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Abstract
We study an action integral for Finsler gravity obtained by pulling back an Einstein-
Cartan-like Lagrangian from the tangent bundle to the base manifold. The vacuum
equations are obtained imposing stationarity with respect to any section (observer)
and are well posed as they are independent of the section. They imply that in vacuum
the metric is actually independent of the velocity variable so the dynamics becomes
coincident with that of general relativity.
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1 Introduction

In this work we explore some features of a possible dynamics for Finsler gravity.
The main mathematical objects of Finsler geometry, from the metric to the linear
Finsler connections, live on the slit tangent bundle E = T M\0 of the base manifold
M . Typically, in order to construct a Finsler action, one would integrate over the
indicatrix, namely over the locus {(x, y) : 2L(x, y) = −1}, where L is the Finsler
Lagrangian. This approach is followed in [1, 3, 16, 17] particularly with reference to
an action which is the integral of the Ricci scalar, see also [6, 8, 15] for further analysis
of this type of action. To the best of our knowledge no investigation has been devoted
to a different approach, namely to actions obtained via an integral over M . In general,
one would need to pull back all relevant quantities to M via a section s : M → E
of the vector bundle π : E → M . The problem with this approach is that the action
would depend on the section. We believe that a natural solution to this problem is to
impose that the dynamical equations should be equations on E such that the action
is stationary for every possible choice of section s. The idea is that a section could
represent an observer and hence the action could be observer dependent while the
dynamical equations would not. It turns out that more is true. We shall find that, at
least in vacuum and on-shell, the action is actually independent of the section.

Let {xα} be local coordinates, let ea = eμ
a (x)∂/∂xμ, be a basis field on M , let

{ea} be the cobasis, and let {xα, ya} be local coordinates induced on E . A Finsler
connection ∇ is a Koszul connection on the pullback1 (linear) bundle π∗T M → E . It
is well known that it is possible to construct many canonical Finsler connections (e.g.
Cartan, Chern, Berwald) but that all these connections induce the same non-linear
connection, namely the same splitting T E = V E ⊕ HE referred to as the canonical
non-linear connection. In all these cases HE = ker∇ y where y = yaea : E → T M
is the Liouville vector field. One says that all notable Finsler connections are regular.
The regularity condition is equivalent to the fact that the forms ωa = π∗ea joined
with2 ω̄a = (∇ y)a , form a basis on T ∗M , cf. [13].

We stress that, although we make use of a linear Finsler connection, our theory
should bemore properly referred to as an anisotropic theory, rather than as a Finslerian
theory, as we do not assume that the metric is a vertical Hessian of some Finsler
LagrangianL as in (pseudo-)Finsler geometry. Also the non-linear connection will not
be treated as an independent variable, rather it will be deduced from the linear Finsler
connection by the imposition of the regularity condition. In this way the variations of
the connections will be totally unconstrained as in our purelymetric-affine theory [5].3

One should not expect to determine the Finsler connection univocally. Indeed,
already in the Palatini formulation of the Einstein-Hilbert Lagrangian one finds that
the connection is determined up to projective transformations. In order to find a unique

1 We use the pullback approach which is by now standard [2]. However, there are other approaches that
give insights on the geometry of the indicatrix, see [10].
2 Later we shall introduce the covariant exterior differential D of∇ so that this equation can also be written
ω̄a = Dya .
3 A Finsler connection is strongly regular if ∇ y|V E = I dV E . All notable connection share this property,
but we do not impose it as this condition would constrain the variations.
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connection, say the Levi-Civita connection, it is necessary to impose some a priori
constraint such as metricity as in the Einstein-Cartan formulation.

In a fully metric-affine approach, in which metric and connection are a priori inde-
pendent, one is left with the conundrum of justifying why the material part of the
action does not exhibit shear hypermomentum. In a previous work [5] we showed
that one could solve this problem by enlarging the action symmetry to what we called
the amplified symmetry. In short our approach showed that one can really work with
equivalence classes of connections as long as the material part of the action shares the
same symmetry that determines the classes.

In a Finslerian framework one is lead to reconsider these findings in light of specific
features of Finsler geometry. Onemight expect the non-linear (Ehresmann) connection
rather than the Finsler connection to be the physical ingredient of a Finslerian gravity
theory. The theory developed in [16] does indeed share this feature as it is based on
the Ricci scalar that indeed only depends on the non-linear curvature. Still there is also
the chance that the true variable of a Finslerian action could be the Finsler connection,
possibly constrained in some way. If that is the case one possibly natural constraint
would be the metric constraint as in the Einstein-Cartan theory (with no assumption
on the torsion, which in Finsler geometry leaves up much freedom).

Our work presents at once two equivalent theories. One theory, which is obtained
by removing all the ‘tildes’ in the following expressions, imposes a priori metricity
on the Finsler connection, much as in the Einstein-Cartan theory. This is not a fully
metric-affine theory. The other theory is obtained by implementing in the action the
following amplified symmetry from our previous work [5]

ωa
b → ωa

b + Aa
b, Aab = Aba

where ωa
b are the coefficients for the Finsler connection and the indices are lowered

with the metric gac. In this theory one really works with equivalence classes of con-
nections and the theory is fully metric-affine. A posteriori one can then select some
specific connection from the solution class, such as the metric representative.

In this second approach we expect that the dependence on the linear connection
would be mitigated and that the true variable of the theory could end up being the
non-linear connection. Whether this is the case depends on the matter Lagrangian,
which might have a restricted invariance. For instance, it might impose the additional
condition Aabyb = 0.

Then, due to the equation HE = ker∇ y, each element in a restricted amplified
symmetry class would share the same non-linear connection, which shows that the
action would really depend on the non-linear connection, see also [13] for some math-
ematical discussion on this restricted amplified symmetry.

We can use the restricted amplified symmetry to define an equivalence relation
∇ ∼g ∇′ in the set of regular Finsler connections. The notable connections of Finsler
geometry previously mentioned all belong to same class of connections under such
equivalence relation.4

4 It can be observed that the notable connections are strongly regular and that they readωa
b = ωCartan

a
b +

αLabcω
c − βCa

bcω̄
c , for suitable choices of the constants (α, β). Here Labc is the Landsberg tensor [11].
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The implementation of such an amplified symmetry means modifying the Einstein-
Cartan action on E to allow for non-metricity. The way we implement the amplified
symmetry is by using the following metric representative Finsler connection ∇̃

ω̃a
b := ωa

b + 1

2
gar Dgrb (1)

where D is the covariant exterior differential induced by∇. Similarly, we shall denote
with D̃ the covariant exterior differential induced by ∇̃, and in general any object
dependent on ∇̃ will carry a tilde. The connection ∇̃ is indeedmetric, hence D̃gab = 0,
and its curvature 2-form R̃ is related to that of ∇, R, by

R̃ab = R[ab] − 1
4Dgac ∧ gcs Dgsb. (2)

When ∇ is one of the notable Finsler connections, ∇̃ is the Cartan connection.5

The gravitational action studied in this work is

SG(gab, ω
a
b, e

a, s) :=
∫
M
s∗(LG), LG = 1

2ηabcd R̃
ab ∧ ωc ∧ ωd , (3)

where ωa = π∗ea and where ηabcd = √| det g(x, y)|[abcd] is the Finslerian vol-
ume tensor. We shall restrict ourselves to the 4-dimensional spacetime case, but the
generalization to different dimensions will be obvious.

As mentioned, although we shall work with the amplified symmetry, much in
analogy with [5], the paper also includes the case in which this symmetry is not
implemented which is recovered by removing all the ‘tildes’ and by assuming that ∇
is metric (but a priori not necessarily Cartan’s).

Except for the pullback s∗, and the use of the connection ∇̃ to define the curvature,
the Lagrangian is Einstein-Cartan’s. In the Einstein-Cartan theory one obtains that
torsion can be present only inside matter, and in fact, perhaps not surprisingly, we
shall obtain a similar result in the Finslerian case. However, all Finsler connections
have some form of torsion unless the space is really pseudo-Riemannian, so ultimately
we shall obtain that in vacuum the spacetime is pseudo-Riemannian, i.e. g does not
depend on the fiber variables y.

1.1 Energy-momentum conservation

Independently of the previous discussion, there is another line of thought that brought
us to consider a Lagrangian of the above form. A well-known problem in Finsler
geometry is that of establishing some form of conservation principle. The conserva-
tion of the stress-energy tensor was indeed one of the demands that led Einstein to

Indeed, we have Cartan = (0, 0), Chern = (0, 1), Berwald = (1, 1), Hashiguchi = (1, 0). This formula
and the symmetries of the Cartan and Landsberg tensors clarify that all notable connections belong to the
same restricted amplified symmetry class.
5 With reference to the previous footnote, a simple calculation gives (Dg)ab = −2αLabcω

c + 2βCabcω̄
c

from which the claim easily follows from Eq. (1).
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the development of the general theory of relativity [4, 14]. Due to the abundance of
potential field equations in Finsler gravity, a similar criteria could guide the selection
of the correct ones.

We do not think, however, that in the Finslerian case one should search for a
conserved stress-energy tensor but rather, as suggested in [11, Remark 19], for a
conserved observer-dependent energy-momentum vector, or equivalently, 3-form (for
other recent approaches and formalisms see [7, 9]).

In this regard we observe that the following modified Einstein’s vector-valued 3-
form

τ̃d := 1

2

δLG

δωd
= 1

2ηabcd R̃
ab ∧ ωc (4)

satisfies τ̃d ∧ ωd = LG and

D̃τ̃d = 1
2ηabcd R̃

ab ∧ 
c (5)

where, denoting with T c the horizontal torsion for D,


c := D̃ωc = T c + 1
2g

cr Dgrb ∧ ωb (6)

is the horizontal torsion of the connection D̃. Recalling that ω̄c = Dyc (which jointly
with ωc form a basis for T ∗E) and similarly ω̃c = D̃yc, we have, contracting (5) with
the Liouville vector field

d(τ̃d y
d) = 1

2ηabcd y
d R̃ab ∧ 
c − τ̃d ∧ ω̃d .

Every form can be expressed as a linear combination of wedge products of basis
forms {ωc, ω̄c}, so leading to various decompositions in horizontal-vertical parts. A
similar statement applies if we take the basis {ωc, ω̃c}.We denotewithHor the operator
that sends all the vertical forms to zero, in other words Hor keeps only the terms that
have a totally horizontal expansion. Similarly H̃or does the same, but for the non-linear
connection induced by ∇̃.

The nice fact is that for a notable connection 
a = Ca
bcω̃

c ∧ ωb where Cabc =
1
2

∂
∂ ya gbc is the Cartan torsion, and hence H̃or(


a) = 0. Whenever this equation holds
the previous expression in display satisfies

H̃or(d(τ̃d y
d)) = 0.

When we pullback with a section s : M → E , we can make use of the identity
s∗(ω̃c) =: D̃sc where, with some abuse of notation, we denotewith D̃sc the non-linear
covariant derivative of the section. This non-linear covariant derivative is a 1-form that
vanishes at a point precisely when the section represents a free falling non-rotating
non-expanding reference frame (observer) at the point. Such observers exist at every
point due to the fact that for every chosen point of E , linear coordinates can be chosen
so that the connection coefficients vanish at the point [12].
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We conclude that at that point and for such a frame the 3-form s∗(τ̃d yd) is closed

d(s∗(τ̃d yd)) = 0. (7)

Now assume dynamical equations of the form

τ̃d = td , (8)

or more weakly yd τ̃d = yd td , where td is the energy-momentum 3-form and yd td is
the energy-momentum of matter as viewed by an observer with velocity of direction
yd .

Observe that equation (7), now written as d(s∗(td yd)) = 0, can be attained at any
chosen point through a suitable choice of observer. However, in general, this cannot be
obtained in a neighborhood of the point since a section s : M → E such that D̃s = 0
does not exist locally. Still the conservation can be approximately expressed in integral
form in a small neighborhood of the point where the previous equation holds true. So
for a cylindrical neighborhood C , with basis B1, B2 and lateral side S, we shall have

∫
B1

s∗(td yd) +
∫
B2

s∗(td yd) +
∫
S
s∗(td yd) = o(size of cylinder).

Using the orientation coming from the time orientation of the spacetime, one of the two
first terms of the previous expression changes sign, and we get an expression which
states that the energy-momentum s∗(td)sd enteringC from the basis B1 is equal to that
escaping B2 plus that entering the lateral side S. The contraction with sd expresses
the fact that the quantity s∗(td)sd is an energy-momentum 3-form (dually a vector)
dependent on the chosen observer s rather than a tensor. This analysis is compatible
and in the same spirit of that performed in [11, Remark 19], but here we do not require
that the Landsberg tensor or mean Cartan torsion vanish.

In the next section we shall see that our action varied with respect to the vierbein
indeed gives an equation of the form τ̃d = td . Here, we mention that in the pseudo-
Riemannian case, with ∇̃ the Levi-Civita connection, we indeed recover from the
previous formulas the expected results for general relativity. In this case τ̃d becomes

τ̃d = 1
6Gd

rηruvzω
u ∧ ωv ∧ ωz (9)

where Gab = Rab − 1
2 Rgab is the Einstein tensor and the energy-momentum 3-form

ta is obtained from a suitable matter Lagrangian LM by

ta = −1

2

δLM

δωa
= 1

6
Td

rηruvzω
u ∧ ωv ∧ ωz . (10)

The dynamical equation (8) becomes in this case

Gab = Tab, (11)
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which implies the standard relation ∇̃aT a
b = 0. Observe that in general relativity,

if ua is a 4-velocity field, and Tab is the matter energy-momentum tensor defined by
(10), then ∇̃a(T abub) = T ab∇̃bua �= 0. Thus, also according to the anisotropic theory,
conservation of energy-momentum is expected only in free-falling non-rotating non-
expanding reference frames and only locally as both features are shared by classical
general relativity.

1.2 Action variation and equations of motion

In this section we shall investigate whether it is possible to obtain the dynamical
equation (8) through the variation of an action. We shall be concerned in recovering
just the left-hand side of (8) which has gravitational origin.

Let T a = Dωa and T̄ a = Dω̄a be the horizontal and vertical torsions respectively,
and let Gab = Dgab be the non-metricity, all with reference to the same Finsler
connection ∇. It is useful to recall the next Bianchi identities which hold for any
Finsler connection (including D̃ which is metric, hence the last one establishes the
antisymmetry of R̃ab)

DRa
b = 0,

DTa = Ra
b ∧ ωb,

DT̄ a = Ra
b ∧ ω̄b,

DGab = −Rab − Rba .

Let us consider the gravitational Einstein-Cartan-like action (3). We shall often use
the following observation. By using normal coordinates at a point of E it is easy to
check that given a non- vanishing k-vector on T M , and a k-vector on T E that projects
on it, it is always possible to find a section s : M → E such that the former is sent
to the latter (in normal coordinates it is sufficient to take sa = Aa

bx
b where A is a

suitable matrix). Since any k-vector on T E can be approximated by a k-vector that
projects to a non-vanishing k-vector we have, by continuity, that given any k-form ω

on E , the equality s∗ω = 0 holds for every s iff ω = 0 holds (see 2 in the Appendix
for a detailed derivation). This property shall explain why the pullback can be omitted
from our equations, as they are supposed to hold for every section.

Another useful fact, that we shall systematically use in our calculations, is the
commutativity of the exterior derivative with the pullback ds∗α = s∗dα, where α is a
form on E . Ultimately, it will allow us to get rid of some exact terms.

The configuration variables of the action SG are ωa , ωa
b and gab. This means that

we can define the action variation with respect to all of them in the usual way

δSG := d

dt
SG((ωt )a, (ωt )ab, gtab)|t=0, (12)

where the subscript t is a real parameter that defines the variation fields. The previous
definition is generalized in the obvious way to define the variation of any quantity with
respect to a selected set of configuration variables. The general variation δSG for fixed
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section s can be written, using s∗π∗ea = ea and the standard integration by parts, as

δSG =
∫
M
s∗

(
δLG

δωa

)
∧ δea + s∗

(
δLG

δωa
b

∧ δωa
b

)
+ s∗

(
δLG

δgab
δgab

)
+

∫
M
s∗(d�).

The last term can be removed using the Stokes theorem and suitable boundary condi-
tions. Finally, we arrive at (see Appendix B)

δLG

δωd
= 2τ̃d = ηabcd R̃

ab ∧ ωc, (13)

δLG

δωa
r

= −grbηabcd

c ∧ ωd , (14)

δLG

δgab
= − δLG

δgmn
gmagnb

= − 1
2ηecd(aDgb)

e ∧ 
c ∧ ωd + 1
2ηrcd(b R̃

r
a) ∧ ωc ∧ ωd − 1

2gabLG . (15)

In the second equationweused, for gab fixed, δω̃ab = δω[ab].Actually these variational
derivatives are not independent as the invariance under change of frame implies the
identity (it is the Finslerian analog of the Einstein-Cartan formula [18, Eq. (3)], see
Appendix C).

δLG

δωa
∧ ωb = 2

δLG

δgrb
gra + D

δLG

δωa
b
. (16)

As a consequence, it is sufficient to consider the dynamical equations for the connection
and vierbeins.

Further, it can be observed that under a variation of section

δSG =
∫
M

δs∗(LG),

but LG = τ̃d ∧ ωd thus, as in vacuum τ̃d = 0, the action does not really depend
on the section when the gravitational fields are on-shell. It remains to establish the
consequences of the vacuum equations which are obtained, by the arbitrariness of the
section and by the result of Appendix A, with the variational derivatives (13)–(15) set
to zero. Let

ω̃a
b = H̃a

bcω
c + Ṽ a

bcω̃
c, (17)

where ω̃c = D̃yc, be the expansion for the connection coefficients.6

Let [ea, eb] = ccab(x)ec be the commutation relations for the chosen basis, so that
dec = − 1

2c
c
abe

a ∧ eb. Then


a = D̃ωa = (H̃a
bc + 1

2c
a
bc)ω

c ∧ ωb + Ṽ a
bcω̃

c ∧ ωb. (18)

6 This object should have been denoted ¯̃ωc , we hope that the simplification of notation does not cause
confusion.
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Let us first consider the consequences of the vacuum equation for the connection
δLG
δωa

r
= 0, that is ηabcd


c ∧ ωd = 0. It can be rewritten


a ∧ ωb − 
b ∧ ωa = 0 (19)

which implies7 H̃or(
a) = 0 and hence H̃a [bc] + 1
2c

a[bc] = 0.

Butmetricity of D̃ implies, in particular, H̃or(D̃gab) = 0, that is (byωc := eμ
c

∂
∂xμ −

Nr
c (x, y)

∂
∂ yc we denote the horizontal lift of ec, by ω̃c := eμ

c
∂

∂xμ − Ñ r
c (x, y)

∂
∂ yc the

tilde-horizontal lift of ec, so that ωb(ω̃c) = ωb(ωc) = δbc , ω̃
b(ω̃c) = D̃ω̃c y

b = 0)

0 = ω̃c(gab) − H̃abc − H̃bac.

Combining the previous equation with H̃a [bc] + 1
2c

a [bc] = 0 we arrive at

H̃a
bc = 1

2
gar {ω̃b(gra) + ω̃a(grb) − ω̃r (gab) − (cacb + cbac − ccba)}. (20)

Let us now consider the vertical information in Eq. (19). The contraction iY of Eq.
(19) where Y is vertical gives, setting V a

b := Ṽ a
bcY

c,

δb[r V a
d] − δa[r V b

d] = 0.

Taking the trace we get V a
b = 0 so, by the arbitrariness of Y , Ṽ a

bc = 0, that is,
a = 0.
The equation Ṽ a

bc = 0 implies in turn that D̃ is strongly regular and that {ωc, ω̃c} is
the dual basis to {ω̃c,

∂
∂ yc }, see [13] . But D̃ is metric, so a calculation of the vertical

part of D̃gab = 0 gives ∂gab
∂ yc = 0, namely the metric does not depend on the vertical

variables. Finally, the expression (20) proves that in vacuum the horizontal coefficients
of ∇̃ do not depend on the vertical variables and are actually those of the Levi-Civita
connection of gab.

In conclusion, the vacuum dynamical equation for the connection is equivalent to8


a = 0 which is equivalent to the imposition of the following three conditions: (a)
the independence of g on the vertical variable, (b) the horizontal coefficients of ∇̃ are
those of the Levi-Civita connection of g, (c) the vertical coefficients of ∇̃ vanish (we
proved one direction, the other being clear).

As for the other vacuum dynamical equations, by Eq. (16) we need only to consider
the vacuum dynamical equation for ωa , and this is τ̃d = 0, which by the found form
of the connection and Eq. (9) is the statement that the Einstein tensor (and hence the
Ricci tensor) of the Levi-Civita connection vanishes.

7 Because, the algebraic equation δb[r Ba
pq] − δa [r Bb

pq] = 0, where Ba
bc = −Ba

cb , traced on the indices
b and r , and then traced again, easily leads to Ba

pq = 0 (in spacetime dimension 4 and higher). Here

Ba
bc := Ha [bc] + 1

2 c
a[bc].

8 This is the Finslerian analog of the connection equation [5, (38), see also (33)] for our vacuum purely
metric-affine theory. In that pseudo-Riemannian theory if metricity is imposed a priori, we are back to
Einstein-Cartan theory and the connection vacuum equation states that the torsion vanishes. In the Finslerian
theory the equation has consequences also on the metric, not just on the connection.
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150 Page 10 of 15 A. García-Parrado, E. Minguzzi

The original connection∇ can only be determined up to a gauge because we imple-
mented the amplified symmetry. The same Lagrangian with all the ‘tilde’ dropped
would have established that the connection in vacuum is indeed Levi-Civita. It is
indeed possible to impose that the connection is metric since the beginning. That
gives a viable and physically equivalent approach, the only drawback being that the
variation has to be constrained a priori since only metric connections should be con-
sidered (as in the Einstein-Cartan theory). Therefore, it is not an approach in which
metric and connection are completely unconstrained (purely metric-affine).

In any case, the conclusion is that in vacuum the theory is equivalent to general rel-
ativity, so according to the present theory in vacuum there is no torsion nor anisotropy.
This seems a peculiar feature of this theory as most other proposals for a Finslerian
dynamics leave room for possible vacuum non-pseudo-Riemannian solutions [6, 8,
16]. Still it is a natural one as our theory mimicks Einstein-Cartan, in which, analo-
gously, there is no torsion in vacuum.Also it fully agrees with our current experimental
evidence that vacuum is described by a pseudo-Riemannian (Lorentzian) theory at the
classical level.

2 Conclusions

We explored an anisotropic theory in which an Einstein-Cartan-like Lagrangian on the
slit tangent bundle E is pulled back to M through a section s : M → E . The dynamics
was obtained by imposing stationarity for every possible section s, which results in
equations on E independent of the section. This fact is interpreted as independence of
the equations from the observer. The dynamical equations imply that in vacuum the
theory is in fact coincident with general relativity and hence that there is no torsion nor
anisotropy. The theory might also implement the amplified symmetry of our previous
work. This modification, motivated by the purpose of interpreting the physical field
as the non-linear connection, can also be omitted in which case the theory is framed
in terms of a metric connection, this time living on E rather than M , much as in the
original Einstein-Cartan theory.
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Appendix A: Proof of ∀s, s∗! = 0 ⇒ ! = 0

In this appendix we provide a detailed argument on why s∗ω = 0 for every section
s : M → E implies ω = 0. Here ω is a k-form on E , k ≤ n, n dimension of M .

Let E = T M\0 and let π : E → M be the projection on the base. The coordinates
on E are (xa, ya), those on T E are (xa, ya, ẋa, ẏa). Elements in T E are denoted with
capital letters, e.g. V , those in T M with lowercase letters, e.g. v.

Suppose s∗ω = 0 for every s. In order to prove that ω = 0 we just need to prove
that ω vanishes over every k-vector V1 ∧ V2 ∧ · · · ∧ Vk with Vi ∈ T E .

We can assume that vi = π∗(Vi ) are linearly independent and hence that

π∗(V1 ∧ V2 ∧ · · · ∧ Vk) = v1 ∧ v2 ∧ · · · ∧ vk �= 0

indeed, if not, replace Vi with V ′
i (ε) = Vi + εWi for sufficiently small ε where

wi = π∗(Wi ) are linearly independent (if t < k is the dimension of the space spanned
by {vi } pick t vectors of {wi } as a basis of this space and k − t vectors as a basis for
a trasverse subspace). Then {V ′

i } would have linearly independent projections, and if
we can prove for these type of k-vectors that

ω(V ′
1 ∧ V ′

2 ∧ · · · ∧ V ′
k) = 0,

then taking the limit ε → 0 we also get

ω(V1 ∧ V2 ∧ · · · ∧ Vk) = 0.

Let P ∈ E , we want to prove that ω(P) = 0. Let p = π(P). We need only to try
the form on V1 ∧ V2 ∧ · · · ∧ Vk with projection v1 ∧ v2 ∧ · · · ∧ vk �= 0, that is, we can
assume that vi are linearly independent.

Introduce coordinates at the point p ∈ M of interest such that xa(p) = 0. Consider
the section s : M → E having local components

sa(x) = Pa + Ba
bx

b

where Pa = ya(P) and B is a constant n × n matrix. Note that

Vi = vai
∂

∂xa
+ qbi

∂

∂ yb

for some constants qbi . Choose B so that it maps vbi ∈ R
n to qbi ∈ R

n , i.e. qbi = Bb
av

a
i

(here linear independence of {vi } is used), then

s∗(vi ) = vai
∂

∂xa
+ ∂sa

∂xc
vci

∂

∂ ya
= Vi ∈ T E,

and hence

ω(V1 ∧ V2 ∧ · · · ∧ Vk) = s∗ω(v1 ∧ v2 ∧ · · · ∧ vk) = 0.
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Appendix B: Proof of the expressions (13)–(15)

The dynamical equations (13) and (14), that are the most important, can be proved
directly.

Let us consider the variation just with respect to ωa . We have

δLG = ηabcd R̃
ab ∧ ωc ∧ δωd

from which Eq. (13) follows.
Let us consider the variation just with respect toωa

b. FromEq. (1) δω̃a
b = 1

2δω
a
b−

1
2gbsδω

s
r gra , that is δω̃ab = δω[ab].Wedenote gbr δ

δωa
r
with δ

δωab . Now, the symmetric

part δLG
δω(ab) vanishes due to the amplified symmetry (in the version in which the tildes

are dropped it does not make sense to consider this variation as garδωr
b would be

antisymmetric by the a priori compatibility of D with the metric). Thus we have the
identity δLG

δωab = δLG
δω[ab] = δLG

δω̃ab .

But we have, using D̃ωa = 
a ,

δLG = 1
2ηabcd D̃δω̃ab ∧ ωc ∧ ωd = d[ 12ηabcdδω̃ab ∧ ωc ∧ ωd ]
−ηabcd ω̃

ab ∧ 
c ∧ ωd ∧ δω̃ab,

which proves Eq. (14).
The last equation (15) is not really necessary for the dynamics as it follows from

the other two, see Eq. (16). Anyway, we calculated its expression as follows, which
also provides another proof of (13) and (14).

We start from the expression LG = τ̃d ∧ωd . Then the variational derivatives follow
from the identity

δ(ωc ∧ τ̃c) = d

(
ηabcdω

c ∧
(
1

2
ωd ∧ δωb

a − 1

4
δgaeω

b ∧ Gde
))

−2τ̃a ∧ δωa + ηabcd

b ∧ ωd ∧ δωc

a

−1

2

(
gabτ̃c ∧ ωc + ηacde

(

c ∧ ωd ∧ Gbe + ωc ∧ ωd ∧ R̃eb

))
δgab, (21)

To prove (21) we will work out its left and right hand sides and show that the
obtained expressions agree. Let us start by computing the left hand side: we expand
out the expression ωc ∧ τ̃c using the definition of τ̃c given by (4) and the definition of
R̃ab given by (2). The result is, setting Gab := Dgab,

ωc ∧ τ̃c = 1

2
ηacbdω

c ∧ ωb ∧ Rda − 1

8
ηcdabω

c ∧ ωa ∧ Ged ∧ Geb. (22)

Next, we compute δ(ωc ∧ τ̃c) (the left hand side of (21)) obtaining

δ(ωc ∧ τ̃c)
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= 1
2

(
ηacbd

(
δωc ∧ ωb ∧ Rda + ωc ∧ δωb ∧ Rda + ωc ∧ ωb ∧ δRda)

+ωc ∧ ωb ∧ Rdaδηacbd

)
+ 1

8

(
−ωc ∧ ωa ∧ Ged ∧ Gebδηcdab

−ηcdab
(
δωc ∧ ωa ∧ Ged ∧ Geb + ωc ∧ δωa ∧ Ged ∧ Geb

+ωc ∧ ωa ∧ Ged ∧ δGeb + ωc ∧ ωa ∧ δGed ∧ Geb)) (23)

The procedure is now a straightforward but tedius computation that involves replac-
ing the variations of gab, ηabcd , Gab and Ra

b using the following relations

δgab = −gacgbdδgcd , δηabcd = 1

2
ηabcdg

ehδgeh , δRa
b = Dδωa

b , (24)

δGab = Dδgab − gbcδω
c
a − gacδω

c
b. (25)

Now, one can replace the exterior derivative that appears on the right hand side of
(21) by the exterior covariant derivative D getting

D

(
ηabcdω

c ∧
(
1

2
ωd ∧ δωb

a − 1

4
δgaeω

b ∧ Gde
))

= −1

2
ηabcdδω

a
e ∧ ωb ∧ ωc ∧ Gde

+ 1
4ηabcd

(
2Dδωb

a ∧ ωc ∧ ωd + 4Dωb ∧ δωc
a ∧ ωd − ωb ∧ ωc ∧ Gde ∧ Dδgae

)

+ 1
4 δgab

(
ηacde

(
2Dωc ∧ ωd ∧ Gbe + ωc ∧ ωd ∧ DGbe) − ηcde f ω

c ∧ ωd ∧ Gae ∧ Gb f
)

− 1
4 g

ab(2δωc
a ∧ ωd ∧ ωe ∧ Dηbcde + δgacω

d ∧ ωe ∧ Gc f ∧ Dηbde f
)
,

and compute the latter using the following structure equations

Dωa = T a, (26)

Dηabcd = 1

2
Ge

eηabcd , (27)

DGcr = −2R(cr). (28)

After a long computation one obtains an expression for the right hand side of (21) that
agrees with the value of δ(ωc ∧ τ̃c) obtained from (23) after using (24)–(25).

Appendix C: Proof of identity (16)

Let Aa
b be the transition functions obtained from suitable local trivializations of the

bundle π∗(E) and define Āa
b by the relation Aa

b Āb
c = Āa

b Ab
c = δac. The cocycle

relation of ωa is then given by

ω′a = Āa
bω

b. (29)
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This induces the following cocycle relations for ωa
b and gab

ω′r
b = Ār

aω
a
s A

s
b − Ac

bd( Ā
r
c) , g′

ab = gcd A
c
a A

d
b. (30)

Let us assume thatwe take a family of transition functions depending on a parameter

t , {(At )ab, ( Āt )ab}, and define Ȧa
b := d

dt (A
t )ab|t=0,

˙̄Aa
b := d

dt ( Ā
t )ab|t=0. Then if

we take the derivative with respect to t of (29)–(30) particularized for the family of
transition functions just defined, we get

δωa = ˙̄Aa
bω

b , δωa
b = ωa

c Ȧ
c
b − d( ˙̄Aa

b) + Ȧa
cω

c
b , δgab = gcb Ȧ

c
a + gad Ȧ

d
b,

(31)

where, as usual, we define the variations of the configuration variables ωa , ωa
b, gab

adapting (12) to the present situation. Next we assume that we have an action S =∫
M s∗L, where L is a function of ωa , ωa

b, gab and it does not change under (29). The
general variation δS is given by

δS =
∫
M
s∗

(
δL
δωa

∧ δωa
)

+
∫
M
s∗

(
δL

δωa
b

∧ δωa
b

)
+

∫
M
s∗

(
δL

δgab
δgab

)

+
∫
M
s∗(d�). (32)

If we particularize the above for the variation induced by the transformation (30), then,
on one hand δS = 0, and on the other, we may replace δωa , δωa

b, δgab by the values
given by (31). Using integration by parts in the resulting expression, the identity

d

(
δL

δωa
b

˙̄Aa
b

)
= D( ˙̄Aa

b) ∧ δL
δωa

b
+ ˙̄Aa

bD

(
δL

δωa
b

)
, (33)

and the the Stokes theorem on the boundary terms we deduce

0 =
∫
M

˙̄Ar
ss

∗
(

δL
δωr

∧ ωs − 2grb
δL
δgsb

− D

(
δL

δωr
s

))
. (34)

Given that the section s is arbitrary, the term in brackets must vanish, leading straight
to (16).
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