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1. Introduction

Let A, B, C be subsets of a finite group G. Let Prob(A, B, C) be the probability that if a and b are 
uniformly and randomly chosen elements from A and B respectively, then ab ∈ C. Recall that a subset of 
G is normal if it is invariant under conjugation by every element of G.

Theorem 1.1. There exists a universal constant δ > 0 such that whenever G is a finite simple group of Lie 
type and whenever A, B, C are subsets in G such that

(1) at least two of the three subsets A, B, C are normal in G and
(2) |A||B||C| > |G|3−δ/η2 for some given η with 0 < η < 1/4,
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then

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G|

and, for any g ∈ G, the number N of triples (a, b, c) ∈ A ×B × C such that abc = g satisfies

(1 − η) |A||B||C|
|G| < N < (1 + η) |A||B||C|

|G| .

It would be interesting to know whether Theorem 1.1 holds when Condition (1) is replaced by the condi-
tion that exactly one of the sets A, B, C are normal. If none of the sets A, B, C are normal, then a theorem 
of Kedlaya [7, Theorem 6.2] shows that ABC is not necessarily G under Condition (2) of Theorem 1.1. If 
all of A, B, C are normal, then our proof shows that η may be taken to satisfy 0 < η < 1.

One might ask about an explicit value of δ in Theorem 1.1. This depends on an explicit value of μ in 
Theorem 6.1, which is a theorem of Guralnick, Larsen and Tiep [6, Theorem 1.3]. On page 154 of the paper 
of Guralnick, Larsen and Tiep [6] it is mentioned that “The proof given” for Theorem 1.3 “could in principle 
yield explicit bounds but with very bad constants.”

Larsen, Shalev and Tiep [8, Theorem 7.4] and the second author and Pyber [12, Theorem 1.3] proved 
that there exists a universal constant δ > 0 such that whenever A, B, C are normal subsets in a finite 
simple group of Lie type G, each of size at least |G|1−δ, then ABC = G. Theorem 1.1 is an improvement of 
this result. Theorem 1.1 is also related to a theorem of Gowers. See the next section.

2. A theorem of Gowers and the Gowers trick

Let G be a finite group and let A, B, C be subsets of G. As in the Introduction, let Prob(A, B, C) be the 
probability that if a and b are uniformly and randomly chosen elements from A and B respectively, then 
ab ∈ C. Let k be the minimal degree of a non-trivial complex irreducible character of G. Gowers proved the 
following stronger form of [5, Theorem 3.3], which is implicit in its proof and which may be considered as 
the main result of [5].

Theorem 2.1 (Gowers). If η > 0 is such that |A||B||C| > |G|3/η2k, then

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G| .

The Gowers trick was obtained by Nikolov and Pyber [13, Corollary 1]. We state it in the following form.

Theorem 2.2. If η > 0 is such that |A||B||C| > |G|3/η2k, then for any g ∈ G, the number N of triples 
(a, b, c) ∈ A ×B × C such that abc = g satisfies

(1 − η) |A||B||C|
|G| < N < (1 + η) |A||B||C|

|G| .

In the next paragraph we will show that, in the statement of Theorem 1.1, we may assume that G is a 
classical simple group Cl(n, q) where n is the dimension of the natural module for the lift of G over the field 
of size q unless G is a unitary group when the field has size q2. Furthermore, we will show that we may also 
assume that in the statement of Theorem 1.1 this n is sufficiently large.

Let G be a finite simple group of Lie type of rank r. We have k > |G|1/8r2 by [4, Proposition 2.3]. Choose 
δ to be less than 1/8r2. In this case k > |G|δ and so |G|3−δ/η2 > |G|3/η2k for any given η > 0. Thus 
Theorem 1.1 follows from Theorem 2.1 and Theorem 2.2 when r is bounded. Therefore we may assume that 
r is unbounded, that is, G is a finite simple classical group Cl(n, q), where n is unbounded.
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3. Sets permuted

The aim of this section is to reduce the proof of Theorem 1.1 to the case when A and B are normal in 
G (see Proposition 3.4).

Let G be an arbitrary group. For arbitrary subsets X, Y , Z of G, let N (X, Y, Z) be {(x, y) ∈ X×Y |xy ∈
Z} and let X−1 = {x−1|x ∈ X}.

Lemma 3.1. For arbitrary subsets X, Y , Z of a group G, the three sets N (X, Y, Z), N (Y, Z−1, X−1), 
N (Z−1, X, Y −1) have the same cardinality.

Proof. Let φ1 be the map from the set N (X, Y, Z) to the set N (Y, Z−1, X−1) defined by φ1(x, y) =
(y, (xy)−1), for every (x, y) ∈ N (X, Y, Z). Let φ2 be the map from N (Y, Z−1, X−1) to N (X, Y, Z) de-
fined by φ2(y, z−1) = (zy−1, y), for every (y, z−1) ∈ N (Y, Z−1, X−1). We claim that both φ1 and φ2 are 
bijections and that they are inverses of one another. For this it is sufficient to see that the maps φ2 ◦ φ1
and φ1 ◦ φ2 are the identity maps on N (X, Y, Z) and on N (Y, Z−1, X−1) respectively. Indeed, for arbitrary 
(x, y) ∈ N (X, Y, Z), we have

(φ2 ◦ φ1)(x, y) = φ2(φ1(x, y)) = φ2((y, (xy)−1)) = ((xy)y−1, y) = (x, y)

and for arbitrary (y, z−1) ∈ N (Y, Z−1, X−1), we have

(φ1 ◦ φ2)(y, z−1) = φ1(φ2(y, z−1)) = φ1((zy−1, y)) = (y, (zy−1y)−1) = (y, z−1).

This shows that N (X, Y, Z) and N (Y, Z−1, X−1) are in bijection.
Finally, to prove that N (Y, Z−1, X−1) is in bijection with N (Z−1, X, Y −1), it is enough to repeat the 

argument above with (Y, Z−1, X−1) in place of (X, Y, Z). �
A consequence of Lemma 3.1 is the following.

Corollary 3.2. Let G be a finite group and let A, B, C be non-empty subsets of G. Then

N(B,C−1, A−1) = N(A,B,C) = N(C−1, A,B−1) (1)

and

|C|
|A| · Prob(B,C−1, A−1) = Prob(A,B,C) = |C|

|B| · Prob(C−1, A,B−1). (2)

Proof. Recall that for arbitrary non-empty subsets X, Y , Z in a finite group G, we defined N(X, Y, Z)
to be |N (X, Y, Z)| and Prob(X, Y, Z) to be N(X, Y, Z)/|X||Y |. Conclusion (1) is a direct consequence of 
Lemma 3.1 and (2) follows from (1). �

We introduce some more notation. Fix g ∈ G. For subsets X, Y, Z of G, set

N (X,Y, Z, g) = {(x, y, z) ∈ X × Y × Z|xyz = g}.

Lemma 3.3. Let G be a group, let X, Y, Z be subsets of G and let g ∈ G. Let Z be normal in G. The following 
hold.

(i) The sets N (X, Y, Z, g) and N (X, Z, Y, g) have the same cardinality.
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(ii) If Y is a normal subset in G, then the sets N (X, Y, Z, g) and N (Y, Z, X, g) have the same cardinality.

Proof. (i) Let η1 be the map from the set N (X, Y, Z, g) to the set N (X, Z, Y, g) defined by η1(x, y, z) =
(x, yzy−1, y) for every (x, y, z) ∈ N (X, Y, Z, g) and let η2 be the map from N (X, Z, Y, g) to N (X, Y, Z, g) de-
fined by η2(x, z, y) = (x, y, y−1zy) for every (x, z, y) ∈ N (X, Z, Y, g). We claim that η2◦η1 is the identity map 
on N (X, Y, Z, g) and that η1◦η2 is the identity map on N (X, Z, Y, g). For arbitrary (x, y, z) ∈ N (X, Y, Z, g), 
we have

(η2 ◦ η1)(x, y, z) = η2(η1(x, y, z)) = η2((x, yzy−1, y))

= (x, y, y−1(yzy−1)y) = (x, y, z)

and for arbitrary (x, z, y) ∈ N (X, Z, Y, g), we have

(η1 ◦ η2)(x, z, y) = η1(η2(x, z, y)) = η1((x, y, y−1zy))

= (x, y(y−1zy)y−1, y) = (x, z, y).

(ii) Let θ1 be the map from the set N (X, Y, Z, g) to the set N (Y, Z, X, g) defined by θ1(x, y, z) =
(xyx−1, xzx−1, x) for every (x, y, z) ∈ N (X, Y, Z, g) and let θ2 be the map from the set N (Y, Z, X, g)
to the set N (X, Y, Z, g) defined by θ2(y, z, x) = (x, x−1yx, x−1zx) for every (y, z, x) ∈ N (Y, Z, X, g). We 
claim that θ2 ◦ θ1 is the identity map on the set N (X, Y, Z, g) and that θ1 ◦ θ2 is the identity map on the 
set N (Y, Z, X, g). For arbitrary (x, y, z) ∈ N (X, Y, Z, g), we have

(θ2 ◦ θ1)(x, y, z) = θ2(θ1(x, y, z)) = θ2((xyx−1, xzx−1, x))

= (x, x−1(xyx−1)x, x−1(xzx−1)x) = (x, y, z)

and for arbitrary (y, z, x) ∈ N (Y, Z, X, g), we have

(θ1 ◦ θ2)(y, z, x) = θ1(θ2(y, z, x)) = θ1((x, x−1yx, x−1zx))

= (x(x−1yx)x−1, x(x−1zx)x−1, x) = (y, z, x). �
Note that if G is finite, then |N (X, Y, Z, g)| = N(X, Y, gZ−1).

Proposition 3.4. If Theorem 1.1 is true in the special case when A and B are normal, then Theorem 1.1 is 
true in general.

Proof. Let A, B, C be subsets of G satisfying conditions (1) and (2) of Theorem 1.1. We have two cases to 
consider: (i) A and C are normal in G and (ii) B and C are normal in G. Observe that if X is a normal set 
in G then X−1 is also normal in G.

If A and C are normal in G, then our hypothesis gives

(1 − η) |B|
|G| < Prob(C−1, A,B−1) < (1 + η) |B|

|G| . (3)

Applying (2), we deduce that

(1 − η) |C|
< Prob(A,B,C) < (1 + η) |C|

,
|G| |G|
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which is the first conclusion of Theorem 1.1. Fix g in G. Let N = |N (A, B, C, g)|. This is equal to 
N(A, B, gC−1). By applying our hypothesis to the triple (A, C, B), we deduce that

(1 − η) |A||B||C|
|G| < |N (A,C,B, g)| < (1 + η) |A||B||C|

|G| .

But

|N (A,C,B, g)| = |N (A,B,C, g)| = N

by Lemma 3.3, and this proves the second conclusion of Theorem 1.1 in this special case.
If B and C are normal in G, then by applying our hypothesis to the triple (B, C−1, A−1) in place of 

(A, B, C), we deduce that

(1 − η) |A|
|G| < Prob(B,C−1, A−1) < (1 + η) |A|

|G| . (4)

We get

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G| ,

by applying (2). Fix g ∈ G. Our hypothesis for the triple (B, C, A) implies that

(1 − η) |A||B||C|
|G| < |N (B,C,A, g)| < (1 + η) |A||B||C|

|G| .

But

|N (B,C,A, g)| = |N (A,B,C, g)| = N

by Lemma 3.3, and this proves the second conclusion of Theorem 1.1 in this special case too. �
From now on, in order to prove our main result, we may assume that in the statement of Theorem 1.1, 

A and B are normal.

4. The second conclusion of Theorem 1.1

We claim that the second conclusion of Theorem 1.1 follows from the first. For this we may assume that 
A and B are normal in G. Fix g ∈ G. The number N of triples (a, b, c) ∈ A × B × C such that abc = g is 
equal to N(A, B, gC−1). Observe that |gC−1| = |C| (and C need not be normal). We get

(1 − η) |C|
|G| < Prob(A,B, gC−1) < (1 + η) |C|

|G|

by the first conclusion. The second conclusion now follows from the fact that Prob(A, B, gC−1) =
N(A, B, gC−1)/|A||B|.

From now on, we focus on the first conclusion of Theorem 1.1.
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5. Changing Hypothesis (2)

We will show that we may replace Hypothesis (2) of Theorem 1.1 by (2’) below. Let A, B, C be subsets 
in G. Let η > 0 and let δ > 0 be as in the statement of Theorem 1.1. Hypothesis (2) of Theorem 1.1 states 
that |A||B||C| is larger than |G|3−δ/η2. This implies that |A|, |B|, |C| are larger than |G|1−δ/η2. On the 
other hand, if |A|, |B|, |C| are larger than |G|1−(δ/3)/η2, then Hypothesis (2) of Theorem 1.1 holds. By 
changing δ to δ/3, in the rest of the paper we will replace Hypothesis (2) by the following.

(2’) The subsets A, B, C have size larger than |G|1−δ/η2.

6. Three conjugacy classes

We will prove Theorem 1.1 in the case when A, B, C are conjugacy classes.
Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G. For an element 

g ∈ G and a character χ ∈ Irr(G), it is useful to bound |χ(g)| in terms of a fixed power of χ(1). Such 
character bounds were first used in the fundamental paper by Diaconis and Shahshahani [2] where they 
were applied to random walks on symmetric groups. The following is a special case of an important theorem 
of Guralnick, Larsen, Tiep [6, Theorem 1.3].

Theorem 6.1 (Guralnick, Larsen, Tiep). There exists a universal constant μ > 0 such that whenever G is a 
classical simple group and g ∈ G satisfies |CG(g)| ≤ |G|μ, then |χ(g)| ≤ χ(1)1/10 for every χ ∈ Irr(G).

Let A, B, C be conjugacy classes of a finite group G and let a, b, c be representatives in A, B, C
respectively. We have

N(A,B,C) = |A||B||C|
|G|

∑
χ∈Irr(G)

χ(a)χ(b)χ(c)
χ(1) (5)

by [1, p. 43-44].
For any positive number x, the well-known Witten zeta function ζG(x) is defined to be 

∑
χ∈Irr(G) χ(1)−x. 

A special case of an important theorem of Liebeck and Shalev [11, Theorem 1.1] is the following.

Theorem 6.2 (Liebeck, Shalev). For any sequence of non-abelian finite simple groups G �= PSL(2, q) (for any 
prime power q) and any x > 2/3, ζG(x) → 1 as |G| → ∞.

We are now in the position to prove Theorem 1.1 in the special case when the sets A, B, C are conjugacy 
classes in G. For this, we may assume that G is a classical simple group Cl(n, q) where n is sufficiently large 
and we may replace Hypothesis (2) by (2’).

Theorem 6.3. Let G be a classical simple group Cl(n, q). Fix η > 0. There is a δ with 0 < δ < 1 such that 
whenever A, B, C are conjugacy classes of G each of size larger than |G|1−δ/η2, then

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G| .

Proof. Let μ be as in Theorem 6.1. Let A, B, C be conjugacy classes of G each of size larger than |G|1−δ/η2 >

|G|1−μ for some δ. As n may be chosen large enough by the last paragraph of Section 2, |G| may be chosen 
large enough and so we may assume that ζG(7/10) − 1 < η by Theorem 6.2. Let a ∈ A, b ∈ B and c ∈ C. 
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We have |χ(a)|, |χ(b)|, |χ(c)| all at most χ(1)1/10 for every (nontrivial) complex irreducible character χ of 
G by Theorem 6.1.

We have by (5) that

∣∣∣∣N(A,B,C) − |A||B||C|
|G|

∣∣∣∣ = |A||B||C|
|G|

∣∣∣∣∣∣
∑

1�=χ∈Irr(G)

χ(a)χ(b)χ(c)
χ(1)

∣∣∣∣∣∣

≤ |A||B||C|
|G|

∑
1�=χ∈Irr(G)

|χ(a)||χ(b)||χ(c)|
|χ(1)|

≤ |A||B||C|
|G|

∑
1�=χ∈Irr(G)

χ(1)−7/10

= |A||B||C|
|G| (ζG(7/10) − 1)

<
|A||B||C|

|G| η.

The result follows. �
7. Three normal sets

We will prove Theorem 1.1 in the case when the subsets A, B, C are normal.

Lemma 7.1. Let G = Cl(n, q). There exists a universal constant c such that

k(G) ≤ |G|c/n.

Proof. We have k(G) ≤ qc1n for some universal constant c1 by [9, Theorem 1.1] (see also [3, Corollary 1.2]). 
By the order formulas for finite simple classical groups, there exists a universal constant c2 > 0 such that 
|G| = |Cl(n, q)| ≥ qc2n

2 . We get

k(G) ≤ qc1n = (qc2n
2
)
c1/(c2n)

≤ |G|c/n,

where c = c1/c2. �
Lemma 7.2. Let G = Cl(n, q). Fix η > 0 and δ > 0. Let X be a normal subset of G with |X| > |G|1−δ/η2. 
For any fixed α > δ, the set X contains a conjugacy class Y of G with |Y | > |G|1−α/η2, provided that n is 
sufficiently large.

Proof. If no such conjugacy class Y of G is contained in the normal subset X of G, then

|G|1−δ/η2 < |X| ≤ k(G)|G|1−α/η2 ≤ |G|1+(c/n)−α/η2

by Lemma 7.1. Thus c/n > α− δ. This is a contradiction since c/n tends to 0 as n goes to infinity. �
Proof of Theorem 1.1 in the case when A, B, C are normal. Let G be a classical simple group Cl(n, q). 
Here q is a prime power. The proof will not use this quantity. On the other hand, n is the dimension 
of the natural module for the lift of G. We are allowed to take n to be sufficiently large. Inside the proof N1, 



8 F. Fumagalli, A. Maróti / Journal of Pure and Applied Algebra 229 (2025) 107833
N2, N3 will be integers and we will take n to be at least max{N1, N2, N3}. The symbols η and δ are positive 
real numbers both appearing in the statement of Theorem 1.1. We choose α larger than δ to introduce large 
conjugacy classes. We will also use the symbol c from Lemma 7.1. Finally, we use β for a fixed positive real 
number and this will appear in the middle of the proof.

Fix η with 0 < η < 1. Let δ > 0 later to be specified. Let A, B, C be normal subsets of G each of 
size larger than |G|1−δ/η2. Let X ∈ {A, B, C}. Let X1 be the union of all conjugacy classes in G which 
are contained in X and each of which have size larger than |G|1−α/η2 for some fixed α > δ soon to be 
determined (in the end of the proof we will require δ > 0 to be small and α > 0 such that α > 3δ). Let us 
call such conjugacy classes large. Observe that n may be taken to be sufficiently large. There is an integer 
N1 such that whenever n ≥ N1, the normal set X1 is non-empty by Lemma 7.2. Let n ≥ N1.

Let Ka1 , . . . , Kar
be the list of (distinct) large conjugacy classes of G contained in A1. Similarly, let 

Kb1 , . . . , Kbs be the list of large conjugacy classes of G contained in B1, and let Kc1 , . . . , Kct be the list of 
large conjugacy classes of G contained in C1. Let ai, bj , cl be fixed indices such that 1 ≤ i ≤ r, 1 ≤ j ≤ s, 
1 ≤ l ≤ t. There is a choice of δ > 0 in Theorem 6.3 with η/2 such that

(1 − (η/2))
|Kai

||Kbj ||Kcl |
|G| < N(Kai

,Kbj ,Kcl) < (1 + (η/2))
|Kai

||Kbj ||Kcl |
|G| .

This immediately implies that

(1 − (η/2)) |A1||B1||C1|
|G| <

r∑
i=1

s∑
j=1

t∑
l=1

N(Kai
,Kbj ,Kcl) < (1 + (η/2)) |A1||B1||C1|

|G| .

Since

N(A1, B1, C1) =
r∑

i=1

s∑
j=1

t∑
l=1

N(Kai
,Kbj ,Kcl),

it follows that

(1 − (η/2)) |A1||B1||C1|
|G| < N(A1, B1, C1) < (1 + (η/2)) |A1||B1||C1|

|G| . (6)

For X2 = X \X1, we have, by Lemma 7.1, that

|X2| ≤ k(G)|G|1−α/η2 ≤ |G|1+(c/n)−α/η2 ≤ β|G|1−δ/η2 < β|X| (7)

for any fixed β > 0, provided that n ≥ N2 for some fixed integer N2. Let n ≥ max{N1, N2}. It follows that

|X1| > (1 − β)|X|. (8)

Let i, j, l ∈ {1, 2}. Observe that N(Ai, Bj , Cl) ≤ |G| min{|Ai|, |Bj |, |Cl|}. We have

N(A,B,C) =
2∑

i=1,j=1,l=1

N(Ai, Bj , Cl) ≤ N(A1, B1, C1) + 7|G|max{|A2|, |B2|, |C2|}.

Since 7|G| max{|A2|, |B2|, |C2|} ≤ 7|G|2+(c/n)−α/η2 by (7), it follows from this that

N(A1, B1, C1) ≤ N(A,B,C) ≤ N(A1, B1, C1) + 7|G|2+(c/n)−α/η2. (9)
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Formulas (9), (6), and (8) give

N(A,B,C) ≥ N(A1, B1, C1) > (1 − (η/2)) |A1||B1||C1|
|G| > (1 − (η/2))(1 − β)3 |A||B||C|

|G| .

For β < 1 − (2(1 − η)/(2 − η))1/3, we have (1 − (η/2))(1 − β)3 > 1 − η, that is,

N(A,B,C) > (1 − η) |A||B||C|
|G| . (10)

On the other hand, (9) and (6) provide

N(A,B,C) < (1 + (η/2)) |A||B||C|
|G| + 7|G|2+(c/n)−α/η2. (11)

Now

7|G|2+(c/n)−α/η2 ≤ |G|2−3δ/(2η) ≤ (η/2) |A||B||C|
|G| , (12)

provided that α > 3δ and n is sufficiently large, at least an integer N3. Let n ≥ max{N1, N2, N3}. Formulas 
(11) and (12) give

N(A,B,C) < (1 + η) |A||B||C|
|G| . (13)

Finally, (10) and (13) provide (the first conclusion of) Theorem 1.1 in the case when A, B, C are normal 
subsets in G. �
8. Product mixing

Partly motivated by Theorem 2.1, for positive numbers ε and η, Lifshitz and Marmor [10, Section 2.3]
defined a finite group G to be an (ε, η)-mixer if for all subsets A, B, C of G with |A|, |B|, |C| all at least 
ε|G|, we have

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G| .

For example, since the minimal degree of a non-trivial complex character of the alternating group An is at 
least n − 4, Theorem 2.1 implies that An is an (ε, η)-mixer for ε = Cn−1/3 where C = C(η) is a constant 
depending only on η. Lifshitz and Marmor also introduced a weaker condition for a finite group than that 
of an (ε, η)-mixer. They call a finite group G normally an (ε, η)-mixer if for all normal subsets A, B, C of 
G with |A|, |B|, |C| all at least ε|G|, we have

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G| .

(We remark that these properties were defined for η = 0.01.)
The following may be found in [10, Theorem 2.5].

Theorem 8.1 (Lifshitz, Marmor). For any η > 0, there exists a constant c > 0, such that An is normally an 
(n−cn1/3

, η)-mixer.
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It is shown in [10, Theorem 8.1] that Theorem 8.1 is best possible in the sense that there exists a constant 
C (depending on η) such that An is not normally an (n−Cn1/3

, η)-mixer.
It would be interesting to extend Theorem 8.1 in the spirit of Theorem 1.1, however with our current 

method this is not possible.
In the rest of the paper we will work with the following definition.

Definition 8.2. Let ε and η be positive real numbers less than 1. Let i ∈ {1, 2, 3}. The finite group G is 
an (ε, η, i)-mixer if whenever A, B, C are subsets of G each of size at least ε|G| and i of these subsets are 
normal in G, then

(1 − η) |C|
|G| < Prob(A,B,C) < (1 + η) |C|

|G| .

For a positive real number ε less than 1 and for a finite group G, let kε(G) ≥ 1 denote the number of 
conjugacy classes K of G such that |K| < ε|G|.

Proposition 8.3. Let η and ε be positive real numbers satisfying the inequalities η < 1/2 and ε < min{1, η ·
kε(G)−1(1 − η)−2}. Let G be a finite group which is an (ε, η, 3)-mixer. Let ε′ = (ε · kε(G)/η)1/2 < 1. If A, 
B, C are subsets of G each of size at least ε′|G| with A and B normal in G, then

(1 − 2η) |C|
|G| < Prob(A,B,C) < (1 + 2η) |C|

|G| .

Proof. Let A, B, C be subsets of G each of size at least ε′|G| with A and B normal in G. Since N(A, B, C) =∑
c∈C N(A, B, {c}), we have

Prob(A,B,C) = 1
|A||B|

∑
c∈C

N(A,B, {c}). (14)

Let m be the number of conjugacy classes of G. Let the list of conjugacy classes of G be K1, . . . , Km

arranged in such a way that the conjugacy classes K1, . . . , Kt have sizes at least ε|G| and the conjugacy 
classes Kt+1, . . . , Km have sizes less than ε|G|. Let K be the union of the conjugacy classes Kt+1, . . . , Km. 
For each i ∈ {1, . . . , m}, let ci be an element from Ki.

Since A and B are normal in G, the number N(A, B, {ci}) is independent from the choice of ci in Ki. 
This gives

∑
c∈C

N(A,B, {c}) =
m∑
i=1

|C ∩Ki| ·N(A,B, {ci}) =
m∑
i=1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
. (15)

From (14) and (15) we get

Prob(A,B,C) = 1
|A||B|

( m∑
i=1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
)

=

= 1
|A||B|

( t∑
i=1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
+

m∑
i=t+1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
)
. (16)

Since N(A, B, Ki) ≤ |A||Ki| for every i in {1, . . . , m} and |B|, |C| ≥ ε′|G|, we have
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1
|A||B|

m∑
i=t+1

|C ∩Ki| ·
N(A,B,Ki)

|Ki|
≤ 1

|B|

m∑
i=t+1

|C ∩Ki|

≤ |C ∩K|
|B| ≤ |C ∩K|

ε′|G| ≤ |K|
ε′|G|

≤ kε(G)ε|G|
ε′|G| = kε(G)(ε/ε′) = ηε′

≤ η
|C|
|G| . (17)

Formulas (16) and (17) give

0 ≤ Prob(A,B,C) −
( t∑

i=1

|C ∩Ki|
|Ki|

· Prob(A,B,Ki)
)
≤ η

|C|
|G| . (18)

Observe that ε′ ≥ ε (since kε(G) ≥ 1 > η/(1 − η)). Since G is an (ε, η, 3)-mixer, we have

(1 − η) |Ki|
|G| < Prob(A,B,Ki) < (1 + η) |Ki|

|G| (19)

for every i ∈ {1, . . . , t}. Inequalities (18) and (19) give the required upper bound

Prob(A,B,C) < (1 + η)
( t∑

i=1

|C ∩Ki|
|G|

)
+ η

|C|
|G|

= (1 + η) |C ∩ (G \K)|
|G| + η

|C|
|G|

≤ (1 + 2η) |C|
|G| .

Inequalities (18) and (19) also give

Prob(A,B,C) ≥
t∑

i=1

|C ∩Ki|
|Ki|

· Prob(A,B,Ki)

> (1 − η)
t∑

i=1

|C ∩Ki|
|G|

= (1 − η) |C ∩ (G \K)|
|G|

≥ (1 − η)
( |C| − |K|

|G|
)
. (20)

Since |K| ≤ kε(G)ε|G|, inequality (20) gives

Prob(A,B,C) > (1 − η) |C|
|G| − (1 − η) |K|

|G| ≥ (1 − η) |C|
|G| − (1 − η)kε(G)ε. (21)

Since |C| ≥ ε′|G|, we have η|C|/|G| ≥ ηε′. Since ε′ = (εkε(G)/η)1/2, we get η|C|/|G| ≥ (ηεkε(G))1/2. In view 
of this and (21), in order to complete the proof of the lemma, it is sufficient to show that (ηεkε(G))1/2 ≥
(1 − η)kε(G)ε. This inequality is equivalent to the inequality ε ≤ η(1 − η)−2kε(G)−1. But this is part of the 
conditions of our lemma. �
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We deduce the following consequence of Proposition 8.3. This is not needed for the proof of Theorem 1.1.

Theorem 8.4. Let G be a finite group. Let η and ε be positive real numbers satisfying the inequalities η < 1/2
and ε < min{1, η · kε(G)−1(1 − η)−2}. Let ε′ = (ε · kε(G)/η)1/2 < 1. If G is an (ε, η, 3)-mixer, then it is also 
an (ε′, 2η, 2)-mixer.

Proof. Let G be an (ε, η, 3)-mixer. Let A, B, C be subsets of G each of size at least ε′|G|. Assume that two 
of the sets A, B, C are normal in G. If A and B are normal in G, then the result follows by Proposition 8.3. 
Let A and C be normal in G. Then

(1 − 2η) |B
−1|

|G| < Prob(C−1, A,B−1) < (1 + 2η) |B
−1|

|G|

by Proposition 8.3. Thus

(1 − 2η) |C|
|G| <

|C|
|B| · Prob(C−1, A,B−1) < (1 + 2η) |C|

|G| .

Since

|C|
|B| · Prob(C−1, A,B−1) = Prob(A,B,C)

by Corollary 3.2, the result follows. Finally, let B and C be normal in G. Then

(1 − 2η) |A
−1|

|G| < Prob(B,C−1, A−1) < (1 + 2η) |A
−1|

|G|

by Proposition 8.3. Thus

(1 − 2η) |C|
|G| <

|C|
|A| · Prob(B,C−1, A−1) < (1 + 2η) |C|

|G| .

Since

|C|
|A| · Prob(B,C−1, A−1) = Prob(A,B,C)

by Corollary 3.2, the result follows in this case too. The proof is complete. �
9. Proof of Theorem 1.1

In Section 2 we showed that, in order to prove Theorem 1.1, we may assume that G is a finite simple 
classical group Cl(n, q) with n large enough. Given η with 0 < η < 1/4 and δ > 0, we may also replace 
Hypothesis (2) by (2’). In Section 4 we also showed that it is sufficient to establish the first conclusion 
of Theorem 1.1. We may assume that A and B are normal in G by Proposition 3.4. If C is normal in 
G, Theorem 1.1 follows from Section 6. In the language of Definition 8.2, G is an (ε, η, 3)-mixer where 
ε = |G|−δ/η2. By changing η to η/2, we also have that G is an (ε, η/2, 3)-mixer where ε = 4|G|−δ/η2. 
Finally, assume that C is not normal in G. Observe that kε(G) ≥ 1 since ε|G| = 4|G|1−δ/η2 > 1 for n large 
enough. We have kε(G) ≤ k(G) ≤ |G|c/n by Lemma 7.1. It follows that

ε = 4|G|−δ/η2 < min{1, η(1 − η)−2|G|−c/n},



F. Fumagalli, A. Maróti / Journal of Pure and Applied Algebra 229 (2025) 107833 13
for any given δ > 0, provided that n is sufficiently large. Now G is an (ε′, η, 2)-mixer by Proposition 8.3, 
where

ε′ = (ε · kε(G)/η)1/2 ≤ (2/η3/2)|G|((c/n)−δ)/2.

This is at most |G|−δ/3/η2 provided that n is sufficiently large. In this case the first conclusion of Theorem 1.1
holds with δ/3 in place of δ.
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