projection of run O5) and the Einstein Telescope (ET) experiments. The same spectra can be

realized in the purely quartic scenario with g = 0 and λX = λS = (0.34, 0.38, 0.50), respectively.

Taking also into account the projected sensitivity of ET [34], one could be able to probe

regions of the model with g . 1.3 (
√
λSλX . 0.5) characterised by nucleation temperatures

Tn/f . 10−2.

3 Composite axions

We now turn to scenarios where the axion is not an elementary field. In this case the

axion is a Nambu-Goldstone boson arising from the spontaneous breaking of the global

symmetries of a strongly coupled dynamics that undergoes a confinement/deconfinement

phase transition. We consider two possible classes of models:

• Axion from SU(N) gauge theories with massless elementary fermions charged under

QCD [12, 35]. In this context the QCD axion is the analog of π0 in QCD and

corresponds to a combination of phases of the fermion condensates.

• Axion from a strongly coupled conformal (spontaneously broken) sector. At large-N

such a scenario is related to gauge theories in five dimensional AdS space through the

AdS/CFT correspondence. In this realization the axion corresponds to the Wilson

line of a 5D U(1) gauge field, and the anomalous coupling to gluons is realized through

a Chern-Simons interaction with SU(3) gauge fields. As we will see the PQ transition

is intimately connected with the breaking of conformal invariance.

3.1 Gauge theory axions

In this class of models the axion appears as a Nambu-Goldstone boson of a confining

gauge theory [12, 35]. Such theories realize at low energy the KSVZ axions, and the PQ

symmetry can be made accidental by appropriately engineering the gauge interactions to
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be chiral [36]. Compared to weakly coupled models the axion has no radial mode, which,

in practice, is replaced by the strong dynamics.

In the simplest realization one considers an SU(N) gauge theory with NF massless

Dirac fermions. At least one of the fermions should be charged under QCD in order

generate an anomaly, so that the minimal scenario requires NF = 4 (a color triplet and a

singlet). Upon chiral symmetry breaking massless Nambu-Goldstone bosons are generated

in the adjoint of the unbroken SU(NF ) global symmetry. One can see that the symmetry

of the SM singlet Nambu-Goldstone boson is anomalous under color and therefore realizes

the QCD axion. The gauge dynamics is expected to have a first order phase transition for

3 ≤ NF < 4N and N ≥ 3 [37], and special cases have been verified on the lattice [38].

We estimate the critical temperature as Tc ∼ fπ where fπ is the decay constant of SU(4)

σ−model. This is related to the axion decay constant by,

Tc ∼ 2Afa (3.1)

where Aδab = 2NTr[TPQT
aT b] is the color anomaly where the flavor generators have

1/2 trace.

In this type of theories the phase transition however is not expected to lead to large su-

percooling. Indeed as soon as the temperature falls below the critical temperature the the-

ory confines, exiting immediately from the scale invariant behavior.7 While it is presently

not possible to compute the dynamics of the phase transition from first principles, esti-

mates can be derived using effective models with the same symmetries of QCD [39–41]. In

ref. [40] the parameters of the phase transition were estimated using Nambu-Jona-Lasinio

and linear σ-models. While the details differ, the results indicate a nucleation tempera-

ture very close to the critical temperature and β/H ≥ 1000. By applying these results to

composite axions, for such parameters the amplitude of the GW signal is suppressed by

plasma effects and the peak frequency is too large to be accessible at present experiments.

Let us also mention that these types of axion models, at least in their simplest real-

ization, have domain wall number NDW > 1 so that they contain stable domain walls. As

a consequence it is most natural to consider these models when PQ symmetry is broken

during inflation, such that the gravity wave spectrum is erased by the inflationary epoch.

3.2 Conformal models

A possible first order phase transition for the PQ sector can be triggered by the confining

phase transition of large−N conformal theories. There is a vast literature on the conformal

symmetry breaking in the context of the electro-weak scale starting with ref. [42], see

refs. [43–50] for related work. Here we will consider a strongly coupled conformal sector with

negligible couplings to the SM that triggers the PQ symmetry breaking, see refs. [51, 52]

for other high scale realizations. Not surprisingly the construction is similar in spirit to

the one of massless elementary theories.

7A possible exception are confining gauge theories close to the conformal window estimated around

NF ≈ 4N in QCD-like theories.
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In this context the phase transition is between a CFT at finite temperature and a

spontaneously broken CFT with a light dilaton ϕ, the Nambu-Goldstone boson of the

spontaneous breaking of scale invariance. The model is defined at the UV scale Λ by

CFT +
g

Λε
O , |ε| � 1 . (3.2)

The CFT is explicitly broken by a marginally relevant or irrelevant deformation O with

dimension 4 + ε and also spontaneously broken. Following the discussion in ref. [49] the

explicit breaking of conformal invariance induces a slow evolution all the way down to the

IR scale that is captured by the running of the dilaton quartic coupling,

L =
N2

16π2

[
(∂ϕ)2 − λ(g(ϕ))ϕ4

]
=

N2

16π2
(∂ϕ)2 − N2

16π2
V̂ (ϕ) . (3.3)

The normalization of the kinetic term agrees with the dilaton being a glueball as in extra-

dimensional realizations.

The explicit function λ(g(ϕ)) depends on how the CFT is explicitly broken, which in

the generic parametrization of eq. (3.2) is related to the running of the coupling g. In

general the β-function in the large−N limit has the structure

βg = εg + aN
g3

16π2
+ . . . , a ∼ O(1) . (3.4)

In the regime where ε > Ng2/(16π2), the evolution of g is dominated by the classical scaling

dimension, while if ε ∼ Ng2/(16π2), the departure from scale invariance is the same as in

the Coleman-Weinberg mechanism. Focusing on the classical evolution g(ϕ) = (ϕ/Λ)ε g,

so that

λ = λ0 + λ′(0) g (ϕ/Λ)ε + . . . , (3.5)

which determines the effective potential of the dilaton through eq. (3.3). By trading the

product λ′(0)g for the minimum of the potential f , one can write down

V̂ (ϕ) = λ0ϕ
4

[
1− 4

4 + ε

(
ϕ

f

)ε]
+O(λ2

0) . (3.6)

The potential has a minimum for λ0ε < 0. For the ε > 0 the evolution is controlled by

a marginally irrelevant operator, while for ε < 0 the deformation is relevant and grows in

the infrared. Therefore for ε > 0 the breaking of conformal invariance decouples in the IR.

This is analogous to the discussion at the end of section 2.2.1.

Note that since ϕε = 1 + ε logϕ + . . . , for small enough ε this potential has the

same structure as in the weakly coupled scalar models considered in eq. (2.7), with the

identification of −ελ0 = N2/(64π2)βλeff
> 0.

Let us discuss the relevant normalizations. Because of the non-canonical kinetic term,

the physical decay constant of the dilaton should be identified with fd = Nf/(4π). The

axion decay constant is then expected to be similar to fd up to order-one factors. Actually

in the extra-dimensional realization the axion scales as a meson while the dilaton as glueball.

Large N countings would then indicate fa ∼ fd/
√
N . We will neglect such factors in what

follows and assume fa = fd = Nf/(4π).
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In order to connect the QCD axion to this sector one needs to simply assume that

the CFT has a global symmetry U(1)PQ× SU(3), where the SU(3) factor is weakly gauged

under QCD. The PQ symmetry should be anomalous under QCD. In operator language

this means

∂µj
µ
PQ =

K

16π2
GaµνG̃

aµν , (3.7)

where K is an integer. We assume that when the CFT breaks it also breaks spontaneously

the U(1) symmetry so that,

〈0|jµPQ(p)|a〉 ∼ N

4π
f pµ . (3.8)

Upon the spontaneous breaking of the PQ symmetry the axion degree of freedom acquires

an anomalous coupling to gluons from the anomaly equation. It thus realizes the QCD

axion. Because SM fermions have no PQ charge the low energy dynamics is the same as

KSVZ models.

Extra-dimensional realization. The above construction is dual, through the AdS/CFT

correspondence, to five-dimensional theories of gravity with negative cosmological constant.

From this point of view the phase transition corresponds to the Hawking-Page-type tran-

sition between AdS-Schwarzschild geometry and AdS with an IR brane [42, 53].

For what concerns the dilaton the construction is the standard Randall-Sundrum sce-

nario [54] with Goldberger-Wise stabilization [55]. At zero temperature one considers AdS

space with radius L and metric

ds2 =
L2

z2
(dxµdxµ + dz2) . (3.9)

The presence of an IR brane spontaneously breaks conformal symmetry and generates a

mass gap [56]. The dilaton can be identified with the radion mode, whose potential is

in general quartic. The extra dimension can be stabilized at z � L with the aid of the

Goldberger-Wise field. This requires the addition of an approximately massless scalar field,

Π, dual to an almost marginal operator of the CFT, with dimension ∆Π = 2+
√

4 +M2
ΠL

2.

For generic brane actions the 5D field acquires VEV and a potential for the radion field ϕ

is generated

V (ϕ)GW = ϕ4
[
(4 + 2ε)(v1 − v0(ϕ/Λ)ε)2 − εv2

1 + δ
]
, (3.10)

where ε = ∆Π − 4, v0,1 are the (normalized) values of the field Π on the two boundaries of

the 5D space.

This expression differs from eq. (3.6), as it includes an (ϕ/Λ)2ε term, allowing for

more general solutions. For example, for some choices of parameters the potential has a

maximum between the origin and the minimum. We leave for the future the study of high

scale phase transitions in holographic models.

For what concerns the axion, the construction is analogous to the one of AdS/QCD [57,

58] for chiral symmetry breaking, see also [48]. Through the AdS/CFT correspondence

CFT global symmetries are mapped into bulk gauge symmetries. Since the CFT should
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have a global U(1) symmetry that is anomalous under QCD, the 5D action contains8

L5 = − 1

4g2
PQ

FMNF
MN − 1

4g2
3

GaMNG
aMN +

K

192π2
εMNOPQAMG

a
NOG

a
PQ + . . . , (3.11)

where F and Ga are the field strengths of U(1) and SU(3) 5D gauge fields and we have cru-

cially included the Chern-Simons coupling necessary to reproduce the anomalous coupling

of the axion to gluons.

The action above must be supplemented by appropriate boundary conditions that

produce massless 4D gauge fields for SU(3) and an axion. These correspond to Dirichlet

boundary condition for U(1)PQ and Neumann for SU(3),

Aµ|z=L = Aµ|z=zIR = 0 , Gµ5|z=L = Gµ5|z=zIR = 0 . (3.12)

The axion corresponds to the Wilson line of AM in the fifth dimension. Its decay constant

and low energy QCD coupling are given by

1

g2
s

=
1

g2
0

+
L

g2
3

log
zIR

L
, f2

a =
2

g2
PQ

L

z2
IR

, (3.13)

where we allowed for a UV contribution g0 to the QCD coupling. The Chern-Simons

coupling induces the coupling of the axion with the QCD topological density, thus realizing

a QCD axion model. Since the location of the IR brane is determined by the dilaton

stabilization mechanism, this setup realizes the conformal axion described above.

In reality, the boundary condition should be derived from the action principle. This

can be done introducing a 5D scalar field charged under U(1)PQ that acquires a VEV in

the IR. If the field has mass MΦ its profile in the extra dimension is

Φ(z) ∝ 1

z2ν
IR − L2ν

[
z2ν

IR

(
z

zIR

)2+ν

− L2ν

(
z

zIR

)2−ν
]
, ν =

√
4 +M2

ΦL
2 , (3.14)

which vanishes for z = L to respect the U(1)PQ symmetry. Increasing the value of the

mass the wave-function becomes more peaked in the IR. Since ∆ = 2 + ν is the dimension

of the dual operator, breaking through boundary conditions is formally equivalent to an

operator of large dimension. Note that in order not to affect the radion stabilization it is

necessary that ∆ > 4. In QCD-like theories instead the scalar corresponds to the relevant

operator q̄αRq
β
L, so that no large hierarchy is generated.

At finite temperature two gravity solutions exist. One is thermal AdS with the IR brane

and the other is a black hole geometry where the brane is replaced by the horizon. At high

temperature the black hole solution has a smaller free energy and is thus favoured. The

boundary condition on the U(1) gauge field in this case respect the global U(1) symmetry

and, as a consequence, the PQ symmetry is unbroken at high temperature.

8The same 5D construction was discussed in ref. [59].
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Figure 5. On the left, free energy for different values of the temperature that affects the potential

of the CFT phase. The universe is trapped in the false vacuum up to low temperatures where the

relevant region for tunneling is well approximated by a negative quartic potential (right panel).

3.2.1 Phase transition

Strongly coupled phase transitions are notoriously difficult to study because the degrees of

freedom change across the transition, so that one cannot find an obvious trajectory in field

space to describe the tunneling. Interestingly, the problem can be circumvented when a

light dilaton exists [42]. In this case the dynamics of the phase transition can be described

within the dilaton effective theory up to reasonable assumptions on the deconfined phase.

Compared to the studies in the literature the main difference here is that the scale of our

sector is set by fa and no phenomenological constraints on the anomalous dimensions apply.

At temperatures much higher than 〈ϕ〉 ≡ f we expect the system to be described by

a hot CFT. The free-energy in this case is simply given by

− FCFT(T � f) = bN2T 4 , b ∼ O(1) . (3.15)

Correspondingly, the Hubble parameter in the false vacuum is

3M2
pH

2 = V0 +
g∗π

2

30
T 4 , V0 = − N2

16π2

ελ0

4 + ε
f4 , g∗ = 106.75 +

90

π2
bN2 . (3.16)

At temperatures below f the confined phase has a lower free energy. This region is

well described by the dilaton effective potential.

In order to compute the tunneling rate various proposal have been proposed in the

literature. One possibility that we use in our numerical analysis is to calculate the bounce

action by extending the dilaton potential to negative values, the sketch of the dynamics is

shown in figure 5. This amounts to continuing the potential for ϕ < 0 to connect smoothly

to the value of the free-energy in eq. (3.15). Various ‘guesses’ have been considered in the

literature for the shape of the potential. For example, as suggested by holography, the

potential can be extended to negative values of ϕ as [42]

V̂T (ϕ) = 16π2b
(
4ϕ3T + 3ϕ4

)
, (3.17)
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whose minimum at ϕ = −T is −bN2T 4 reproducing eq. (3.3). Then one computes the

bounce action with the standard boundary conditions: ϕ′(0) = 0 and ϕ(∞) = −T . We

have checked that the result is weakly dependent on the choice of the potential.

An analytic approximation of the bounce action can be obtained by following

refs. [49, 60], see appendix A for details. The bounce action can be split in an integral

over the dilaton region and in another over the hot CFT. The first contribution can be

estimated computing the euclidean action of the dilaton with boundary conditions

ϕ′(0) = 0, ϕ′(ϕ→ 0) = 4π
√
bT 2. (3.18)

The meaning of these boundary conditions is that, the dilaton should reach the origin with

sufficient velocity to climb up the CFT free energy in the inverted potential. This assumes

negligible friction close to the origin, which is a good approximation at low temperatures.

The full bounce action is then the sum of two contributions, S
(1)
3 from the pure dilaton

EFT and S
(2)
3 from the thermal CFT.

The bounce S
(1)
3 can be estimated in a way similar to what we have done in section 2.2.

In the region relevant for tunneling ϕ ∼ cT/f where c = a|λ0/(16π2b)|1/4 (best agreement

with numerical results is obtained for a = 5). The dilaton potential can be approximated

with a temperature-dependent quartic

V̂ (ϕ) ≈ λ0ϕ
4

[
1− 4

4 + ε

(
cT

f

)ε]
. (3.19)

This approximation is more and more reliable in the limit of small ε and low temperatures,

where the potential can be further simplified as

V̂ (ϕ) ≈ −|ελ0|ϕ4 log

(
f

cT

)
. (3.20)

As shown in appendix A with this approximation the bounce action is

S
(1)
3

T
= 28.5

N2

16π2
× (16π2b)1/4

|λ0ε log(f/(cT ))|3/4
. (3.21)

The bounce S
(2)
3 can instead be computed in a thin wall approximation neglecting the

friction as in [61]

S
(2)
3

T
=

N2

8π2T
4πR2

∗

∫ 0

−T

√
V̂T (ϕ)dϕ ∼ 2

√
bN2√
|λ0|

(3.22)

where R−1
∗ ∼ |λ0|1/4T is the critical bubble size. Note that this contribution does not

depend strongly on the details of the potential but only on the height and location of the

minimum. This explains why our results are insensitive to the choice of potential. The

O(3) bounce action can then be estimated as S
(1)
3 +S

(2)
3 . As emphasized in ref. [49], due to

the different scaling, for small λ0 the tunneling is dominated by the dilaton contribution.

In our scenarios we find that this contribution is not entirely negligible especially for what

concerns the nucleation temperature. This approximation roughly agrees with the exact
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Figure 6. Parameters of the phase transition in the strongly coupled case. Left: nucleation

temperature versus ε. Right: β/H as a function of the nucleation temperature. The normalization

of the scale takes into account the factor 4π/N .

numerical computation in figure 6. The different parametric scaling from the weakly cou-

pled case originates from the fact that the free energy is dominated by T 4 in the deconfined

regime, see appendix.

We can repeat the derivation for the O(4) symmetric bounce. In that case

S
(1)
4 ∼ 25

N2

16π2
× 1

|λ0ε log(f/(cT ))|
, S

(2)
4 ∼ π

√
bN2

|λ0|
3
4

. (3.23)

The comparison of the 3d and 4d expressions already shows a difference with respect to

the weakly coupled case of section 2.2. Here, at low temperature we have dominance of

O(4) bounces, that decrease faster with temperature by order ∼ log(f/cT )1/4 as compared

to the O(3) ones. This behavior is indeed confirmed in all of our numerical approaches.

Nucleation temperature and gravitational wave signals. With the guidance of the

analytic approximation it is then easier to understand the numerical results presented in

figure 6. In this figure we present the computation of the parameters of the phase transition

Tn and β/H. The nucleation temperature is determined again by using eq. (2.14), however,

since in this model O(4) bounces are important, we computed the tunneling rate for both

3 and 4 dimensional bounces. In the case of the O(4) bounces, it is necessary to estimate

the radius of the nucleated bubble that is then plugged into eq. (2.21). We considered

different definitions for the radius R: i) ϕ(R) = ϕ(r = 0)/e; ii) ϕ(R) = ϕ(r = 0)/e2; iii)

R =
∫
drϕ(r)r/(

∫
drϕ(r)); and we found that they give results in excellent agreement with

each other. The computation of the bounce action is largely insensitive to the choice of

the potential, and we show the line corresponding to the potential in eq. (3.17).

From the numerical computations, we see that below ε ∼ 0.04 the four dimensional

tunneling starts to dominate. It is also in this region of parameter that β/H can become

appreciably smaller than O(10), thus enhancing the GW amplitude. In figure 7 we show

the amplitude of the GW spectrum for three benchmark choices of β/H = (1, 2, 10), which

correspond to ε = (0.0084, 0.0087, 0.013). Even in this case the signal can be within the

reach of the future upgrades of LIGO and future interferometers as the Einstein Telescope.
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Figure 7. Gravitational wave signal for strongly coupled conformal axions. The main difference

compared to weakly coupled models (see figure 4) is the shift of the gravity wave peak to higher

frequencies due to the larger dilaton decay constant.

4 Conclusions

A recurrent dream is that the axion will be discovered in the near future. If the axion is the

true solution to the strong CP problem, then the success of direct searches clearly depends

on the advances of low-energy experiments. In this work we have shown that a new and

complementary information on the physics of the QCD axion may also come from the study

of GWs produced during the PQ phase transition. We find that a detectable GW signal

can be obtained even for the less favourable case where the axion is DM, fa ≈ 1011 GeV.

A stochastic GW signal requires the PQ phase transition to be first order. While in

the simplest KSVZ model the phase transition is second order, we have found scenarios

where the phase transition is first order.9 This is automatically realized if the theory

is approximately conformal either at weak or strong coupling. In this case the thermal

phase transition can be very slow leading to a significant amount of supercooling. The

supercooling maximizes the GW signal leading to an enhancement of the amplitude of the

GW power spectrum up to observable levels.

Our findings are generic, the phenomenological outcomes relevant for GWs depend

little on the weakly or strongly coupled nature of the PQ model, since in both cases we

find parameter-space regions that can be probed at LIGO or future ground-based interfer-

ometers. Of course there are some quantitative differences between the two scenarios, in

particular on the type of tunneling that dominates the nucleation of bubbles at the phase

transition. Indeed, we find in weakly coupled models of section 2.2 a preference for thermal

tunneling (3D bounces), while in the strongly coupled models of section 3.2 a dominance

of quantum tunneling (4D bounces) at low temperatures. We have however demonstrated

that these differences play little role in the final GW signals.

9Different realizations of a first order PQ phase transition have been studied in ref. [62].
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Figure 8. Parameter space of the weakly coupled model for vanishing quartic couplings. Con-

straints on the QCD axion parameters arising from present and future GW interferometers and

astrophysical bounds from supernovae are shown. The dashed gray line correspond to the pure

misalignment contribution to axion DM, while the gray band represents the uncertainty due to the

contribution from topological defects.

We wish to emphasize that even for the conservative choice fa = 1011 GeV the GW

signal might be detectable, as exemplified in figures 4 and 7. Today’s GW frequency

depends on the reheating mechanism right after the phase transition, and in the models

explored in this paper the PQ-sector automatically reheats the SM through the coupling

to gluons and colored fermions. If reheating is instantaneous, the peak frequency is in

the range 100–1000 Hz which can be within the reach of the future stages of the LIGO

experiment or future ground-based interferometers as the ET.

One might wonder how the GW signals change as a function of fa. Smaller values of

fa might lead to axions that are not all the Dark Matter, or they can just be interpreted

as axion-like particles. Clearly, allowing fa to take smaller values, the impact of GWs is

bigger. For fa < 1011 GeV a larger portion of the parameter space is within reach and some

regions of the parameter space can even be excluded with present data from LIGO [25].

This behavior is depicted in figure 8 where we consider the radiative PQ scenario with

gauge dominance and we allow fa and the coupling g to vary. It is interesting to notice

the complementarity of GWs with existing bounds on the QCD axion parameter space.

There are many possible extensions of our work. For example one could consider more

general deviations from conformal invariance. In the weakly-coupled case this corresponds

to adding masses for the elementary scalars, while in the strongly-coupled case to allow for

more generic potentials as realized in holographic models. Secondly the reheating process

after supercooling is closely connected to the axion solution of the strong CP problem

and could give informations of the spectrum of the theory. A slow reheating might lead to

smaller reheating temperatures an thus smaller peak frequencies for the GW spectrum that

are more easily detectable. Finally our work can be generalized to study first order phase

transition in other high scale models. We leave these and other questions to future work.
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A Bounce in strongly coupled models

Different approaches for the computation of the bounce action for the strongly-coupled

phase transitions appeared in the literature. Given the normalization adopted in the main

text, the bounce equation is

2
d2ϕ

dr2
+

2(d− 1)

r

dϕ

dr
=
∂V̂ (ϕ)

∂ϕ
. (A.1)

Method I. This method merges two potentials

L =
N2

16π2
(∂ϕ)2 − N2

16π2

[
V̂T (ϕ)θ(−ϕ) + V̂ (ϕ)θ(ϕ)

]
. (A.2)

The shape of V̂T is largely unimportant as long as the potential satisfies a few requirements.

It must be differentiable in the origin and minimized at ϕ = −T with a value V̂T
∣∣
min

=

−16π2bT 4.10 Possible example for V̂T (ϕ) are the following

V̂T (ϕ) = −16π2b
(
2ϕ2T 2 − ϕ4

)
or V̂T (ϕ) = 16π2b

(
4ϕ3T + 3ϕ4

)
. (A.3)

The bounce solution is then obtained in the usual way. It is convenient to rescale the field

and distances as r → z/(|λ0|1/4T ) and ϕ→ Tφ/|λ0|1/4, so that we get

Sd
T 4−d =

2πd/2

Γ(d/2)

(16π2b)
4−d

4

|λ0|d/4
N2

16π2
×∫ ∞

0
dzzd−1

[
φ′2+

λ0

|λ0|
φ4

(
1− 4

4+ε

(
Tφ

|λ0|1/4 f

)ε)
θ(φ)+

VT (Tφ/|λ0|1/4)

T 4
θ(−φ)+16π2b

]
(A.4)

If V̂T (ϕ) is a polynomial in ϕ the only temperature dependent term in the above integrand

is the part of the dilaton potential. The bounce solution corresponds to boundary values

φ′(0) = 0 and φ(z =∞) = −1.

10The exact position of the minimum is not of utmost importance, as far as it remains at a location

ϕ ∼ −T . We checked numerically that modifying this relation by a factor of O(few) does not significantly

affect the bounce action.
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Method II. In this case the boundary conditions when the field approaches the re-

gion close to the origin are as in eq. (3.18). After a rescaling r → z/(|λ0|1/4T ) and

ϕ→ Tφ/|λ0|1/4, the boundary condition on the velocity close to the origin becomes

dφ

dz

∣∣∣∣
φ→0

= 4π
√
b , (A.5)

and the bounce integral can be written in general as

Sd
T 4−d =

2πd/2

Γ(d/2)

(16π2b)
4−d

4

|λ0|d/4
N2

16π2

∫ z∗

0
dzzd−1

[
φ′2+

λ0

|λ0|
φ4

(
1− 4

4+ε

(
Tφ

|λ0|1/4 f

)ε)
+16π2b

]
.

(A.6)

Notice that the extremum of integration z∗ is the time where the condition in eq. (A.5)

is satisfied. As discussed in section 3.2.1, in order to gain some intuition on the size of

the bounce action, one can write the potential in the region of tunneling as λ0 ϕ
4κ(T/f, ε),

where κ(T/f, ε) is defined by matching with eq. (3.19). With this approximation, by further

rescaling φ→ (16π2b)1/4φ and z → z/(16π2b)1/4, we get

Sd
T 4−d =

2πd/2

Γ(d/2)

(16π2b)
4−d

4

|λ0|d/4|κ(T/f, ε)|d/4
N2

16π2

∫ z∗

dzzd−1

[
φ′2 − φ4 + 1

]
. (A.7)

We then simply need to evaluate the integral with appropriate boundary conditions for the

solution

Ad ≡
∫ z∗

dzzd−1

[
φ′2 − φ4 + 1

]
φ′(0) = 0, φ′2|φ=0 = 1,

where A3 = 2.268 and A4 ≈ 1.3. We get the following estimates for O(3) and O(4) bounces

S3

T
= 28.5

N2

16π2
× (16π2)1/4 b1/4

|λ0|3/4
× 1

|κ(T, ε)|3/4
, S4 = 2π2A4

N2

16π2
× 1

|λ0|
1

|κ(T, ε)|
. (A.8)

B Plots of the extended parameter space

Here we provide more details on the parameters of the phase transitions in the weakly

coupled scenarios where the gauge contribution is dominant. In figure 9 we show the be-

havior of both the normalized nucleation temperature and the β/H parameter as functions

of the gauge coupling g and the scale f , focusing on the region of large supercooling. The

dependence in the relevant part of the parameter space follows the analytic approximation

discussed in the text and shown in eq. (2.12) and (2.19). The approximation is particularly

appropriate in the region with large supercooling, with Tn/f . 10−2. For a fixed value

of the gauge coupling, a larger amount of supercooling (and, thus, a smaller β/H) can

be achieved with a larger scale f since the nucleation temperature is dominated by the

exponential factor of eq. (2.12).
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Figure 9. Contour lines of the nucleation temperature Tn/f (left plot) and the β/H parameter

(right plot) in the gauged weakly coupled model. In the gray regions nucleation never happens.
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