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Abstract

In recent years, two major subjects have emerged in the scientific com-

munity: artificial intelligence and sustainability. These topics converge in

developing data-driven techniques for detecting malfunctions or inefficien-

cies in energy generation systems. Extensive research exists on applications

for large-scale generators, however, smaller generators, particularly micro-

cogenerators, have received minor attention. This study focuses on the YAN-

MAR’s best-selling micro-cogenerator model in Europe. However, findings

from this investigation can be extended to a diverse range of sizes and mod-

els. Dealing with real data, this thesis explores various facets related to the

challenge of anomaly detection in industrial components, thus giving rise

to multiple contributions. In particular, it addresses anomaly detection in

energy systems by tailoring a general deep learning technique, the autoen-

coder, to handle time series data. The study presents a general methodology

to determine the optimal dataset size for training an autoencoder. An ap-

plication of the algorithm to predict cogenerator faults is proposed after

estimating the dataset size that offers the best compromise for the YAN-

MAR micro-cogenerator under analysis. False positives are reduced through

a frequency-based technique. Additionally, a failure root cause analysis is

conducted to identify features associated with abnormalities. The proposed

approach is validated by predicting various fault types several weeks prior,

potentially preventing breakdowns and inefficiencies. Furthermore, the study

applies a technique to quantify the algorithm’s detection confidence. This

technique enables the development of condition-based maintenance strate-

gies tailored to the fault’s uncertainty level. Finally, a method is proposed

to retrain the model, ensuring its performance despite variations due to the

system’s aging and seasonal operations which may lead to erroneous abnor-

mality detections. By addressing these challenges, this research significantly

advances autoencoder-based methodologies and anomaly detection in micro-

cogenerators. Rooted in real-world industrial data, the developed procedures

offer practical solutions to enhance the reliability and efficiency of energy

systems. This work attempts to fill the gap between artificial intelligence

techniques and their application in industrial contexts, providing valuable

insights for future research and practical implementations.

Keywords: anomaly detection, autoencoder, energy systems, cogeneration

unit, time-series, artificial intelligence, deep learning, train-set size, false pos-
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Chapter 1

Introduction

1.1 Problem Statement

In recent years, the field of Artificial Intelligence (AI) has experienced sig-

nificant growth, driven by advancements in hardware capabilities, increased

computational power, and the availability of vast amounts of data. This

growth has been further fueled by the development of Internet of Things

(IoT) infrastructures, leading to a digital transition across various indus-

tries. One area that has witnessed substantial advancements is mainte-

nance, specifically in keeping machinery and equipment in optimal condi-

tion through repairs, problem correction, and periodic adjustments. Tra-

ditional maintenance strategies, such as Time-Based Maintenance (TBM),

have evolved into more modern approaches, such as Condition-Based Main-

tenance (CBM), due to the opportunities presented by advancements in AI.

In the context of industrial energy plants, maintenance strategies have tra-

ditionally relied on TBM, where equipment or systems are serviced at pre-

determined intervals, regardless of their actual condition. This usually in-

volves regular inspection, cleaning, and replacing worn or consumable parts.

Ranges are often based on manufacturer recommendations, industry stan-

dards, or previous experience. Although TBM aims to prevent equipment

failure and reduce unscheduled repairs, if maintenance intervals are tempo-

rally too tight, interventions may result in redundancy leading to an incre-

ment of costs, on the other hand, if they are spread out over time, faults can

occur damaging devices and causing plant shutdowns.

Nonetheless, in the era of big data and Industry 4.0, other maintenance

1



2 Introduction

strategies are considered more practical, such as CBM and Predictive Main-

tenance (PM); both approaches focus on monitoring the actual condition of

the equipment using various sensors, and then performing maintenance only

when necessary. Ahmad et al. [2] gives an overview of industrial applications

of TBM and CBM. With the advent of AI and cloud computing, a growing

number of facility managers strive to transition towards a data-driven main-

tenance approach. The main reason is customer loyalty: indeed, a machine

that seldom breaks and proves to be reliable generates invaluable benefits to

the brand reputation.

Recently, another topic to be taken into consideration, which in the past

was often overlooked, is the increasing costs of energy joined with the Euro-

pean will to become the first climate-neutral continent that poses attention

to generators’ efficiency. A maintenance intervention must be planned not

only to prevent a failure but also to mitigate machines’ wearing and loss of

performance.

Anomaly detection, intended as the identification of rare items, events, or

observations that deviate significantly from the majority of the data and

do not conform to a well-defined notion of normal behavior, plays a critical

role in industrial energy plants, particularly in detecting abnormalities in

machine behavior that could lead to energy inefficiency, increased consump-

tion, or costly breakdowns. Machine learning and deep learning models have

arisen as the most promising methodologies for addressing these issues [99].

Deep learning, a powerful machine learning technique inspired by the human

brain’s structure and function, has emerged as a leading approach. Utilizing

artificial neural networks with multiple hidden layers, deep learning can ex-

tract features from data and encode them into different levels of abstraction,

outperforming traditional machine learning methods in various applications.

However, the success of deep learning heavily relies on extensive datasets [34].

For machines operating at lower power levels, maintenance or interventions

are typically carried out when the presence of a problem is certain, neces-

sitating not only anomaly detection but also identification of the sensors

involved and confidence levels for the anomalies. This further reinforces the

importance of CBM [1].

1.1.1 Root Cause Analysis and Failure Identification

Root cause analysis and component failure identification play a key role

in the successful implementation of an anomaly detection routine. When
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anomalies occur within a system, merely addressing the surface-level symp-

toms might provide temporary relief but will not prevent future occurrences.

By delving into root cause analysis, one can uncover the underlying factors

that led to the anomaly, thus enabling the development of targeted and ef-

fective interventions. Identifying the specific component that failed is crucial

as it facilitates the response process. Instead of conducting a general survey

and potentially wasting time and resources, knowing the exact component

allows technicians to arrive on-site equipped with the appropriate tools and

spare parts, ready to tackle the problem head-on. This approach enhances

efficiency, minimizes downtime, and fosters proactive maintenance strategies,

ultimately resulting in more reliable and optimized system performance.

1.1.2 Uncertainty Quantification

Another aspect that has central importance in practical applications is hav-

ing a robust uncertainty quantification of the anomaly detection algorithm

output. Anomaly detection algorithms can provide valuable insights into

potential issues within a system, but blindly relying on their output can

lead to costly and unnecessary maintenance actions. By quantifying uncer-

tainty, the algorithm gains a measure of confidence in its predictions; in this

way, it is possible to set a threshold tailored to the specific importance of

the system at hand. Less crucial systems might demand higher confidence

levels before initiating maintenance actions, ensuring that interventions are

targeted and justified. In contrast, critical systems might accept lower cer-

tainty thresholds, facilitating proactive maintenance measures. Uncertainty

quantification fosters a risk-based approach, reducing the chances of unneces-

sary downtime or premature interventions, while also enabling more informed

decision-making to optimize the overall system reliability and performance.

1.1.3 Domain Adaptation

Small facilities are often managed by insufficient staff who cannot closely

monitor and track all the installations for which they are responsible. This

is because the cost savings from efficiency improvement or basic mainte-

nance do not justify a significant allocation of human resources. Therefore,

it is crucial to automate the detection of failures or deteriorations as much

as possible while minimizing false positives (detected warning signals for

anomalies that are not really present). Indeed, an algorithm that produces
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many false positives not only becomes unreliable but also consumes a con-

siderable amount of time for an operator who must oversee multiple plants

to do the anomaly check. For this reason, addressing the problem of domain

adaptation is essential to prevent non-dangerous trends in the machine (e.g.,

due to seasonal variations in the system) from being flagged as anomalies

merely because the algorithm has not encountered them during the training

phase.

1.1.4 Objectives

The proposed doctoral thesis aims to combine YANMAR’s expertise and

data in the domain of energy generators and internal combustion engines

with signal filtering, data analysis, and machine learning techniques to de-

velop a methodology for detailed diagnostic activities. The primary objec-

tive encloses four critical aspects: firstly, identifying potential anomalous

states in the machinery under analysis; secondly, determining the root cause

of these faults; thirdly, quantifying the algorithm’s output confidence, and

fourthly experimenting with the capability of the algorithm to adapt to new

patterns when acquiring online data.

As a final consideration, a detail that adds significance to the already in-

teresting objectives described is the fact that the work in question aims to

operate with real data rather than toy datasets, as can occur in pure research.

The greatest challenges to be faced in this framework include:

• obtaining availability and collaboration from domain experts, a task

that may seem straightforward but is not guaranteed;

• finding relatively clean, non-noisy data to study the behavior of the

relevant CHP units;

• retrieving comprehensive and statistically representative data, espe-

cially in the context of energy generators where an essential consider-

ation involves accounting for the seasonality of data patterns;

• identifying CHP units where domain experts can confirm the normal

behavior of the machine for characterization using data-driven tech-

niques;

• CHP units where domain experts are aware of the presence of an

anomaly and its resolution;
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• when identifying an anomaly, being able to understand when the anomaly

began. The difficulty in establishing an exact moment of anomaly onset

poses a significant challenge in evaluating results using metrics com-

monly employed in the literature.

1.2 Contributions

This work attempts to explore and develop four essential topics. Firstly,

it aims to establish a versatile methodology applicable to many variants of

autoencoders. The primary objective is to determine the optimal dataset

size required for effectively training an autoencoder, the chosen model for

addressing the problems tackled in this thesis, enabling it to reconstruct spe-

cific inputs without encountering overfitting issues. The second topic deals

with a practical anomaly detection and root cause analysis challenge applied

to a YANMAR Combined Heat and Power (CHP) system. This particu-

lar system plays a crucial role in meeting the energy needs of the facility

where it is installed, making efficient anomaly detection vital for its smooth

operation. The third topic assumes a paramount role in enhancing CBM

strategies. It focuses on incorporating critical information related to the

level of uncertainty associated with each anomaly detection, further refining

maintenance decisions, and overall system reliability. Lastly, a partial re-

training strategy is used to cope with false positives generated by temporal

domain shift.

Through these comprehensive investigations, this work seeks to contribute

significantly to the fields of autoencoder-based methodologies and anomaly

detection in CHP systems, utilizing real-world data from the industrial do-

main with all the associated challenges and complexities.

Chapter 2 addresses a comprehensive state-of-the-art investigation, covering

various topics related to anomaly detection. It spans from its application in

the energy domain to the subset of algorithms known as novelty detection, ex-

tending toward the utilization of time-series data. Furthermore, the chapter

delves into an in-depth exploration of deep learning techniques, particularly

focusing on the autoencoder. Lastly, there is a sector-specific analysis per-

taining to the concept of predictive uncertainty quantification and domain

adaptation, aimed at mitigating the intrinsic temporal variations within the

data. Chapter 3, on the other hand, provides an overview of the fundamental

techniques employed in this thesis, specifically going through the mathemat-



6 Introduction

ical theory of certain cornerstones upon which the work is built. Chapter 4

introduces the subject of the study, the YANMAR micro CHP, from a purely

engineering and plant-oriented perspective. Chapter 5 aims to fill a technical

gap present in the literature: a great number of works propose the appli-

cation of autoencoders to a variety of problems even though the procedure

to size the train-set is not provided. Researchers are prone to exploit the

whole available data to maximize their model’s performance; unluckily this

behavior may lead to unpleasant drawbacks:

• implementing an autoencoder that needs a lot of data to be trained is

against the industry trend to foster plug-and-play products. Indeed, it

is challenging to sell a product that will be operative months after the

installation;

• using a big train-set may lead to training the autoencoder with data

that are far in the past and so less representative;

• using a small train-set may lead the researcher to neglect some deep

learning techniques, like autoencoders, due to poor performance and

underfitting.

In summary, Chapter 5 contributes to the literature by presenting:

• a methodology to define an optimal train-set size by considering a pre-

tuned autoencoder. The methodology has been validated over three

real case studies demonstrating that, when dealing with a 20 kWe

CHP unit, it is acceptable to collect 6 weeks of data to capture the

system’s normal behavior;

• a general procedure to define the retrain frequency. In particular, it

has been explained how a CHP exhibits daily patterns and, according

to the computational resources availability, it can be useful to retrain

the algorithm every 24 hours;

• a cross-validation routine to evaluate the methodology outcomes re-

specting the constraint of not shuffling time-series data. This routine

produces an optimized splitting of data to assess the autoencoder’s

reconstruction performance when varying the train-set size.

Chapter 6 tackles an untreated problem in the literature: anomaly detection

and root cause analysis applied to micro-CHP units. In particular, this chap-

ter aims to fill the technical gap by introducing a model to detect abnormal
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behaviors, developing a post-processing technique to reduce false positives

detection, and devising a method to address which unit components led to

the abnormal behavior. The main outcomes of this part of the work are:

• a deep learning architecture trained with normal data capable of de-

tecting CHP’s anomalies;

• a frequency-based filtering procedure that improves algorithm robust-

ness by masking unreliable detections;

• a root cause analysis technique to highlight which measurements of the

unit deviate from the healthy status.

Chapter 7 investigates an unexplored aspect in the current literature, namely

the utilization of Bayesian quantification for anomaly detection in micro-

CHP units. Specifically, an existing autoencoder architecture is enhanced

to accommodate the incorporation of Monte Carlo Dropout (MCD) layers.

The challenge lies in striking a balance that preserves the detection perfor-

mance of the model despite the regularization introduced by the dropout

layers, while also enabling the quantification of anomaly severity both from

a system-level perspective and from the individual contribution of each sig-

nal.

Chapter 8 addresses the challenge of domain adaptation to prevent false

positives, and it explores whether fine-tuning a pre-trained autoencoder can

restore model performance without complete retraining. Results indicate

successful restoration of performance using a targeted fine-tuning approach,

reducing the training data requirement from 6 weeks to just 1 week. The

study’s significance lies in demonstrating the importance of fine-tuning for

adapting models to changing conditions and improving anomaly detection

in micro-CHP systems, enhancing operational efficiency and safety.
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Chapter 2

Literature Review

This chapter provides an overview of state-of-the-art in anomaly

detection from various perspectives. In the first analysis, this

chapter focuses on literature that applies data-driven maintenance

strategies to energy systems (Section 2.1). This review reveals

that the specific problem addressed in this thesis has not been

previously investigated. Later on, a brief overview of anomaly

detection (Section 2.2) is provided to frame the problem. In or-

der to select a suitable technique, the second part of the analysis

delves into anomaly detection strategies, particularly focusing on

novelty detection problems (Section 2.3). Additionally, the review

focuses on works within the domain of multivariate time-series

(Section 2.4). Given the superior performance of deep learning

techniques in the context of time-series data, a comprehensive

review of works focusing on deep learning and autoencoders has

been conducted (Section 2.5), as they represent the primary deep

learning novelty detection algorithm. Moreover, a brief research

has been done to select works that investigate the problem of quan-

tifying uncertainty when solving a data-driven task (Section 2.6).

In the end, Section 2.7 reviews works dealing with deep learning

domain adaptation to keep machine learning models updated with

the current status of real data.

9



10 Literature Review

2.1 Anomaly Detection Applied to the Energy

Domain

This introductory paragraph aims to demonstrate that the problem ad-

dressed in this thesis is not present in the existing literature. Additionally, it

seeks to illustrate how machine learning and deep learning algorithms have

been applied to the field of energy generation in recent years, albeit with a

notable omission of micro-cogenerators.

More in-depth, anomaly detection in the context of small to medium-scale en-

ergy generators remains an area with limited research, with the exception of

wind turbines, photovoltaics (PV), and building energy consumption, where

relevant literature is available. Bellanco et al. [9] reviewed possible faults

and diagnoses for heat pumps, indeed many heat pumps installed in build-

ings are not performing well, leading to lower efficiency and an increase in

energy consumption. Lee et al. [58] started from a Fault Detection and Di-

agnosis (FDD) model trained on a water chiller’s actual data and transferred

it to a group of 100 refrigerators optimizing energy use reaching conserva-

tion of 17.3% of the total. Using a Principal Component Analysis (PCA)

based approach, Beghi et al. [8] detected and diagnosed typical chiller faults

such as reduced evaporator water flow, refrigerant leakage, condensate flow

reduction, and compressor efficiency decrease. Han et al. [46] compared a

Support Vector Machines (SVM) with a Least-Squares SVM (LS-SVM) to

detect anomalies in refrigeration systems finding out that the LS-SVM per-

forms slightly better in terms of accuracy but needs a remarkably lower time

(about 37% less) for training and inference. Yu et al. [110] utilized PCA

to discern failures from the normal operation of a sewage source heat pump

system ensuring a healthy and efficient operation.

Several recent studies have shown much interest in predicting wind tur-

bine anomalies to improve condition monitoring and power generation ef-

ficiency while reducing maintenance costs. Feng et al. [33] introduce an in-

novative unsupervised anomaly detection framework, incorporating physical-

statistical feature fusion and Graph Neural Networks (GNNs) to tackle the

challenges posed by massive field data, particularly the lack of labeled SCADA

data. Their approach effectively captures latent nonlinear correlations and

temporal dependence, significantly enhancing anomaly detection performance.

In another study, Matsui et al. [72] address the critical issue of blade damage

caused by lightning strikes, leading to secondary damage due to continued
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rotation. To mitigate downtime and enhance wind turbine availability, they

employ a machine learning model along with SCADA data for assessing the

soundness of blades post-lightning strikes. This timely evaluation allows

for quicker resumption of operations and increased uptime. Furthermore,

Urmeneta et al. [102] contribute to performance-based maintenance strate-

gies for wind turbines by offering a generic methodology for system-level

performance assessment. Through the detection of critical periods of low

performance, leveraging multiple machine learning methods and models on

SCADA data, their approach provides valuable insights for analysts, partic-

ularly in scenarios where knowledge about variables impacting performance

is limited. This holistic approach holds significant promise for the wind en-

ergy sector, supporting asset profitability and improving overall maintenance

efficiency.

Moreover, the field of failure detection in PVs is quite investigated. Many

researchers have explored various methods and techniques to detect anoma-

lies and defects in photovoltaic systems to ensure reliable and efficient opera-

tion. From deep learning-based approaches like SeMaCNN [56] and attention

classification-and-segmentation networks [50] to model-based anomaly detec-

tion algorithms [30] and unsupervised monitoring procedures [47], the efforts

to develop accurate and efficient detection methods have been significant.

Additionally, some studies have focused on specific types of anomalies, such

as micro-crack detection [50] and cell-level anomalies segmentation [80], uti-

lizing advanced techniques like Convolutional Neural Networks (CNN) and

weakly supervised learning. With the increasing adoption of PV systems and

the growing importance of green energy technologies, reliable failure detec-

tion mechanisms play a crucial role in ensuring the long-term sustainability

and performance of photovoltaic installations.

Numerous researchers have shown significant interest in the field of anomaly

detection in building energy consumption. Copiaco et al. [19] propose an

innovative deep anomaly detection approach that utilizes two-dimensional

(2D) energy time-series images, enabling a supervised Deep Transfer Learn-

ing (DTL) approach to detect anomalies effectively. They combine physical-

statistical feature fusion and GNNs to capture latent nonlinear correla-

tions, resulting in superior performance compared to state-of-the-art meth-

ods. Himeur et al. [49] present a comprehensive review of existing anomaly

detection frameworks for building energy consumption based on artificial

intelligence. Their survey classifies algorithms based on different modules
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and parameters, including machine learning algorithms, feature extraction

approaches, anomaly detection levels, computing platforms, and application

scenarios. They also discuss domain-specific challenges and future research

directions to promote wider applications and effectiveness in anomaly detec-

tion technology. Wanasundara et al. [104] focus on detecting thermal anoma-

lies in buildings using frequency and temporal domain analysis. They develop

a Fourier transform-based method to identify places with thermal anoma-

lies, enabling the identification of poorly-performing areas within building

environments using non-permanent sensors. Capozzoli et al. [13] propose

an automated load pattern learning and anomaly detection methodology for

enhancing energy management in smart buildings. Their approach char-

acterizes energy consumption patterns over time identifying infrequent and

unexpected energy patterns, and provides timely alerts based on anomaly

detection outcomes. Fan et al. [32] investigate the potential of autoencoders

in unsupervised anomaly detection in building energy data. They propose an

autoencoder-based ensemble method, comparing different autoencoder types

and training schemes to provide advanced tools for anomaly detection and

performance benchmarking. Qu et al. [86] develop a combined genetic opti-

mization with AdaBoost ensemble model for anomaly detection in buildings’

electricity consumption. Their approach uses synthetic samples, dimension

reduction, and an ensemble deep learning network based on AdaBoost to ef-

fectively detect anomalous electricity consumption, outperforming other de-

tection methods in sensitivity and the Area Under the Curve (AUC). Araya

et al. [5] developed an ensemble learning framework to reduce energy waste

in smart buildings by detecting abnormal consumption: this framework led

to 8% false positives reduction and 15% true positives increase. [112] et al.

explore the potential of Generative Pre-trained Transformers (GPT) in au-

tomated data mining for building energy management. They demonstrate

that GPT-4 can automatically solve various data mining tasks in this do-

main, overcoming the barriers of practical applications and revealing future

research directions.

Certain specific devices have collected increased attention in recent years,

likely due to substantial investments directed toward renewable energies,

coupled with intensified focus on consumption reduction. This trend, how-

ever, is also propelled by the adoption of micro-cogenerators, which represent

a proven, cost-effective, and energy-efficient solution for supplying both elec-

tricity and heat. In conclusion, a limited quantity of works treat the anomaly
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detection problem applied to particular devices but a total lack of attention

toward micro-cogeneration units has been documented.

2.2 Anomaly Detection, a First Overview

The first step that must be taken before framing the problem addressed in

this thesis is to describe the various types of existing anomalies and the

taxonomy of methods found in the literature to solve them. In general,

the concept of anomaly detection encompasses two different aspects: outlier

detection and novelty detection. Outlier detection aims to identify an obser-

vation that appears inconsistent with the rest of the observations, whereas

novelty detection refers to determining a novelty as something different from

what had been observed and learned before.

Moreover, when delving into the domain of anomaly detection, it is crucial

to discern between various methodological approaches. Anomalies can be

detected through both unsupervised and supervised techniques. Unsuper-

vised methods operate without labeled data, relying solely on the inherent

patterns within the dataset to identify outliers or novelties. On the other

hand, supervised methods utilize labeled data to train the model, allowing it

to distinguish between normal and abnormal instances based on the provided

examples. Between these two techniques lies the subset of semi-supervised

algorithms, wherein only partial examples are provided. Typically, these al-

gorithms are constrained to learn solely the normal behavior of the object

under analysis [11], [88], [92].

Additionally, the detection methods can be categorized as univariate or mul-

tivariate. Univariate approaches assess anomalies based on a single variable,

whereas multivariate techniques consider the relationships and dependen-

cies between multiple variables, enabling a more elaborated understanding

of complex anomalies that might involve multiple interrelated factors.

Furthermore, the context in which anomalies are identified plays a significant

role. Point anomalies refer to individual data points that deviate from the

norm, whereas contextual anomalies are identified concerning the surround-

ing context, taking into account the relationships and dependencies between

data points within a specific context or environment.

Lastly, the temporal aspect of anomaly detection distinguishes between static

and sequential methods. Static approaches analyze the dataset at a specific

point in time, making independent assessments of anomalies. In contrast,
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sequential methods consider the temporal order of data points, detecting

anomalies by analyzing the sequential patterns and trends, providing a dy-

namic perspective on anomaly detection. In this case, data must be shaped

as time-series.

Understanding these diverse dimensions of anomaly detection methods is

fundamental for choosing the appropriate approach tailored to the specific

problem under consideration, ensuring accurate identification and effective

mitigation of anomalies in various applications.

Before diving into the discussion, it is important to clearly define the prob-

lem explored in the thesis. This step is crucial for focusing the literature

review. While a general, but non-exhaustive, overview of the anomaly de-

tection landscape has been given, the aim is to narrow down the focus to

specific areas relevant to this thesis. Figure 2.1 illustrates a tree diagram

representing the aforementioned anomaly detection context. In particular,

the dark gray areas represent the thesis’s scope, while the light gray ones

with dashed borders indicate the areas not covered by the thesis.

2.3 Strategies for Anomaly Detection

The first step in the process of selecting the appropriate strategy is to as-

sess the type of dataset available and, particularly, the quality of the avail-

able labels. A supervised learning approach can be pursued in the case of

well-documented data with annotated instances of anomalous and normal

behavior. By training a model on this labeled data, higher performance may

be achieved in anomaly detection. Supervised learning allows the model to

learn patterns from the labeled examples and subsequently identify similar

anomalies in new instances.

However, not all situations provide such labeled data. When tackling a

problem of anomaly detection in an industrial context, one of the main is-

sues researchers experience is the lack of labeled data. It is even more diffi-

cult to have a balanced dataset containing acquisition describing the normal

behavior of the machine under analysis and acquisition catching abnormal

functioning. A well-known workaround is to build an algorithm able to learn

the normal behavior of a system, for instance, in the early years following the

commissioning of the object under analysis, and then detect when the oper-

ating condition is deviating from the statistical distribution acknowledged as

normal. These techniques take the name of semi-supervised algorithms and
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Figure 2.1: Anomaly detection context and frame of the problem under

analysis.
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the task slightly changes the definition from anomaly detection to novelty

detection.

The notion of novelty detection refers to the identification of unusual or

anomalous patterns within large amounts of typical data. An anomaly is a

deviation from the expected behavior of a pattern and it is often referred to

as a novelty. Detection of novelty is meant to identify abnormal behavior

within the system that differs from what is normal [73].

Pimentel et al. [83] group novelty detection in five branches:

• Probabilistic novelty detection involves determining the likelihood of

new data by estimating the probability distribution of normal data.

This allows for setting a threshold to identify abnormal data and de-

termine if it is from the same distribution as the normal data. Gaussian

Mixture Model (GMM) is a common choice, Oluwasegun et al. [79] ex-

ploit a GMM to detect anomalies in control element drive mechanism

of nuclear power plant reaching values of 85% of precision and 94% of

recall.

• Distance-based novelty detection calculates the similarity between two

data points by means of a specific distance metric. One popular method

is the k-Nearest Neighbors (k-NN) algorithm, which supposes that nor-

mal samples will be closely surrounded by other normal samples in

the train-set, while novel data points will be farther away from them.

k-NN found a large application in rolling element bearings [90] [109],

gears [61] and motors [38]; Ding et al. [29] gather a collection of datasets

and test different benchmark algorithms proving that k-NN achieves a

competing overall performance. Some recognized flaw of k-NN is that

setting an optimal neighborhood parameter is not trivial.

• Reconstruction-based novelty detection methods can independently model

the data, and when new data is presented, the difference between the

new data and the output of the model can be used to determine its

novelty. This difference is called the reconstruction error and it is

related to the novelty score. AutoEncoder (AE), together with its sev-

eral modifications, belongs to this group and nowadays is the most

used technique for anomaly detection tasks. Sohaib et al. [95], Zhou et

al. [116] and Sun et al. [98] leaned on AEs to diagnose bearing faults.

Lu et al. [67] individuated the faulty component of rotary machinery

by means of an AE-based health state classificator and they reported
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a classification rate ranging between 91.8% and 95.6% depending on

the operating condition.

• Domain-based methods calculate a boundary depending on the layout

of the train-set. These approaches are not affected by the distribution

of the target class, because they focus on the boundary of the target

class, rather than the density of the class. Unknown data is classified by

its location in relation to the pre-calculated boundary. Like in classical

SVM, the modified SVM developed for novelty detection, referred to

as One-Class SVM (OCSVM) in literature, draws the classification

boundary by considering only the points that are in its neighborhood,

these points are called support vectors. Only support vectors are taken

into account when setting the novelty boundary, other training data

are neglected. Tan et al. [100] and Saari et al. [88] apply an OCSVM

respectively to a naval propulsion plant and to a windmill bearing.

• Information-theoretic methods evaluate the amount of information in

a dataset using measures such as entropy and relative entropy. These

methods are based on the assumption that novel data will significantly

change the amount of information in the normal dataset. Keogh et

al. [51] discern suspect sub-sequence inside various types of time-series

introducing a novel algorithm called HOT SAX. He et al. [48] use

a Local-Search heuristic Algorithm (LSA) for outlier detection tasks:

LSA limitation is represented by the fact that the number k of ex-

pected outlier must be given as input to the algorithm. In industrial

applications, this number is usually unpredictable.

2.4 Anomaly Detection for Sequential Data

When data is organized sequentially and includes information about the tim-

ing of measurements, it is referred to as time-series data. In this case, an

additional challenge must be addressed, indeed it is recommended to employ

an algorithm capable of retaining samples’ temporal correlation. Time-series

data refer to data that are collected over a period of time, and they are often

used in the context of forecasting or prediction tasks. Using deep learning

algorithms with time-series data can be useful because it allows for the mod-

eling of complex temporal dependencies and patterns in the data. These

algorithms, such as Recurrent Neural Networks (RNN) can learn to identify
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patterns in the data and use them to make predictions about future values.

Anomaly detection in time-series data is a crucial task in various domains,

including High-Performance Computing (HPC) systems, smart manufactur-

ing, marine autonomous systems, and more. In recent years, deep learning

approaches, especially autoencoders, have gained popularity for their ability

to capture complex patterns and represent data in a compressed form. This

section focuses on the use of anomaly detection applied to time-series data,

particularly leveraging deep learning techniques.

One common strategy is to use a deep neural network to build a digital

twin of the examined system and then to identify data that deviate signif-

icantly from the output of the digital twin; when this deviation overpasses

a pre-determined threshold, abnormal behavior is detected. Bahlawan et

al. [6] presented a study adopting a particular type of RNN, a Nonlinear

Auto-Regressive network with eXogenous inputs (NARX), to create a digi-

tal twin of a heavy-duty gas turbine. They reported successful simulations

of the dynamic behavior of the power generation system during start-up; the

developed model could be an efficient tool for the diagnosis of gas turbine

faults.

A state-of-the-art approach is to use AE with RNN layers and in particu-

lar, Long-Short Term Memory (LSTM) layers [77], [70], [69]. Till et al [101]

design a Temporal Convolutional Network AutoEncoder (TCN-AE) where

dilated 1D-convolutional layers substitute the fully connected layers; the

proposed algorithm outperforms several benchmark techniques in detecting

anomalies in medical time-series. Kiranyaz et al. [55] review the major ap-

plications of 1D-CNNs including fault detection and condition monitoring:

they show how 1D-CNNs achieve optimal results by being characterized by

a fast training phase.

Borghesi et al. [12] investigate anomaly detection and anticipation in High-

Performance Computing (HPC) systems. The authors propose using a deep

learning model trained on labeled data extracted from a service monitoring

tool to detect anomalies and predict their occurrence in HPC systems.

Kieu et al. [52] propose two ensemble-based outlier detection solutions for

time-series data using recurrent autoencoders. The methods aim to improve

overall detection quality by reducing the effects of overfitting to outliers.

Netti et al. [75] present a machine learning approach for online fault clas-

sification in HPC systems. The proposed method uses machine learning

classifiers to detect and classify faults in real-time, facilitating timely correc-
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tive actions.

Alfeo et al. [3] suggest the use of an autoencoder in the design of an anomaly

detector for smart manufacturing. The autoencoder is employed to learn

representations of multivariate time-series data for anomaly detection.

Anderlini et al. [4] develop a remote fault detection system for underwater

gliders using time-series data. They use feedforward deep neural networks

and autoencoders for online anomaly detection in glider operations.

Shu et al. [93] present a dam anomaly assessment system based on a se-

quential Variational AutoEncoder (VAE) and evidence theory. The pro-

posed method is designed to detect anomalies in dam sensor data. Zheng et

al. [115] introduce Deeppipe, a semi-supervised learning approach for operat-

ing condition recognition of multi-product pipelines. The method leverages

autoencoders and semi-supervised learning techniques for anomaly detec-

tion.

Yu et al. [111] analyze different RNN autoencoder variants for time-series

classification and machine prognostics. The study investigates various archi-

tectures and their performance for time-series anomaly detection.

Ou et al. [81] propose a deep sequence multi-distribution adversarial model

for bearing abnormal condition detection using autoencoders. The model

combines VAEs and LSTM predictors for robust prediction.

Chen et al. [17] present SeqVL, a neural network model that integrates unsu-

pervised anomaly detection and time-series prediction under one framework.

The model merges VAEs and LSTM for improved detection and prediction.

von Schleinitz et al. [103] propose VASP, a VAE-based selective prediction

framework for robust time-series prediction in the presence of anomalies.

The method is applied to motorsport data.

Li et al. [60] present a clustering-based anomaly detection method for mul-

tivariate time-series data.

2.5 Autoencoders for Sequential Novelty De-

tection

Among deep learning algorithms, this work focuses on a particular type of

semi-supervised neural network: the autoencoder.

The autoencoder is part of a larger family of representation learning meth-

ods capable of learning features from unlabeled data automatically. These

methods are designed to map the input data to an internal latent represen-
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tation, which is then used to produce an output similar to the input data

Several methods exist that can automatically learn features from data, in-

cluding the autoencoder. An internal latent representation is generated from

the input data, which is then used to create output that is similar to the

input data [65].

Although many papers exploit autoencoder-based models, there are no best

practices on how to tune the hyper-parameters and how to size the train-set.

Hyperparameter tuning in deep learning algorithms refers to the process of

systematically optimizing the hyperparameters, which are external config-

uration settings not learned from the data. These parameters significantly

impact the performance of the model but cannot be directly learned during

training. The challenge lies in finding the ideal combination of hyperparam-

eters, such as learning rate, batch size, and network architecture, to achieve

optimal model performance. To date, various advanced techniques such as

Bayesian Optimization, Neural Architecture Search, Reinforcement Learn-

ing, as well as more traditional approaches like Random Search, Grid Search,

and Genetic Algorithms, have been developed for hyper-parameter optimiza-

tion. These algorithms rely on a specific metric to optimize, such as accuracy

or F1-score in anomaly detection. Unfortunately, industrial datasets often

lack reliable labels, making it challenging to rely on existing labels, which

can even prove counterproductive for the algorithm. Furthermore, when

employing autoencoders, it is not feasible to solely minimize reconstruction

error, as it could lead to creating a structure that simply replicates inputs

to outputs, rendering the model ineffective for anomaly detection purposes.

However, the adoption of manual fine-tuning remains widespread in indus-

trial domains due to its relatively lower cost and the challenges associated

with using unreliable labels or minimizing reconstruction error in autoen-

coders.

After a brief overview of the most notable works employing techniques based

on autoencoders for anomaly detection, this section will also investigate the

presence of research addressing the challenge of determining the appropriate

trainset size.

2.5.1 Overview of Autoencoder Applications

Qian et al [84] offer an exhaustive review of autoencoder-based applica-

tions in industrial processes monitoring. The study introduces the encoder-

decoder framework and emphasizes its importance in unsupervised feature
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extraction. The review focuses on the characteristics of industrial data and

explores state-of-the-art fault detection and fault diagnosis strategies.

Liu et al. [64] examine unsupervised deep learning strategies applied to time-

series collected by IoT devices suggesting that the autoencoder and its vari-

ants are widely used in the literature. A Probabilistic Deep AutoEncoder

(PDAE) is suggested by Lin et al. [62], in which non-parametric estimated

distributions are utilized to construct the uncertainty intervals of measure-

ments in the first layer of neural networks. Deep autoencoder structures are

formulated based on the non-parametric estimated uncertainty intervals of

the measurements. Outliers can be accurately detected with the proposed

PDAE model trained on 20000 samples.

Deng et al. [27] develop a Stacked AutoEncoder (SAE) joined with a softmax

layer to classify anomalies in industrial processes able to reach an accuracy

greater than 99% in the three case studies tested.

Sarajcev et al [91] exploit a Stacked Denoising AutoEncoder (SDAE) to-

gether with a voting ensemble classifier for power system transient stability

assessment. The dataset used consists of 3.8 GB signals generated by elec-

tromechanical transient simulations and, to deal with class imbalance, a

stratified shuffle split is used. Even if the dataset has remarkable dimen-

sions, the possibility of gradually reducing it and tracking the performance

trend is not investigated.

González-Muñiz et al. compare various autoencoder structures, including

VAEs and Deep AutoEncoders (DAEs), applied to rotating machines, hy-

draulic systems, and body motion systems. They conclude that VAEs per-

form better than DAEs because they are capable of learning the probability

density function of healthy states [40]. A subsection dedicated to the three

different datasets used is present but no mention has been made related to

their dimension.

Gokhale et al. present a new deep learning framework for gene selection

using an SAE for cancer classification, obtaining a model accuracy ranging

from 90% to 100% on ten different datasets [39]. For the experiments the

authors collected ten benchmark datasets used in the literature and then

applied a data augmentation technique but, due to the nature of the prob-

lem, a sensitivity analysis on the influence of the trainset size could not be

provided: gene expression datasets tend to be generally poorly populated.

To determine health indicators for bearing performance degradation assess-

ment, Xu et al. develop an SAE model and show that the proposed method
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has superior denoising performance to other benchmark models [106]. In this

work, two open-source datasets are used and no specific correlation between

the size of the training dataset and the proposed models’ performance is

emphasized.

Zhou et al. propose a novel contrastive autoencoder for anomaly detection

in multivariate time-series data and emphasize its capacity to model the nor-

mal data pattern [117]. The authors have examined three datasets of varying

sizes, and it seems that the nature of these datasets does not significantly

impact the results of the four models compared. Furthermore, regardless

of the dataset used, the ranking of the best-performing algorithms remains

consistent throughout the tests.

Luo et al. propose a Multi-mode Non-gaussian VAE (MNVAE) for anomaly

detection of electromechanical equipment that achieves a 90% of accuracy

without any false positive [68]. Six methods are compared over two different

datasets whose dimension is detailed but not described in relation to the

model performance.

Shen et al. develop a Hybrid Robust Convolutional AutoEncoder (HRCAE)

for unsupervised anomaly detection of machine tools under noises that ob-

tain better performance compared to other benchmark techniques [107]. In

this case, three datasets of 315 samplings are collected but, because the size

does not vary, the analysis does not allow extrapolation of any information

on the influence of train-set size.

Castangia et al. train a VAE to reconstruct the consumption profile of a

washing machine, a dishwasher, and a dryer obtaining a better classification

score with respect to the One-Class Support Vector Machines (OC-SVM)

used as a reference for the comparison [15]. To run their experiments, the

dataset used consisted of 8 months of recorded power consumption acquired

at 1 Hz and a classical k-fold validation technique with fixed trainset size

has been applied.

A method for detecting and diagnosing anomalies has been developed by

Zhang et al. for wind turbines using Long Short-TermMemory-based Stacked

Denoising AutoEncoders (LSTM-SDAE) and extreme gradient boosting ob-

taining an accuracy of 91% [113]. Due to the confidentiality of the dataset,

no information is divulged about the train-set size.

Qu et al. introduce an approach to predict anomalies by means of Echo State

Network (ESN) and Denoising AutoEncoder (DAE) yielding an accuracy of

83%, 4 points greater than the autoencoder accuracy [85]. The authors di-
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vide the available data dedicating the 70% for training and the remaining

30% for testing and they explain this decision by asserting that it is the same

ratio of normal and abnormal samples in the dataset.

Borghesi et al. [11] propose an automated semi-supervised approach for

anomaly detection in high-performance computing systems based on au-

toencoder neural networks, demonstrating superior accuracy compared to

current techniques, with an increase of approximately 12% in detection ac-

curacy. The research presents a section that explores the impact of reducing

the size of the train-set on detection accuracy. Results indicate variations in

accuracy levels among different components, with certain components requir-

ing larger train-sets to achieve satisfactory results. On average, a train-set

size of approximately 500 examples, corresponding to about 42 hours of con-

tinuous monitoring, can yield adequate accuracy. In a subsequent study [12],

the same research group applies a fusion of supervised and semi-supervised

techniques, both based on autoencoders, to anticipate the high-performance

computing system automatically annotated labels by approximately 45 min-

utes. Given the specific field of application, this time interval is regarded as

remarkably interesting.

Zhou et al. [118] tackle weakly-supervised anomaly detection with limited

labeled abnormal data. The model, consisting of a feature encoder built

upon an autoencoder and an anomaly score generator, has been tested on

eight datasets of different sizes originating from various fields of application

achieving superior performance over the four comparison algorithms.

Lately, federated learning has sparked a new wave of interest as researchers

and industry experts recognize its potential to revolutionize machine learn-

ing by enabling collaborative model training across distributed devices with-

out compromising data privacy; Liu et al. [63] introduce five benchmark

algorithms for time-series anomaly detection under four federated learning

frameworks.

2.5.2 Train-set size definition

If the use of autoencoders in anomaly detection is widely discussed, less

attention has been given to studying the impact of the train-set size on re-

construction performance, particularly when the available data consists of

temporal frames collected from field sensors. Bengio [10] offers practical rec-

ommendations for handling hyperparameters in deep learning algorithms,

specifically in the context of backpropagation and gradient-based optimiza-
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tion. It emphasizes the importance of adjusting hyperparameters to achieve

better results and provides insights into training and debugging large-scale

neural networks. While it is acknowledged that increasing the amount of

data used for training a neural network can solve potential overfitting issues,

there is a lack of specific techniques or guidelines to determine the optimal

size of the train-set.

Dawson et al. [26] evaluate the performance of nine CNNs across four ar-

chitectures for carbonate core classification using deep learning. Transfer

learning and fine-tuning are employed on three geological datasets of vary-

ing sizes, showcasing the potential of deep learning in automated carbonate

classification. The Inception-v3 architecture achieves 92% accuracy on the

larger dataset, while the VGG19 architecture is suitable for smaller datasets.

Dataset size significantly impacts model performance, with smaller datasets

prone to overfitting even with transfer learning.

Radiuk et al. [87] investigate the impact of batch size on the performance of

CNNs. MNIST and CIFAR-10 datasets are used to analyze the influence of

batch size on image recognition accuracy. Results confirm that larger batch

sizes yield higher accuracy, but the hypothesis regarding the specific type

of batch size value’s impact on CNN performance is not supported. The

optimal batch size, depending on computational resources, is determined to

be 200 or greater.

Gütter et al [44] examine the influence of train-set size on the robustness

of a deep learning strategy for performing detection in satellite imagery,

specifically against omission noise in crowdsourced datasets. The experi-

ment involves introducing controlled levels of omission noise to a dataset

and training the model on subsets of varying sizes. The results indicate that

the train-set size has a notable impact on the model’s robustness against

label uncertainty. Larger train-sets generally lead to improved robustness,

resulting in better performance and increased tolerance to label noise. These

findings support the assumption that train-set size positively influences the

model’s robustness.

Gulamali et al. [43] focuses on evaluating the lowest dataset dimension re-

quired for training computer vision autoencoders, specifically examining the

point at which classifiers face difficulties in class differentiation. The findings

offer a valuable tool for estimating sample sizes in fully connected networks

for computer vision deep learning applications.

El-Nouby et al. [31] challenge the necessity of large-scale datasets like Im-
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ageNet for self-supervised pre-training in computer vision. By focusing on

DAEs, the research demonstrates their superior robustness to the type and

size of pre-training data compared to other self-supervised methods. Results

show competitive performance on various classification tasks, surpassing su-

pervised ImageNet pre-training in certain scenarios, indicating that large-

scale datasets may not be essential for effective self-supervised pre-training

with DAEs.

Masters et al. [71] examine the impact of mini-batch size on deep neural net-

work training and generalization performance. Experimental results across

CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that smaller

mini-batch sizes lead to better stability and performance. The optimal mini-

batch sizes range from 2 to 32, contradicting recent recommendations for

larger batch sizes. Additionally, the study highlights the challenges and de-

creased optimization potential associated with larger batch sizes, supporting

the notion that smaller batch sizes offer advantages in terms of learning rate

range and performance.

As mentioned earlier, the issue of training dataset size is predominantly ad-

dressed in the context of images, with specific sensitivity studies conducted

for individual cases. However, to the author’s knowledge, there is only one

paper [43] that offers a methodology, albeit applied to a computer vision

problem and therefore not transferable to time-series problems.

2.6 Evaluating Uncertainty in Detection Al-

gorithms

Frequently, energy generators are operated with low productivity or, in worst

cases, some negative trends appear weeks before a real breakdown of the ma-

chine; this leads to higher energy consumption and unplanned reparations

that could be easily avoided through ad-hoc maintenance intervention. In

contexts where machines are highly expensive and production cannot be in-

terrupted, every detection is carefully considered to avoid costly breakdowns

or performance losses. Conversely, for energy devices with productions be-

low 100 kW, maintenance or interventions are typically carried out when the

presence of a problem is certain. In this regard, it is important not only

to provide anomaly detection but also a confidence level for the anomaly

itself, and where possible, to point the sensors involved in the problem. This

reinforces the concept of CBM.
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Regarding adding a confidence level to the anomaly prediction, despite the

success of standard deep learning methods in solving various real-world prob-

lems, they cannot provide information about the reliability of their predic-

tions [1]. Two main solutions have been proposed in recent years to introduce

the information of uncertainty quantification: the VAE [53] and the Monte

Carlo dropout (MCD) [35].

VAEs are a type of generative model that learn a low-dimensional represen-

tation of the input data by encoding it into a latent space and then decoding

it back to the original input space. In this process, VAEs minimize a recon-

struction loss between the original input and its reconstruction, as well as a

regularization term that encourages the latent space to follow a prior distri-

bution. The resulting model can be used to encode-decode test samples and

perform anomaly detection by measuring the reconstruction error of these

samples [97], [15], [40], [21].

MCD, on the other hand, is a dropout-based technique that uses dropout [96]

during inference to estimate the model’s uncertainty as detailed in Section

3.3. Dropout randomly drops out units from the neural network during train-

ing, which acts as a regularization technique. During inference, dropout is

applied multiple times with different dropout masks, and the resulting pre-

dictions are averaged to estimate the model’s uncertainty. In anomaly detec-

tion, MCD can be used to estimate the uncertainty of the model’s prediction

for each test sample returning a rate of how many anomalies have been de-

tected during the multiple inferences [14], [89], [59].

One key difference between VAEs and MCD is that VAEs are generative

models, while MCD is a technique for uncertainty estimation. VAEs can be

used not only for anomaly detection but also for tasks such as data gener-

ation. However, MCD is a simpler technique that can be easily applied to

any existing neural network architecture. Another difference is that VAEs

require a prior distribution over the latent space, while MCDs do not. The

choice of prior distribution can have a significant impact on the quality of

the VAE’s latent space representation, and finding an appropriate prior can

be challenging. [54] Finally, VAEs tend to be computationally more expen-

sive than MCDs, as they require training in a full generative model. MCD,

on the other hand, only requires running the inference multiple times with

different dropout masks.
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2.7 Adapting Models in Changing Scenarios

In the context of predictive maintenance in complex machinery, the con-

cept of model retraining holds central significance. Ensuring that machine

learning models are aligned with the real-world behavior of the systems they

monitor is essential to avoid an excess of false positives, which can lead to

desensitization among maintenance technicians. This phenomenon, where

technicians might ignore alerts due to their big volume, can result in delayed

responses to genuine issues, leading to costly breakdowns and downtime.

Therefore, this thesis explores the key role of systematic model retraining in

maintaining the efficacy of AI systems.

In the domain of neural networks and machine learning models, the concept

of lifelong learning presents a major challenge. This challenge arises from

the need to continuously acquire new information from non-stationary data

distributions. Unfortunately, this continuous acquisition often leads to prob-

lems like catastrophic forgetting or interference, especially for cutting-edge

deep learning models. These models are designed to learn from fixed col-

lections of training data, and they don’t take into account scenarios where

information becomes available gradually over time.

To address this challenge, Parisi et al. [82] review available neural network

techniques that aim to relieve this problem. Despite meaningful advance-

ments in domain-specific learning with neural networks, the development of

robust lifelong learning capabilities for autonomous agents and robots re-

quires extensive research efforts.

Cossu et al. [20] discusses the importance of continuous learning throughout

the lifetime of a machine learning model to ensure robustness against data

distribution drifts. It mentions that advances in continual learning with

RNNs have the potential to be applied in various domains, such as natu-

ral language processing and robotics, where incoming data is non-stationary.

However, the existing research on continual learning is currently fragmented,

with application-specific approaches and diverse evaluation protocols and

datasets.

Hadsell et al. [45] discuss the relevance of continual learning in artificial in-

telligence research, which aims to enable machine learning models to learn

sequentially from a continuous stream of correlated data. It emphasizes that

the ability of humans to adapt to changing tasks and learn incrementally is

currently missing in modern machine learning methods. Continual learning

is seen as a crucial attribute of human-level artificial general intelligence.
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The article introduces biologically inspired approaches to continual learning

and suggests that developing neural network models with sequential learn-

ing capabilities could improve data efficiency, facilitate continual adaptation

to changing target specifications, and enhance knowledge transfer between

tasks.

Losing et al. [66] explore the significance of incremental and online learning

in the context of big data and data streams. It examines eight popular incre-

mental methods, representing different algorithm classes, to understand their

key properties. The evaluation focuses on online classification error, conver-

gence behavior, and model complexity. Additionally, the paper addresses

hyperparameter optimization, often overlooked in the context of incremental

learning, and tests its robustness based on limited examples. The extensive

evaluation provides insights into the performance of these methods, aiding

the selection of the most appropriate method for specific applications.

Zhang et al [114] introduce Adaptive Online Incremental Learning (AOIL) to

tackle the challenges of online incremental learning, including concept drift,

catastrophic forgetting, and learning latent representations. AOIL uses an

auto-encoder with a memory module to detect concept drift and adjust model

parameters. It partitions features into common and private aspects to avoid

catastrophic forgetting. A self-attention mechanism is employed to fuse ex-

tracted features, enhancing latent representation learning. The addition of

a de-noising auto-encoder improves the algorithm’s robustness. Extensive

experiments show that AOIL outperforms other state-of-the-art methods on

various datasets.

Gori et al [42] discuss the application of a continual learning approach to an

RNN to monitor the status of a remarkable amount of sensors in a turbo-

machinery application. Turbo-machinery prototypes are equipped with a

large number of sensors, and manually checking the health of each sensor is

time-consuming. The authors propose an approach where an RNN is con-

tinuously trained on a daily basis to create a virtual sensor based on other

sensors’ data. The predicted signal is then compared to the real signal to

detect potential anomalies in the sensor readings. Kullback-Leibler (KL)

divergence is used to estimate the overlap between input distributions avail-

able during training and those observed during testing, providing a measure

of confidence in the predictions.

Xiaolan et al. [105] present an evolving anomaly detection method for net-

work streaming data to address network security challenges. The proposed
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method incrementally updates clusters and detects outliers based on local

and global density thresholds. A buffer is used to store temporary outliers

to avoid misclassifying normal samples. The algorithm is validated on three

datasets outperforming other anomaly detection methods regarding detec-

tion accuracy, false-positive rate, and computational cost.
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Chapter 3

Background

This chapter presents an overview of foundational concepts per-

tinent to subsequent discussions. Specifically, Section 3.1 out-

lines the mathematical notation of the autoencoder and the hy-

perparameters that define it. Section 3.2 introduces the Fourier

transform, which will be utilized as a filtering technique to mit-

igate false positives. Lastly, Section 3.3 elucidates the concept

of Monte Carlo dropout, which will subsequently be employed for

uncertainty quantification.

3.1 Autoencoder

An autoencoder is a neural network that is trained to attempt to copy its

input to its output. Internally, it has a hidden layer h, often named latent

space, that describes a code used to represent the input. The network may

be viewed as consisting of two parts: an encoder function h = f(x) and a

decoder that produces a reconstruction r = g(h). Usually, input information

is reduced by means of a funneled shape of the encoder that does not allow a

perfect copy of the information and forces the model to coarsely copy inputs.

This constraint theoretically leads the autoencoder to learn useful properties

of the data. Indeed, traditionally, autoencoders were used for dimensional-

ity reduction or feature learning. Since autoencoders are the coupling of

two feed-forward networks they can be trained using back-propagation [41].

Encoder and decoder are artificial neural networks that may consist of one

or more layers interconnected by means of the latent layer (Figure 3.1);
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Figure 3.1: Autoencoder structure: encoder-decoder.

usually, the two neural networks share the same structure in terms of num-

ber and type of hidden layers (Section 3.1.1), number of nodes in each layer

(Section 3.1.2), type of activation function in each node (Section 3.1.3). Fur-

thermore, the dimension of the latent layer may influence the autoencoder’s

performance and its applicability. Increasing the structure complexity, the

autoencoder will be able to catch more sophisticated behaviors of the system

under analysis. The encoder and decoder are trained together to minimize

a loss function (Section 3.1.4), typically a quantitative measure of the error

that the decoder introduces trying to reconstruct the features inputted into

the encoder.

In this work, the following mathematical notations are used:

• input (or features’) vector:

X =
[
x1 x2 x3 . . . xN

]T
(3.1)

where N is the number of features;
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• output (or reconstructions’) vector:

X̂ =
[
x̂1 x̂2 x̂3 . . . x̂N

]T
(3.2)

• weights’ matrix:

W k =


wk

11 wk
12 wk

13 . . . wk
1nl

wk
21 wk

22 wk
23 . . . wk

2nl

. . . . . . . . . . . . . . .

wk
nk1

wk
nk2

wk
nk3

. . . wk
nknl

 (3.3)

where wk
uv is the weight of the edge linking the u-th node of the layer

l (whose dimension is nl) with the v-th node of the layer k (whose

dimension is nk);

• biases’ vector:

Bk =
[
bk1 bk2 bk3 . . . bknk

]T
(3.4)

where bkv is the bias of the v-th node of the layer k;

• note that subscript i is used to refer to the N features.

3.1.1 Hidden layers

Hidden layers’ typology is usually chosen in accordance with the data type

available to train the model whilst the latent layer is usually built upon

fully-connected nodes. In the literature, three types of data are the most

frequent:

• tabular data: the best practice suggests using fully connected layers

both for hidden and latent layers;

• images: 2-D Convolutional Neural Network (CNN) is the state-of-the-

art technology for hidden layers [57];

• sequential/time-series data: typically the implementation of LSTM

hidden layers [70] or 1D-CNN hidden layers [55] outperforms fully con-

nected layers; another option is represented by the TCN that provides

simplicity, autoregressive prediction, residual blocks, and long memory,

all of which make them more appealing [101].
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In their conclusion, Bai et al. [7] propose that 1D-CNN could be a natu-

ral starting point for sequence modeling tasks, since the common association

between sequence modeling and recurrent networks may need to be recon-

sidered. In this work, an autoencoder with convolutional hidden layers and

a fully connected latent layer is considered to deal with time-series data.

3.1.2 Dimension of layers

Similarly to the number of layers, the number of nodes of each layer affects

the complexity of the autoencoder’s structure; obviously the number of input

and output nodes is not a hyper-parameter but must be equal to the number

of features used to train the model.

Conversely, the dimension of the latent layer affects the autoencoder’s be-

havior not only in terms of performance but also in terms of the field of

application. In the literature, the following differentiation is explained:

• Contractive Autoencoder: autoencoders risk learning the identity func-

tion if the latent layer has as many neurons as input and output. Latent

layers must therefore have fewer neurons than input and output layers

in order to satisfy this constraint [94]. Hence, an autoencoder where

input and output layers have the highest dimension and the latent layer

has the lowest dimension is named a contractive autoencoder;

• Sparse Autoencoder: if the latent layer’s dimension is higher than the

input/output dimensions, the autoencoder is defined as sparse and,

imposing a sparsity constraint on the latent units (also on the hidden

units, if present), it will be still capable of extracting valuable patterns

from data [76].

In anomaly detection problems, Contractive Autoencoders are typically fa-

vored for capturing the most relevant information embedded in the data.

However, it is worth noting that employing Sparse Autoencoders with appro-

priate regularization can also yield promising results. Experimentation with

various architectures and hyperparameter combinations is common practice

in order to determine the most effective model structure.

3.1.3 Activation functions

Activation Functions make the decision of whether or not to pass a signal to

the next layer. They take in the weighted sum of inputs plus a bias. They
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Figure 3.2: Node structure: inputs, node and activation function.

are usually applied to both hidden and output layers and, due to their non-

linearity, make neural networks capable of learning complex functions from

data. Figure 3.2 shows the foundation element of a neural network: inputs

xi are linearly combined with a bias b and inputted to the node where the

activation function f introduces its non-linearity.

The most used activation functions are listed below:

• linear, f (x) = x

• sigmoid, f (x) = 1
1+e−x

• tanh, f (x) = ex−e−x

ex+e−x

• ReLu, f (x) = max (0, x)

• LeakyReLu,

f (α, x) =

{
αx, if x ≤ 0

x, if x > 0
for α > 0

3.1.4 Loss functions

The main purpose of the autoencoder is to reassemble its input as accurately

as possible. Training of the model achieves this goal by utilizing a specific

loss function, named reconstruction loss function, that penalizes the model

for generating outputs different from the inputs. As a loss function, it is



36 Background

usually used the Mean Squared Error (MSE) between input and output

(Equation 3.5).

MSE =
1

N

N∑
i=1

(xi − x̂i)
2

(3.5)

3.2 Fourier Transform

The Fourier Transform is a fundamental mathematical concept widely used

in various scientific and engineering domains to analyze signals and func-

tions. Proposed by Joseph Fourier in the early 19th century, this transfor-

mative tool revolutionized the understanding of time-varying phenomena.

The primary goal of the Fourier Transform (FT) is to decompose a complex

signal or function into its constituent frequency components. This process

enables the representation of the signal in the frequency domain, uncovering

the contribution of each frequency to the overall signal. Expressing the sig-

nal in frequency terms through the Fourier Transform facilitates the analysis

and comprehension of its spectral characteristics, such as dominant frequen-

cies, periodicities, and amplitude variations.

The mathematical representation of the Fourier Transform involves integra-

tion over an infinite range. However, in practice, fast algorithms such as the

Fast Fourier Transform (FFT) have been developed, significantly reducing

the computational complexity for practical implementations.

The Fourier Transform finds extensive applications in signal processing,

telecommunications, audio and image analysis, as well as in fields like quan-

tum mechanics and medical imaging. In signal processing, for instance, it

is utilized for filtering, noise reduction, and modulation, while in quantum

mechanics, it helps analyze wavefunctions and understand the behavior of

quantum systems. In conclusion, the Fourier Transform is a fundamental tool

that provides a powerful bridge between the time and frequency domains,

enabling profound insights into the inner workings of signals and functions.

Its widespread applications across scientific and engineering disciplines have

made it an indispensable technique for understanding and manipulating com-

plex phenomena in the modern world.

As above mentioned, the FT is widely used in signal processing to analyze

and extract frequency domain information from monitored measurements.

The idea is to decompose the original signal into the sum of innumerable
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sine and cosine waves with different frequencies in order to analyze the com-

ponents of the original measurement [28].

The FT of a generic function f (x) is defined as:

F (ω) =

∫ +∞

−∞
f (x) e−iωxdx (3.6)

The inverse Fourier transform is described by:

f (x) =
1

2π

∫ +∞

−∞
F (ω) e−iωxdω (3.7)

When dealing with real data, signals are discrete, and, thus, the Discrete

Fourier Transform (DFT) is needed. The DFT of a, known as the spectrum

of a, is:

Ak =

N−1∑
n=0

e−i 2π
N knan (3.8)

The sequence Ak is the DFT of the sequence an; the inverse DFT of the

sequence Ak is the sequence an:

an =
1

N

N−1∑
k=0

ei
2π
N knAk (3.9)

Since computing the DFT of a signal is highly time-consuming, the Fast

Fourier Transform (FFT) is needed: FFT is a fast algorithm for computing

the DFT. Indeed, calculating the DFT of an N-point sequence using Equa-

tion 3.8 has a O(N2) complexity whilst the FFT algorithm computes the

DFT with a O(N logN) complexity as explained by Cooley et al. [18].

3.3 Monte Carlo Dropout

This section briefly introduces dropout emphasizing its role in mitigating

overfitting and how it can be used to introduce the concept of uncertainty

quantification.

Dropout is a regularization method that selectively deactivates neurons in

a neural network during training. Each neuron has a dropout rate denoted

by p, representing the probability of being ignored during a training step.

Typically, p is set between 0 (no dropout) and 0.5 (approximately 50% of

neurons deactivated), adjusted based on network type, layer size, and the
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severity of overfitting observed during training.

The primary motivation behind dropout lies in its role as a regularization

technique to mitigate overfitting. When dealing with limited data or com-

plex networks, models may memorize the training data, leading to a poor

generalization of unseen data. Dropout counteracts overfitting by forcing

neurons to distribute their weights more evenly across the network and re-

ducing sensitivity to input changes, thereby promoting better generalization.

It is important to emphasize that dropout is exclusively utilized during the

training phase (Figure 3.4) and is not applied during inference (Figure 3.3)

time. During inference, the entire network, with all trained neurons and

connections, is used to make predictions.

MCD, proposed by Gal and Ghahramani in 2016 [35], establishes a com-

pelling connection between regular dropout and Bayesian approximations of

probabilistic models, specifically Gaussian processes. It capitalizes on the

random sampling nature of dropout to generate a multitude of different net-

works, each with different neurons dropped out. These networks can be

regarded as Monte Carlo samples from the space of potential models, yield-

ing valuable insights into uncertainty estimation.

By interpreting dropout as a Bayesian approximation, MCD enables the

assessment of model uncertainty. The diversity in the dropout ensemble

provides a basis for reasoning about uncertainty and often contributes to

enhanced performance. Indeed, when using MCD, dropout is active also

during inference by randomly deactivating a certain percentage of nodes.

Repeating the inference process numerous times the percentage of detection

can be calculated and used as a degree of certainty.

In summary, dropout serves as a powerful regularization technique to prevent

overfitting and improve generalization. On the other hand, MCD leverages

dropout’s stochastic nature to approximate Bayesian inference and estimate

model uncertainty effectively. These techniques are of major importance in

enhancing the performance and reliability of neural networks, particularly

in scenarios with limited data or complex architectures.
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Figure 3.3: Autoencoder without dropout.

Figure 3.4: Autoencoder with dropout (p = 0.3).
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Chapter 4

Case Study

This chapter outlines the model of the main characters of each

chapter of this work. Although in subsequent chapters, the sub-

ject of study may vary, the model and specifications remain con-

sistent. Section 4.1 encloses all the considerations related to the

20 kWe YANMAR CHP, thus preventing the need for their repe-

tition in each subsequent chapter. Section 4.2 also elucidates the

steps involved in acquiring and processing the available data for

each considered machine.

4.1 20 kW YANMAR CHP

The energy system considered is a YANMAR CHP, whose datasheet is avail-

able at [108], with a rated electrical power of 20 kWe.

CHP is an energy device supplied by natural gas that produces electricity

and thermal energy at high efficiencies. The kind of unit under analysis is

designed to satisfy the electrical and thermal needs of the customers’ energy

plants where it is installed. Figure 4.1 offers an illustrative representation

of the plant layout, emphasizing the interconnections of the generators. The

red lines denote the piping system responsible for conveying hot water from

the micro-CHP unit and the gas boiler to meet the thermal load, while the

blue lines indicate the return flow of water after heat exchange with the

customer’s facility. The electrical connections, drawn in green, represent the

wiring network that provides power supply to the facility.

Cogeneration is a process that generates electricity and heat simultaneously.

41
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Figure 4.1: Case study plant layout.

It is a highly efficient way to produce energy because it recovers the waste

heat that is produced during the electricity generation process and uses it

to provide heat or hot water. This results in higher overall energy efficiency

compared to generating electricity and heat separately. CHPs are often used

in industrial and commercial settings, but can also be used in residential

buildings. The CHP unit has at its core an internal combustion engine (Fig-

ure 4.3) that converts fuel energy (natural gas in this case) into electrical

energy. The heat removed from the engine to cool it as well as the heat

present in the high-temperature exhaust gas is recovered and transmitted

to the carrier fluid (water) that is feeding the plant. Indeed, the CHP is

part of a more complex plant (Figure 4.2) composed of a buffer tank and a

heating boiler. The 20 kWe CHP’s engine, backed up by the grid, meets the

electric load and the recovered heat is used to charge the buffer tank. The

CHP’s hot circuit is connected in parallel with the backup boiler to cover

the thermal request.

Each of the cases under consideration shares identical plant layouts, thereby

resulting in a highly similar dataset with the exception of two specific as-

pects. The dataset related to the CHP systems could exhibit varying ac-

quisition times ranging from 1 minute to 15 minutes. Furthermore, there

could be disparities in the volume of available data for each plant, contin-

gent upon factors such as commissioning dates, potential connection issues,

plant shutdowns prompted by internal or external factors, and the governing

data management policies.
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Generally, these datasets present multiple features from different elements

installed in the plant’s layout; since this work focuses on learning the normal

functioning of only 1 device of the plant, the CHP unit, a technical analysis

has been performed and only 16 features have been considered remarkable

and detailed below:

• the active power is the electric power generated by the CHP system

used to meet the electrical demand. By monitoring the electric power

produced, it is possible to ensure that the system is operating at op-

timal efficiency and identify any potential issues affecting its perfor-

mance.

• the maximum power the CHP is allowed to produce (set by operator).

• number of starts of the CHP in the time interval is an index of how

the CHP is managed.

• engine inlet temperature is the fluid temperature at the intake mani-

fold just before entering the engine. It is an important parameter to

consider when operating the CHP, as it can affect the performance and

efficiency of the engine. Furthermore, the spread between the engine

inlet and engine outlet temperature should not have a too high value.

Indeed, when the spread increases remarkably, serious damages can be

reported to some engine components and in particular to the cylinder

head.

• engine outlet temperature is the temperature of the cooling fluid after

cooling down the engine. Measuring and monitoring the engine out-

let temperature is an important aspect of engine operation, as it can

help ensure that the engine runs efficiently and effectively. As men-

tioned above, it is also important to calculate and monitor the spread

temperature between the engine’s inlet and outlet manifolds.

• engine cooling circuit pressure is the pressure of the system that helps

to regulate the temperature of the engine by circulating a coolant fluid

through passages in the engine block and cylinder head. The coolant

absorbs heat from the engine and then flows through a radiator, where

it releases the heat into the air. The circulation of the coolant is driven

by a pump, and the pressure of the coolant in the system is a result of

the resistance to flow caused by the various components in the circuit,
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including the radiator, hoses, and water pump. The pressure in the

engine cooling circuit is an important parameter to monitor, as it can

affect the performance and efficiency of the cooling system. If the

pressure is too low, it can result in poor circulation and insufficient

cooling, which can lead to overheating and damage to the engine. If

the pressure is too high, it can cause leaks or even ruptures in the

system, which can also result in engine damage.

• oil temperature is the temperature of the lubricating oil that is used

to reduce friction and wear in the engine. In general, it is desirable to

maintain the oil temperature within a certain range in order to ensure

that the oil is able to effectively lubricate the engine and prevent wear.

If the oil temperature gets too high, loses its effectiveness, which can

lead to increased wear and potentially cause damage to the engine. On

the other hand, if the oil becomes too cold, several issues can arise due

to its changed viscosity and reduced effectiveness.

• CHP cabin temperature refers to the temperature inside the enclosure

or control room of the CHP system. This temperature is influenced by

the amount of heat generated by the CHP system and the surrounding

environment. The CHP cabin temperature is vital for ensuring the

safety and comfort of the operator, as well as for maintaining the proper

functioning of the CHP system.

• ambient temperature is the outdoor temperature.

• exhaust gas temperature is the exhaust gas temperature when expelled

from the combustion chamber, measured at the outtake manifold. It

will vary depending on the operating conditions of the engine, such

as the load, speed, and air-fuel ratio. It is an important indicator of

how combustion is occurring in the combustion chamber (injection,

stoichiometry, combustion complementation, etc.). Monitoring the ex-

haust gas temperature can help to identify problems with internal heat

exchangers.

• heat exchanger exhaust temperature is measured by a probe onto the

pipe carrying the operating fluid, just after the heat exchanger (the

device used to transfer heat from the cooling fluid, such as water, to

the operating fluid in the plant). It is related to the heat exchanger and
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provides information on the state of the element and the heat transfer

process between the fluids involved.

• heating circuit pump rate is the measured value in revolutions per

minute (rpm) of the pump managing the heating circuit. Is the cir-

culation pump that provides the main water flow. It is placed at the

beginning of the circuit that brings cold water from the thermal buffer

to the engine, recovering its heat for cogeneration and thus preventing

overheating and damage.

• CHP pump rate indicates the CHP pump motor rotation rate. The

CHP pump circulates water through the system recovering heat from

the engine and from the exhaust gases and transferring it to the heat

exchanger.

• lambda sensor value is the measurement provided by the lambda sen-

sor, also called the oxygen sensor. It measures the amount of oxygen

that has not been burned in the exhaust pipe of a combustion engine.

This information is used to adjust the mixture of air and fuel in the

engine to ensure it is operating efficiently. The lambda sensor helps to

determine if the air-fuel ratio is lean or rich.

• gas mixer position is the opening degree of the gas mixer valve, the

valve that controls the flow of fuel into the combustion chamber of

an internal combustion engine. It is typically located in the intake

manifold and is used to adjust the air-fuel ratio in the engine. This is

important because the optimal ratio can vary depending on the load

and operating conditions of the engine. By adjusting the gas mixer

valve, the engine can be made to run more efficiently and with fewer

emissions.

• throttle position is the opening degree of the throttle valve, the valve

that controls the flow of air and fuel into the combustion chamber of

the internal combustion engine. By regulating the flow of air and fuel

into the engine, this valve also controls the power output of the engine.
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Figure 4.2: Plant layout with YANMAR CHP, gas boiler, and thermal buffer.
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Figure 4.3: Details of the gas engine driving the CHP.

4.2 Data Preprocessing

For every YANMAR CHP, data are acquired by the local Programmable

Logic Controller (PLC) and pushed into the cloud: in particular, data is

sampled and hosted on a MariaDB database [74]. The acquisition time Ts

is set by the customer in accordance with the connectivity tariff available; if

data are transmitted by means of a Global System Mobile (GSM) sim card

then the sampling frequency cannot be increased in a steady-state function-

ing and Ts must be set to 15 minutes. Otherwise, if the plant guarantees

a LAN connection, then Ts can be set to 1 minute. Furthermore, the PLC

does not rank the data transmission as a high-priority task, and values are

pushed with variable frequency and on average every Ts minutes implying

that the real acquisition period is highly irregular.

A series of pre-processing operations have been done on the original data.

At first, the 16 features are queried and re-sampled to meet the hypothesis

of having a value every 1 or 15 minutes.

A binary value denoting whether the lambda sensor is reliable or not is in-

troduced to allow for tracking of unreliable measurements. Indeed, when the

cogenerator is shutting down, the lambda sensor may produce inconsistent

values close to overflow not reflecting reality. In this situation, the binary

value is set to 1 to indicate that the measurement is not reliable, while the
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value of the lambda sensor is set to 0.

The CHP pump rate is encoded to a boolean value. Both pumps have, in

fact, an embedded inverter that controls the motor’s rpm but, while the heat-

ing circuit pump is actually operated in the full range of speeds indicated by

the datasheet, the CHP pump is controlled with a two-state logic: it starts

to run before the CHP switches on and shuts down right after the CHP turns

off and the engine is cooled down.

In the end, all sensors’ values are normalized according to engineering expe-

rience; minimum and maximum values of each signal have been set a-priori.



Chapter 5

A Methodology to Determine

the Optimal Train-set Size

This chapter proposes a procedure to determine the optimal train-

set size to minimize the reconstruction error of an autoencoder

with a pre-defined structure and hyper-parameters that will be

trained to encode the normal behavior of energy generation sys-

tems. This procedure exploits the outcome of learning curves, a

powerful tool to track algorithm performance while the train-set

dimension varies. Afterward, the procedure is applied to three real

case studies where two types of autoencoders are trained to learn

the normal behavior of a YANMAR CHP unit with the scope of

detecting incoming anomalies. In the end, the outcomes of the

procedure are explained and, under the constraint of a daily re-

training frequency, 6 weeks are identified as the optimal train-set

size for both autoencoders. This chapter is structured as follows:

the proposed methodology is explained in Section 5.1, and the

three real case studies are described (Section 5.2). Results (Sec-

tion 5.3) are illustrated and conclusions (Section 5.4) are drawn.
1

1Part of the contents of this chapter has been published as “A methodology to deter-

mine the optimal train-set size for autoencoders applied to energy systems” in Advanced

Engineering Informatics [24].
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5.1 Proposed Methodology

In this section, the procedure to size the optimal train-set size for a pre-

tuned autoencoder is explained; this procedure exploits a powerful machine

learning tool: learning curves. In order to produce a model as generalizable

as possible, a cross-validation routine is applied. The described procedure is

a further development of the methodology proposed by Giola et al. [37]. The

main difference lies in the fact that the present work is aimed at utilizing

semi-supervised models where only partial information about the machine’s

state is available, whereas Giola et al. focus on supervised regression mod-

els for energy load prediction where the data is well labeled. Additionally,

in this work, the autoencoder operates in the domain of multivariate data

rather than univariate. Finally, a procedure based on the frequency behavior

of the specific CHP system is also proposed to determine the optimal period

between retraining intervals.

In this work, a multivariate time-series with N features is analyzed; each

observation of the time-series is X ∈ RN . At the time tk ∈ R+
0 , X(tk) rep-

resents the vector of observations of the input variables; the first acquisition

of the available dataset is indicated with t0. A list of length q of eligible

train-set size p = [p1, p2, ..., pq] has to be pre-set in order to show how the

algorithm is able to generalize when is trained with different sizes of train-

set. The test-set size d is strongly related to the nature of the problem and

the seasonality of the dataset; in this work, the test-set size is set to 1 day

accordingly to the procedure explained in Section 5.3.1. As shown in Fig-

ure 5.1, the testing period has been assumed to be immediately after the

train-set; this is not a constrain but just a hypothesis that does not lead to

a lack of generality, as long as the time order is retained the test period can

be shifted forward.

The proposed methodology can be categorized among Out-Of-Sample (OOS)

approaches: OOS methodologies have traditionally been used to assess pre-

dictive performance for time-varying data. Basically, the out-of-sample method

keeps the last part of the time-series to be used for testing. These approaches

do not fully exploit the total amount of data but retain their temporal order

allowing for to management of dependencies between observations and tem-

poral correlations between consecutive values in the time-series [16].

Given d as a constant dimension of the test-set, then, for every train-set size
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pj starting at time ti, the analyzed train-sets are:

X(ti) ≤ X ≤ X(ti + pj) (5.1)

and the test-sets:

X(ti + pj + 1) ≤ X ≤ X(ti + pj + 1 + d) (5.2)

In order to evaluate the algorithm’s performance without being influenced by

the train-set local characteristic, for each pj train-set size, this scheme is ap-

plied over multiple test periods (Figure 5.1). Obviously, as the methodology

is designed, each time the train-set is moved, the test-set slides.

Figure 5.1: Scheme of the proposed methodology.

The number k of the tested periods must be chosen in order to be sta-

tistically representative of the dataset’s temporal behavior. In particular,

k depends on the dimension of the biggest train-set and on the time-series

seasonality and trend. The selection of k is based on a general rule of thumb

developed in the present research. This rule suggests that if we denote s as

the number of acquisitions present in the maximum seasonality of interest

within a particular dataset, and n as the available data points for analysis,

then a value of k consistent with Equation 5.3 can be considered.

k = 10 · n
s

(5.3)

In the present work, the CHP maximum seasonality of interest is acknowl-

edged as 1 year and the available acquisitions correspond to 1 year for the
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first two datasets whilst 6 months for the third one. Consequently, n
s = 1

and k = 10 for the first two case studies have been considered, while n
s = 0.5

and k = 5 for the third one. This rule serves as a practical guideline but, in

the case of different applications, may be adjusted according to experience

and domain knowledge.

In order to quantify the train-set and test-set reconstruction errors, many

metrics can be calculated: the most common metrics are Root Mean Squared

Error (RMSE), Mean Absolute Percentage Error (MAPE), or Root Mean

Squared Percentage Error (RMSPE) and they all have different shortcom-

ings and merits. In this work, the selected metric is the RMSE: being the

reconstruction error a mean of the single scaled feature’s reconstruction er-

rors, RMSE is not fully explicative but, on the other side, gives a robust

and intuitive interpretation of the error. Indeed, both RMSPE and MAPE

present high values when a feature is close to zero invalidating the graphical

visualization of learning curves. The formula for calculating the training

RMSE of the m-th testing period is expressed by Equation 5.4.

RMSEm,train =

√√√√ 1

pj

pj∑
i=1

1

N

N∑
f=1

(
xm
i,f − x̂m

i,f

)2

(5.4)

where xm
i,f is the actual value of the feature f and x̂m

i,f is the forecast value of

the same feature. The training procedure is repeated k times for each train-

set-size pj obtaining k RMSE test-set’s reconstruction errors and k train-

set’s reconstruction errors. The procedure to calculate the testing RMSE

is analogous with the difference in that it takes into consideration the d

time-steps of the test-set (Equation 5.5)

RMSEm,test =

√√√√1

d

d∑
i=1

1

N

N∑
f=1

(
xm
i,f − x̂m

i,f

)2

(5.5)

The q average RMSE errors ek for training (Equation 5.6) and testing (Equa-

tion 5.7) represent two points in the learning curves graph. In addition, to

show the dispersion of the data, the error variance for both the training and

testing curves is represented with a colored gradient.

ek,train =
1

k

k∑
m=1

RMSEm,train. (5.6)
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ek,test =
1

k

k∑
m=1

RMSEm,test. (5.7)

The flowchart in Figure 5.2 explains the methodology where the parameters

have been set in accordance with Section 5.3.1.

Figure 5.2: Flowchart of the proposed methodology.

In this section, a general methodology is proposed but the reader must be

aware that there are some dataset traits that strongly influence the method-

ology outcome:

• autoencoder hyper-parameters: the optimal train-set size depends on

the architecture of the model. Hence, the hyper-parameters must be

set before running the proposed methodology.
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• retraining frequency : the quality of the reconstruction depends on how

far in the future the autoencoder is applied without retraining. This

means that also the test-set size must be fixed (Section 5.3.1) and the

interval between two retrainings must be equal to the test-set size.

• number of features: the quantity of data needed to train the model is

directly influenced by the order of magnitude of the number of features

populating the dataset. When the number of not highly correlated fea-

tures increases, it implies that the relationships among those features

are more complex. As a result, the model requires a larger quantity of

data to accurately capture and learn these complex relationships. The

absence of sufficient data may result in underfitting and the model may

fail to generalize well to unobserved data.

• sample time: autoencoder’s performance is clearly weakened if trained

with low-frequency data, indeed, increasing the interval among two

observations, may cause information loss. On the other side, the high

sampling frequency may lead to redundant samples causing a slow-

down in the autoencoder’s training without improving reconstruction

performance. In the context of the thesis, the dataset is sampled at

intervals of either 1 or 15 minutes. It is important to note that these

sampling intervals should not impact the methodology.

5.2 Case Studies

The proposed methodology has been applied to define the optimal train-

set size of two types of autoencoder, the Vanilla AutoEncoder (AE, Sec-

tion 5.2.2) and the Convolutional AutoEncoder (ConvAE, Section 5.2.3),

subsequently employed for a problem of sequential novelty detection. The

units under analysis (20 kWe YANMAR CHPs described in Chapter 4) are

located in Germany and satisfy the electrical and thermal needs of three

different plants: the YANMAR facility where CHPs are produced, a manu-

facturing company, and a telecommunication company.

5.2.1 Dataset

The three cases considered have identical plant layouts and, thus, a very

similar dataset except for two details. The first CHP has a dataset with an
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acquisition time of 1 minute, while the other two have 15 minutes. The first

and second CHPs have one year of data available, while the third has only

six months. These datasets present multiple features from different elements

installed in the plant’s layout; since this work focuses on learning the normal

functioning of only 1 device of the plant, the CHP unit, as described in

Sections 4.1 and 4.2, only 16 features plus 1 manipulated, acquired with a

sample time of 1 minute, have been considered remarkable for the current

work:

• the active power produced by the CHP;

• the maximum power ;

• number of starts of the CHP in the time interval ;

• engine inlet temperature;

• engine outlet temperature;

• engine cooling circuit pressure;

• oil temperature;

• CHP cabin temperature;

• ambient temperature;

• exhaust gas temperature;

• heat exchanger exhaust temperature;

• heating circuit pump rate;

• CHP pump rate;

• lambda sensor value;

• lambda sensor is reliable;

• gas mixer position;

• throttle position.
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5.2.2 Vanilla Autoencoder

AE is the simplest form of autoencoder, it is a three-layer neural network

where interconnections are made by means of fully connected nodes: each

node of layer l is connected to every node in the layers l − 1 and l + 1.

This algorithm considers each sample as independent, which leads to faster

training disregarding the time correlation among acquisitions. The structure

and the hyper-parameters selected for this work are reported in Table 5.1:

hyper-parameters AE

input dimension 17

latent dimension 70

output dimension 17

activation function relu

batch size 32

learning rate 10−4

l1 regularization 0.0

dropout 0.2

optimizer Adam

loss function MSE

Table 5.1: Vanilla Autoencoder hyper-parameters.

5.2.3 Convolutional Autoencoder

ConvAE presents a more complicated shape: it is not fed with the row

samples but, at each step, a sliding window of the input vector is provided.

Inputs are treated by means of a 1D-convolutional layer characterized by a

certain number of filters; each filter has a predefined dimension (kernel size).

The latent space is made by fully-connected nodes and its output is inputted

to a transposed 1D-convolutional layer that produces an output vector of the

same dimension as the input. The convolutional layers and the small size of

the bottleneck allow for neglecting the use of dropout and regularization. A

complete list of the ConvAE hyper-parameters can be found in Table 5.2
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hyper-parameters ConvAE

sliding window 10

input dimension (10,17)

latent dimension 3

output dimension (10,17)

activation function relu

batch size 32

learning rate 10−4

l1 regularization 0.0

dropout 0.0

padding same

strides 1

filters number 10

kernel size 5

optimizer Adam

loss function MSE

Table 5.2: Convolutional Autoencoder hyper-parameters.

5.3 Results

This section reports the results obtained running the methodology proposed

in Section 5.1 to estimate the optimal dimension of the train-set for two types

of autoencoder described in Section 5.2.2 and Section 5.2.3. The methodol-

ogy has been applied to three different case studies.

5.3.1 Case study 1: YANMAR facility

In the first instance, the methodology parameters have to be explicated: a

test-set of 1 day has been set, as motivated later in this Section, the number

of periods of test k has been fixed to 10 (according to Equation 5.3) and 8

train-set sizes have been explored (from 1 week up to 8 weeks). A monitoring

duration of up to 8 weeks may be regarded as an acceptable upper limit for

customers before an anomaly detection service becomes operational. The

whole dataset is composed of 17 features recorded for 1 year and describes

the behavior of a 20 kWe YANMAR CHP.

For the sake of precision, a sum-up of the methodology’s parameters is re-
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ported below:

• d = 1, test-set size expressed in days;

• k = 10, number of periods tested for each train-set size;

• p = [1, 2, 3, 4, 5, 6, 7, 8], the list of train-set sizes expressed in weeks.

Figure 5.3 reports the real splits applied to the case study dataset according

to the proposed methodology described by Equations 5.1 and 5.2.

Figure 5.3: Methodology applied to a real case study: YANMAR facility.
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Retraining frequency

Over time, the behavior of the system may change (aging, degradation, etc.).

If the algorithm has been trained with data too far back in the past, it may

not be able to capture the current behavior of the system. Therefore, it is

essential to provide periodic re-training with more recent data that contains

information about the unit’s current operation. Usually, the system’s signals

are characterized by a periodicity due either to their nature or to the plant’s

management logic. To maximize the deep learning model’s performance, it

is important to have a statistical similarity between the train-set and the

test-set so that the model is able to infer reconstructed features that are

subject to the same external condition (i.d. period of the year, management

logic, cost of raw materials, etc...) of the input features.

In this section, a frequency domain-based procedure to set the retraining

frequency, and consequently the test-set size, is explained. The FFT (Sec-

tion 3.2) is applied to all features and Fourier components are calculated.

Frequencies corresponding to a period smaller than 8 hours have been fil-

tered because considered not physically interesting for the energy system

under analysis. Then, the most representative Fourier components of each

feature are considered and the most representative frequency is selected.

Figure 5.4 shows the frequency components of the features describing YAN-

MAR CHP under analysis; the orange, green, and yellow shaded areas rep-

resent the Fourier components relative to 1 week, 1 day, and 12 hours. Ex-

perience with YANMAR CHPs suggests that the 12-hour pattern is linked

to the day/night cycle, the 24-hour pattern is linked to the daily operation,

and the week pattern is generated by the different loads requested at the

week-end. Concluding, a re-training period of 1-day is then chosen for three

main operating reasons:

• retraining a deep learning algorithm every 12 hours may be computa-

tionally expensive considering that, in some cases, the anomaly detec-

tion routine runs locally on on-field devices;

• a daily pattern is considered the most significant from an operating

point of view and it is present in all YANMAR CHPs;

• waiting 1 week before feeding the model with new data may lead the

algorithm to detect some seasonal trends as anomalies.

It is important to emphasize that 1 day is the ideal period after which, if no
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Figure 5.4: Features’ FFT components.
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anomalies have occurred, it is highly beneficial to retrain the autoencoder.

However, before retraining, it is imperative to ensure that no anomalies took

place on the preceding day. This necessitates prompt confirmation of the

CHP system’s normality by YANMAR maintenance technicians during the

development of the anomaly detection routine. As of today, it has not been

possible to do this; therefore, in Chapters 6 and 7, the autoencoder is not

retrained daily. Instead, in Chapter 8, an approach to retraining is proposed

after the data has been carefully selected to meet certain criteria.

Optimal train-set size

Figure 5.5 shows the learning curves built for the AE: red and green curves

report the training RMSE averaged over the k folds whilst the red and green

areas, similarly, represent the RMSE variance. In this case, a train-set of

6 weeks should be considered optimal; indeed, increasing the train-set size,

the test score decreases reaching its minimum at 6 weeks and then starts to

increase again. Also, the tiniest RMSE variance happens to be at 6 weeks.

Figure 5.5: Case study 1. Learning curves for Vanilla Autoencoder.

In the same way, Figure 5.6 shows the learning curves built for the Con-

vAE: also in this case, 6 weeks appear to be the optimal train-set size even

if the average RMSE is a bit higher. At first glance, analyzing the learn-

ing curves, the reader may conclude that the difference, in terms of RMSE,

between a train-set size of 2 weeks and a train-set size of 6 weeks is not re-
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Figure 5.6: Case study 1. Learning curves for Convolutional Autoencoder.

markable. For sake of clarity, Figure 5.7 and Figure 5.8 depict the actual and

the reconstructed values of three of the most significant features of the same

test-set for the two structures of autoencoder discussed in this work. Both

AE and ConvAE, drastically improve their performance when increasing the

dimension of the train-set, in particular when the signal is not in a steady

condition. From a practical point of view, some consideration must be done:

if the minimum test-set RMSE does not match the customer’s expectation

then the structure of the autoencoder can be changed in order to improve

performance.

On the other hand, if 6 weeks are considered too much, then the autoencoder

can be simplified. Figures 5.5 and 5.6 demonstrate that the AE is more sen-

sible to the train-set size while the ConvAE reaches an RMSE value close

to the minimum with only 2 weeks of training. Increasing the train-set

size produce an RMSE variance reduction for both autoencoders even if a

strange behavior is noticed when 5 weeks of training are used: algorithms’

performance drastically worsens in term of RMSE variance.

5.3.2 Case study 2: Manufacturing Company

To maintain conciseness, the hyper-parameters and retraining frequency con-

siderations pertaining to the methodology, as discussed in the previous case

study, are omitted as they remain consistent. Figures 5.9 and 5.10 depict the

learning curves for the models built on data acquired from the manufacturing
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Figure 5.7: Case study 1. AE reconstructions comparison, 2 weeks vs 6

weeks of train-set size.

Figure 5.8: Case study 1. ConvAE reconstructions comparison, 2 weeks vs

6 weeks of train-set size.
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company and, also in this case, 6 weeks appear to be the optimal train-set

size. Figures 5.11 and 5.12 underscore how a marginal reduction in the av-

Figure 5.9: Case study 2. Learning curves for Vanilla Autoencoder.

Figure 5.10: Case study 2. Learning curves for Convolutional Autoencoder.

erage error within the learning curves, results in an improved reconstruction

of input signals.

5.3.3 Case study 3: Telecommunication Company

Similarly, in this case, the hyper-parameters of the methodology and the

considerations remain largely unchanged, with the only difference being at-
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Figure 5.11: Case study 2. AE reconstructions comparison, 2 weeks vs 6

weeks of train-set size.

Figure 5.12: Case study 2. ConvAE reconstructions comparison, 2 weeks vs

6 weeks of train-set size.
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tributed to the limited availability of data. In this particular case, only six

months of data are obtainable therefore, by employing Equation 5.3, the

value of k used is determined to be 5, and different splits are utilized (Fig-

ure 5.13).

Figure 5.13: Methodology applied to a real case study: telecommunication

company.

Figures 5.14 and 5.15 report the learning curves for the two autoencoders

trained using data from the telecommunication company. In this case, the

learning curves indicate that a slightly larger train-set might be beneficial,

particularly for the Vanilla AE. The graph suggests that exploring a dimen-

sion greater than 8 weeks could have been advantageous, whereas, for the

ConvAE, 7 weeks seems to be the more appropriate choice. However, due
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to the limitation of only having 6 months of data, applying the proposed

methodology with a larger train-set exceeding 8 weeks within a 24-week

dataset could lead to significant overlapping in the methodology’s dataset

split. Further data acquisition would be necessary to augment the dataset

to confirm an optimal train-set size greater than 8 weeks.

Nevertheless, taking into account the test score variance and the stabilization

of the test score average beyond a train-set size exceeding 5 weeks, it can be

deemed reasonable, albeit not universally optimal, to opt for a train-set size

of 6 weeks. For consistency with previous cases, a comparison is provided

Figure 5.14: Case study 3. Learning curves for Vanilla Autoencoder.

Figure 5.15: Case study 3. Learning curves for Convolutional Autoencoder.
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between signal reconstruction achieved by a model trained for 2 weeks (Fig-

ure 5.16) and one trained for 6 weeks (Figure 5.17). In this case, as well,

Figures 5.16 and 5.17 emphasize how a small decrease in the average feature

reconstruction error significantly enhances the reconstruction quality of the

two presented autoencoders.

Figure 5.16: Case study 3. AE reconstructions comparison, 2 weeks vs 6

weeks of train-set size.

5.4 Chapter Conclusions

This work tries to fill the gap between academic research and industrial

applications with regard to the utilization of autoencoders in the energy

production domain. The problem has been explained and then a methodol-

ogy to select an optimal dataset dimension to train an autoencoder has been

proposed. Three particular case studies have been detailed and a procedure

to set the test period during which is not helpful to retrain the model has

been described. In the end, results have been shown taking into account two

structures of autoencoder: AE and ConvAE.

The proposed methodology, designed to retain temporal correlation among
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Figure 5.17: Case study 3. ConvAE reconstructions comparison, 2 weeks vs

6 weeks of train-set size.

samples, has been applied to learn the normal functioning of three YANMAR

CHPs where the datasets of interest include the behavior of 17 features. For

these case studies, it has been demonstrated how 6 weeks can be considered

a good selection for the train-set size when dealing with 20 kWe YANMAR

CHPs, and in two case studies out of three, this dimension minimizes the re-

construction error in the test-set. FFT transform has been used to calibrate

the test-set dimension and 1 day has been individuated as the best choice.

The outcome of this work is a tool to help researchers in designing autoen-

coder models to be more usable by industries; indeed the proposed method-

ology gives also information on how much the autoencoder performance will

decrease if the customer needs the model to be deployed before the optimal

train-set size quantity of data is available.
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Chapter 6

Anomaly Detection and Root

Cause Analysis

This chapter presents a semi-supervised deep learning solution

to detect anomalies of a 20 kWe YANMAR micro-cogeneration

unit installed in the energy plant of a facility school. The dataset

considered consists of 13 features acquired every 15 minutes. An

autoencoder with 1D-convolutional layers has been designed and,

after being trained to learn the normal behavior of the CHP, is

employed to report abnormal operations. In consideration of the

fact that autoencoders have the tendency to yield false positives,

an FFT-based technique has been applied to filter spurious detec-

tions and improve the algorithm’s robustness. As the last con-

tribution, a naive methodology to address the root cause of the

anomalies has been explained and its effectiveness has been proved

in two real malfunctionings of the CHP. Section 6.1 presents the

real application and details of the available dataset. Section 6.2

treats the proposed methodology. Section 6.3 defines two algo-

rithms to benchmark the work’s outcomes. In the end, results

obtained with two different test-sets are discussed (Section 6.4),

and conclusions are drawn (Section 6.5). 1

1Part of the contents of this chapter has been submitted as “Anomaly Detection and

Root Cause Analysis using Convolutional Autoencoders: a Real Case Study” to En-

ergy [25].

71
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6.1 Dataset

The target unit of this chapter, described in Chapter 4, is a YANMAR co-

generation system that satisfies the energy needs of a school in Germany.

As mentioned in previous chapters, the dataset contains information about

different parts of the plant but, since the main focus of the study is to under-

stand the normal functioning of the CHP unit, only 17 features were selected.

Unluckily, for this particular case study, some sensor was not installed or was

producing unreliable measurements, so 4 features were discarded. Thus 13

signals, sampled every 15 minutes, have been used for this study:

• the active power ;

• engine inlet temperature;

• engine outlet temperature;

• oil temperature;

• CHP cabin temperature;

• exhaust gas temperature;

• heat exchanger exhaust temperature;

• heating circuit pump rate;

• CHP pump rate;

• lambda sensor value;

• lambda sensor value is reliable;

• gas mixer position;

• throttle position.

Specifically, in the case of this system, four other measurements describing

the CHP behavior have been excluded:

• maximum power recorded inconsistent values;

• The counter responsible for tracking the number of CHP starts within

the specified time interval became static at zero;
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• The engine cooling circuit pressure remained unconnected;

• The sensor designated for measuring ambient temperature was erro-

neously positioned.

6.2 Proposed Methodology

This section will first present the data collection steps and pre-process op-

erations that were necessary in order to maximize available information and

to neglect disturbance. This will be followed by a description of the con-

struction of the model, the core of the work, and a detailed overview of the

proposed methodology (a flowchart is reported in Figure 6.1). The proposed

methodology is based on two pillars: the autoencoder and the FT. A brief

introduction to these two techniques has been given in Chapter 3, providing

some hints of the instruments used, which do not claim to be exhaustive but

only supportive for the reader.

6.2.1 Data collection and pre-processing

In Chapter 5, it has been demonstrated how a train-set size of 6 weeks is a

suitable trade-off between having enough data to describe CHP’s dynamic

and, in the meanwhile, not complicating too much the autoencoder structure.

In this work, the outcome obtained in the previous chapter has been deemed

applicable to this case study as well, even though the signals are slightly

fewer: this assumption is made on the premise that such a result could be

attributed to the seasonal dynamics of the machine rather than the number

of features.

Consequently, the first challenge of this work has been to find a batch of data

containing 6 weeks of normal data: this activity joined the activity reports of

the CHP maintenance engineers, the error codes generated by the onboard

controller of the machine, and a deep analysis of each univariate describing

the CHP’s behavior. Every YANMAR CHP has a diagnostic onboard system

that at each acquisition reports the CHP status. Unluckily faulty statuses

are created utilizing coarse thresholds and, consequently, the presence of an

alarm is a sufficient condition to say that the CHP has an anomaly but it is

not a necessary condition. Many faults or degradation trends go unnoticed

by the diagnostic system. The analyzed dataset presents the following fault’

codes with the respective message:
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Figure 6.1: Flowchart of the proposed methodology.



6.2 Proposed Methodology 75

• 0 - CHP stopped but ready to start;

• 2 - CHP stopped. Maintenance needed;

• 11 - Shutdown: generator protection;

• 12 - Low hydraulic pressure;

• 16 - Shutdown: water pressure too low;

• 18 - Shutdown: overheat interior;

• 19 - Shutdown: overheat engine oil.

Furthermore, the CHP can operate in four different operating modes. If the

anomaly detection model is trained on a specific mode then the test-sets

must be selected accordingly. Five operation modes are present:

• Mode 0, the CHP is turned off;

• Mode 1, the CHP is ready to charge an electric car;

• Mode 2, the CHP is optimized for summer operation;

• Mode 3, the CHP is optimized for heat production;

• Mode 4, the CHP is optimized for power production.

However, the CHP under analysis mainly operates to optimize heat produc-

tion; as depicted in Fig. 6.2, except for Mode 0 when the plant is idle, the

CHP primarily functions in either Mode 2 or Mode 3. When the CHP oper-

ates at maximum capacity, it is consistently configured to operate in Mode

3, which may be attributed to the high demand for thermal power within

the facility. However, at partial load, the CHP primarily operates in Mode

2. Finally, in order to retain the temporal behavior of the CHP, samples

are manipulated into sequences of 10 acquisitions by means of a sliding win-

dow. The normalized frames used to train the neural network and create a

baseline of normality are shown in Figure 6.3, with the note that only the

lambda sensor is reliable signal has been omitted as it is considered of limited

interest in defining the CHP behavior.
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Figure 6.2: Distribution of the active power in relation to the CHP operating

mode.

6.2.2 ConvAE: an ad-hoc structure of autoencoder

A tailored structure of autoencoder hereafter referred to as ConvAE, is pre-

sented in this subsection. The ConvAE proved to perform well in mimicking

the CHP’s normal behavior. It presents a straightforward but unprecedented

shape (Figure 6.4): the input layer is provided with the manipulated acqui-

sition, indeed, at each iteration, a sequence of 10 elements is inputted and

then treated using a 10 filters 1D-convolutional layer; all filters have the

same fixed dimension of 5 (kernel size). Results of the convolution are pro-

cessed by a ReLu activation function (f (x) = max (0, x)) that introduces

nonlinearities and then are compressed to a 3-node latent space.

The latent space consists of dense nodes and produces an output that is

directly given as input to a transposed 1D-convolutional layer. Like in the

encoder part, the output of the convolution passes through a ReLu activa-

tion function and then outcomes an array of the same size as the input. The

autoencoder is trained using a learning rate of 10−4, a batch size of 32, and

the Adam optimizer to minimize an MSE loss function. The reduced size

of the bottleneck and the 1D-convolutional layers permit ignoring the use

of any kind of regularization such as dropout. A validation-set has been

extracted randomly from the train-set and the training history is reported

in Figure 6.5. The hyper-parameters used to build the ConvAE are de-
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Figure 6.3: Time-series of the normalized features used to train the ConvAE.
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Figure 6.4: Convolutional Autoencoder architecture.

Figure 6.5: Train and validation loss history during the training phase.
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tailed in Table 6.1. During the training phase, a threshold is calculated to

hyper-parameters ConvAE

sliding window 10

input dimension (10,13)

latent dimension 3

output dimension (10,13)

activation function relu

batch size 32

learning rate 10−4

l1 regularization 0.0

dropout 0.0

padding same

strides 1

filters number 10

kernel size 5

optimizer Adam

loss function MSE

validation split 0.1

Table 6.1: Convolutional Autoencoder hyper-parameters.

discriminate between normal and abnormal observations. This threshold is

calculated on the 99th percentile of the training reconstruction errors.

The percentile value was chosen after conducting a sensitivity study (Fig-

ure 6.6). A period was selected during which the CHP exhibited normal

behavior, which clearly does not coincide with either the train-set or the

test periods. This period ranges from July 15, 2020, to August 15, 2020.

The choice was constrained by the available data, as a longer period where

the machine’s behavior was completely certain to be normal could not be

found. Ten percentile values ranging from 90% to 99% were tested, showing

a consistent trend of improving accuracy. Eventually, by selecting a per-

centile from 97% to 99%, every false positive was eliminated. Given that,

a problem encountered in using autoencoders for anomaly detection is the

high number of false positives, a more cautious approach was adopted and

the value of 99% was chosen.

To be precise, it is important to note that it would have been scientifically

more accurate to conduct a sensitivity analysis based on metrics such as F1-
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Figure 6.6: Sensitivity analysis for selecting percentile threshold, ConvAE.

score. Unfortunately, this was not possible because it would have required

an additional dataset with known anomalies. Therefore, it was decided to

choose the percentile in a way that maximizes accuracy, which in this con-

text means minimizing false positives in a period of normality of the machine

under analysis.

Since this work deals with time-series and observations are treated by means

of a fixed-size sliding window, an observed sub-sequence is considered anoma-

lous if all the 10 samples composing the sub-sequence itself have a reconstruc-

tion error greater than the pre-calculated threshold. Furthermore, since each

sample is a multivariate consisting of a vector of 13 elements (as the num-

ber of inputs), the reconstruction error for each sample is calculated as the

average error made reconstructing the 13 features in that time instant.

For the sake of clarity, the mathematical formulation for the reconstruction

error recon error is expressed below:

recon error =
1

W

W∑
t=1

1

N

N∑
i=1

(xi(t)− x̂i(t))
2

(6.1)

where xi(t) is the i
th feature at time t, x̂i(t) is the i

th reconstruction at time

t, N is the number of features and W is the sliding window size.

Figure 6.7 shows the reconstruction error for the train-set; blue scatter points
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Figure 6.7: ConvAE reconstruction error of the train-set.

represent the normal samples according to the alarms reported by the inter-

nal controller of the machine. Due to the fact that the dataset comes from

a real case study, irrelevant orange points are present (abnormal samples)

and they can be considered perturbations. Indeed, in the industrial context,

having a remarkable quantity of normal subsequent acquisitions is a strong

hypothesis that seldom can be satisfied.

6.2.3 Post-processing

As already stated, autoencoders (but also other machine learning models)

tend to produce false positives. Therefore, it was considered to post-process

autoencoder detections using frequency-based techniques. False positives

occur when the model detects transient conditions that deviate from its av-

erage normal behavior. For autoencoders, this also happens when the model

is well-trained for variations related to seasonal or physiological changes in

operating parameters. By using frequency-based techniques such as, for ex-

ample, Kalman and moving average filters, the number of false positives can

be reduced and the overall performance of the model can be improved. In

this work, an FFT-based technique is proposed: the main idea, based on the

domain knowledge of CHP functioning, is that detection can be considered

reliable if it remains active for at least 12 hours.
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The anomaly detection signal is transformed to the frequency domain and a

low-pass filter is built to neglect components corresponding to high frequen-

cies (i.e. with a period below 12 hours). In the second step, the anomaly

detection signal is reconstructed back to the temporal domain by means of

IFFT (Inverse FFT). Due to the low-pass filter, the generated detection sig-

nal continuously ranges between 0 and 1, thus a threshold (empirically set to

0.6) is used to discretize the signal and produce a boolean anomaly detection

output. Figure 6.8 shows an example of the post-processing technique used:

the raw detection signal is depicted in dark red and then, after being filtered

and reconstructed, is reported in black on the left side. The discretization

threshold is horizontally drawn in red (left side) and the results of its appli-

cation are shown on the right side where the discretized anomaly detection

signal is depicted in black.

This procedure outputs an anomaly only when the raw anomaly detection

persists for a remarkable interval of time, indeed, the dark red signal appears

to be more unstable while, on the other hand, the discretized black signal

gives an indication of a reliable status of abnormality.

Figure 6.8: Post-processing technique explained.

6.2.4 Root Cause Analysis

Extracting the reconstruction error of every feature reconstructed by the au-

toencoder can help to understand which measurements led to an anomaly.

An autoencoder is a particular version of a neural network that is trained

to reconstruct its input data, and the reconstruction error is the difference
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between the original input and the output of the autoencoder. By analyzing

the reconstruction error for each feature, it is possible to identify which fea-

tures have the largest error, indicating that they are the most different from

the expected or normal data. This can help to pinpoint which measurements

led to the anomaly and identify the source of the problem.

In literature, it is a common approach to build digital twins of a system in

order to predict the behavior of a measurement and, in case the real value

diverges from the inferred one, an anomaly is suspected. The proposed

approach can be thought of as an ensemble of N models reproducing the

behavior of N different sensors: clearly, building different models is more

expensive both from research and computation perspectives. Furthermore,

since the sensors are installed in different parts of the same machinery, there

is a remarkable interconnection among measurement behaviors that justifies

the exploitation of one single autoencoder with N outputs.

Considering each output of the model as an isolated reconstruction, a 99th

percentile threshold is pre-calculated during training for each feature i, and

each reconstruction error is calculated as follows:

recon errori =
1

W

W∑
t=1

(xi(t)− x̂i(t))
2

(6.2)

Extrapolating diverging behaviors of each feature is convenient for detect-

ing components’ faults that do not cause an evident malfunctioning of the

machine. Indeed, if the machine is stable and does not start to operate in

a way that affects many measurements, averaging the reconstruction errors

leads to a mask on the local fault. Creating a general signal of the ma-

chinery anomaly gives a hint of the global behavior of the CHP; meanwhile,

generating an individual signal of anomaly gives a deeper understanding of

the CHP’s components’ life status and can be treated as a fault precursor to

performing CBM.

6.3 Benchmark models

To objectively evaluate the results of the proposed method, two additional

technologies were employed for the same task. A vanilla autoencoder with

fully connected nodes, belonging to the same family as ConvAE but lack-

ing the specific capability to retain temporal information, and a OneClass

SVM, which is widely recognized as one of the benchmark techniques for out-
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lier and anomaly detection problems. To ensure consistency in both model

construction and assessing model stability in terms of false positives, the

same preprocessing and postprocessing techniques described in the previous

sections were applied.

6.3.1 AE: vanilla structure of autoencoder

The Autoencoder (AE) utilized in this study, which is the same one described

in Section 5.2.2 with a different input dimension, is a basic structure con-

sisting of three layers. The selected configuration and hyper-parameters for

the AE model are described in Table 6.2: Coherently with Subsection 6.2.2,

hyper-parameters AE

input dimension 13

latent dimension 70

output dimension 13

activation function relu

batch size 32

learning rate 10−4

l1 regularization 0.0

dropout 0.2

optimizer Adam

loss function MSE

Table 6.2: Vanilla Autoencoder hyper-parameters.

a sensitivity analysis (Figure 6.9) was carried out to define an optimal value

for the percentile of the training reconstruction errors used to calculate the

threshold discerning between normal and faulty acquisition during predic-

tions. As for ConvAE, the value has been chosen equal to 99%.

6.3.2 One-Class SVM

The OCSVM [78] is also a semi-supervised algorithm that encloses normal

data points within a hyperplane during training. During testing, any data

points falling within the hyperplane are classified as normal, while those

outside the hyperplane are identified as anomalies. Due to this operating

principle, it is not straightforward to determine the specific feature that
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Figure 6.9: Sensitivity analysis for selecting percentile threshold, Vanilla AE.

caused the anomaly and perform a Root Cause Analysis (RCA). The problem

formulation is as follows [92]:

min
w, ξ, ρ

1

2
||w||2 + 1

νN

N∑
i=1

ξi − ρ

s.t. w · Φ(Xi) ≥ ρ− ξi,

ξi ≥ 0.

(6.3)

The aim is to enclose all normal points into a hyperplane, allowing for a frac-

tion, denoted by ν%, of the data to be incorrectly separated. In the above

formula, w represents the coefficients of the hyperplane and ρ the bias in

the feature space, Φ() denotes a non-linear transformation (associated with

the kernel used in the dual formulation), ξi represents the classification error

for the ith example, and ν ∈ (0, 1) is a hyper-parameter. When ν = 0, the

penalty term for violating the separation constraint becomes infinite, causing

the separator to enclose all observations with a classification error ξi ≈ 0 for

every example i. This only happens by generating a very wide region con-

taining the entire dataset. On the other hand, if ν > 0, it is possible to obtain

a good surface capable of correctly classifying many examples without the

requirement of including all of them. In a somewhat informal sense, ν can be
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associated with the tolerable fraction of classification errors on the train-set.

Once the system has been trained on the train-set, the decision function in

Equation 6.4 will be employed for the test example. It will produce negative

outputs in case of anomalies and positive outputs otherwise.

f(x) = w · Φ(x)− ρ (6.4)

The hyper-parameters to be tuned for optimizing the performance of the

OCSVM are the ν parameter, the kernel, and the γ parameter.The value of

ν was found to be irrelevant in the problem under consideration (Figure 6.10),

likely due to the problem’s complexity, which generates a highly nonlinear

boundary between normal and novel instances. It was set to 1% to maintain

consistency with the 99% threshold chosen for both the ConvAE and the AE.

The kernel, on the other hand, was selected as the Radial Basis Function

(RBF) kernel, described in Equation 6.5, to model the high nonlinearity

present in the dataset.

K(x, y) = Φ(x) · Φ(y) = exp (−γ∥|x− y||2)) (6.5)

The γ parameter was calculated using the procedure proposed by Ghafoori

et al. [36].

Figure 6.10: Sensitivity analysis for selecting ν, OCSVM.

For the sake of precision, Table 6.3 provide a brief sum-up:
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hyper-parameters OCSVM

kernel RBF

ν 0.01

γ 5.1

Table 6.3: One-Class SVM hyper-parameters.

6.4 Results

In Sections 6.1 and 6.2.1 the features composing the dataset have been ex-

plained and the methodology to choose the train-set has been briefly treated.

Thereafter, two test-sets have been selected to stress the model performance

in both normal functioning and in the presence of an a-priori known anomaly.

Table 6.4 reports the dates and details of each dataset split. In the first test-

set (referred to as the Anomalous Test-set in Table 6.4) a component failure

is present, and the heat exchanger starts to present fouling affecting CHP’s

performance. The second test-set (referred to as the Healthy Test-set in Ta-

ble 6.4) was recorded immediately after the heat exchanger was replaced,

and the CHP was serviced by specialized personnel. Therefore, no anomaly

is present and the unit runs in a healthy state. Fig. 6.11 depicts the CHP

From To CHP status

Train-set 1 Jul 2019 12 Aug 2019 HE Healthy

Anomalous Test-set 1 Jul 2021 31 Dec 2021 HE Faulty

Healthy Test-set 15 Jul 2022 7 Sep 2022 HE Healthy

Table 6.4: Datasets details: dates and Heat Exchanger (HE) status.

behavior in terms of a-dimensionalized produced electric power (orange scat-

ter), alarms reported by the onboard diagnostic system (red scatter), and

the human detection made by the plant supervisor (purple vertical line).

Grey-shaded areas emphasize the dataset split used for this work detailed

in Table 6.4. The observations presented in Fig. 6.2 are supported by the

findings in Fig. 6.11, which indicate that the CHP system primarily operates

either at full load (between 80% and 100% of the rated power) or at 50%

partial load. It is worth noting that the training period for the model corre-

sponds to a period where the CHP management logic is slightly distinct from

the two test-sets. Specifically, the range of powers covered during the train-
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Figure 6.11: Active power describing CHP behavior.

ing phase is comparatively smaller than that observed after a plant shutdown

period of approximately 5 months, where the power range has increased. It

is important to remark that the errors reported by the onboard CHP system

(red dots in the picture) are not correlated to the heat exchanger fouling ac-

knowledged by the plant supervisor. Furthermore, these errors are of minor

interest in terms of research as trivial faults can be recognized more easily

due to their disruptive consequences often leading to a machine shutdown.

On the other hand, the heat exchanger deterioration studied in this work is

very interesting due to its slow degradation trend (low negative) over time

which is not easily detectable by naive thresholds or by the human naked eye.

Figure 6.12 shows the results of the ConvAE predictions on the Anomalous

Test-set. Specifically, each measured input signal is plotted over time (blue

curve). The same plot also shows the two predictions of ConvAE in terms

of anomaly: in red the anomaly detected on the specific signal and in black

the system ensemble anomaly calculated as described in Section 6.2.2.

In general, various scenarios that may arise are considered. The first and

most critical scenario for system safety occurs when an overall anomaly oc-

curs, as observed, for example, in the December 2021 period. It is evident

that, during such anomalies, certain individual signals not directly related to

fouling do not display anomalous states. The global anomaly represents an

average of different signal anomalies, and it is not necessary for all of them
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Figure 6.12: Time-series of the normalized features used to test the ConvAE

in the presence of anomalies.
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to be implicated in the malfunction. A global anomaly is predicted when

certain correlated signals simultaneously exhibit anomalies, thereby making

a fundamental contribution to the global anomaly signal itself.

Another notable scenario occurs when the global anomaly is absent, but cer-

tain signals exhibit anomalies, as observed, for example, in the September

2021 period for the oil temperature. This situation is of considerable inter-

est to the machine service manager. Here, it becomes possible to identify a

specific subcomponent anomaly or a malfunction in the measurement sensor.

Moreover, this condition could pose a health hazard for the component itself

or serve as an early symptom of failure in other components. In other words,

it can act as a precursor to a global and more severe anomaly. An instance

of this can be seen in the monitoring of oil temperatures. Although the pres-

ence of this irregularity in the data was not initially known, it was identified

by the ConvAE and subsequently verified by the YANMAR maintenance

department. It was determined that the oil temperature was consistently

falling within a lower range due to abnormal operation of the engine cooling

system. The alarm raised by ConvAE enabled the maintenance engineers to

uncover this underlying malfunction in the CHP system and make necessary

improvements to enhance its efficiency. Interestingly, in this case, the model

was able to distinguish individual signal malfunction and not transfer it to a

global anomaly. The failure of this signal alone was not sufficient to trigger

the system anomaly.

Another significant case, considering the primary anomaly identified in the

heat exchanger back in December 2021, holds importance in the early de-

tection of irregularities in the exhaust gas temperature signal. This specific

measurement can be seen as an indicator of the heat exchanger’s condition,

as illustrated in Figure 4.2, which depicts the cooling circuit diagram. The

heat extracted from the flue gas indirectly affects the heat transfer to the

heat exchanger by influencing the coolant temperature. Describing the phys-

ical correlation or sequence of phenomena involved in heat transfer is neither

intuitive nor simple. However, the model detects local anomaly patterns in

the exhaust gas signal as early as July-August 2021 and later in October

2021. These patterns are impossible to recognize through standard data

analysis techniques or by relying on classical thresholds for the measured

value. Hence, the significance of the model becomes evident as it identifies

a local anomaly in the exhaust gas system, serving as an early indication

of a more critical anomaly in the heat exchanger. Detecting these warnings
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several months in advance allows proactive measures to be taken. Other pre-

cursors of the anomaly, identified by the anomaly detection routine alongside

the exhaust gas temperature, include the CHP cabin temperature (ConvAE

detects a first anomaly in July 5th, 2021) and the heat exchanger exhaust

temperature (ConvAE detects a first anomaly in date November 11th, 2021).

Similar observations can be made for these signals.

In the heatmap displayed in Figure 6.13, a comprehensive overview reveals

the signals co-participating in the global anomaly. Evidently, the block heat

exchanger temperature and exhaust gas temperature, as expected, exhibit

simultaneous anomalies during the anomaly presence period. Anomalies in

engine outlet temperature emerge later in time (mid-December 2021), just

before detection in the field. When this measurement displays non-normal

patterns, the anomaly has already significantly progressed. Interestingly, the

model recognizes the anomaly long before this specific signal also contributes

directly. The presence of precursors or early detection of anomalies (in com-

Figure 6.13: Heatmap of anomalous test-set, ConvAE.

parison to the field supervisor’s alert) raises several important issues that

need to be addressed and discussed with YANMAR’s service department.

Specifically, questions arise, such as when to intervene on the machine in

the event of an anomaly and how to determine whether an anomaly serves
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as a precursor. These answers are not straightforward but suggest further

enhancements to the already promising model. Introducing a degree of con-

fidence, as subsequently discussed in Chapter 7, is crucial to distinguish be-

tween critical faults and insignificant deviations from the learned behavior.

In fact, to develop a CBM strategy, the anomaly detection routine should

provide a level of confidence that highlights the impact of abnormal behavior

on the system.

At the beginning of July 2022, global maintenance was performed and the

heat exchanger has been substituted. Figure 6.14 shows the Healthy Test-set

where the proposed algorithm detects neither system nor signal anomalies.

Both CHP’s on-board system and YANMAR engineers do not report any

abnormal behavior in accordance with ConvAE predictions.

For direct comparison with the anomalous case (Figure 6.13) the heatmap

of the healthy case is shown in Figure 6.15 from which to have a global

and quick look at the prediction of the model. This second test-set, where

no anomaly is present, confirms the well functioning of the FFT filtering

procedure described in Section 6.2.3. This post-process procedure properly

limits the most underlined flaw of semi-supervised systems in literature: the

false-positive detection. From Figure 6.16 it can be seen that in fact, the

model without filtering block predicts a number of false positives, which, as

discussed above are disturbances of the prediction and not real anomalies.

The robustness of the system is ensured precisely by the filtering block. By

managing the filtering threshold, it is possible for the user to adjust the

sensitivity of the service.

6.4.1 Benchmark models

The first benchmark model, the vanilla AE, performs excellently in detecting

anomalies in the cooling oil circuit but proves to be less sensitive in detecting

fouling anomalies on the heat exchanger (Figure 6.17). A system anomaly is

briefly identified only well before the target anomaly, while it is not signaled

in proximity to the fouling of the heat exchanger. A precursor is identi-

fied at the appropriate time in the CHP pump speed, but it alone may be

too ambiguous to uniquely identify the fouling anomaly. Conversely, dur-

ing the normal period, no anomalies are detected as desired (Figure 6.18).

Regarding the second benchmark model, the OCSVM, it has an intrinsic

disadvantage: it cannot perform RCA to determine which feature led to an

anomaly. However, its performance in detecting a system anomaly can still
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Figure 6.14: Time-series of the normalized features used to test the ConvAE

in the absence of anomalies.
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Figure 6.15: Heatmap of healthy test-set, ConvAE.

Figure 6.16: Predictions before the filtering block is applied to ConvAE

output.
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Figure 6.17: Heatmap of anomalous test-set, Vanilla AE.

Figure 6.18: Heatmap of healthy test-set, Vanilla AE.
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be evaluated.

Unfortunately, despite the OCSVM, like the ConvAE and AE, being coupled

with low-frequency anomaly filtering, it still fails to demonstrate robustness

against false positives. In fact, while the continuous detection of a system

anomaly can be accepted during the first test period (Figure 6.19) due to

the presence of two issues (one related to oil temperature and the other due

to fouling), the same cannot be said for the second test period (Figure 6.20),

where maintenance has just been carried out and no faults are present.

Figure 6.19: Heatmap of anomalous test-set, OCSVM.

Figure 6.20: Heatmap of healthy test-set, OCSVM.

6.5 Chapter Conclusions

In this chapter, the object of the research is a 20 kWe YANMAR CHP

used to supply a school facility located in Germany. An ad-hoc structure of

autoencoder with convolutional layers is applied to a problem of anomaly de-

tection in a time-series framework. Reduction of false positives is addressed

by employing a frequency-based technique and, in addition, a failure RCA

is performed to understand what features carry the content of abnormality.

The deep learning model has been trained on 6 weeks of normality and then

tested over two frames of data: in the first frame, some abnormal behavior
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was present while in the second frame, the CHP was serviced and the func-

tionalities were restored.

The proposed methodology yielded successful results predicting the anomaly

more than one month before and giving useful indications about the failing

component. Furthermore, the methodology proved to be robust not gen-

erating any false positives in the set of data where the CHP was running

in normal conditions. To validate the results, the outcomes of the proposed

methodology were compared with two benchmark algorithms, demonstrating

the superiority of the proposed ConvAE structure. It is important to under-

line that the proposed routine needs to be tailored to customers’ needs and on

the specific case of application. A number of next developments have already

been identified, marking significant progress in the proposed approach. The

first crucial step involves the implementation of an online system, where the

anomaly detection system will operate in real-time through a cloud-based

service, ensuring continuous monitoring and prompt detection of anomalies

as they occur. This real-time capability is fundamental for efficient monitor-

ing, enabling the quick identification of deviations from the norm. As dis-

cussed in the subsequent chapters, the introduction of a degree of confidence

is essential. It serves as a critical factor, allowing to distinguish between

potentially dangerous faults and irrelevant deviations, thereby supporting

targeted maintenance operations on the actual product. Additionally, this

thesis will focus on aspects such as domain adaptation, enabling the model

to adjust to non-anomalous changes in the machine over time. In addition,

transfer learning will be explored, investigating the feasibility of transferring

a pre-trained autoencoder to different energy generators. These investiga-

tions have already begun with some preliminary tests and will continue in

the short term, albeit outside the scope of the current thesis.
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Chapter 7

A Bayesian Approach to

Improve Detection Robustness

This chapter proposes a deep learning methodology to detect anoma-

lies on a real CHP unit supplying a school in Germany. The core

of the work is a convolutional autoencoder trained on the normal

behavior of the energy generator. The autoencoder is enhanced

with a Bayesian technique, the Monte Carlo dropout, used to add

a stochastic component to the model to quantify the uncertainty

degree of the detection. This information is crucial to determine

if or when an action is actually needed, optimizing the service

and maintenance strategy. The proposed approach was applied to

a real case study and was found to be effective; heat exchanger

fouling was detected 5 weeks before the standard detection system.

The algorithm returns high confidence in system anomalies and

low detection confidence for minor alterations in behavior, less

risky for the machine. Section 7.1 provides comprehensive in-

sights into the available dataset. Section 7.2 describes the model

architecture and addresses the proposed methodology. The ob-

tained results from two distinct test-sets will be examined in Sec-

tion 7.3. Additionally, conclusions are drawn in Section 7.4. 1

1Part of the contents of this chapter has been published as “Applied Anomaly Detec-

tion: a Bayesian Approach to Improve Robustness” in Proc. of IEEE International Con-

ference on Electrical, Computer, Communications and Mechatronics Engineering (ICEC-

CME), 2023, [23]
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7.1 Dataset

The YANMAR micro-CHP under analysis provides electricity and thermal

energy to a school facility located in Germany and is the same as described

in Section 6.1.

To train the model, a 6-week training period is required (as demonstrated

in Chapter 5) where the CHP behaves normally. Two test-sets are also

required (as detailed in Table 6.4): the first one where a certain quantity of

abnormalities happens to check that the model correctly detects the presence

of anomalies and the second one where the CHP does not present a particular

deviation from the learned behavior to verify that the model does not present

false positives.

7.2 Proposed Model

The same problem has been addressed in the previous Chapter using an au-

toencoder with convolutional layers (ConvAE) that considers temporal in-

formation. In this Chapter, a new feature is introduced by using a Bayesian

approach to estimate the confidence with which the autoencoder detects an

anomaly.

As delineated in Section 2.6, compared to VAE, the MCD approach facil-

itates the introduction of stochasticity in the model without necessitating

any modification in the original architecture of the deep learning model, if a

dropout layer has already been incorporated.

In the reference architecture, dropout layers are not included, yet it has pro-

duced excellent results (hyper-parameters are reported in Table 6.1), and

therefore, keeping it similar is desirable. To compensate, changes were made

to the original ConvAE model by incorporating MCD to maintain the same

level of performance when it comes to reconstruction errors. In fact, since

MCD functions as a regularization technique during the training process, the

original architecture required additional complexity to maintain the same

level of information retention during learning.

Hyperparameters employed for both models are presented in Table 7.1, which

highlights the augmentation of convolutional filter numbers, from 10 to 18,

and an expansion of the latent space from 3 to 5 dense neurons. Additionally,

an MCD of 5% was incorporated, and the inference was conducted 50 times.

The number of inferences was chosen to be 50 to strike a balance between
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the model’s variability and mitigating the computational time required for

making multiple predictions. The architecture of the Convolutional autoen-

hyper-parameter ConvAE ConvAE MCD

sliding window 10 10

input dimension (10,13) (10,13)

latent dimension 3 5

output dimension (10,13) (10,13)

activation function relu relu

batch size 32 32

learning rate 10−4 10−4

l1 regularization 0 0

dropout 0 -

padding same same

strides 1 1

filters number 10 18

kernel size 5 5

optimizer Adam Adam

loss function MSE MSE

validation split 0.1 0.1

Montecarlo dropout - 0.05

Montecarlo samples - 50

Table 7.1: Hyperparameters of Configurations for the Two Models.

coder with Monte Carlo Dropout (ConvAE MCD) is reported in Fig. 7.1.

The ConvAE MCD exhibits an asymmetrical arrangement, where the en-

coder is marginally bigger than the decoder. The input data comprising 13

features are initially segmented into 10-sample moving windows and then

processed using a 1D-convolutional layer composed of 18 filters. The output

of this layer then proceeds to the bottleneck of the autoencoder through a

fully connected layer. On the decoding side, the architecture is identical,

except for the convolutional layer, which employs 13 filters to align with the

number of feature reconstructions.

During the training stage, the model strives to minimize the reconstruction

error of the inputs. In accordance with the reference model, a threshold is

set using the 99th percentile of the training error to discern between nor-

mal and abnormal samples during the testing phase. As in the previous
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Figure 7.1: Architecture of the Convolutional Autoencoder with MCD.
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Chapter, two types of anomalies are generated. The first type is generated

for the entire system if the average error over the 13 features exceeds the

99th percentile threshold calculated on the train-set reconstructed inputs.

The second type of anomaly is generated for each signal: a specific recon-

struction error is calculated and compared with a 99th percentile threshold

obtained by considering the error committed during the training phase in-

ference of the particular signal itself.

As discussed in Section 6.2.3, the autoencoder generates anomaly signals

that may be susceptible to yielding false positives. To mitigate this chal-

lenge, a post-processing low pass filter has been devised to disregard any

alarms that persist for less than 12 hours. The methodology proposed in the

Chapter is illustrated in Fig. 7.2, which presents a flowchart outlining the

steps followed in the study.

Figure 7.2: Flowchart of the proposed methodology.
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7.3 Results

As mentioned in Section 6.2, the autoencoder model has been designed to

reconstruct 13 features but, as a matter of simplicity, in the following, only

the most interesting signals recorded during the Anomalous Test-set and the

Healthy Test-set are described.

During periods where anomalies are present the heat exchanger becomes

dirty, and the efficiency of the CHP has a negative trend, which leads to a

significant increase in costs. Fig. 6.12 shows how the anomaly was discovered

only on December 10th, 2021 (vertical purple line). However, the proposed

algorithm detects the first system anomaly (black line) on October 10th, due

to an unexpected shutdown. Subsequently, a second system anomaly is de-

tected on November 7th. In this case, the anomaly depends on the fouling

of the heat exchanger, since signals related to the heat exchanger produce

specific alarms (red lines): in particular, it can be seen how the exhaust gas

temperature decreases significantly on average.

The discussed alarms are considered extremely reliable by the model as the

percentage of Monte Carlo experiments generating an anomaly is 100%.

However, the behavior of the alarm linked to the heating circuit pump is

different. The pump starts operating at lower speeds, initially generating

an anomaly confidence level of around 60%, which then decreases ranging

between 20% and 10% when the pump speeds up. In contrast, the alarm

signal of the CHP cabin temperature shows a confidence level of around 40%,

which then increases to 100%.

Ultimately, the algorithm detected the heat exchanger fouling 5 weeks before

the actual detection made by the YANMAR supervisor. On the other hand,

if the heat exchanger anomaly was a late detection by the engineer supervis-

ing the plant, also in this variant, the algorithm revealed another problem

of the cogeneration unit that went totally untracked but then acknowledged

by the YANMAR maintenance department: the engine cooling system ex-

hibited abnormal functionality, resulting in a lower range of oil temperature.

As a result, the algorithm yielded a probability of anomaly with complete

certainty, i.e., 100%.

It is noteworthy that the model has changed compared to the one used in

the previous chapter, thus leading to slight variations in the detections. In

both approaches, anomalies in oil temperature are detected, and both iden-

tify irregularities in certain signals related to the heat exchanger. While

in Chapter 6, the signals susceptible to anomalies are the heat exchanger
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exhaust temperature, engine outlet temperature, and exhaust gas tempera-

ture, in the approach presented in this chapter that utilizes MCD, the signals

of interest include not only the exhaust gas temperature but also the CHP

cabin temperature and the heating circuit pump rate. To establish not only

the algorithm’s sensitivity to anomalies but also its robustness against false

positives, it’s crucial to utilize a dataset where the CHP’s proper functioning

without any malfunctions is certain. This aspect has already been addressed

in the previous Chapter, where a dataset was collected before a planned

global maintenance intervention in early July 2022, during which the heat

exchanger was replaced.

Fig. 7.4 shows how all signals recovered and no anomalous trend is present:

indeed, the algorithm proved to be well-performing also when the CHP is

healthy and to be not prone to false positives. The presented data demon-

strate that the signals, which are directly related to the heat exchanger, have

regained normal behavior, without any discontinuities. Fig. 6.12 illustrates

that all temperature signals (cabin, oil, and gas exhaust) exhibited a nega-

tive temporal trend, which has now vanished in Fig. 7.4. Furthermore, the

pump of the heating circuit has resumed its healthy pattern of modulation,

operating within the range of 0% to 100%.

By comparing the plots of these signals before and after the maintenance

intervention, can be concluded that the proposed routine exhibits sensitivity

towards the anomaly presented and effectively distinguishes when a healthy

condition has been restored.

7.4 Chapter Conclusions

Major companies are striving to migrate their business from the production

and sale of products to the provision of services. In this context, data-driven

approaches can flourish and provide significant added value. Specifically,

with growing attention to climate change and energy and economic savings,

the transition from time-based maintenance techniques to CBM plays a pri-

mary role.

This Chapter proposes a deep learning technique that, when trained on 6

months of data under normal conditions of a YANMAR micro-cogenerator,

can provide both qualitative and quantitative indications of the CHP’s be-

havior. As in Chapter 6, two test-sets were chosen: the first where dete-

rioration of the heat exchanger was known a-priori, and the second where
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Figure 7.3: Time-series of the normalized features used to test the ConvAE

MCD in the presence of heat exchanger fouling.
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Figure 7.4: Time-series of the normalized features used to test the ConvAE

MCD in the absence of anomalies.
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maintenance and replacement of faulty parts had just occurred. The deep

learning model consists of an asymmetric autoencoder embedded with 1D-

convolutional layers, MCD layers, and a fully connected bottleneck. At the

end of the detection pipeline, a frequency-based filter is used to reduce false

positive alarms and increase robustness. The proposed algorithm demon-

strated predictive capabilities by detecting heat exchanger fouling five weeks

before the plant supervisor noticed and by revealing an anomaly in the oil

temperature measure that had gone disregarded. Furthermore, the algo-

rithm demonstrated not to be prone to false positives by not detecting any

anomalies during periods of normality.

The MCD layers allow the introduction of stochasticity in the diagnosis pro-

cess and by performing a certain amount of inferences it is possible to get a

quantification of the uncertainty in detecting the anomalies adding a piece

of important information to decide if the maintenance intervention is urgent

or must be planned in the short future.

A lesson learned from this application is that if there is a future intention to

extract a confidence level from the algorithm’s predictions, then when using

neural networks, it is advisable to size the model with a dropout layer from

the outset. This allows the implementation of MCD with minor modifica-

tions to the code at a very limited time cost.



Chapter 8

Autoencoder Fine Tuning for

Domain Adaptation

This chapter presents a fine-tuning application for anomaly de-

tection in a YANMAR CHP system. The proposed method aims

to address the challenge of detecting anomalies, specifically focus-

ing on gas pressure fluctuations that could potentially lead to CHP

breakdown. Initially, the autoencoder was trained on 6 weeks of

normal operational data to learn the underlying patterns of sys-

tem behavior. However, the original model’s performance led to

undesired false positive detections, mainly when applied to new

data collected during a different season, approximately three years

after the initial training conducted during a summer month. To

tackle the issue, the existing model was updated using 1 week of

newly sampled data to adapt the model to the system’s current

behavior. This process allowed the autoencoder to better capture

the system’s dynamics during the different seasons, reducing false

alarms without creating false negatives. Section 8.1 describes the

dataset, Section 8.2 explains the fine-tuning process, Section 8.3

reports results, and Section 8.4 draws the conclusions.
1

1Part of the contents of this chapter has been published as “Anomaly Detection in a

Micro-CHP Using Convolutional Autoencoders and Fine Tuning for Domain Adaptation”

in Proc. of IEEE International Conference on System Reliability and Safety (ICSRS),

2023, [22]
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8.1 Dataset

The energy generator studied in this chapter has already been described in

Section 6.1. It is a YANMAR micro-cogenerator that is currently installed

in a school in Germany to deliver electrical and thermal energy.

8.2 Fine Tuning

This chapter inherited the same anomaly detection routine employed in

Chapter 6 and in particular in Section 6.2 where the main character is an au-

toencoder with convolutional layers (ConvAE) that retain temporal trends.

The autoencoder exploited was trained using 6 weeks of data collected in

July 2019. Previous work conducted in Chapter 5 had demonstrated that

for a 20 kWe YANMAR CHP, an appropriate amount of data for training is

6 weeks of normal operational conditions.

However, obtaining 6 consecutive weeks of normal data for the specific CHP

under consideration posed a challenge. Therefore, it was necessary to re-

trieve historical data from earlier periods. This introduces two potential

issues: firstly, as the years pass, the CHP may undergo natural wear and

tear, leading to changes in performance and internal data patterns. Sec-

ondly, training the model on data from a particularly hot month may result

in a slightly different statistical distribution compared to the data on which

inference is performed, especially if the data comes from colder months of

the year.

With the assistance of specialized YANMAR technicians, the exhaust gas

temperature was identified as a sentinel signal for the phenomenon of temper-

ature reduction during colder months. It was observed that this temperature

is significantly influenced by external temperature variations, leading the au-

toencoder to generate numerous false positives during the colder months.

To address this issue, a specific week of data was selected during which the

CHP operates normally, but the autoencoder detects anomalies in signals

influenced by external temperature variations. This data week was used to

refine the model’s weights, aiming to alleviate the problem of false positive

detection and improve the accuracy of anomaly identification.

Fig. 8.1 illustrates how the anomaly detection routine predicts signal false

positives during the first week of November 2022. In the image, two signals

have been chosen for simplicity: one signal influenced by seasonal climate
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variations (the exhaust gas temperature) and another signal that remains

unaffected by these fluctuations (gas mixer valve position).

Figure 8.1: Gas mixer valve position and exhaust gas temperature behavior

in the week selected for fine-tuning (November 2022).

Since it is not feasible to retrain the model entirely using only one week of

data, it was decided to fine-tune the weights, restarting the training process

from the optimized weights obtained during the 6-week training in July 2019.

The data from the first week of November 2022 was utilized only for this fine-

tuning, aiming to address the issue of false positives caused by temperature

variations.

Fig. 8.2 presents the evolution of the learning curves throughout the fine-

tuning process, showcasing the gradual refinement of weight adjustments

accompanied by a gradual reduction in the loss function. The training loss

and validation loss display a paired pattern, indicating the absence of both

overfitting and underfitting.
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Figure 8.2: Learning curves during ConvAE fine-tuning.

Fig. 8.3 presents the obtained reconstruction errors, demonstrating that the

newly calculated anomaly/normal discrimination threshold keeps the 99% of

the recent acquisitions below.

Figure 8.3: Reconstruction errors in the week selected for fine-tuning.
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8.3 Results

To demonstrate the effectiveness of the fine-tuning approach, both the orig-

inal algorithm and the retrained one were tested over a specific time period

during which an anomaly occurred. The goal is to show that the numerous

false positives observed in signals affected by external conditions can be at-

tenuated without generating false negatives for actual existing anomalies.

The period selected for testing spans from the 10th of November 2022 (shortly

after the retraining) to the end of April 2023, as detailed in Table 8.1.

From To CHP status

Train-set 1 Jul 2019 12 Aug 2019 CHP Healthy

Retrain-set 1 Nov 2022 7 Nov 2022 CHP Healthy

Anomalous Test-set 10 Nov 2022 30 Apr 2023 CHP Faulty

Table 8.1: Datasets details: dates and CHP status.

Within this timeframe, two dangerous behaviors of the CHP unit oc-

curred. The first one occurred on the 17th of November 2022 and lasted for

6 days; it went totally unnoticed by both the machine’s onboard alarm sys-

tem and YANMAR technicians. The second one, of a bigger entity, occurred

on the 24th January 2023 and was detected by the onboard alarm system only

after the CHP shutdown and the consequent partial load operation. These

two failures were caused by an abnormal decrease in the plant’s gas pressure,

affecting only one signal of the CHP, namely, the gas mixer valve position.

As a consequence, the CHP, lacking sufficient fuel power, attempted to open

the gas valve in an unconventional manner, with the abnormal opening last-

ing for about 2 to 5 minutes. This anomaly is not visible to the naked eye

due to the fact that the sampling time of this CHP is set at 15 minutes.

Fig. 8.4 shows the original algorithm’s performance. It can be observed

that both the exhaust gas temperature and the rotation speed of the heat-

ing circuit pump show many false positives during the periods when no real

anomaly is present. In addition, some incorrect system anomalies are pre-

dicted after the system reset. On the one hand, one positive aspect is that

the original algorithm detects several anomalies related to the opening of the

gas mixer valve, which could have alerted YANMAR maintainers and pre-

vented the two dangerous events. However, the presence of numerous false

positives on signals that are not related to the valve anomaly (e.g., exhaust

gas temperature) may have misled the monitoring personnel. In Fig. 8.5,
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Figure 8.4: Time-series of the normalized features used to test the ConvAE

in the presence of plant gas pressure anomaly - Before fine-tuning.
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it is evident that the tuned algorithm no longer reports any type of false

positive. It successfully generates real alarms for the gas mixer valve, both

before the first event, which went unnoticed, and before the second event,

which caused a prolonged malfunction.

Indeed, it successfully generates actual alarms only for the gas mixer valve,

both before the first event (November 17th, 2022), which went unnoticed,

and before the second event (January 24th, 2023), which caused a prolonged

malfunction. In summary, both the original and the improved algorithm

predicted a failure (signal anomaly) of the cogenerator gas mixing valve in

the early morning hours of November 11th, 6 days before the first unobserved

failure. The second failure was predicted seventy-four days earlier than the

onboard system. In addition, during the incorrect operation of the cogenera-

tor, both algorithms detected a system failure(system anomaly): a symptom

of a highly impactful misoperation.

While both algorithms show sensitivity to real anomalies, the fine-tuned one

exhibits not only sensitivity but also robustness, enabling it to adapt effec-

tively to domain shifts without compromising detection performance.

8.4 Chapter Conclusions

In conclusion, this work presents a fine-tuning application for anomaly de-

tection in a YANMAR micro-cogeneration system using an autoencoder

with 1D-convolutional layers to capture temporal dynamics. The proposed

method addresses the challenge of detecting gas pressure fluctuations that

could potentially lead to CHP breakdown. The study initially used an au-

toencoder pre-trained on 6 weeks of normal operational data, but it led to

undesired false positive detections when applied to new data collected during

a different season, approximately three years after the initial training.

To overcome the issue of false positives, a fine-tuning process was intro-

duced. The existing autoencoder model was fine-tuned using one week of

newly sampled data, adapting the model to the system’s current behavior.

This fine-tuning process successfully enabled the autoencoder to better cap-

ture the system’s dynamics during different seasons and effectively reduced

false alarms.

The results demonstrate the efficacy of the applied method: the fine-tuned

autoencoder successfully detected anomalies in gas pressure, potentially lead-

ing to CHP malfunction, almost three months in advance with respect to the
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Figure 8.5: Time-series of the normalized features used to test the ConvAE

in the presence of plant gas pressure anomaly - After fine-tuning.
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currently used system. Additionally, false anomaly detections related to the

whole system and irrelevant signals were effectively filtered out by the fine-

tuned model.

The testing results comparing the performance of the original algorithm and

the retrained one show that the fine-tuned algorithm significantly attenu-

ates false positives without generating false negatives for actual anomalies.

Notably, the tuned algorithm successfully identified anomalies in the gas

mixer valve position, which could have alerted YANMAR maintainers and

prevented a dangerous shutdown.

The study’s key insight is the importance of fine-tuning based on recent data

to enable the model to adapt to changing conditions and mitigate the impact

of seasonality on anomaly detection accuracy. This research has significant

implications for enhancing the reliability and maintenance of micro-CHP

systems in real-world applications. By improving anomaly detection and

reducing false positives, the proposed approach can contribute to better op-

erational efficiency and increased safety in cogeneration systems.

The results achieved in this study lay the groundwork for the development

of an anomaly detection service that incorporates continuous retraining to

adapt the model to the current engine conditions. Additionally, it ensures

the capability to update a model using data from a few days of normal op-

eration rather than an extended period of 6 weeks, which, depending on

the applications, can be resource-intensive to collect and analyze. Further-

more, an important next step would involve attempting to apply fine-tuning

to different CHP systems. This would enable the initiation of data-driven

maintenance strategies, starting from models pre-trained on already installed

CHP systems and subsequently refining the model on newly commissioned

CHP systems.
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Chapter 9

Conclusion

9.1 Summary of contribution

In recent years, significant efforts have been devoted to developing anomaly

detection techniques aimed at enhancing maintenance strategies in the en-

ergy generation sector. Whereas the focus was traditionally on large-scale

generators, the escalating costs of energy and heightened concerns regard-

ing environmental impact and resource conservation have redirected research

attention toward moderate-sized machines with relatively affordable acqui-

sition costs.

The development of advanced maintenance techniques offers substantial ben-

efits to manufacturing companies. Firstly, it enables these companies to

transition from conventional product-centric entities to service-oriented busi-

nesses. This shift allows not only to sell the machinery but also to provide

advanced maintenance services. Secondly, it fosters customer loyalty towards

a brand that demonstrates reliability, durability, and efficiency in energy pro-

duction. These advancements mark a significant step toward sustainable,

customer-focused energy solutions.

This thesis focuses on the study of a 20 kWe YANMAR Combined Heat and

Power (CHP) system, which is the best-selling model in Europe by YANMAR

and is particularly attractive due to its ability to modulate power output.

Additionally, its interest is enhanced by the fact that this model is installed

at YANMAR’s headquarters in Germany, making it even more accessible for

internal analyses. However, all methodologies and considerations obtained

are extendable and applicable to other sizes and products.
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Initially, a study was conducted to develop a generalizable methodology to

understand the optimal amount of data required to train an autoencoder to

learn the normal behavior of a generator under analysis. To achieve this,

data from a CHP unit about which YANMAR had comprehensive and reli-

able information needed to be obtained. Therefore, the unit satisfying the

energetic needs of the facility where YANMAR CHPs are produced was cho-

sen. One year of data, during which the CHP was confirmed to be operating

under normal conditions, was acquired. A methodology was developed and

applied to these data and later extended to two additional case studies. This

approach allowed establishing that, unless some specific operational scenar-

ios happen, a dataset spanning 6 weeks maximizes the performance of the

model in anomaly detection tasks for a 20 kWe CHP. This outcome holds

significant advantages, as it allows offering anomaly detection services to

customers after just 1 month and a half of collecting normal operation data

when installing a new CHP system. Building upon the obtained result, a

search was conducted for a 20 kWe CHP system for which YANMAR could

confirm the presence of at least 6 weeks of normal operation data, along

with awareness of a past anomaly that had occurred and was subsequently

resolved. This specific CHP system was identified in a unit satisfying the en-

ergy needs of a school in Germany. A convolutional autoencoder was trained

on 6 weeks of normal data from July 2019 and then tested on two separate

periods: one during which an anomaly occurred in the heat exchanger and

another immediately following a maintenance intervention that restored nor-

mal conditions.

The algorithm demonstrated sensitivity to the existing anomaly, detecting

it over a month in advance and providing crucial insights for identifying the

component responsible for the issue. Furthermore, it exhibited robustness

against false positives, as it did not produce any detections in the post-

maintenance period. This outcome underscores the algorithm’s efficacy in

early anomaly detection and its resilience against false alerts, marking a sig-

nificant step forward in anomaly detection strategies for micro-CHP systems.

In addition to providing alerts related to the detection of a failure, there was

an evaluation of incorporating an uncertainty level into the algorithm’s out-

put using Bayesian techniques. In this context, a Monte Carlo dropout layer

was introduced into the previously used autoencoder, and the architecture

was revised to ensure coherent reconstruction results. Subsequently, the au-

toencoder was tested on the same periods described earlier, demonstrating
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that, besides predicting anomalies, the percentage level of anomaly was con-

sistent with observed behavior.

This result paves the way for the development of maintenance routines that

minimize unnecessary interventions. Machine downtime or maintenance

could be scheduled only when the algorithm produces high certainty lev-

els, optimizing operational efficiency by ensuring actions are taken based on

reliable and precise anomaly predictions. Finally, it was observed that over

time, the algorithm’s robustness degraded due to being trained on data from

over two years before, collected during the warmest month of the year. This

led to false positives, originating from both a temporal shift causing a nat-

ural degradation in performance and lower temperatures in winter months.

To address this issue, only 1 week of normal data, including false positives,

was used to retrain the autoencoder. During subsequent testing, where a

real anomaly occurred in the gas mixer valve, all false positives were filtered

out, and the actual anomaly was detected nearly 3 months in advance. The

significant advantage of this refinement lies in the fact that adapting a pre-

trained model now requires only a reduced amount of normal data, easily

verifiable by YANMAR personnel, making the retraining process more effi-

cient and adaptable to changing operational conditions.

In the context of this scientific thesis, it is worth noting that a significant

challenge in its development, apart from selecting and employing deep learn-

ing technologies suitable for solving the described problems, has been dealing

with real-world issues and interacting with the various stakeholders involved

in managing the problem. Working with real data, as opposed to data

originating from well-known benchmark datasets within the academic re-

search community, has added complexity to evaluating methodologies, given

the lack of precise knowledge regarding the presence or absence of anoma-

lies. The findings of the research were presented with an emphasis on early

anomaly anticipation compared to real field detection rather than relying on

comparative tables built upon well-defined metrics prevalent in the existing

literature. This approach enabled a detailed study of the topic in real-life

situations.

In conclusion, the significant advantage of implementing automatic anomaly

detection routines lies not only in the ability to detect hidden anomalies,

such as those related to the gas mixer valve but also in identifying issues

visible to a maintainer, like those concerning the heat exchanger. Manufac-

turing companies, such as YANMAR, often employ small maintenance teams
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unable to monitor every machine in real-time. Typically, interventions occur

only in case of shutdowns, breakdowns, or customer-reported malfunctions.

Having reliable and robust alarms can prevent many breakdowns and ef-

ficiency losses, saving customers costs while enhancing the manufacturer’s

reputation. Additionally, it enables the sale of advanced maintenance ser-

vices, fostering brand trust and loyalty.

9.2 Directions for future work

The anomaly detection routine described in this thesis has been container-

ized and deployed on local servers, operating in real-time for three 20 kWe

CHP systems. Shortly, it will be extended to cover multiple CHP units, and

the routines will be migrated to the cloud environment. Furthermore, the

studies conducted will be expanded to machines of different sizes (e.g., 11,

16, and 50 kWe) and diverse models (e.g., YANMAR Gas Heat Pump).

Significant interest has been generated in the application of domain adap-

tation techniques and algorithm refinement. This interest derives from the

possibility of aligning the algorithm with real-time machine conditions with

minimal effort. This concept opens roads for the implementation of transfer

learning, allowing the knowledge acquired from one context to be effectively

applied to another. Indeed, an aspect currently under evaluation is the fea-

sibility of using a pre-trained model from a particular CHP system for other

CHPs of the same size, especially when 6 weeks of normal data are not

available. This approach involves refining the model using just one week of

data from the new CHP and could significantly simplify the training process,

leveraging knowledge from similar systems and adapting it rapidly to specific

machinery. By incorporating this methodology, the industry can enhance the

efficiency of anomaly detection models and accelerate the implementation of

reliable and accurate predictive maintenance solutions, benefiting both man-

ufacturers and end-users.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. Piero Danti*, A. Innocenti, S. Sandomier. “Anomaly Detection and Root

Cause Analysis using Convolutional Autoencoders: a Real Case Study”,

Energy, under review, 2023. [DOI: 10.2139/ssrn.4574041]

2. Piero Danti*, A. Innocenti. “A methodology to determine the optimal

train-set size for autoencoders applied to energy systems”, Advanced Engi-

neering Informatics, vol. 58, p. 102139, 2023. [DOI: 10.1016/j.aei.2023.102139]

International Conferences and Workshops

1. Piero Danti*, A. Innocenti. “Anomaly Detection in a Micro-CHP Using

Convolutional Autoencoders and Fine Tuning for Domain Adaptation”, in

Proceedings of the 7th IEEE International Conference on System Reliability

and Safety (ICSRS 2023), Bologna (Italy), 2023.

2. Piero Danti*, A. Innocenti. “Applied Anomaly Detection: a Bayesian Ap-

proach to Improve Robustness”, in Proceedings of the 3rd IEEE International

Conference on Electrical, Computer, Communications and Mechatronics En-

gineering (ICECCME 2023), Tenerife (Spain), 2023.

3. M. Latinov*, N. Fiorini, G. Vichi, A. Innocenti, Piero Danti. “A Machine

Learning Approach for Engine Model-Based Control on NOx Emissions”,

1The author’s bibliometric indices are the following: H -index = 5, total number of

citations = 59 (source: Google Scholar on Month 01, 2024).
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in Proceedings of Powertrains, Energy and Lubricants International Meeting

(JSAE/SAE 2023), Kyoto (Japan), 2023. (Best paper award)

4. Piero Danti*, G. Vichi, R. Minamino. “Wrong Injection Detection in a

Small Diesel Engine, a Machine Learning Approach”, in Proceedings of the

7th European Conference of the Prognostics and Health Management Society

(PHM 2022), Turin (Italy), 2022.

5. C. Giola*, Piero Danti*, S. Magnani. “Learning Curves: A Novel Approach

for Robustness Improvement of Load Forecasting”, in Proceedings of The

7th International Conference on Time Series and Forecasting (ITISE 2021),

Gran Canaria (Spain), 2021.



Bibliography

[1] M. Abdar et al., “A review of uncertainty quantification in deep learning:

Techniques, applications and challenges,” Information Fusion, vol. 76, pp.

243–297, Dec. 2021.

[2] R. Ahmad and S. Kamaruddin, “An overview of time-based and condition-

based maintenance in industrial application,” Computers & Industrial Engi-

neering, pp. 135 – 149, 2012.

[3] A. L. Alfeo, M. G. Cimino, G. Manco, E. Ritacco, and G. Vaglini, “Using an

autoencoder in the design of an anomaly detector for smart manufacturing,”

Pattern Recognition Letters, vol. 136, pp. 272–278, Aug. 2020. [Online].

Available: https://linkinghub.elsevier.com/retrieve/pii/S0167865520302269

[4] E. Anderlini, G. Salavasidis, C. A. Harris, P. Wu, A. Lorenzo, A. B. Phillips,

and G. Thomas, “A remote anomaly detection system for Slocum underwater

gliders,” Ocean Engineering, vol. 236, p. 109531, Sep. 2021. [Online].

Available: https://linkinghub.elsevier.com/retrieve/pii/S0029801821009240

[5] D. B. Araya, K. Grolinger, H. F. ElYamany, M. A. Capretz, and G. Bit-

suamlak, “An ensemble learning framework for anomaly detection in build-

ing energy consumption,” Energy and Buildings, vol. 144, pp. 191–206, Jun.

2017.

[6] H. Bahlawan, M. Morini, M. Pinelli, P. Spina, and M. Venturini, “Develop-

ment of reliable narx models of gas turbine cold, warm and hot start-up,”

Proceedings of the ASME Turbo Expo, vol. 9, 2017.

[7] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” 2018.

[8] A. Beghi, R. Brignoli, L. Cecchinato, G. Menegazzo, M. Rampazzo, and

F. Simmini, “Data-driven fault detection and diagnosis for hvac water

chillers,” Control Engineering Practice, vol. 53, pp. 79–91, Aug. 2016.

[9] I. Bellanco, E. Fuentes, M. Vallès, and J. Salom, “A review of the fault

behavior of heat pumps and measurements, detection and diagnosis meth-

125

https://linkinghub.elsevier.com/retrieve/pii/S0167865520302269
https://linkinghub.elsevier.com/retrieve/pii/S0029801821009240


126 BIBLIOGRAPHY

ods including virtual sensors,” Journal of Building Engineering, vol. 39, p.

102254, 2021.

[10] Y. Bengio, “Practical recommendations for gradient-based training of deep

architectures,” Sep. 2012.

[11] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “A

semisupervised autoencoder-based approach for anomaly detection in high

performance computing systems,” Engineering Applications of Artificial In-

telligence, vol. 85, pp. 634–644, Oct. 2019.

[12] A. Borghesi, M. Molan, M. Milano, and A. Bartolini, “Anomaly

Detection and Anticipation in High Performance Computing Systems,”

IEEE Trans. Parallel Distrib. Syst., pp. 1–1, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9439169/

[13] A. Capozzoli, M. S. Piscitelli, S. Brandi, D. Grassi, and G. Chicco,

“Automated load pattern learning and anomaly detection for enhancing

energy management in smart buildings,” Energy, vol. 157, pp. 336–352,

Aug. 2018. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0360544218309617

[14] M. Carletti, C. Masiero, A. Beghi, and G. A. Susto, “A deep learning ap-

proach for anomaly detection with industrial time series data: a refrigerators

manufacturing case study,” Procedia Manufacturing, vol. 38, pp. 233–240,

2019.

[15] M. Castangia, R. Sappa, A. A. Girmay, C. Camarda, E. Macii, and E. Patti,

“Anomaly detection on household appliances based on variational autoen-

coders,” Sustainable Energy, Grids and Networks, vol. 32, p. 100823, Dec.

2022.

[16] V. Cerqueira, L. Torgo, and I. Mozetic, “Evaluating time series forecasting

models: An empirical study on performance estimation methods,” Mach

Learn, vol. 109, pp. 1997–2028, 2020.

[17] R.-Q. Chen, G.-H. Shi, W.-L. Zhao, and C.-H. Liang, “A Joint Model for

IT Operation Series Prediction and Anomaly Detection,” Neurocomputing,

vol. 448, pp. 130–139, Aug. 2021, arXiv: 1910.03818. [Online]. Available:

http://arxiv.org/abs/1910.03818

[18] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex fourier series,” Mathematics of Computation, pp. 297–301, 1965.

[19] A. Copiaco, Y. Himeur, A. Amira, W. Mansoor, F. Fadli, S. Atalla, and

S. S. Sohail, “An innovative deep anomaly detection of building energy

consumption using energy time-series images,” Engineering Applications of

Artificial Intelligence, vol. 119, p. 105775, Mar. 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0952197622007655

https://ieeexplore.ieee.org/document/9439169/
https://www.sciencedirect.com/science/article/pii/S0360544218309617
https://www.sciencedirect.com/science/article/pii/S0360544218309617
http://arxiv.org/abs/1910.03818
https://www.sciencedirect.com/science/article/pii/S0952197622007655


BIBLIOGRAPHY 127

[20] A. Cossu, A. Carta, V. Lomonaco, and D. Bacciu, “Continual

learning for recurrent neural networks: An empirical evaluation,”

Neural Networks, vol. 143, pp. 607–627, Nov. 2021. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0893608021002847

[21] M. Cozzatti, F. Simonetta, and S. Ntalampiras, “Variational autoencoders

for anomaly detection in respiratory sounds,” arXiv, 2022, accessed: Mar.

30, 2023. [Online]. Available: http://arxiv.org/abs/2208.03326.

[22] P. Danti and A. Innocenti, “Anomaly detection in a micro-chp using con-

volutional autoencoders and fine tuning for domain adaptation,” in The 7th

International Conference on System Reliability and Safety. IEEE, 2023, iN

PRESS.

[23] ——, “Applied Anomaly Detection: a Bayesian Approach to Improve

Robustness,” in 2023 3rd International Conference on Electrical, Computer,

Communications and Mechatronics Engineering (ICECCME). Tenerife,

Canary Islands, Spain: IEEE, Jul. 2023, pp. 1–6. [Online]. Available:

https://ieeexplore.ieee.org/document/10252975/

[24] ——, “A methodology to determine the optimal train-set size for

autoencoders applied to energy systems,” Advanced Engineering Informatics,

vol. 58, p. 102139, Oct. 2023. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1474034623002677

[25] P. Danti, A. Innocenti, and S. Sandomier, “Anomaly Detection

and Root Cause Analysis Using Convolutional Autoencoders: A

Real Case Study,” SSRN, preprint, 2023. [Online]. Available: https:

//www.ssrn.com/abstract=4574041

[26] H. L. Dawson, O. Dubrule, and C. M. John, “Impact of dataset size and

convolutional neural network architecture on transfer learning for carbonate

rock classification,” Computers & Geosciences, vol. 171, p. 105284, Feb. 2023.

[27] Z. Deng, Y. Li, H. Zhu, K. Huang, Z. Tang, and Z. Wang, “Sparse stacked

autoencoder network for complex system monitoring with industrial appli-

cations,” Chaos, Solitons & Fractals, vol. 137, p. 109838, Aug. 2020.

[28] C. Ding, Z. Wang, Q. Ding, and Z. Yuan, “Convolutional neural network

based on fast fourier transform and gramian angle field for fault identification

of hvdc transmission line,” Sustainable Energy, Grids and Networks, vol. 32,

p. 100888, Dec. 2022.

[29] X. Ding, Y. Li, A. Belatreche, and L. P. Maguire, “An experimental evalua-

tion of novelty detection methods,” Neurocomputing, vol. 135, pp. 313–327,

Jul. 2014.

[30] I. M. Dupont, P. C. M. Carvalho, S. C. S. Jucá, and J. S. P.
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