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Convex optimization of programmable quantum computers
Leonardo Banchi1,2✉, Jason Pereira 3, Seth Lloyd4,5 and Stefano Pirandola 3,5

A fundamental model of quantum computation is the programmable quantum gate array. This is a quantum processor that is fed
by a program state that induces a corresponding quantum operation on input states. While being programmable, any finite-
dimensional design of this model is known to be nonuniversal, meaning that the processor cannot perfectly simulate an arbitrary
quantum channel over the input. Characterizing how close the simulation is and finding the optimal program state have been open
questions for the past 20 years. Here, we answer these questions by showing that the search for the optimal program state is a
convex optimization problem that can be solved via semidefinite programming and gradient-based methods commonly employed
for machine learning. We apply this general result to different types of processors, from a shallow design based on quantum
teleportation, to deeper schemes relying on port-based teleportation and parametric quantum circuits.
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INTRODUCTION
Back in 1997 a seminal work by Nielsen and Chuang1 proposed a
quantum version of the programmable gate array that has
become a fundamental model for quantum computation2. This
is a quantum processor where a fixed quantum operation is
applied to an input state together with a program state. The aim
of the program state is to induce the processor to apply some
target quantum gate or channel3 to the input state. Such a desired
feature of quantum programmability comes with a cost: the
model cannot be universal, unless the program state is allowed to
have an infinite dimension, i.e., infinite qubits1,4. Even though this
limitation has been known for many years, there is still no exact
characterization on how well a finite-dimensional programmable
quantum processor can generate or simulate an arbitrary
quantum channel. Also there is no literature on how to find the
corresponding optimal program state or even to show that this
state can indeed be found by some optimization procedure. Here,
we show the solutions to these long-standing open problems.
Here, we show that the optimization of programmable

quantum computers is a convex problem for which the solution
can always be found by means of classical semidefinite program-
ming (SDP), and classical gradient-based methods that are
commonly employed for machine learning (ML) applications. ML
methods have found wide applicability across many disciplines5,
and we are currently witnessing the development of new hybrid
areas of investigation, where ML methods are interconnected with
quantum information theory, such as quantum-enhanced ML
(refs. 6–10; e.g., quantum neural networks, quantum annealing,
etc.), protocols of quantum-inspired ML (e.g., for recommendation
systems11 or component analysis and supervised clustering12),
and classical learning methods applied to quantum computers, as
explored here in this manuscript.
In our work, we quantify the error between an arbitrary target

channel and its programmable simulation in terms of the diamond
distance3,13, and other suitable cost functions, including the trace
distance and the quantum fidelity. For all the considered cost
functions, we are able to show that the minimization of the
simulation error is a convex optimization problem in the space of

the program states. This already solves an outstanding problem
that affects various models of quantum computers (e.g.,
variational quantum circuits), where the optimization over classical
parameters is non-convex and therefore not guaranteed to
converge to a global optimum. By contrast, because our problem
is proven to be convex, we can use SDP to minimize the diamond
distance and always find the optimal program state for the
simulation of a target channel, therefore optimizing the program-
mable quantum processor. Similarly, we may find suboptimal
solutions by minimizing the trace distance or the quantum fidelity
by means of gradient-based techniques adapted from the ML
literature, such as the projected subgradient method14 and
the conjugate gradient method15,16. We note indeed that the
minimization of the ℓ1-norm, mathematically related to the
quantum trace distance, is widely employed in many ML tasks17,18,
so many of those techniques can be adapted for learning program
states.
With these general results in our hands, we first discuss the

optimal learning of arbitrary unitaries with a generic program-
mable quantum processor. Then, we consider specific designs of
the processor, from a shallow scheme based on the teleportation
protocol, to higher-depth designs based on port-based teleporta-
tion (PBT)19–21 and parametric quantum circuits (PQCs)22, introdu-
cing a suitable convex reformulation of the latter. In the various
cases, we benchmark the processors for the simulation of basic
unitary gates (qubit rotations) and various basic channels,
including the amplitude damping channel that is known to be
the most difficult to simulate23,24. For the deeper designs, we find
that the optimal program states do not correspond to the Choi
matrices of the target channels, which is rather counterintuitive
and unexpected.

RESULTS
We first present our main theoretical results on how to train the
program state of programmable quantum processors, either via
convex optimization or first-order gradient-based algorithms. We
then apply our general methods to study the learning of arbitrary
unitaries, and the simulation of different channels via processors
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built either from quantum teleportation and its generalization, or
from PQCs.

Programmable quantum computing
Let us consider an arbitrary mapping from d-dimensional input
states into d0-dimensional output states, where d0 ≠ d in the
general case. This is described by a quantum channel E that may
represent the overall action of a quantum computation and does
not need to be a unitary transformation. Any channel E can be
simulated by means of a programmable quantum processor,
which is modeled in general by a fixed completely positive trace-
preserving (CPTP) map Q that is applied to both the input state
and a variable program state π. In this way, the processor
transforms the input state by means of an approximate channel
Eπ as

EπðρÞ ¼ Tr2 Qðρ� πÞ½ �; (1)

where Tr2 is the partial trace over the program state. A
fundamental result1 is that there is no fixed quantum “processor”
Q that is able to exactly simulate any quantum channel E. In other
terms, given E, we cannot find the corresponding program π such
that E � Eπ . Yet simulation can be achieved in an approximate
sense, where the quality of the simulation may increase for larger
program dimension. In general, the open problem is to determine
the optimal program state ~π that minimizes the simulation error,
that can be quantified by the cost function

C�ðπÞ :¼ E � Eπk k�; (2)

namely the diamond distance3,13 between the target channel E
and its simulation Eπ . In other words,

Find ~π such that C�ð~πÞ ¼ minπC�ðπÞ: (3)

From theory1,4, we know that we cannot achieve C◇= 0 for
arbitrary E unless π and Q have infinite dimensions. As a result, for
any finite-dimensional realistic design of the quantum processor,
finding the optimal program state ~π is an open problem. Recall
that the diamond distance is defined by E � Eπk k� :¼
maxφ I � EðφÞ � I � EπðφÞk k1, where I is the identity map and
Ok k1 :¼ Tr

ffiffiffiffiffiffiffiffiffi
OyO

p
is the trace norm2.

It is important to note that this problem can be reduced to a
simpler one by introducing the channel’s Choi matrix

χEπ
¼ I � EπðΦÞ
¼ d�1P

ij
ij i jh j � Tr2 Qð ij i jh j � πÞ½ �; (4)

where Φ :¼ Φj i Φh j is a d-dimensional maximally entangled state.
From this expression, it is clear that the Choi matrix χEπ is linear in
the program state π. More precisely, the Choi matrix χEπ at the
output of the processor Q can be directly written as a CPTP linear
map Λ acting on the space of the program states π, i.e.,

χπ :¼ χEπ
¼ ΛðπÞ: (5)

This map is also depicted in Fig. 1, and fully describes the action of

the processor Q. Then, using results from refs. 3,25,26, we may write

C�ðπÞ � d C1ðπÞ � 2d
ffiffiffiffiffiffiffiffiffiffiffiffi
CFðπÞ

p
; (6)

where

C1ðπÞ :¼ χE � χπk k1; (7)

is the trace distance2 between target and simulated Choi matrices,
and

CFðπÞ ¼ 1� FðπÞ2; (8)

where F(π) is Bures’ fidelity between the two Choi matrices χE and
χπ, i.e.,

FðπÞ :¼ ffiffiffiffiffi
χE

p ffiffiffiffiffi
χπ

p�� ��
1 ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χE

p
χπ

ffiffiffiffiffi
χE

pq
: (9)

Another possible upper bound can be written using the quantum
Pinsker’s inequality27,28. In fact, we may write C1ðπÞ �
ð2 ln ffiffiffi

2
p Þ ffiffiffiffiffiffiffiffiffiffiffiffi

CRðπÞ
p

, where

CRðπÞ :¼ min SðχEjjχπÞ; SðχπjjχEÞf g; (10)

and SðρjjσÞ :¼ Tr½ρðlog 2ρ� log 2σÞ� is the quantum relative
entropy between ρ and σ. In Supplementary Note 1.3, we also
introduce a cost function Cp(π) based on the Schatten p-norm.

Convex optimization
One of the main problems in the optimization of reconfigurable
quantum chips is that the relevant cost functions are not convex in
the set of classical parameters. This problem is completely solved
here thanks to the fact that the optimization of a programmable
quantum processor is done with respect to a quantum state. In
fact, in the methods section, we prove the following
Theorem 1 Consider the simulation of a target quantum channel

E by means of a programmable quantum processor Q. The
optimization of the cost functions C◇, C1, CF, CR, or Cp is a convex
problem in the space of program states π. In particular, the global
minimum ~π for C◇ can always be found as a local minimum.
This convexity result is generally valid for any cost function that

is convex in π. This is the case for any desired norm, not only the
trace norm, but also the Frobenius norm, or any Schatten p-norm.
It also applies to the relative entropy. Furthermore, the result can
also be extended to any convex parametrization of the program
states.
When dealing with convex optimization with respect to positive

operators, the standard approach is to map the problem to a form
that is solvable via SDP (refs. 29,30). Since the optimal program is
the one minimizing the cost function, it is important to write the
computation of the cost function itself as a minimization. For
the case of the diamond distance, this can be achieved by using
the dual formulation29. More precisely, consider the linear map
Ωπ :¼ E � Eπ with Choi matrix χΩπ

¼ χE � χπ ¼ χE � ΛðπÞ, and the

spectral norm Ok k1 :¼ maxf Ouk k : u 2 Cd; uk k � 1g, which is

the maximum eigenvalue of
ffiffiffiffiffiffiffiffiffi
OyO

p
. Then, by the strong duality of

the diamond norm, C�ðπÞ ¼ Ωπk k� is given by the SDP (ref. 30)

Minimize 2 Tr2Zk k1;

Subject to Z � 0 and Z � dðχE � ΛðπÞÞ: (11)

The importance of the above dual formulation is that the diamond
distance is a minimization, rather than a maximization over a set
of matrices. In order to find the optimal program ~π, we apply the
unique minimization of Eq. (11), where π is variable and satisfies
the additional constraints π ≥ 0 and TrðπÞ ¼ 1.
In the methods section, we show that other cost functions, such

as C1 and CF can also be written as SDPs. Correspondingly, the
optimal programs ~π can be obtained by numerical SDP solvers.
Most numerical packages implement second-order algorithms,
such as the interior point method31. However, second-order

Fig. 1 Quantum processor Q with program state π that simulates
a quantum channel Eπ from input to output. We also show
the CPTP map Λ of the processor, from the program state π to the
output Choi matrix χπ (generated by partial transmission of the
maximally entangled state Φ).
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methods tend to be computationally heavy for large problem
sizes32,33, namely when ~π contains many qudits. In the following
section, we introduce first-order methods, that are better suited
for larger program states. It is important to remark that there also
exist zeroth-order (derivative-free) methods, such as the simulta-
neous perturbation stochastic approximation method34, which
was utilized for a quantum problem in ref. 35. However, it is known
that zeroth-order methods normally have slower convergence
times36 compared to first-order methods.

Gradient-based optimization
In ML applications, where a large amount of data is commonly
available, there have been several works that study the minimiza-
tion of suitable matrix norms for different purposes17,18,37,38. First-
order methods, are preferred for large dimensional problems, as
they are less computationally intensive and require less memory.
Here, we show how to apply first-order (gradient-based)
algorithms, which are widely employed in ML applications, to
find the optimal quantum program.
For this purpose, we need to introduce the subgradient of the

cost function C at any point π 2 S, which is the set

∂CðπÞ ¼ fZ : CðσÞ � CðπÞ � Tr ½Zðσ � πÞ�; 8σ 2 Sg; (12)

where Z is Hermitian 39,40. If C is differentiable, then ∂C(π) contains
a single element: its gradient ∇ C(π). We explicitly compute this
gradient for an arbitrary programmable quantum processor (1)
whose Choi matrix χEπ

� χπ ¼ ΛðπÞ, can be written as a quantum
channel Λ that maps a generic program state to the processor’s
Choi matrix. This map can be defined by its Kraus decomposition
ΛðπÞ ¼PkAkπA

y
k for some operators Ak. In fact, let us call Λ	ðρÞ ¼P

kA
y
kρAk the dual map, then in the methods section we prove the

following
Theorem 2 Consider an arbitrary quantum channel E with Choi

matrix χE that is simulated by a quantum processor Q with map Λ(π)
= χπ (and dual map Λ*). Then, we may write the following gradients
for the trace distance cost C1(π) and the infidelity cost CF(π)

∇C1ðπÞ ¼
X
k

signðλkÞΛ	ðPkÞ; (13)

∇CFðπÞ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CFðπÞ

p
∇FðπÞ; (14)

∇FðπÞ ¼ 1
2
Λ	 ffiffiffiffiffi

χE
p ffiffiffiffiffi

χE
p

ΛðπÞ ffiffiffiffiffi
χE

p� ��1
2
ffiffiffiffiffi
χE

ph i
; (15)

where λk (Pk) are the eigenvalues (eigenprojectors) of the
Hermitian operator χπ � χE . When C1(π) or CF(π) are not
differentiable in π, then the above expressions provide an element
of the subgradient ∂C(π).
Once we have the (sub)gradient of the cost function C, we can

solve the optimization minπ2SCðπÞ, using the projected subgra-
dient method14,39. Let PS be the projection onto the set of
program states S, namely PSðXÞ ¼ argminπ2S k X � πk2, that we
show to be computable from the spectral decomposition of any
Hermitian X (see Theorem 3 in the “Methods” section). Then, we
iteratively apply the steps

1Þ Select an operator gi from ∂CðπiÞ;
2Þ πiþ1 ¼ PS πi � αigið Þ; (16)

where i is the iteration index, αi is what is called "learning rate”,
and Theorem 2 can be employed to find gi at each step. It is
simple to show that πi converges to the optimal program state ~π
in Oðϵ�2Þ steps, for any desired precision ϵ such that
jCðπÞ � Cð~πÞj � ϵ. Another approach is the conjugate gradient
method15,39, sometimes called Frank–Wolfe algorithm. Here, we

apply

1Þ Find the smallest eigenvalue σij i of ∇CðπiÞ;
2Þ πiþ1 ¼ i

i þ 2
πi þ 2

i þ 2
σij i σih j: (17)

When the gradient of f is Lipschitz continuous with constant L, the
method converges after OðL=ϵÞ steps16,41. To justify the applic-
ability of this method, a suitable smoothening of the cost function
must be employed. The downside of the conjugate gradient
method is that it necessarily requires a differentiable cost function
C, with gradient ∇C. Specifically, this may create problems for the
trace distance cost C1 that is generally non-smooth. A solution to
this problem is to define the cost function in terms of the smooth
trace distance CμðπÞ ¼ Tr hμ χπ � χEð Þ� �

, where hμ is the so-called
Huber penalty function hμ(x) := x2/(2μ) if ∣x∣ < μ and ∣x∣− μ/2 if
∣x∣ ≥ μ. This quantity satisfies Cμ(π) ≤ C1(π) ≤ Cμ(π)+ μd/2 and is a
convex function over program states, with gradient
∇CμðπÞ ¼ Λ	½h0μðχπ � χEÞ�).

Learning of arbitrary unitaries
One specific application is the simulation of quantum gates or,
more generally, unitary transformations22,42–45. Here, the infidelity
provides the most convenient cost function, as the optimal
program can be found analytically. In fact, suppose we use a
quantum processor with map Λ to simulate a target unitary U.
Because the Choi matrix of U is pure χUj i χUh j, we first note that
FðπÞ2 ¼ χUh jΛðπÞ χUj i and then we see that Eq. (15) drastically

simplifies to ∇FðπÞ ¼ Λ	 χUj i χUh jð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4FðπÞ2

q
. As a result, we find

∇CFðπÞ ¼ �Λ	 χUj i χUh j½ �; (18)

where there is no dependence on π. Therefore, using the
conjugate gradient method in Eq. (17), we see that the optimal
program state ~π for the infidelity cost function CF is a fixed point of
the iteration and is equal to the maximum eigenvector of
Λ	 χUj i χUh j½ �.

Teleportation processor
Once we have shown how to optimize a generic programmable
quantum processor, we discuss some specific designs, over which
we will test the optimization procedure. One possible (shallow)
design for the quantum processor Q is a generalized teleportation
protocol46 over an arbitrary program state π. In dimension d, the
protocol involves a basis of d2 maximally entangled states Φij i and
a basis {Ui} of teleportation unitaries such that TrðUy

i UjÞ ¼ dδij
(ref. 47). An input d-dimensional state ρ and the A part of the
program πAB are subject to the projector Φij i Φih j. The classical
outcome i is communicated to the B part of πAB, where the
correction U�1

i is applied.
The above procedure defines the teleportation channel Eπ

over ρ

Etele
π ðρÞ ¼

X
i

UB
i ΦSA

i

� 		ρS � πAB ΦSA
i

		 iUBy
i : (19)

Its Choi matrix can be written as χπ= Λtele(π), where the map of
the teleportation processor is equal to

ΛteleðπÞ ¼ d�2
X
i

U	
i � Ui

� �
π U	

i � Ui
� �y

; (20)

which is clearly self-dual Λ*= Λ. Given a target quantum channel E
which is teleportation covariant23,24, namely when
½π;U	

i � Ui� ¼ 0, then we know that its simulation is perfect and
the optimal program ~π is the channel’s Choi matrix, i.e., one of the
fixed points of the map Λtele. For a general channel, the optimal
program ~π can be approximated by using the cost functions in our
Theorem 2 with Λ being given in Eq. (20), or directly found by
optimizing C◇(π).
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Port-based teleportation
A deeper design is provided by a PBT processor, whose overall
protocol is illustrated in Fig. 2. Here, we consider a more general
formulation of the original PBT protocol19,20, where the resource
entangled pairs are replaced by an arbitrary program state π. In a
PBT processor, each party has N systems (or ‘ports’), A= {A1, …,
AN} for Alice and B= {B1, …, BN} for Bob. These are prepared in a
program state πAB. To teleport an input state ρC, Alice performs a
joint positive operator-value measurement (POVM) {Πi} (ref.

19) on
system C and the A-ports. She then communicates the outcome i
to Bob, who discards all ports except Bi, which is the output Bout.
The resulting PBT channel Pπ : HC 7!HBout is then

PπðρÞ ¼
PN
i¼1

TrABi C

ffiffiffiffiffi
Πi

p ðπAB � ρCÞ
ffiffiffiffiffi
Πi

p� �
Bi!Bout

¼PN
i¼1

TrABiC
ΠiðπAB � ρCÞ½ �Bi!Bout ;

(21)

where Bi ¼ BnBi ¼ fBk : k ≠ ig.
In the standard PBT protocol19,20, the program state is fixed as

πAB¼
NN

k¼1ΦAkBk , where ΦAkBkj i are Bell states, and the following
POVM is used

Πi ¼ ~Πi þ 1
N

1�
X
k

~Πk

 !
; (22)

where

~Πi ¼ σ
�1=2
AC ΦAiCσ

�1=2
AC ; (23)

σAC :¼
XN
i¼1

ΦAiC ; (24)

and σ−1/2 is an operator defined only on the support of σ. The PBT
protocol is formulated for N ≥ 2 ports. However, we also include
here the trivial case for N= 1, corresponding to the process where
Alice’s input is traced out and the output is the reduced state of
Bob’s port, i.e., a maximally mixed state. In the limit N → ∞, the
standard PBT protocol approximates an identity channel
PπðρÞ 
 ρ, with fidelity19,21Fπ ¼ 1�O 1

N

� �
, so perfect simulation

is possible only in the limit N→ ∞. Since the standard PBT protocol
provides an approximation to the identity channel, we call it IN .
From the PBT simulation of the identity channel, it is possible to

approximate any general channel E by noting that E can be
written as a composition E � I , where I is the identity channel.
This is done by replacing the identity channel I with its PBT
simulation IN , and then applying E to Bi. However, since Bob does
not perform any post-processing on his systems B, aside from
discarding all ports Bk with k ≠ i, he can also apply first the channel
E�N to all his ports and then discard all the ports Bk with k ≠ i. In
doing so, he changes the program state to

πAB ¼ 1A � E�N
B �N

k¼1ΦAkBk

� � ¼ �N
k¼1χ

AkBk
E : (25)

In other terms, any channel E can be PBT approximated by N
copies of its Choi matrix χE as program state. Since PBT simulation
can be decomposed as Eπ ¼ E � IN , the error CN

� ¼ k E � Eπk� in
simulating the channel E � E � I satisfies

CN
� ¼ kE � I � E � IN k�k I � INk� � 2dðd � 1ÞN�1 ; (26)

where we used the data processing inequality and an upper
bound from ref. 48. While the channel’s Choi matrix assures that
CN
� ! 0 for large N, for any finite N it does not represent the

optimal program state. In general, for any finite N, finding the
optimal program state πAB simulating a channel E with PBT is an
open problem, and no explicit solutions or procedures are known.
We employ our convex optimization procedures to find the

optimal program state. This can be done either exactly by
minimizing the diamond distance cost function C◇ via SDP, or
approximately, by determining the optimal program state via the
minimization of the trace distance cost function C1 via either SDP
or the gradient-based techniques discussed above. For this second
approach, we need to derive the map Λ of the PBT processor,
between the program state π to output Choi matrix as in Eq. (5).
To compute the Choi matrix and CP-map Λ, we consider an input
maximally entangled state ΦDCj i and a basis jeiji of A{B\Bi}C. Then,
by using Eq. (21) and the definition ΛðπÞ ¼ χPπ

¼ 1D � Pπ½ΦDC �,
we find the map ΛAB!DBout of a PBT processor

ΛðπÞ ¼
X
ij

K ijπK
y
ij; Kij :¼ eij

D 			 ffiffiffiffiffi
Πi

p
� 1BD ΦDCj i: (27)

Note that a general program state for PBT consists of 2N qudits,
and hence the parameter space has exponential size d4N.
However, because the PBT protocol is symmetric under permuta-
tion of port labels, we show in Supplementary Note 6 that one can
exploit this symmetry and reduce the number of free parameters

to the binomial coeffficient
N þ d4 � 1
d4 � 1


 �
, which is polynomial in

the number of ports N. Despite this exponential reduction, the
scaling in the number of parameters still represents a practical
limiting factor, even for qubits for which O N15

� �
. A suboptimal

strategy consists in reducing the space of program states to a
convex set that we call the “Choi space” C. Consider an arbitrary
probability distribution {pk} and then define

C ¼ fπ : π ¼
X
k

pkρ
k�N
AB ; TrBðρkABÞ ¼ d�11g: (28)

One can show (see Supplementary Note 6) that a global minimum
in C is a global minimum in the extremal (non-convex) subspace
for pk= δk,1, consisting of tensor products of Choi matrices ρ�N

AB .
Among these states, there is the N-copy Choi matrix of the target
channel χ�N

E ¼ ½I � Eð Φj i Φh jÞ��N , which is not necessarily the
optimal program, as we show below.

Parametric quantum circuits
Another deep design of quantum processor is based on
PQCs (refs. 22,49). A PQC is a sequence of unitary matrices

Fig. 2 PBT scheme. Two distant parties, Alice and Bob, share N
maximally entangled pairs fAk ; BkgNk¼1. Alice also has another system
C in the state ψj i. To teleport C, Alice performs the POVM fΠAC

i g on
all her local systems A ¼ fAkgNk¼1 and C. She then communicates the
outcome i to Bob. Bob discards all his systems B ¼ fBkgNk¼1 with the
exception of Bi. After these steps, the state ψj i is approximately
teleported to Bi. Similarly, an arbitrary channel E is simulated with
N copies of the Choi matrix χAkBkE . The figure shows an example with
N= 5, where i= 4 is selected.
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U(t)= UN(tN)…U2(t2)U1(t1), where UjðtjÞ ¼ expðitjHjÞ for some
Hamiltonian Hj and time interval tj. The problem with PQCs is
that the cost functions in the classical parameters42 are not
convex, so that numerical algorithms are not guaranteed to
converge to the global optimum. Here, we fix this issue by
introducing a convex formulation of PQCs, where classical
parameters are replaced by a quantum program. This results in a
programmable PQC processor that is optimizable by our methods.
The universality of PQCs can be employed for universal channel

simulation. Indeed, thanks to Stinespring’s dilation theorem, any
channel can be written as a unitary evolution on a bigger space,
EðρAÞ ¼ TrR0 ½UðρA � θ0ÞUy�; where the system is paired to an extra
register R0 and θ0 belongs to R0. In the Stinespring representation,
U acts on system A and register R0. In ref. 49, it has been shown
that sequences of two unitaries, U0 and U1, are almost universal for
simulation, i.e., any target unitary U can be approximated as U 

� � �Um4

1 Um3
0 Um2

1 Um1
0 for some integers mj. Under suitable conditions,

it takes Oðd2ϵ�dÞ steps to approximate U up to precision ϵ. The
choice between U0 and U1 is done by measuring a classical bit. We
may introduce a quantum version, where the two different
unitaries U0 ¼ eiH0 or U1 ¼ eiH1 are chosen depending on the state
of qubit Rj. This results in the conditional gate

Ûj ¼ exp iH0 � 0j ijj 0h j þ iH1 � 1j ijj 1h j
� 

: (29)

Channel simulation is then obtained by replacing the unitary
evolution U in the Stinespring dilation via its simulation. The result
is illustrated in Fig. 3, where the program state π is defined over R
= (R0, …, RN) and each Ĥj acts on the input system A and two
ancillary qubits R0 and Rj. Following the universality construction
of ref. 49, we show in the Supplementary Note 3.4 that the channel
shown in Fig. 3 provides a universal processor. Moreover, the
channel Λ that maps any program π to the processor’s Choi matrix
is obtained as

ΛðπÞ ¼ TrR ÛAR ΦBA � πRð ÞÛy
AR

h i
; (30)

where ÛAR ¼ 1B �
QN

j¼1 ÛjA;R0 ;Rj
, from which we can identify the

optimal program ~πj i via our methods.
PQCs are not inherently monotonic. A deeper (higher N) design

may simulate a given channel worse than a more shallow design.
We can design a modified PQC that is monotonic by design, which
we designate a “monotonic PQC” (mPQC), by replacing the qubits
in our program state with qutrits, and modifying Eq. (29) to read

Ûj ¼ exp iH0 � 0j ijj 0h j þ iH1 � 1j ijj 1h j þ 0� 2j ijj 2h j
� 

; (31)

where 0 is a zero operator, so that gate j enacts the identity
channel if program qutrit j is in the state 2j i 2h j. Then, if it were the
case that a PQC with N program qubits could simulate a given
channel better than one with N+m, a mPQC with N+m qutrits in
the program state could perform at least, as well as the PQC with
N program qubits by setting the first m qutrits to 2j i 2h j. This
processor design is both universal and monotonic. More precisely,
let C(PQCN) denote the value of a cost function C for simulating a
channel E with an N-gate PQC, using the optimal program state,
and let C(mPQCN) denote the value of C for simulating E with an
N-gate mPQC, again using the optimal program state. We are then
guaranteed that

CðmPQCNÞ � min
M�N

CðPQCMÞ: (32)

Processor benchmarking
In order to show the performance of the various architectures, we
consider the simulation of an amplitude damping channel with
probability p. The reason is because this is the most difficult
channel to simulate, with a perfect simulation only known for
infinite dimension, e.g., using continuous-variable quantum
operations23. In Figs. 4 and 5, we compare teleportation-based,
PBT, PQC, and “mPQC” programmable processors whose program
states have been optimized according to the cost functions C◇
and C1. For the PBT processor, the trace distance cost C1 is
remarkably close to C◇ and allows us to easily explore high
depths. Note that the optimal program states differ from the naive
choice of the Choi matrix of the target channel. Note too that PQC
processors display non-monotonic behavior when simulating
amplitude damping channels, meaning that shallow PQC proces-
sors (e.g., for N= 4) may perform better than deeper processors.
For the PQC processor, we use the universal Hamiltonians H0 ¼ffiffiffi
2

p ðX � Y � Y � XÞ and H1 ¼ ð ffiffiffi
2

p
Z þ ffiffiffi

3
p

Y þ ffiffiffi
5

p
XÞ � ðY þ ffiffiffi

2
p

ZÞ,
where X, Y, and Z are Pauli operators. mPQC processors guarantee
that deeper designs always perform at least, as well as any
shallower design. In Fig. 5 perfect simulation is achievable at
specific values of p because of our choice of the universal gates U0

and U1. More details are provided in the Supplementary Note 3.
Many other numerical simulations are performed in the

Supplementary Note 3 where we study the convergence rate in
learning a unitary operation, the exact simulation of Pauli

Fig. 3 PQC Scheme. Thanks to the Stinespring decomposition, a
quantum channel is written as a unitary evolution in an extended
space. The corresponding unitary is then simulated via a parametric
quantum circuit that, at each time, applies a certain unitary
depending on the state of the quantum register.

Fig. 4 Diamond distance error C� in simulating an amplitude
damping channel Ep at various damping rates p. We compare the
performance of different designs for the programmable quantum
processor: standard teleportation and PBT with N ports (PBTN). The
optimal program ~π is obtained by either minimizing directly the
diamond distance C� (solid lines), or the trace distance C1 (dashed
lines) via the projected subgradient iteration. In both cases, from ~π
we then compute C�ð~πÞ. The lowest curves are obtained by
optimizing π over the Choi space in Eq. (28). For comparison, we
also show the (non-optimal) performance when the program is the
channel’s Choi matrix (dotted lines).
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channels, and approximate simulation of both dephasing and
amplitude damping channels. In particular, we study the
performance of the approximate solution when optimizing over
larger, but easier-to-compute, cost functions, such as the trace
distance or the infidelity.

DISCUSSION
In this work, we have considered a general finite-dimensional
model of a programmable quantum processor, which is a
fundamental scheme for quantum computing and also a primitive
tool for other areas of quantum information. By introducing
suitable cost functions, based on the diamond distance, trace
distance and quantum fidelity, we have shown how to character-
ize the optimal performance of this processor in the simulation of
an arbitrary quantum gate or channel. In fact, we have shown that
the minimization of these cost functions is a convex optimization
problem that can always be solved.
In particular, by minimizing the diamond distance via SDP, we

can always determine the optimal program state for the
simulation of an arbitrary channel. Alternatively, we may minimize
the simpler but larger cost functions in terms of trace distance and
quantum fidelity via gradient-based methods adapted from ML, so
as to provide a very good approximation of the optimal program
state. This other approach can also provide closed analytical
solutions, as is the case for the simulation of arbitrary unitaries, for
which the minimization of the fidelity cost function corresponds
to computing an eigenvector.
We have then applied our results to various designs of

programmable quantum processor, from a shallow teleportation-
based scheme to deeper and asymptotically universal designs that
are based on PBT and PQCs. We have explicitly benchmarked the
performances of these quantum processors by considering the
simulation of unitary gates, depolarizing and amplitude damping
channels, showing that the optimal program states may differ
from the naive choice based on the Choi matrix of the target
channel. Moreover, our results can be applied also for universal
quantum measurements50.
A potential application of our work may be the development of

“programmable” model of cloud-based quantum computation,
where a client has an input state to be processed by an online
quantum server that is equipped with a programmable quantum
processor. The client classically informs the server about what type
of computation it needs (e.g., some specified quantum algorithm)
and the server generates an optimal program state that closely

approximates the overall quantum channel to be applied to the
input. The server then accepts the input from the client, processes
it, and returns the output together with the value of a cost
function quantifying how close the computation was with respect
to the client’s request.
Our results may also be useful in areas beyond quantum

computing, wherever channel simulation is a basic problem. For
instance, this is the case when we investigate the ultimate limits of
quantum communications24, design optimal Hamiltonians for
one-way quantum repeaters, and for all those areas of quantum
sensing, hypothesis testing and metrology that are based on
quantum channel simulations 51. Indeed the study of adaptive
protocols of quantum channel discrimination (or estimation) is
notoriously difficult, and their optimal performance is not
completely understood. Nonetheless, these protocols can be
analyzed by using simulation techniques48,51 where the channel,
encoding the unknown parameter, is replaced by an approximate
simulating channel, and its parameter is mapped into the label of
a program state (therefore reducing the problem from channel to
state discrimination/estimation). In this regard, our theory
provides the optimal solution to this basic problem, by determin-
ing the best simulating channel and the corresponding
program state.

METHODS
Convexity proofs
In this section, we provide a proof of Theorem 1, namely we show that the
minimization of the main cost functions C◇, C1, and CF is a convex
optimization problem in the space of the program states π. This means
that we can find the optimal program state ~π by minimizing C◇ or,
alternatively, suboptimal program states can be found by minimizing
either C1 or CF. For the sake of generality, we prove the result for all of the
cost functions discussed in the previous sections. We restate Theorem 1
below for completeness:
Theorem The minimization of the generic cost function C = C◇, C1, CF, CR

or Cp for any p > 1 is a convex optimization problem in the space of program
states.
Proof Let us start to show the result for the diamond distance C◇. In this

case, we can write the following

C�½pπ þ ð1� pÞπ0�
:¼ E � Epπþð1�pÞπ0
�� ��

�

¼ð1Þ ðpþ 1� pÞE � pEπ � ð1� pÞEπ0k k�
�
ð2Þ

pE � pEπk k� þ ð1� pÞE � ð1� pÞEπ0k k�
�
ð3Þ

p E � Eπk k� þ ð1� pÞ E � Eπ0k k�
¼ pC�ðπÞ þ ð1� pÞC�ðπ0Þ;

(33)

where we use (1) the linearity of E, (2) the triangle inequality, and (3) the
property ∥xA∥1= ∣x∣∥A∥1, valid for any operator A and coefficient x.
For any Schatten p-norm Cp with p ≥ 1, we may prove convexity

following a similar reasoning. Since for any combination π :¼ p0π0 þ p1π1,
with p0+ p1= 1, we have ΛðπÞ ¼ p0Λðπ0Þ þ p1Λðπ1Þ, then by exploiting
the triangle inequality, and the property ∥xA∥p= ∣x∣∥A∥p, we can show that

Cpðp0π0 þ p1π1Þ :¼k χE � Λðp0π0 þ p1π1Þkp
� p0 k χE � Λðπ0Þkp þ p1 k χE � Λðπ1Þkp
¼ p0Cpðπ0Þ þ p1Cpðπ1Þ :

(34)

To show the convexity of CF, defined in Eq. (8), we note that the fidelity
function F(ρ, σ) satisfies the following concavity relation52

F
X
k

pkρk ; σ

 !2

�
X
k

pkFðρk ; σÞ2 : (35)

Due to the linearity of χπ= Λ(π), the fidelity in Eq. (9) satisfies F2π �P
kpkF

2
πk

for π :¼Pkpkπk . Accordingly, we get the following convexity

Fig. 5 Diamond distance error C◇ in simulating an amplitude
damping channel Ep at various damping rates p. We compare the
performance of two different designs for the programmable
quantum processor: PQCs with N+ 1 registers (PQCN) and mono-
tonic parametric quantum circuits with N+ 1 registers (mPQCN). In
both cases the optimal program ~πj i is obtained by minimizing the
diamond distance C◇.
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result

CF

X
k

pkπk

 !
�
X
k

pkCFðπkÞ : (36)

For the cost function CR, the result comes from the linearity of Λ(π) and the
joint convexity of the relative entropy. In fact, for π :¼ p0π0 þ p1π1, we
may write

S½ΛðπÞjjχE � ¼ S½p0Λðπ0Þ þ p1Λðπ1ÞjjχE �
¼ S½p0Λðπ0Þ þ p1Λðπ1Þjjp0χE þ p1χE �
� p0S½Λðπ0Þ; χE � þ p1S½Λðπ1Þ; χE �;

(37)

with a symmetric proof for S½χE jjΛðπÞ�. This implies the convexity of CR(π) in
Eq. (10).■

Convex classical parametrizations
The result of the Theorem 1 can certainly be extended to any convex
parametrization of program states. For instance, assume that π= π(λ),
where λ= {λi} is a probability distribution. This means that, for 0 ≤ p ≤ 1 and
any two parametrizations, λ and λ0 , we may write

π pλþ ð1� pÞλ0½ � ¼ pπðλÞ þ ð1� pÞπðλ0Þ: (38)

Then the problem remains convex in λ and we may therefore find the
global minimum in these parameters. It is clear that this global minimum ~λ
identifies a program state πð~λÞ that is not generally the optimal state ~π in
the entire program space S, even though the solution may be a
convenient solution for experimental applications.
Note that a possible classical parametrization consists of using classical

program states, of the form

πðλÞ ¼
X
i

λi φij i φih j; (39)

where f φij ig is an orthonormal basis in the program space. Convex
combinations of probability distributions therefore define a convex set of
classical program states

Sclass ¼ fπ : π ¼
X
i

λi φij i φih j; φih jφji ¼ δijg: (40)

Optimizing over this specific subspace corresponds to optimizing the
programmable quantum processor over classical programs. It is clear that
global minima in Sclass and S are expected to be very different. For
instance, Sclass cannot certainly include Choi matrices that are usually very
good quantum programs.

Gradient-based optimization
As discussed in the main text, the SDP formulation allows the use of
powerful and accurate numerical methods, such as the interior point
method. However, these algorithms are not suitable for high-dimensional
problems, due to their higher computational and memory requirements.
Therefore, an alternative approach (useful for larger program states)
consists of the optimization of the larger but easier-to-compute cost
function C= C1 (trace distance) or CF (infidelity), for which we can use first-
order methods. Indeed, according to Theorem 1, all of the proposed cost
functions C : S ! R are convex over the program space S and, therefore,
we can solve the optimization minπ2SCðπÞ by using gradient-based
algorithms.
Gradient-based convex optimization is at the heart of many popular ML

techniques, such as online learning in a high-dimensional feature space17,
missing value estimation problems18, text classification, image ranking,
and optical character recognition53, to name a few. In all of the above
applications, "learning” corresponds to the following minimization
problem: minx2S f ðxÞ, where f(x) is a convex function and S is a convex
set. Quantum learning falls into this category, as the space of program
states is convex due to the linearity of quantum mechanics and the fact
that cost functions are typically convex in this space (see Theorem 1).
Gradient-based approaches are among the most applied methods for
convex optimization of non-linear, possibly non-smooth functions39.
When the cost function is not differentiable, we cannot formally define

its gradient. Nonetheless, we can always define the subgradient ∂C of C as
in Eq. (12), which in principle contains many points. When C is not only
convex but also differentiable, then ∂C(π)= {∇C(π)}, i.e., the subgradient
contains a single element, the gradient ∇C, that can be obtained via the
Fréchet derivative of C (for more details see Supplementary Note 4). When

C is not differentiable, the gradient still provides an element of the
subgradient that can be used in the minimization algorithm.
In order to compute the gradient ∇C, it is convenient to consider the

Kraus decomposition of the processor map Λ. Let us write

ΛðπÞ ¼
X
k

AkπA
y
k ; (41)

with Kraus operators Ak. We then define the dual map Λ* of the processor
as the one (generally non-trace-preserving), which is given by the
following decomposition

Λ	ðρÞ ¼
X
k

AykρAk : (42)

With these definitions in hands, we can now prove Theorem 2, which we
rewrite here for convenience.
Theorem Suppose we use a quantum processor Q with map Λ(π)= χπ in

order to approximate the Choi matrix χE of an arbitrary channel E. Then, the
gradients of the trace distance C1(π) and the infidelity CF(π) are given by the
following analytical formulas

∇C1ðπÞ ¼
X
k

signðλkÞΛ	ðPkÞ; (43)

∇CFðπÞ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CFðπÞ

p
∇FðπÞ; (44)

∇FðπÞ ¼ 1
2
Λ	 ffiffiffiffiffi

χE
p ffiffiffiffiffi

χE
p

ΛðπÞ ffiffiffiffiffi
χE

p� ��1
2
ffiffiffiffiffi
χE

ph i
; (45)

where λk (Pk) are the eigenvalues (eigenprojectors) of the Hermitian operator
χπ � χE . When C1(π) or CF(π) are not differentiable at π, then the above
expressions provide an element of the subgradient ∂C(π).
Proof We prove the above theorem assuming that the functions are

differentiable for program π. For non-differentiable points, the only
difference is that the above analytical expressions are not unique and
provide only one of the possibly infinite elements of the subgradient.
Further details of this mathematical proof are given in Supplementary Note
4. Following matrix differentiation, for any function f ðAÞ ¼ Tr½gðAÞ� of a
matrix A, we may write

d Tr ½gðAÞ� ¼ Tr ½g0ðAÞdA�; (46)

and the gradient is ∇f ðAÞ ¼ g0ðAÞ. Both the trace distance and fidelity cost
functions can be written in this form. To find the explicit gradient of the
fidelity function, we first note that, by linearity, we may write

Λðπ þ δπÞ ¼ ΛðπÞ þ ΛðδπÞ ; (47)

and therefore the following expansionffiffiffiffiffi
χE

p
Λðπ þ δπÞ ffiffiffiffiffi

χE
p ¼ ffiffiffiffiffi

χE
p

ΛðπÞ ffiffiffiffiffi
χE

p þ ffiffiffiffiffi
χE

p
ΛðδπÞ ffiffiffiffiffi

χE
p

: (48)

From this equation and differential calculations of the fidelity (see
Supplementary Note 4.2 for details), we find

dF ¼ 1
2
Tr ð ffiffiffiffiffi

χE
p

ΛðπÞ ffiffiffiffiffi
χE

p Þ�1
2
ffiffiffiffiffi
χE

p
ΛðδπÞ ffiffiffiffiffi

χE
ph i

; (49)

where dF= F(π+ δπ)− F(π). Then, using the cyclic property of the trace,
we get

dF ¼ 1
2
Tr Λ	 ffiffiffiffiffi

χE
p ð ffiffiffiffiffi

χE
p

ΛðπÞ ffiffiffiffiffi
χE

p Þ�1
2
ffiffiffiffiffi
χE

ph i
δπ

h i
: (50)

Exploiting this expression in Eq. (46), we get the gradient ∇F(π) as in Eq.
(45). The other Eq. (44) simply follows from applying the definition in Eq.
(8).
For the trace distance, let us write the eigenvalue decomposition

χπ � χE ¼
X
k

λkPk : (51)

Then using the linearity of Eq. (47), the definition of a processor map of Eq.
(5) and differential calculations of the trace distance (see Supplementary
Note 4.3 for details), we can write

dC1ðπÞ ¼
P
k
signðλkÞ Tr ½PkΛðdπÞ�

¼P
k
signðλkÞ Tr ½Λ	ðPkÞdπ�

¼ Tr Λ	½signðχπ � χEÞ�dπf g :
(52)
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From the definition of the gradient in Eq. (46), we finally get

∇C1ðπÞ ¼ Λ	½signðχπ � χEÞ�; (53)

which leads to the result in Eq. (43). ■
The above results in Eqs. (44) and (43) can be used together with the

projected subgradient method14 or conjugate gradient algorithm15,16 to
iteratively find the optimal program state in the minimization of
minπ2SCðπÞ for C= C1 or CF. In the following sections, we present two
algorithms, the projected subgradient method and the conjugate gradient
method, and show how they can be adapted to our problem.
Projected subgradient methods have the advantage of simplicity and

the ability to optimize non-smooth functions, but can be slower, with a
convergence rate O ϵ�2ð Þ for a desired accuracy ϵ. Conjugate gradient
methods15,16 have a faster convergence rate O ϵ�1ð Þ, provided that the
cost function is smooth. This convergence rate can be improved even
further to O ϵ�1=2

� �
for strongly convex functions54 or using Nesterov’s

accelerated gradient method41. The technical difficulty in the adaptation of
these methods for learning program states comes because the latter is a
constrained optimization problem, namely at each iteration step the
optimal program must be a proper quantum state, and the cost functions
coming from quantum information theory are, generally, non-smooth.

Projected subgradient method
Given the space S of program states, let us define the projection PS onto
S as

PSðXÞ ¼ argmin
π2S

kX � πk2 ; (54)

where argmin is the argument of the minimum, namely the closest state
π 2 S to the operator X. Then, a first-order algorithm to solve minπ2SCðπÞ
is to apply the projected subgradient method14,39, which iteratively applies
the iteration (16), which we rewrite below for convenience

1Þ Select an operator gi from ∂CðπiÞ;
2Þ Update πiþ1 ¼ PS πi � αigið Þ; (55)

where i is the iteration index and αi a learning rate.
The above algorithm differs from standard gradient methods in two

aspects: (i) the update rule is based on the subgradient, which is defined
even for non-smooth functions; (ii) the operator πi− αigi is generally not a
quantum state, so the algorithm fixes this issue by projecting that operator
back to the closest quantum state, via Eq. (54). The algorithm converges to
the optimal solution π* (approximating the optimal program ~π) as14

CðπiÞ � Cðπ	Þ � e1 þ G
Pi

k¼1 α
2
k

2
Pi

k¼1 αk
¼: ϵ; (56)

where e1 ¼k π1 � π	k22 is the initial error (in Frobenius norm) and G is
such that kgk22 � G for any g∈ ∂C. Popular choices for the learning rate
that assure convergence are αk / 1=

ffiffiffi
k

p
and αk= a/(b+ k) for some a, b >

0.
In general, the projection step is the major drawback, which often limits

the applicability of the projected subgradient method to practical
problems. Indeed, projections like Eq. (54) require another full optimization
at each iteration that might be computationally intensive. Nonetheless, we
show in the following theorem that this issue does not occur in learning
quantum states, because the resulting optimization can be solved
analytically.
Theorem 3 Let X be a Hermitian operator in a d-dimensional Hilbert space

with spectral decomposition X= UxU†, where the eigenvalues xj are ordered in
decreasing order. Then PSðXÞ of Eq. (54) is given by

PSðXÞ ¼ UλUy; λi ¼ maxfxi � θ; 0g; (57)

where θ ¼ 1
s

Ps
j¼1

xj � 1
� �

and

s ¼ max k 2 ½1; :::; d� : xk > 1
k

Xk
j¼1

xj � 1
� �( )

: (58)

Proof Any quantum (program) state can be written in the diagonal form
π= VλV†, where V is a unitary matrix, and λ is the vector of eigenvalues in
decreasing order, with λ j≥ 0 and ∑jλj= 1. To find the optimal state, it is
required to find both the optimal unitary V and the optimal eigenvalues λ
with the above property, i.e.,

PSðXÞ ¼ argmin
V;λ

kX � VλVyk2 : (59)

For any unitarily invariant norm, the following inequality holds (ref. 55, Eq.
IV.64):

kX � πk2 �kx � λk2 ; (60)

with equality when U= V, where X= UxU† is a spectral decomposition of X
such that the xj’s are in decreasing order. This shows that the optimal
unitary in Eq. (59) is the diagonalization matrix of the operator X. The
eigenvalues of any density operator form a probability simplex.
The optimal eigenvalues λ are then obtained thanks to Algorithm 1 from
ref. 17. ■
In the following section, we present an alternative algorithm with faster

convergence rates, but stronger requirements on the function to be
optimized.

Conjugate gradient method
The conjugate gradient method15,39, sometimes called the Frank–Wolfe
algorithm, has been developed to provide a better convergence speed and
to avoid the projection step at each iteration. Although the latter can be
explicitly computed for quantum states (thanks to our Theorem 3), having
a faster convergence rate is important, especially with higher dimensional
Hilbert spaces. The downside of this method is that it necessarily requires a
differentiable cost function C, with gradient ∇C.
In its standard form, the conjugate gradient method to approximate the

solution of argminπ2SCðπÞ is defined by the following iterative rule

1Þ Find argminσ2S Tr ½σ∇CðπiÞ�;
2Þ πiþ1 ¼ πi þ 2

iþ2 ðσ � πiÞ ¼ i
iþ2 πi þ 2

iþ2 σ:
(61)

The first step in the above iteration rule is solved by finding the smallest
eigenvector σj i of ∇C(πi). Indeed, since π is an operator and C(π) a scalar,
the gradient ∇C is an operator with the same dimension as π. Therefore,
for learning quantum programs, we find the iteration (17), that we rewrite
below for convenience

1Þ Find the smallest eigenvalue σij i of ∇CðπiÞ;
2Þ πiþ1 ¼ i

i þ 2
πi þ 2

i þ 2
σij i σih j: (62)

When the gradient of C is Lipschitz continuous with constant L, the
conjugate gradient method converges after OðL=ϵÞ steps16,41. The
following iteration with adaptive learning rate αi has even faster
convergence rates, provided that C is strongly convex54:

1Þ Find the smallest eigenvalue σij i of∇CðπiÞ;
2Þ Find αi ¼ argminα2½0;1�αhτi;∇CðπiÞi
þ α2 βC

2 k τik2C ; for τi ¼ σij i σih j � πi;

3Þ πiþ1 ¼ ð1� αiÞπi þ αi σij i σih j:

(63)

where the constant βC and norm ∥ ⋅ ∥C depend on C (ref. 54).
In spite of the faster convergence rate, conjugate gradient methods

require smooth cost functions (so that the gradient ∇C is well defined at
every point). However, cost functions based on trace distance (7) are not
smooth. For instance, the trace distance in one-dimensional spaces
reduces to the absolute value function ∣x∣ that is non-analytic at x= 0.
When some eigenvalues are close to zero, conjugate gradient methods
may display unexpected behaviors, though we have numerically observed
that convergence is always obtained with a careful choice of the learning
rate. In the next section, we show how to formally justify the applicability
of the conjugate gradient method, following Nesterov’s smoothing
prescription41.

Smoothing: smooth trace distance
The conjugate gradient method converges to the global optimum after
O L

ϵ

� �
steps, provided that the gradient of C is L-Lipschitz continuous41.

However, the constant L can diverge for non-smooth functions like the
trace distance (7) so the convergence of the algorithm cannot be formally
stated, although it may still be observed in numerical simulations. To
solidify the convergence proof (see also Supplementary Note 5.2), we
introduce a smooth approximation to the trace distance. This is defined by
the following cost function that is differentiable at every point

CμðπÞ ¼ Tr hμ χπ � χEð Þ� � ¼X
j

hμðλjÞ ; (64)

where λj are the eigenvalues of χπ � χE and hμ is the so-called Huber
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penalty function

hμðxÞ :¼
x2
2μ if j xj< μ ;

jxj � μ
2 if j xj � μ :

(
(65)

The previous definition of the trace distance, C1 in Eq. (7), is recovered for
μ → 0 and, for any non-zero μ, the Cμ bounds C1 as follows

CμðπÞ � C1ðπÞ � CμðπÞ þ μd
2
; (66)

where d is the dimension of the program state π. In Supplementary Note
5.2, we then prove the following result
Theorem 4 The smooth cost function Cμ(π) is a convex function over

program states and its gradient is given by

∇CμðπÞ ¼ Λ	½h0μðχπ � χEÞ�; (67)

where h0μ is the derivative of hμ. Moreover, the gradient is L-Lipschitz
continuous with

L ¼ d
μ
; (68)

where d is the dimension of the program state.
Being Lipschitz continuous, the conjugate gradient algorithm and its

variants41,54 converge up to an accuracy ϵ after OðL=ϵÞ steps. In some
applications, it is desirable to analyze the convergence in trace distance in
the limit of large program states, namely for d → ∞. The parameter μ can
be chosen such that the smooth trace distance converges to the trace
distance, namely Cμ → C1 for d → ∞. Indeed, given the inequality (66), a
possibility is to set μ ¼ Oðd�ð1þηÞÞ for some η > 0 so that, from Eq. (68), the
convergence to the trace norm is achieved after Oðd2þηÞ steps.
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