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Abstract

Antenna arrays are widely used in many RF applications, since they provide
advantageous characteristics in combining element and array layout design. Radio
astronomers need receiving array instruments especially at low frequencies to increase
sensitivity and resolution; one such case is the Square Kilometer Array (SKA),
which aims to be the most sensitive radiotelescope to be built. In this thesis, I
investigate phenomena relating to both the single element as well as the array
electromagnetic performance of SKA-Low, with an aim to characterize critical
aspects of the instrument in terms of far-field receiving patterns, array network
properties as well as polarization purity.

An overview of array advantages at low frequencies, as well as the SKA current
design and implementation status comprise Chapter 1. The numerical EM methods
used throughout the various analyses are outlined in Chapter 2, while SKALA4.1, the
SKA-Low array element, is simulated using three different approaches: the Method
of Moments, the Characteristic Modes Analysis and a dipole array simplified model.
Spurious narrow-band phenomena relating to the log-periodic nature of SKALA4.1
are analysed in Chapter 3, where a dipole RLC loading method is proposed as
a remedy. In Chapter 4, the ground plane is included in array simulations and
its diffraction effects are quantified; a grid mesh analysis is also performed and
compared to the solid plane simulations. Finally, in Chapter 5, mutual coupling
between pairs of antennas is examined probing a first-order coupling framework,
while mitigation strategies of the strong coupling features are tested with the two
SKALA4.1 antennas.

Even though the sensitivity requirements of SKA are largely met with the current
design, it is essential that certain spectral smoothness properties be also satisfied for
certain scientific objectives that SKA-Low aims to attain. The focus on improving
the spectral purity must however maintain the antenna characteristics; thus most of
the proposed changes are minimal. The high accuracy desired necessitates the use
of commercial solvers over in-house or non benchmarked tools; our analysis relies
on numerical results from two commercial solvers, while some experimental results
have also been obtained.

In the addendum of this thesis, the antenna used for the Large Experiment
to detect the Dark Ages (LEDA) is simulated on various platforms of soil volume
and ground plane surface. The antenna spectral response is in this case tested in
greater rigor by examining a correction factor taking into account the sky brightness
temperature; useful conclusions are drawn on the antenna beam requirements of such
21 cm global signal cosmology experiments. An array of such antennas known as
the Long Wavelength Array (LWA) is also treated focusing on the mutual coupling
effects.
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Chapter 1

Low-frequency arrays in
Radioastronomy and the Square

Kilometer Array

1.1 Why arrays of antennas at low frequencies?

The question of designing an electromagnetic instrument for the reception of radio
waves is largely dependent on the nature of the electromagnetic spectrum. Roughly
speaking, the dimensions of any such instrument should be comparable to the
wavelength of reception (or observation, in the case of radio astronomy). A very
concise treatment of the general case of a receiving antenna, for quasi-monochromatic
signals and elliptically polarized elements, can be found in [1], where one of the main
antenna figures of merit, the effective aperture Ae, is derived. It can therefore readily
be realised that the lower the frequency, the larger the instrument dimensions should
be to achieve a sensitive aperture. This means that building such instruments can
be challenging!

The question of size though has some certain constraints when one takes into
account the capability of observation from the surface of the Earth. It is well known
that radio waves lower than 10 MHz are largely blocked by the Earth’s ionosphere [2],
cancelling the usefulness of ground-based instruments for that frequency range. Since
this rough limit corresponds to a wavelength of 30 meters, one can conclude that
this is an attainable limit for engineers to construct instruments of that size. The
need for larger sizes (or apertures) for radio observation has been further dictated
by the capacity of the instrument to angularly resolve narrow sources in the sky.

To understand this, one can use the diffraction limit of an aperture antenna. This
limit is just a spatial-domain expression of the Nyquist sampling rule for the aperture
synthesis Fourier transform [3], [4], when using the Fraunhofer approximation for
the aperture far-fields. This means that the inverse angular width 1/∆θ ("inverse
beamwidth") of observation and the wavelength normalized maximum size of the
aperture R/λ are constrained as:

1
∆θ ≥

1
2 ·

R

λ
⇒ ∆θ ≤ 2 · λ

R
(1.1)
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In practice, this constraint is even tighter if we want to better sample an angular
extent without the confusion that sidelobes of any far-field pattern introduce (e.g.,
1.22 · λ/R if we limit the sampling angle at half the maximum of an Airy pattern
on a circular aperture [4]). It is therefore clear that, while an object is detectable
at 10 MHz with an aperture of 30 m, it can only be resolved at ≈ 2 rad of angular
extent at the limit of the sampling theorem. This is quite a poor resolution and calls
for larger instrument sizes to increase the signal resolution. Fortunately, this is not
the only technique by which one can enhance the resolution.

The breakthrough of early radioastronomers was the use of interferometry in
radio receiving systems. An interferometer works as a discrete set of receivers that
combine their signals to simulate that of an aperture that would have the same
size as that of their maximum distance. This is the most advantageous feature of
interferometry. The possibility to electronically synthesize voltage correlations by
introducing phase delays to the received signals is an additional preferable feature
than that of mechanical movement. In fact, since this operation is done offline, one
can recreate the received data of a quite large patch of observation, which corresponds
to the limits of the so-called beamforming. The degradation of the antenna beam as
well as the phase and amplitude compensation dictate what field of view is available
from these offline data, and along with the acquisition rate, the Survey Speed of
the instrument. An increased survey speed is very important for certain types of
scientific applications, which require quick tracking of the astrophysical sources. An
extensive treatment of interferometry in radio astronomy can be found in [5].

1.2 The Square Kilometer Array

The Square Kilometer Array (or SKA) is an intergovernmental effort to build the
world’s largest radiotelescope. It is a project that was conceived as early as the ’90s
[6], followed by working groups that have advanced the system design during the
previous decade, while it has been given the construction ’green light’ in 20211. One
of the main goals of the Square Kilometer Array is to detect the Cosmic Dawn and
Epoch of Reionization cosmological radio signals, an important gap in our knowledge
of the early universe. Other scientific objectives that the SKA will explore are comsic
magnetism, galaxy evolution, pulsar science, the origins of life through molecular
line spectroscopy, and many more that can be found in [7].

The project is split in two independent instruments, targetting different frequency
bands: the SKA-Low and the SKA-Mid; as the name suggests, the total collecting
area is around 1 km2. The governance body, SKAO, is overseeing its operation
while the SKA Regional Centers (SRC) will be a network of facilities established
in many of the partner countries to coordinate access to the enormous amount of
data, as well as user support and scientific tools for their processing. SKA aims
to also usher in the area of Open Science, by promoting the FAIR (Findability,
Accessibility, Interoperability, Reusability) principles and ensuring that modern
technical solutions are employed to allow for efficient data processing by the broad
scientific community2[8].

1https://www.skao.int/en/about-us/91/history-ska-project
2https://www.granadacongresos.com/skaopenscience

https://www.skao.int/en/about-us/91/history-ska-project
https://www.granadacongresos.com/skaopenscience
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1.2.1 SKA-Low

The low-frequency part of SKA is an array of log-periodic dipole antennas, as seen
in Fig. 1.1, and its installation site is the Murchison area in the outback of Western
Australia. These antennas are organized in a set of 512 so-called stations, each
of which encompasses 256 antennas. This amounts to a total number of 131.072
antennas. The layout of each station is currently semi-random (in essence, a random
algorithm determines the positions within a circular area while at the same time
ensuring accessibility), while the configuration of the stations is a spiral-like structure.
Fig. 1.2 features a combined view of an already constructed station with an artist’s
impression of the future array. Each station lies on a circular ground mesh, which
ensures the low-frequency front-to-back ratio of the antenna patterns is compensated
for, while it also protects from the more volatile soil platform which would induce
more unpredictable systematics.

Figure 1.1. SKALA4.1 as-built
antenna, occupying a 1.6 m ×
1.6 m footprint and amounting
to a height of 2.1 m.

The design of the single element that has been
chosen for construction, is called SKALA4.1 [9]
and is the evolution of previous design stages
such as SKALA2, [10], SKALA3 [11]. It is a log-
periodic dipole antenna composed of 20 dipoles,
19 of which are triangular, whereas the longest
one has a bow-tie shape. This is intended to
enhance the low-frequency response of the an-
tenna down to 50 MHz, by using a more wide-
band geometric structure. The upper limit of
its capacity is 350 MHz, ensuring a wide frac-
tional bandwidth (7:1). Two rectangular conduc-
tors acting as a transmission line constitute its
boom. SKALA4.1 is dual polarized, while its
cross-polarization level is low (less than -11 dB).
The Low-Noise Amplifier, in contrast with pre-
vious designs, is integrated in the higher boom
ends via appropriately designed caps. This uti-
lizes the shielding capability of the rectangular
tube, both for the LNA and the coaxial cable
that drives the RF signal to the Tile-Processing
Modules (TPMs) of the station. The antenna is
also hooked on the ground mesh for protection of
the LNA electronics from electrostatic discharge.

The construction phase of SKA-Low is al-
ready commenced. After the operation of two Aperture Array Verification Stations
(AAVS1[12] & 2 [13], respectively), both featuring a pseuodorandom layout a third
one is recently under comissioning. The first phase of the telescope is going to
commence in 2024 [14]. A new, more canonical layout called the ’Vogel’ is going
to be tested with AAVS3 [15], which presents some benefits with respect to the
mutual coupling mitigation. An overview of the semi-random and Vogel layouts
implemented for AAVS2 & 3 respectively, can be found in [15, Fig. 3]. The single
antenna footprint, which is 1.6 m, and the 38 m diameter of the wire mesh which is
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Figure 1.2. Aerial view combined with artist’s impression of the SKA-Low in the Murchison
Radio Observatory, Western Australia, at the Wajarri-Yamatji people’s traditional land.

the array ’platform’, results in antennas that are very close to each other in AAVS2,
while also aligned in some instances. This is quite detrimental for the mutual
coupling; the Vogel layout ensures that every antenna polarization is misaligned at
a minimum angle of ≈ 30◦ with respect to copolar elements of other antennas.

1.2.2 SKA-Mid

The SKA-Mid is another, separate array of antennas that are going to be built in
South Africa, at Losberg (Karoo region). It will consist of 133 new dishes, along
with the 64 already existing MeerKat dishes. Fig. 1.3 provides a similar combination
of a photo of the MeerKat dishes with an artist’s impression of the full array in the
future. The dishes will be arranged in 3 logarithmic spirals, extending up to baselines
of 150 km. The operating frequency range of SKA-Mid is between 0.35 GHz and
15.4 GHz, split in 4 bands, while it will use 4 feeds to cover these bands. The optics
used is a Gregorian secondary focus, which is offset with respect to the main dish so
as to allow for higher efficiency of the secondary beam, by avoiding feed blockage
and ground spillover [16].

While the MeerKat dishes are unshaped, the new dishes will be shaped reflectors.
Shaped reflectors are not exact paraboloids, but feature optimized 2D dish surfaces
that can perform correction of optical aberrations. The diameter of the aperture
is 15 m and the long axis of the system is 18.2 m. The subreflector diameter is
≈ 4.6 m and an extension of its lower rim allows for better shading of the ground,
preventing in this way the noise temperature from rising. This is combined with a
rotated pointing of the feed towards the primary dish, that increases the illumination
efficiency. Using a shaped reflector further improves the illumination properties and
reduces spillover, so it is the preferred way of achieving better gain and therefore
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Figure 1.3. Aerial view of MeerKat combined with artist’s impression of the SKA-Mid in
the Karoo region of Losberg, South Africa.

sensitivity. For that purpose, studies have been carried out to optimize the mapping
function which defines the reflector surface in [17, 18].

The feeds that will be mounted on the SKA-Mid dishes are single-pixel (single-
port structures, so no simultaneous beams can be formed), and they are four, used
in as many bands [19, 20]:

1. In Band 1 (350-1050 MHz) a so-called ’Quad-Ridged Flared Horn’ will be
used, which is a flared horn profile with four orthogonal ridges and readily
provides for two linear polarizations. It has been developed at the Onsala Space
Observatory and integrated electronics for signal calibration and amplifications
are included in its ’package’.

2. In Band 2 (0.95-1.76 GHz) a wide flare angle horn is used, with axial corru-
gations, designed by EMSS antennas. Advanced cryogenics are required to
cool down this feed and reduce the noise temperature, while an orthomode
transducer (OMT) is used to separate the orthogonal polarizations.

3. In Bands 3, 4, 5a & b and 6 an integrated modular cryostat encompassing
up to five horn feeds for each one of them has been designed by the Oxford
University, and considerations of power consumption have also been made.
The design is undergoing testing and its full capacity for all 5 bands is being
investigated.
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1.3 The necessity for electromagnetic simulations

The accurate description of the electromagnetic characteristics of any antenna is
a crucial point in the design of an RF system, be it a radiotelescope, a mobile
service station or a space probe [21, Ch. 1]. Apart from the engineering challenge of
designing the correct geometric, material and modular properties of an antenna such
that it conforms to a certain set of requirements (a task which for SKA-Low had
been undertaken by the LFAA consortium [22]), a radiotelescope system like the
SKA-Low presents new challenges that call for EM characterization. Specifically,
the mutual coupling phenomena in a closely-packed array increase the complexity of
the formed beam, such that calibration algorithms for the beam weighting gain and
phase corrections at each antenna cannot simply rely on its response as an isolated
element. This does not only mean that observational flux calibration needs new
techniques to allow for the determination of a higher number of degrees of freedom
that can be calibrated at a higher frequency of repetition (such as holography [23]
and self-holography, [24]), but also that it needs the assistance of simulated patterns
to accurately work [25].

While the presence of mutual coupling is certain due to the antenna electrical
proximity, its mitigation by choosing specific array layouts is a task also assisted by
electromagnetic simulations [26]. A theoretical understanding of the properties of
coupled pairs or clusters of antennas is also desired, so that the optimization of the
design is physics-driven rather than purely relying on generalized routines. Among
the available suite of EM methods, we need fast solutions for the first task (in order
to run multiple configurations), as well as methods that decompose the solution into
blocks of sub-solutions (such as Characteristic Basis Functions or Characteristic
Modes).

As far as an array is concerned, some of the challenges faced are:

• being able to create every single beam without multiple simulations by setting
the desired excitations on the antenna array electromagnetic model

• coming up with faster computation techniques that can be applied to different
excitation scenarios by breaking them down into local problems

The first point is solved by the linearity of the "vector space" of formed beams.
One needs to find an underlying set of patterns that would act as a basis in order to
apply weights at will after they are precomputed. A network-theory approach, which
has been fully adapted to radioastronomical concepts in [21], enables the computation
of Embedded Element Patterns (EEPs) as such a basis, which are patterns that result
when one antenna is active and the other antennas are terminated with passive loads.
The scattering parameters are also needed when one needs to convert such patterns
from one loading condition to another or form the beam of an array mounted on a
receiver front-end. Beamforming techniques can then also yield optimized results by
leveraging optimization algorithms [27].

The second point arises in correlation to the first, when the inversion of the
discretized matrix problem is sped up by domain-decomposition or other local
methods (e.g., [28]). This means that when the number N of the Embedded Element
Patterns is large, any such method which can speed up the computation of one EEP



1.3 The necessity for electromagnetic simulations 7

needs to do so at a rate less than 1/N for all useful purposes. This is because the
different EEP computations would otherwise need to be parallelized to yield better
performance. Thus in the case of array simulations, the implementation of new
methods of computation that combine information non-locally to simultaneously
speed up the calculation of all EEPs is an active area of research.
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Chapter 2

Numerical electromagnetic
modelling of antennas and its
application on SKALA4.1

2.1 Frequency Domain methods

Within the framework of computational electromagetism, there is a multitude of
methods, each of which is optimized for certain classes of problems. In low-frequency
radioastronomical applications, the antenna properties of interest refer mostly to
the far-field, e.g. embedded-element electric field response in an array environment,
and extend to the scattering parameters as well as some other metrics relating to
polarimetry (the Jones matrix and IXR [29], see Eq. (2.22)). Frequency-domain
solvers are the dominant choice in such analyses, since the transient response is of
no interest for the frequencies and timescales of data integration. Unlike telemetry
applications, on the other hand, antennas used for radioastronomy need to resolve
as many characteristics as possible in a detected signal so approximations for the
receiving parts should be treated with caution, while the simulation meshes should
capture fine details. We will focus our interest here on two such methods that are
going to be employed throughout our simulations: The Method of Moments and
the Characteristic Modes Analysis. Emphasis is also given to the network theory
applied on receiving arrays, which uses such simulation outputs to further compute
array quantities.

2.1.1 The Method of Moments (MoM) and its derivatives

The MoM is a general method that discretizes the problem of the current distribution
on a manifold, given a certain excitation. The most common implementation is
that of a distribution of currents on an arbitrary 2D surface S. The electric field
scattering from a surface can be derived by imposing the boundary condition of
the electric field tangential to the surface S being zero, n̂ ×

(
n̂× E⃗

)
= 01, and

1For any vector E⃗, the tangent-normal decomposition is written as the vector identity E⃗ =
n̂ ×

(
n̂ × E⃗

)
+ (n̂ · E⃗)n̂
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(a) (b)

Figure 2.1. (a): Schematic representation of an arbitrary surface S with the unitary normal
n̂ and the surface current J⃗S shown by arrows. Triangular MoM mesh elements, as well
as an edge port is also drawn, (b): A FEKO MoM mesh including surface, wire and
surface-wire junction elements; the unitary normal is also annotated here.

separating the source (src) and scattering (sct) components. If the scattering is
expressed by means of the scalar and vector potentials, then one obtains:

n̂× E⃗src(r⃗) = −n̂× E⃗sct(r⃗) = −n̂×
(
jωA⃗(r⃗) +∇Φ(r⃗)

)
(2.1)

The potentials A⃗, Φ, given a certain surface distribution of currents and charge
densities J⃗S , QS , can exactly be solved by convolving with the 3D homogeneous
Green function which is defined as G(R⃗) = ejk|R⃗|/(4π|R⃗|). Their expressions, when
integrating the source region of point vector r⃗′ to a radiation region of point vector
r⃗, are given as [30]:

A⃗(r⃗) =
∫∫

S
J⃗S(r⃗′)G(|r⃗ − r⃗′|)dS′ (2.2)

Φ(r⃗) =
∫∫

S
Q(r⃗′)G(|r⃗ − r⃗′|)dS′ (2.3)

where k = ω/c is the wavenumber and c = 1/√µϵ the wave velocity in the
homogeneous medium of dielectric ϵ and magnetic constant µ. The continuity
equation is then used to combine the surface current density with the time-varied
derivation of the charge density in the frequency domain, namely∇·J⃗S(r⃗) = jωQS(r⃗).
This ensures that the total charge on the surface is conserved by the current flow it
dynamically creates. When combined together with Eq. (2.3), (2.1), as well as using
the definition of the wave impedance η =

√
µ/ϵ, one can derive [30]:

n̂× E⃗src(r⃗) = n̂×
∫∫

S

[
jkηJ⃗S(r⃗′)G(|r⃗ − r⃗′|) + η

jk
∇′ · J⃗S(r⃗′)∇′G(|r⃗ − r⃗′|)

]
dS′ (2.4)
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Taking the second cross-product and rendering it to a compact form using vector
calculus, by defining the unit dyad I = r̂′r̂′ as well as the Green function dyad
G(r⃗, r⃗′) =

[
I − 1

k2∇′∇′
]
G(|r⃗ − r⃗′|), Eq. (2.4) can be written as:

n̂× n̂× E⃗src(r⃗) = n̂× n̂×
∫∫

S
jkηJ⃗S(r⃗′) ·

[
I − 1

k2∇
′∇′
]
G(|r⃗ − r⃗′|)dS′

= n̂× n̂×
∫∫

S
jkηJ⃗S(r⃗′) · G(r⃗, r⃗′)dS′ (2.5)

This is called the Electrical Field Integral Equation (EFIE) [30]. It is an
integrodifferential equation that must be solved for J⃗S , and in all practical cases,
numerical techniques are used to discretize it. It is not the only such equation used
in Method of Moments solvers: The Magnetic Field Integral Equation (MFIE) is also
used in some implementations (especially closed geometries), while combinations of
the two also help in overcoming numerical issues (CFIE, [31]). It is also well known
[32] that the surface current J⃗S radiates an electric far-field which is computed as:

E⃗(r, θ, ϕ) = jkηe−jkr

4πr r̂ ×
(
r̂ ×

∫∫
S′
J⃗S(r⃗′)ejkr̂·r⃗′

dS′
)

(2.6)

since this is the asymptotic expression of Eq. (2.5) in the Fraunhofer limit where
r →∞ in a certain way for the phasor and inverse ("path loss") quantities of |r⃗− r⃗′|.

The surface integral is in the case of MoM calculated by discretizing the surface
into a triangular mesh. A set of basis functions Ψ =

{
ψ⃗i(r⃗), i ∈ {1, · · · ,M}

}
is

attributed to the discretized boundaries M of such a meshed geometry, while some
test functions (optimally the same as the basis functions for most type of problems
or Galerkin testing [33]) are used to create a square linear algebra problem. Fig. 2.1a
summarizes in a schematic the meshed surface quantities featuring an edge port
definition as a voltage gap source. We omit the details of the discretization procedure
and provide the general formulas for the impedance matrix Z and the excitation
vector V̄src of the final equation ZJ̄S = V̄src:

Zij = jkη

∫∫
S′

i

∫∫
Sj

ψ⃗i(r⃗) · [n̂i × n̂i × G](r⃗, r⃗′) · ψ⃗j(r⃗′)dSdS′ (2.7)

Vsrc;i =
∫∫

S′
i

ψ⃗i(r⃗′) ·
(
n̂i × n̂i × E⃗src(r⃗′)

)
dS′ (2.8)

Here S′
i, Sj denote the triangular surfaces of triangles i, j, the basis functions

of which are interacting, while [n̂i × n̂i × G] is a new operator which is the Green
function dyad incorporating cross-products of the surface normals2. At this point,
the tangential component is explicitly derived by the normal vector and is included
in the derivation because the basis functions are arbitrary. In practice, the basis
functions will mostly be defined as always tangential to the surface in case there is
no conductive medium in each face and n̂i would be included in the Green function

2e.g., see eecs.umich.edu/courses/eecs730/lect/DyadicGF_W09_port.pdf for dyad identities,
where n̂ × G = (n̂ × r̂′)r̂′ − ∇′∇′n̂×

eecs.umich.edu/courses/eecs730/lect/DyadicGF_W09_port.pdf
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derivation. If the system is solved with proper numerical matrix inversion techniques,
then J̄S = Z−1V̄src and the electric far-field can be approximated as:

E⃗(r, θ, ϕ) ≈ jkηe−jkr

4πr r̂ ×
(
r̂ ×

M∑
i=1

∫∫
S′

i

JS;iψ⃗i(r⃗′)ejkr̂·r⃗′
dS′

)
(2.9)

The Basis Functions (BF) have to conform to some conditions in order to
adequately represent an electromagnetic problem. They must not create line charges
on the edges of triangles, so there has to be some definition that creates co-linear
basis functions along edges or cancel the charges, having a zero total divergence,
when they are summed. Such an implementation of basis functions are the Rao-
Wilton-Glisson, or RWG [34]. These are attributed to the edges of the triangles
and indeed cancel the charge on each edge by a dual definition of their unit vector
on each of the two triangle faces in which the edge is contained. Their definition
also ensures continuity of the normal current on the edge, which is the one actually
"flowing" on the surface. The piece-wise linear (PWL) functions used in the early
works of MoM in 1D geometry (on the Pocklington equation) are also special cases
of the RWG where a basis function is attributed to each point between two wires, an
equivalence that has been shown in [35]. The extension to Wire/Surface Junctions
(W/SJ) has been presented in [36], where the current on each wire touching a surface
is divided in all its adjacent triangles equally. Fig. 2.1b shows a real mesh by FEKO
described by all of the aforementioned basis functions.

The Method of Moments is one of the most widely used and expanded numerical
methods in Applied Electromagnetics [37]. A well-known extension is the Multi-Level
Fast Multipole Algorithm (MLFMA), which uses multimode expansions of the green
function for far-apart cross-element calculations [38]. The choice of BFs is also
crucial to the size of any problem, and methods of reducing their number upon
physics-based criteria exist. A wide category of those constitutes the Macro-Basis
Function methods (MBFs), which have been described in various works, conveniently
reviewed in [39]. The Characteristic Basis Function methods (CBFs) is one sub-
category of those functions, firstly introduced in [40], in which BFs are constructed
using geometrically separate sub-problems. The use of acceleration schemes such as
Adaptive Cross-Approximation can also speed up calculations in conjuction with
these BF expansions [41]. In general, many low-rank matrix-based, linear algebra
techniques for acceleration exist as reviewed in [42].

Important advances have recently been made also for large array analysis, which
is challenging due to the extremely large number of unknowns and in certain cases
wide-band requirements, as with SKA-Low. The Domain Green’s Function Method
(DGFM) is itself a sub-domain method like CBFs but with further assumptions that
evade some calculations. Recent work in this area of methods has also generalized
the "infinite array" approach used by DGFM’s by adding bias terms [43]. Both of
these approaches have tested their results on aperiodic arrays of antennas similar
to those of the SKA-Low. Many approaches, as in [44], commence their analysis
by using the Isolated Element Pattern (IEP) and utilizing scattering formulations.
It is also worth noticing that specifically in the context of SKA-Low, in which one
station can result in up to 106 BF, some specialized methods have appeared. The
HARP[45] method, which uses Harmonic Polynomials to interpolate between near-
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and far- field interactions of MBFs, controls the accuracy via a chosen Radius of
Influence for the mutual coupling effects, while most recently a Fast Direct Solver
has been developed with an error-controlled accuracy, amenable to the requirements
set for EEPs [46].

2.1.2 Characteristic Modes Analysis (CMA)

The description of an electromagnetic problem in terms of characteristic modes has
been an objective treated in the literature dating back even to the ’60s, with the
first work of Garbacz [47]. Later, a rigorous representation of the problem in terms
of the MoM Z-matrix was introduced by Harrington [48], which marks the start
of its use in numerical problems. The method has resurfaced in the last decade,
as one of its principal advantages is the physical insight it can provide to various
electromagnetic problems ([49]).

The method is stated as follows. Let us define an operator ZE such that:

ZE(J⃗) := n̂× n̂×
∫∫

S
jkηJ⃗(r⃗′) · G(r⃗, r⃗′)dS′ (2.10)

We drop the surface S index since we are only going to examine 2D geometries.
Then the EFIE can just be written as: ZE(J⃗) = n̂×n̂×E⃗src. If ZE = RE +jX E are
the real and imaginary parts of this operator, then instead of solving the excitation-
dependent problem we first pose another, generalized eigenvalue problem which
consists in requiring that the 2 operators RE , X E are colinear for some subset of
surface currents or that for some eigenvalues λ and eigenvectors J⃗ we can write:

X E(J⃗) = λRE(J⃗)⇒ ZE(J⃗) = (1 + jλ)RE(J⃗) (2.11)

This problem can be solved with eigenvalue decomposition techniques (essentially,
for invertible RE we have [R−1

E X E −λI](J⃗) = 0⃗). The result is a set of eigenvalues
λn and eigenvectors J⃗n, n ∈ {1, · · · , N}, N = rank(R−1

E X E). It is proven that for
operators such as those originating from the EFIE, this set is complete with respect
to the vector space of all currents J⃗ . This means the following two conditions:

∫∫
S
J⃗H

m (r⃗) ·ZE

(
J⃗n(r⃗)

)
dS = (1 + jλn)Pmmδmn (2.12)

∀ J⃗ ∃ ᾱ = [α1, . . . , αN ] : ZE(J⃗) =
N∑

n=1
αnZE(J⃗n) (2.13)

where (·)H is the Hermitian operator (conjugate transpose), δmn is the Kronecker
delta and Pmm is the real part of the left-hand-side integral of Eq. (2.12) (when it
is non-zero i.e. m = n) and in the EFIE formulation represents a radiated power
term that is due to eigencurrent J⃗m. It can also be proven by introducing the
excitation-dependent problem ZE(J⃗) = n̂× (n̂× E⃗src), that:

αn =
∫∫

S J⃗
H
n (r⃗) ·

(
n̂× (n̂× E⃗src)

)
dS

(1 + jλn)Pnn
(2.14)
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It is important to note though that CMA can be applied in conjuction with
many numerical methods [50]. In the case of a representation of ZE by a Method
of Moments discretization as a M ×M matrix Z and the eigencurrents as M × 1
vectors J̄n, n ∈ {1, · · ·N}, the same relations apply in a matrix multiplication sense
of the operator. In the asymptotic Fraunhofer limit expansion of ZE , the electric
far-field can be decomposed into characteristic far-fields as:

E⃗(r, θ, ϕ) =
N∑

n=1
αnE⃗n(r, θ, ϕ) (2.15)

where the E⃗n(r, θ, ϕ) are obtained by Eq. (2.9) substituting J̄ by J̄n.
The coefficients αn are called modal weighting coefficients (MWC). They are the

product of modal significance MSn = 1/(1 + jλn), which is excitation-independent
and only has to do with the geometry of the structure, and the modal excitation
coefficient MECn =

∫∫
S J⃗

H
n (r⃗) ·

(
n̂× (n̂× E⃗src)

)
dS/Pnn, which measures how well

the eigenecurrent J⃗n is excited by the source and is also a normalized quantity. An
important aspect of CMA is the arrangement of the an solutions as functions of
frequency f [50]. If we use for example the MoM discretization and attempt to
calculate the eigenvalues of Z for a couple of frequencies f1, f2, their enumeration
is not going to be consistent across different frequencies (that is, a1(f1) does not
map to a1(f2)). This is a numerical issue because the eigenvalue calculation does
not keep track of any changes in the matrix entries, but assigns mode numbers in a
self-consistent way. In order to re-arrange the modes in a way that makes physical
sense, one has to employ extra algorithmic steps in the CMA implementation after
the eigendecomposition. This is called tracking in the CMA literature.

Characteristic Modes Analysis can assist in reducing the complexity of antenna
design, by means of highlighting the excitation-free, inherent geometric properties of
an antenna, or reducing its scope to one mode orthogonal to all others. There are
though some limitations to its application. Advanced eigenmode computation rou-
tines and tracking across frequency algorithms are of high computational complexity,
scaling with the mode truncation order and the basis function size of the problem.
Furthermore, convergence is easily achieved for far-field quantities for which the
modal decomposition is complete, but near-field ones such as the reflection coeffi-
cient need “source-current" terms to compensate for the effects of travelling-wave
evanescent modes (instead of only resonant, standing-wave modes) [51].

In array antenna systems, there are a number of CMA synergies for processing
the mutual coupling between two or more antennas [52]. For an array of dipoles of
arbitrary lengths, recent work examining their modes has connected the analytic
methods with the CMA formulation [53]3. Raines [54] has presented the treatment of
a two-antenna system by block-partitioning the Z-matrix in 4 blocks (2 diagonal self-
terms and 2 off-diagonal that describe the coupling), and applying the standard theory
to its Schur complement, which characterizes the active antenna in presence of the
passive one. Application of these techniques by element loading has been considered
in [55, 56]. Ghosal [57] and Schab [58] have used the theory of coupled modes to

3This work can directly be extended to a single log-periodic antenna which is loaded by its boom;
though arrays of such antennas have not appeared in the literature
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directly partition the problem into uncoupled and coupled linear “subspaces”, aiming
to understand the phenomenon from a more algebraic point of view. For finite
arrays of a larger number of antennas, some of the current approaches are outlined in
[59, 60], where a characteristic modes decomposition is attempted using the modes
of a single element and either calculating modal coupling coefficients, or defining
entire domain basis functions.

2.2 A quick introduction into the EEP network theory

The Embedded Element Patterns microwave network theory has consistently been
summarized in [21, Ch. 5], based on works of previous authors. Importantly, a first
representation of the array as multi-port network can be found in de-Hoop [61]. The
main idea is that, in the same way that an antenna impedance can be defined for a
single port, a multiport impedance matrix can also been defined for many antennas.
Let us represent the antenna receiving system as a set of N such ports, as can be
seen in Fig. 2.2. According to the Thevenin theorem, if Ī are the excitation currents
and V̄oc the open-circuit induced voltages, then the fundamental network relation
computes the antenna port voltages as [21]:

V̄ = V̄oc + ZantĪ (2.16)

If on these antenna ports (or terminals) an N-port load ZL is connected, then
V̄ = −ZLĪ (the current is now ingoing rather than outgoing). Combining this with
Eq. (2.16), The antenna voltages and currents can be calculated as:

V̄ = ZL(Zant + ZL)−1V̄oc, Ī = −(Zant + ZL)−1V̄oc (2.17)

According to the analysis of [61], which exploits the reciprocity theorem, the
open-circuit voltages can be expressed as:

V̄oc = 4π
jηkI0

eocE⃗src (2.18)

where eoc = [e⃗T
oc,1 · · · e⃗T

oc,N ]T is the N × 2 matrix collection of all the normalized4

Embdedded Element Patterns at an open-circuit condition, when excited with a
current I0, and E⃗src = [Esrc;θ Esrc;ϕ]T the excitation dual polarized far-field. The
eoc are exactly the far-field patterns one can obtain by simulation of the array with
a constant current source I0 using any convenient method. The subscript indicates
the active element, while all the others are passive. We can therefore see that the
antenna terminal voltages are a linear combination of the EEPs, and together with
the antenna matrix Zant fully describe the N-antenna network.

Furthermore, to calculate the directivity (or gain) of an array, the same framework
applies by considering a source impedance Zs instead of a load. For example, if
one excites the array with currents Ī, then the total electric far-field pattern of
the antenna in transmit mode can be expressed in terms of open-circuit (oc) and
short-circuit (sc) EEPs as:

4Normalization here means removal of the radial dependency 1/r and the phase delay e−jkr
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Figure 2.2. A schematic representation of an array of antennas as a N-port network, where
one element is excited. The Thevenin representation is used with a ZL source and load
impedance to prescribe the desired termination condition, while the equivalence between
transmit and receive mode is also described.

E⃗ =
N∑

n=1

In

I0
E⃗oc,n =

N∑
n=1

[ZantĪ]n
[ZantĪ0,n]n

E⃗sc,n (2.19)

where Ī0,n = [0 · · · I0 · · · 0]T with an entry only at the n-th position (such that,
eventually, [ZantĪ0,n]n = Zant;nnI0). Other representations also exist for the dual
case of a Norton circuit, when the load (or source) is expressed as an admittance
matrix YL (or Ys). If a voltage V0 is used as excitation in simulations, then the
above total field can be computed with voltage weights V̄ as:

E⃗ =
N∑

n=1

Vn

V0
E⃗sc,n =

N∑
n=1

[YantV̄ ]n
[YantV̄0,n]n

E⃗oc,n (2.20)

where V̄0,n = [0 · · ·V0 · · · 0]T with an entry only at the n-th position (and as
before, [YantV̄0,n]n = Yant;nnV0). One can find extensive transformations between
the various representations in the general case of Zg, Yg EEPs in [62].

2.3 The case of SKALA4.1

This section contains a review of the results of electromagnetic simulations of the
SKALA4.1 antenna as they have been reported in [63, 9]. We emphasize on:

• the far-field pattern co-polarized to the excited polarization
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Table 2.1. Comparison of meshing parameters using the FEKO and Galileo software (basis
function types are described in Sec. 2.1.1

#BF 2D-RWG 1D-PWL W/SJ Total
FEKO 7471 934 84 8489
Galileo 8044 670 84 8798

• the S-parameters of the antenna as a 2-port system of the X and Y polarizations

• the IXR which quantifies the cross-polarization of the far-field pattern [29].

2.3.1 Method of Moments: FEKO and Galileo simulations

Two models have principally been used in the EM community of SKA-Low for simu-
lations of SKALA4.1. The one which has been integrated in FEKO has extensively
been described in [64], where a number of simplifications have been made in order
to minimize the size without compromising the electromagnetic performance. The
second one has been integrated in Galileo starting from the mechanical CAD model
and has been described in [65]. Both FEKO5 and Galileo6 are EM simulation suites
based on the Method of Moments, and have various implementation options that
adhere to any specific problem (such as low-frequency optimization). The meshing
has been deemed necessary to be uniform throughout the full frequency band of
SKA-Low to avoid numerical issues. The EM models as meshed are jointly seen in
Fig. 2.3, where a zoom into the voltage-gap port is also indented, while the resulting
mesh sizes are analytically compared in Tab. 2.1.

We are first going to compare the far-field co-polar gain patterns for both
polarizations of SKALA4.1, and by means of both solvers. The gain pattern does not
depend on the excitation scheme, but it is useful to note that a constant voltage-gap
excitation source is used7. Fig. 2.4 presents a comparison between the frequency
response of the gain (in dBi) at zenith direction (θ = ϕ = 0◦) computed using FEKO
(solid curves) and Galileo (dashed curves), when exciting the X-polarized (blue) and
Y-polarized (red) dipoles of SKALA4.1. The co-polar far-field is computed according
to the Ludwig-III definition [66]:

Eco(r, θ, ϕ) = Eθ(r, θ, ϕ) sin (ϕ) + Eϕ(r, θ, ϕ) cos (ϕ) (2.21)
We note that both polarizations have a very similar co-polar pattern, while the

two solvers agree at a very good level in the gain response. The zenith direction
corresponds to maximum gain, which is centered around 7.8 dBi for SKALA4.1.
There are also some important features of this pattern worth pointing out:

1. The presence of a ground plane, simulated as an infinite Perfect Electric
Conductor (PEC), is responsible for the slow ripple of ≈ 1 dB in amplitude

5https://altairhyperworks.com/feko/
6https://www.idscorporation.com/pf/galileo-suite/
7While FEKO uses a port definition without a source impedance, Galileo incorporates this in its

own definition. This will affect the electric field result, but both results can easily be streamlined in
one preferred definition according to the operations of Sec. 2.2 for the one dimensional case.

https://altairhyperworks.com/feko/
https://www.idscorporation.com/pf/galileo-suite/
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Figure 2.3. FEKO and Galileo electromagnetic models of SKALA4.1, as meshed in the
respective CAD environments. A zoom into the top structure of SKALA4.1 is also seen,
with a voltage gap port defined (approximation of the real, coaxial cable port).

and 75 MHz in repeating cycle. This reflection is not a worrying systematic
effec; further analysis on diffraction effects is conducted in Ch. 4.

2. Some narrow-band anomalies are visible at specific frequencies, that are con-
firmed for both polarizations with both solvers. This is an intrinsic feature of
the antenna and is addressed in Ch. 3.

Next we examine the frequency response of the scattering parameters for each
polarization. Again the |SXX |2, |SY Y |2 are compared (in dB) as calculated by both
software in Fig. 2.5. We can conclude that both solvers calculate both parameters
with high accuracy, while the X-polarized port is slightly better matched at 50 Ω
than the Y-polarized (geometrically, X is placed lower in height from the ground
than Y). The antenna is not well matched in the lower frequencies, due to the
presence of the bow-tie dipole which extends the bandwidth but cannot achieve
acute resonances. This aspect is also discussed in [9].

To test the effectiveness of SKALA4.1 in discriminating the two orthogonal
polarizations, we can resort to the complementary Ludwig-III definition of cross-
polarization, but this is a coordinate-system dependent metric8. In recent studies,
the IXR is the preferred figure of merit; it measures the intrinsic crosspolarization of
the system independent of the coordinate system, and for any polarimetric system
described by Jones matrix J it is defined as [29]:

8The Ludwig-III cross-polar electric far-field is presented in Sec. 2.3.2 in comparison with CMA
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Figure 2.4. Co-polarized Ludwig-III gain in dBi at zenith (θ = ϕ = 0◦) over the full
frequency band of SKA-Low, both for a X- and Y-polarization excited SKALA4.1, using
the EM software FEKO and Galileo.

IXRJ =
(
σmax(JHJ) + σmin(JHJ)
σmax(JHJ)− σmin(JHJ)

)2

(2.22)

Here σmax, σmin are the maximum and minimum eigenvalues of the JHJ matrix,
which is hermitian and thus always results in real positive eigenvalues. In our case
when using spherical coordinates, the Jones matrix can be described as J = [E⃗T

X ; E⃗T
Y ],

where each row is the θ̂ and ϕ̂ components of the relevant excited port of the antenna
(X or Y) [67]. Fig. 2.6a presents the minimum IXR calculated using the FEKO and
Galileo simulated patterns. It should be noted here that a transformation of the
FEKO patterns to agree with those of Galileo in their port definition (including the
source impedance) has to be performed. The resulting curves agree with each other
at a very good level and both respect the thresholds that have been stated in [63] for
not majorly compromising the scientific impact of SKA-Low, being >12 dB in the
50-250 MHz band and >11 dB towards the higher end (note that these thresholds
differ than their counterpart calculations in Ludwig-III terms). All the minimums are
eventually reached at the edge of the chosen field of view, that is Ω = {0 ≤ θ ≤ 45◦}.
Finally, we also present a figure of the port cross-coupling |S12|2 = |S21|2, in Fig. 2.6b.
The very low level of interaction of the two antenna ports means that we can usually
ignore crosstalk from orthogonal ports when beamforming. The agreement now
between the two solvers is less clear, which points to their limit in representing the
sensitive, low-amplitude phenomena of the antenna. In both these plots, lower IXR
(or higher |SXY |) in higher frequencies mean that the solid dipoles of orthogonal
polarizations are more coupled than the wire ones.

Some more investigations have recently been made in the phase response of the
co-polar electric far-field pattern, which supplement these results and are useful in
the beamforming of the array [68].
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Figure 2.5. S-parameter power amplitudes in dB for the 2 polarizations of SKALA4.1
(XX, YY), computed with FEKO and Galileo software.
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Figure 2.6. Left: minimum IXR of SKALA4.1 in the full frequency range of SKA-Low,
calculated in the Field of View limited at θ ≤ 45◦ using both FEKO and Galileo, Right:
|SXY | in dB in the same frequency range between the two ports of SKALA4.1 using
both solvers.

2.3.2 Characteristic Modes: FEKO simulations

In this section, we will focus our analysis in the frequency range 50-100 MHz. This
is a critical region for the scientific objectives of SKA-Low, since the Cosmic Dawn
science is expected to be conducted there [69]. It is also important to note for the
CMA that the solution is dependent on the mesh quality, as well as its size. Both
allow for better convergence, as well as for better tracking. The size of a single
antenna with some refinements has been augmented to a total of 15100 BF, which
is almost double that of Tab 2.1. This size is challenging for experimentation with
a method less tested with such problems, and we aim to analyse the results in
comparison with the MoM derived ones to further test their accuracy.

We excite the SKALA4.1 antenna at its X-polarized dipoles (as in Fig. 2.3)
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Figure 2.7. (a) Square modulus of the co-polarized, normalized electric far-field values
at zenith across frequency, using MoM and CMA with M = 20 modes. Even without
the tracking routine, the CMA solution converges to that of the MoM, (b) The same
quantity for the cross-polarized component.

with a constant voltage of Vs = 1 V , and use a number of M = 20 modes for
the approximation of the solution, heuristically chosen the same as the number of
dipoles per polarization of the antenna. The frequency step is 1 MHz. In Fig. 2.7a,
we present a comparison of the squared modulus of the co-polarized, normalized
(with respect to radial dependence 1/r) electric far-field values, |eco|2 = r2|Eco|2
(or far-field intensity), at zenith, computed using both the MoM and CMA solvers.
Complementary to that, in Fig. 2.7b the normalized cross-polarized component
|ecr|2 = r2|Ecr|2 is presented, which derives from the Ludwig-III definition as [66]:

Ecr(r, θ, ϕ) = Eθ(r, θ, ϕ) cos (ϕ)− Eϕ(r, θ, ϕ) sin (ϕ) (2.23)

We present both the tracked and the untracked solution. For the tracked
one, FEKO’s own tracking algorithm was used, which implies that the search-space
extends in further than the firstM modes numerically calculated, until such modes are
found that satisfy the tracking criteria, which would in turn necessitate comparisons
with modes of adjacent frequencies. On the other hand, for the untracked solution
we bypass this algorithm by running each frequency separately and saving only the
first M modes. It is seen that this number of modes can succeed in converging to
the MoM without tracking, while both |eco|2 solutions generally converge, with a
number of small anomalies (see green curve in Fig. 2.7a) at 54, 68 and 90 MHz.
The regions around 59, 75 and 95 MHz contain the peaks of the antenna radiation
in this range, also observed as |SXX | local minima in Fig. 2.5. Such peaks are
directly related to dipole modes, namely the radiation resonances of the bow-tie
dipole and dipole 19, the next one on the +z axis, at frequencies 59 and 95 MHz
respectively. In the |ecr|2 solutions, some more anomalies are present at 75 MHz
and, more pronounced, at 68 MHz. In that case, it can be concluded that numerical
issues in the eigen-decomposition prevent the solution from converging to the low
value expected by MoM (<0.002).

An important step in CMA is the eigenmode tracking across frequency, that is
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necessary to avoid confusion of the physical properties of each mode. As has already
been described, we expect continuity of the eigenmode as a function of frequency
that the CMA tracking algorithm should ensure. We present the tracking across
frequency of the three most significant modes in terms of their MWC. In Fig. 2.8a,
we have identified modes m = 3, m = 7 and m = 9 (as labelled by FEKO) as those
responsible for the radiation peaks reported. Some tracking issues have appeared
in the examined frequency range for less significant modes, a motive for which we
lower-thresholded the y-axis of Fig. 2.8a at 0.03; they will though not affect our
analysis as long as a constant mode ordering has been chosen for the frequencies
across which the solution is properly modally tracked.
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Figure 2.8. (a) Tracking of the MWC’s αm across frequency of the three most significant
modes, thresholded at 0.03. Two of them (m = 3, m = 9) directly associated to the
dipole resonances at the respective peak of their αm, (b) |eco;m|2 values for these modes,
in the frequency ranges where the respective MWC is above the threshold.

In Fig. 2.8b, furthermore, the respective |eco;m|2 values are shown for each of the
tracked MWC’s, in the frequency range where each of them is above the set threshold
(denoted by dashed vertical lines). We note that, at the 3 peaks identified, the modal
value of the normalized electric field does not present some maximum; the dominant
MWC is eventually determining the quality factor of the antenna resonance. The
frequency response of those |eco;m|2 values though presents interesting, saddle-point
like features around those peak frequencies.

Another noteworthy characteristic of the tracked modes are the crossings between
them, meaning that at certain frequencies, some eigenvalues appear with multiplicity
greater than one. According to [70, 71], this is an allowed feature of antennas
belonging to certain symmetry groups (SKALA4.1 is symmetric with respect to a
180◦ rotation), while it can also serve as an evaluation of the tracking algorithm. It
should also be clarified that this refers to the Modal Significance (MS), which is a
characteristic of the impedance matrix independent of the excitation placement. We
do not show MS but it has been verified to have the same trend and crossings.
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2.3.3 A Transmission-Line loaded Dipole-Array approach

In this section, we will provide a description of SKALA4.1 using lighter MoM
simulations of the antenna without its boom, which will be approximated as a
perfect, non-radiating transmission line (TL). For that purpose, the remaining
dipole array has to be fully characterized in terms of its dipole element EEPs and
S-parameters as in Sec. 2.2. This approach is not novel in the literature, e.g. [72],
although to the writer’s best knowledge it has not been extensively explored with
respect to its accuracy as is done here. Its usefulness is not the direct use of such
results in view of their lighter simulation times, but rather the parametrization of
our model for obtaining specific patterns such as when an interpolation between
frequencies or spherical angle is desired. Furthermore, one can experiment by further
loading the available ports of that representation with lumped elements without the
need for more time consuming simulations, in order to obtain rough results of such
practice (as has also been done in the following chapters). The use of a goal function
in order to minimize the error between our approach and the full-wave one will be
used for that purpose, in order to find the optimal parameters.

In Fig. 2.9, a network model of the dipole array matrix Zant is shown, intercon-
nected with the transmission line segments of characteristic impedances and lengths
Z0;n, ln respectively, for n ∈ {1, · · · , 20}. The FEKO model of the dipole array,
which will be used for the simulations, is presented in Fig. 2.9. The dipoles have a
middle-wire connecting their two arms, while the last part of the boom connecting to
the ground is considered part of the full wave problem of the 20-th dipole (bow-tie).
This representation means that our voltages and currents on each dipole are not
free to choose as in Sec. 2.2 but uniquely determined by the transmission line model
"loading" the dipole array.

Twenty full-wave simulations have been computed by exciting each dipole sepa-
rately, while all others are passively terminated at short-circuit, thus collecting all
the E⃗sc,n, n ∈ {1, · · · , 20}. As is seen in Fig. 2.9, we implement the interconnection
between dipole n and the (n− 1)-th TL segment output port, n-th TL input port
as a junction where we apply the condition Iout;n−1 = In + Iin;n. The voltages on
this junction are equal (Vout;n−1 = Vn = Vin;n), while we use the transmission line
equations for the n-th segment:

Vout;n = cos (kln)Vin;n − jZ0;n sin (kln)Iin;n

Iout;n = −j/Z0;n sin (kln)Vin;n + cos (kln)Iin;n (2.24)

Here we have parametrized the transmission line characteristic impedance of the
boom as Z0;n, which allows for 20 of degrees of freedom in its representation of the
guided wave, while its length ln is the physical distance between the consecutive
dipoles n− 1, n. Passivity of this part of the model is still maintained, while the Z0
as a function of the transmission line height from the ground should be smoother
in the middle of the boom and more volatile at its ends. Finally, the simulated
20× 20 Zant matrix accounts for the mutual coupling phenomena, since V̄ = ZantĪ.

Since we are using short-circuit EEPs with a voltage source of V0 = 1 V,
the total electric far-field pattern at direction is computed from Eq. (2.20) as
E⃗ = ∑20

n=1 VnE⃗sc,n. The reflection coefficient is a simple transformation of S11 =
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Figure 2.9. The FEKO electromagnetic model for SKALA4.1 without its boom, where
ports have been assigned to each dipole in order to calculate the E⃗sc;n, Zant. A detail of
the dipole progression can be seen, as well as a network model of the transmission-line
loaded dipole array representing SKALA4.1. The matrix entries used are in the case of
self-impedances real circuit connections, while in the case of mutual impedances they
just represent the interaction and are properly handled in the full matrix equation.

(Z11 − Z0)/(Z11 + Z0) where Z11 = V0/Iin;1. We try to include both of these results
in our goal function, since they both play a role in the antenna gain which is more
representative of the antenna performance in the far-field (4π/(2η)(|eθ|2 + |eϕ|2) =
Piso on the nominator and V 2

0 /2ℜ{Z−1
11 } = Prad in the denominator). The reason

why we do not directly try to optimize the fraction of these two quantities is because
the various optimization techniques could converge on irrational values for the two
quantities (with respect to our knowledge of such quantities from MoM simulations),
while still maintaining the fraction at the designated goal, a solution which would
clearly be unacceptable. It was further attempted to optimize with respect to gain
and either Piso or Prad, but this would necessitate attributing weights (since they
are not comparable quantities), which further complicates the problem.

Our investigation was first done by defining a goal function in order to minimize
the frequency response at zenith (we have dropped the f, θ, ϕ dependencies on the
above expressions for brevity). Our goal function in this case is expressed as:

F (Z̄0) = ∥[P̄iso(Z̄0); P̄rad(Z̄0)]− [P̄iso;fw; P̄rad;fw]∥2 (2.25)

where the bar quantities mean a vector stacking along frequency points, and
the subscript fw denotes the MoM, full-wave solution of the same quantity. The
implementation of the network model with the equations given above, was scripted
in a parametrized MATLAB function, that was then used for optimization. We have
used the fmincon optimization routine in order to obtain the Z0;n, n ∈ {1, · · · , 20}
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as a minimum of F (Z̄0). The initial values that were given to the optimizing routine
are Z0;n = 130 Ω for all n, and correspond (approximately) to the characteristic
impedance value of the cross-section of the SKALA4.1 boom, as if it was an infinite
TL. Two simulations of a very long such TL were conducted in oc and sc termination
to estimate this value, using the formula Z0 =

√
Zin;ocZin;sc.
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Figure 2.10. (a): |e|2 in V 2 for the case of TL segments of Z0 = 130 Ω and that of fitted
values of Z̄0 by minimizing Eq. (2.25). The full-wave MoM solution is also plotted for
comparison, (b): |SXX | in dB for the same cases as in (a).

The problem fmincon solves is of course non-linear and overdetermined, if we
choose more than 20 frequency points. In order not to lose accuracy by fitting
excessively many points with just 20 parameters, we have chosen a frequency range
from 130 MHz to 300 MHz, avoiding the extremes of the band. In Fig. 2.10a we first
present the |e|2 response for the cases of the full-wave MoM solution, the response
when the initial value 130 Ω is given to all TL segments as well as that of the fitted
Z̄0. The same cases are examined in Fig. 2.10b for the |SXX |. We can see that
whereas the solution for ideal, constant Z0 starts to diverge at around 200 MHz from
the MoM solution, the optimized Z0 values better recreate the resonant behaviour
of the antenna both in terms of |e|2 and |SXX | even up to 280 MHz. This means
that the segmentation and Z0 parametrization of the boom as TL is able, at least in
half the frequency range of SKA-Low, to physically predict some of its parameters
given the EEP and S-parameter response of the dipoles.

Finally, in Fig. 2.11a the gain is plotted for the three cases described above. Here
the flexibility of the model is limited as it is only slightly different from that of the
constant Z0 = 130 Ω. This is due to the fact that we have not requested it directly
in this optimization, as was explained before, but also due to the middle-wire feeding
approach dictating the antenna resonances rather than the boom characteristic
impedance. The optimal Z0 values are shown in Fig. 2.11b and they are seen to
oscillate more on the top of the antenna rather than at the bottom, close to the initial
value of 130 Ω. There is no clear trend (e.g. a polynomial one), which means that
the solution could also be improved with other optimization techniques adding extra
constraints (here we only required that the values be positive). Other, relative-error
goal functions might also be of interest for further experimentation.
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Figure 2.11. (a): Gain at zenith (in dBi) for the case of TL segments of Z0 = 130 Ω and
that of fitted values of Z̄0 by minimizing Eq. (2.25). The full-wave MoM solution is also
plotted for comparison, (b): Z0 of TL segments as a function of their height from the
ground; the highlighted points correspond to segment 1 through 20 in reverse order.
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Chapter 3

Spectral smoothness of
SKALA4.1: higher frequency

“glitches"

In this chapter, we will treat the problem of spurious radiation in Log-Periodic Dipole
Antennas (LPDAs) [73] as well as a new technique of loading the antenna dipoles to
dissipate the second order mode power on a resistor appropriately chosen as part of
an RLC parallel circuit. The SKALA4.1 antenna performance will be examined both
in terms of simulation and experimental measurement, but the concept is generalized
for all similar antennas, i.e., log-periodic dipole antennas with non straight-wire
dipoles. Despite the fact that SKALA4.1 has surpassed all major evaluation criteria,
the problem of narrow gain discontinuities (or so-called glitches) has persisted, and
this was the starting point of our present analysis.

The problem of narrow-band glitches, although minor for other applications,
could potentially sever the narrow-band astronomical observations conducted with
the SKA-Low [69]. Confident signal detection in radioastronomy requires a high
degree of spectral purity, since the sought-out signals are weak. In the case of spectral
lines (highly redshifted molecular or recombination lines, for meter wavelengths
where SKA-Low will operate), acute features such as those we examine mimic them
in the data. Furthermore, polynomial fitting and extraction techniques that work
well in slowly varying instrumental anomalies cannot be applied in such narrow
frequency bands, since they would also dampen the useful signal. The need for
antenna hardware solutions, therefore, emerges for such problematic features.

While it is certainly desired, after the latest SKA Critical Design Review, to
propose minimal changes to this antenna, a technique that does not set decisive
constraints in an initial design process, rather corrects such spurious behaviour of
LPDAs at a post-design phase, is not present in the current literature. Our method
here mainly answers to the challenging scientific requirements of a complex project
such as the SKA-Low. Due to its low-cost and post-design implementation, though,
it is also an attractive method for other applications such as remote sensing.



28 3. Spectral smoothness of SKALA4.1: higher frequency “glitches"

3.1 Spurious LPDA characteristics and RLC loading

The problem of spurious radiation in this type of antennas has been described by
some authors, citing mostly asymmetry concerns [74] as well as the finiteness of the
structure and the associated termination [75, 73]. In most types of applications,
though, such problems did not cause significant degradation of the performance, as
their impact was mostly tackled by choosing a high input impedance [76].

As far as SKALA4.1 is concerned, we are looking into a different spurious
radiation phenomenon, which has been hinted at by [73], and does typically appear
in non-straight dipole elements; it originates from second order modes of these
dipoles, which are undesired for the performance of the antenna. The active region of
an LPDA where dipoles are excited with their primary mode (dipole length l ≈ λ/2)
is not perfectly matched to the feeding line impedance, while there are also dipoles in
the operating frequency range for which the condition of length approaching λ occurs.
Power leaks in the non-active regions being reflected back from the primary-mode
excited active dipoles, and excites this secondary mode (l ≈ λ) after propagating
further down the boom to the longer dipoles, creating a second active region. For a
SKALA4.1 antenna, this problem has been described and experimentally measured
in [77]. In general, non straight-wire dipoles do not have the boundary condition of
zero current at their edge, and their second order mode can have non-zero value at
their middle. This mode can therefore be excited with a middle-placed port, which
would not be possible for straight-wire dipoles (see also Fig. 3.2b).

It should be noted that, many other techniques already proposed in literature,
such as the choice of different length to radius ratios ln/an, a variable boom charac-
teristic impedance Z0 or dipole separation dn[78, 75] have been proven insufficient
or limited by more prioritized specifications in our examined antenna. For example,
even though the input impedance of the SKALA4.1 is prioritized to be matched to
50 Ω as best as possible, a boom of varying Z0 does not violate this requirement if
a non-constant z-profile of the boom cross-section is chosen. Such attempts were
made with constant, linear, parabolic boom profiles and combinations thereof, but
were eventually not proven fruitful in tackling spurious radiation. A different shape
of the dipoles besides the triangular, as in [74], was also an attempted solution, but
apart from significantly changing the antenna geometry, it was again proven an
unsuccessful redesign option. Indeed, as has been shown in [79] this is a complex
problem involving both Z0 and the dipole impedances.

Attempts at lumped element loading by using inductive or capacitive loads have
already been made in a number of works, even for slot-antenna radar applications,
as in [80]. Most relevant to ours, [81] and [82] used an inductance to suppress
such undesired modes but in a 2-dipole configuration, while He et.al.[83] using a
capacitive load aimed mostly at improving the reflection coefficient of the designed
antenna. The choice of an RLC load as a bandstop circuit in this work is made both
for simplicity of design as well as for practical reasons relating to phase stability.
An RLC circuit is a well-understood element and has also found application in
other types of antennas, such as to reduce mutual coupling in arrays. The position
of such a circuit in any antenna design has to be integrated in such a way so as
not to interfere with antenna performance. For resonant antennas, this mainly
means the primary modes; as will be proven in the following section, in our case the
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(a) (b)

Figure 3.1. (a) Log-periodic cell of an LPDA configuration, including the dipole of arbitrary
shape and the boom segment to which it is connected (dimensions are also shown), (b)
The equivalent circuit model of (a) in non-resonant regions of the LPDA.

placement should correspond to the maximum of the secondary dipole mode current
distribution.

Our goal in the following section is to generalize this method in all LPDAs using
non-straight wire dipoles, with respect to achieving gain smoothness, while keeping
the reflection coefficient identical for all practical purposes. The cost on radiation
efficiency should also be minimum.

3.2 Effect of parallel RLC load in LPDA regions

In this section, we consider all dipoles of an LPDA as potentially loaded with an
RLC circuit, while application is found usually only on some of them, depending on
the operating frequency range of the antenna. We shall examine the effect of dipole
loading with an RLC parallel circuit in the frequency regions where the dipoles of
an LPDA are non-resonant and the regions where the dipoles resonate with their
primary or secondary mode. In all of these regions some approximations can be made
both on the behaviour of the RLC load and the main function of the log-periodic
“cells". One such cell is a dipole and a segment of the boom as transmission line,
and is the unit element which is scaled in the log-periodic configuration, as can be
seen in Fig. 3.1a where 3 cells are shown to highlight the cross-feeding of consecutive
dipoles (by the symmetric boom conductor - not shown). All these cells connected
as a network appear, approximately, either as continuously scaled transmission line
segments (propagating power) or equivalent resonant circuits themselves (radiated
power), or a combination of both [79].

3.2.1 Non-resonant regions

We first introduce a dipole indexing using an increasing n, from shorter to longer
elements on an LPDA. If the wavenumber is k = ω/c0, then in the region kln < π,
we expect all dipoles 1 through n to be short and thus to not radiate (the exact
bound depends on the dipole’s parameters). For an LPDA, this region “moves" when
focusing on a different frequency. As has been shown in [84, 85], these dipoles load
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in parallel the boom transmission line, in this case capacitively. If a log-periodic cell
n has an equivalent transmission line inductance L0,n, capacitance C0,n and thus
characteristic impedance Z0,n =

√
L0,n/C0,n, then the reactance added to the boom

is:

XL,n = −Z0,n cot
(
kln
2

)
(3.1)

A circuit equivalent of the log-periodic dipole antenna in its non-resonant region
can be seen in Fig. 3.1b. Following the same indexing as that of the dipole it is
potentially attached to, the parallel n-th RLC load has a complex value:

ZRLC,n = jωLnRn

Rn(1− ω2LnCn) + jωLn
(3.2)

and it is tuned at the second resonant frequency of its dipole such that:

ωn,2 = 1√
LnCn

(3.3)

In the low frequencies that we are examining, we will approximate it as an
inductive load jωLn, since ω2LnCn ≪ 1 and Rn ≫ ωLn. This n-th load, when
attached to the dipole n, modifies Z0,n in a non-uniform way, perturbing the
transmission line model. The inductance Ln has to be small with respect to L0,n

and 1/(ω2
n,2C0,n) (approximate expressions of which can be inferred from [86]), in

order not to significantly affect the equivalent dipole characteristic impedance, and
thus the added reactance to the boom.

In the frequency range, which according to the dipole n is approximately such
that π < kln < 2π, we cannot employ the same transmission line model as in
the short dipole region, because of the fact that we have non-negligible radiation
which works as an end-effect on this transmission line. It should be clarified though
that this region still propagates the power which has not been radiated due to
non-perfect matching to the boom1, even though the effect is more complicated.
Lumped element non-dissipative loading of isolated dipoles in this region (as is also
our case, since ZRLC;n can still be approximated as inductive), for straight wires,
has been theoretically examined in [87]. The dipole input impedance is dependent
on the current through the lumped element, which is zero for a straight wire dipole -
hence no effect would be visible - but close to zero for other elongated shapes, thus
we are not expecting any significant differences with respect to how an unloaded
dipole would behave in the log-periodic configuration.

3.2.2 Resonant regions

In these frequencies, which are roughly around kln ≈ π or kln ≈ 2π respectively (see
Tab. 3.1, rows fn;1, fn;2), the dipole radiates power in its primary or secondary mode.
The approximation depends on the width of the dipole (thick or thin), as well as on
the resonance region; in fact, in an LPDA closely spaced dipoles interact, causing the

1This has been seen by checking the Poynting vector in near-field, 2D FEKO simulations of
the xy-cut of the boom at heights z where the attached dipoles satisfy π < kln < 2π, which has
confirmed that the bulk of complex power is reactive and propagating in the boom.
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distinct resonance of each one to be away from its self-resonance. The most useful
tool to assess their excitation is the quality factor. According to [88], the Q-factor
of a resonant antenna at any resonant frequency ωr of order r, is approximated as:

Q(ωr) = ωr|Z ′(ωr)|
2ℜ{Z(ωr)} (3.4)

where Z(ωr) denotes the complex impedance of the antenna, and the primed
quantity is its derivative, at resonant frequency ωr. It must be noted that this
definition holds both for lossless and lossy antennas, by adding the losses as an
equivalent term of the real part. For our loaded dipole case, as has been already
mentioned, the best position to place the load is where the current excited at ωn;2 is
maximum. This does not only stem from the intuitive fact that we want to suppress
this current as efficiently as possible, but is also necessary if we want to not intercept
power from the primary mode at ωn;1, whose current should be minimum at the same
point. If the dipole has an elongated shape, a lumped impedance placed at both
xn = ±ln/2, i.e. the ends along the largest dimension, satisfies this requirement.

Focusing on the second resonance of interest, ωn,2, our load is at its resonant
frequency so we have exactly ZRLC;n = Rn. We can therefore represent this equivalent
loss resistance, according to [88], as:

RL;n(ωn;2) =
∣∣∣∣∣In(ωn;2, ln/2)
In(ωn;2, 0)

∣∣∣∣∣
2

Rn (3.5)

where In(ωn;2, ln/2) is the dipole current at the load placement and In(ωn;2, 0)
at the excitation point, at ωn;2. If we denote the n-th dipole impedance as Zdip;n
then for the loaded (and hence lossy at ωn;2) n-th dipole the impedance of Eq. (3.4)
is indexed as Zn = Zdip;n + RL;n. By the desired level of the Q-factor, our Rn

is chosen. Note that in this factor there is an implicit assumption of tuning the
antenna to its resonance such that ℑ{Z(ωr)} = 0; away from self-resonance (or in
an untuned antenna as in [88]) there exists some extremum of ℜ{Z(ωr)} such that
ℑ{Z ′(ωr)} > 0. To find other meaningful representations of modal Q-factors of the
antenna by tuning a specific modal reactance to zero one would need to resort to an
internal energy formulation, as in the work of Capek [89].

3.3 Application on the SKALA4.1 antenna

SKALA4.1 is a log-periodic antenna which features 19 triangular dipoles, a bow-tie
dipole at its bottom, and a dual-conductor transmission line of rectangular cross-
section as boom, while it is placed over a ground mesh which can be approximated
as an infinite Perfect Electric Conductor (PEC). It is a dual-polarized antenna, but
with a very low level of cross-coupling, so our previous findings should apply for
each one of the polarizations independently.

Currently, the secondary modes are partially mitigated by tilting of both rect-
angular conductors at an angle θboom = 1◦. This allows for the boom to radiate
part of the leaked power in a non-resonant manner, as it does not act as a perfect
transmission line. A 3D view of the antenna has been presented in Fig. 3.2a.
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Figure 3.2. (a): A SKALA4.1 antenna excited at 229 MHz, geometry colored for wire
current in dBA. Two active regions are discerned, with dipole 18 (counting from top
to bottom) being the parasitic, (b): A FEKO schematic of triangular dipole 18 of
SKALA4.1 over an infinite PEC surface, where 3 ports can be seen: a middle one for
the voltage gap excitation as well as two edge ports where the loads are placed. Plotted
are also the current distributions of the first and second resonances, as a function of the
x coordinate, at 107 MHz and 229 MHz respectively.

3.3.1 Individual Dipole simulations

We first examine individual dipoles of the SKALA4.1 antenna, which present a
secondary mode due to their triangular shape. The 5 longest triangular dipoles (15
to 19) are examined separately, as their secondary modes fall within the operational
range of SKA-Low. For each of these dipoles, we choose our RLC parallel load values
according to 3 design criteria:

1. The second order resonant frequencies, given by Eq. (3.3) for each dipole and
listed in Tab. 3.1.

2. The RLC resonant circuit Q-factor. It can be shown from circuit theory that
Eq. (3.4) reduces to QRLC;n = Rn

√
Cn/Ln, for the RLC load attached to the

n-th dipole. We would like to choose our bandwidth arbitrarily small, but this
choice has practical issues since the tolerance of lumped elements cannot be
zero. Thus, a value of QRLC;n = 10 was chosen as a compromise.

3. The value Rn is chosen, according to Eq. (3.5), which accounts for the desired
level of ohmic losses at the resonance frequency. Simulations were needed
to test various Rn values and assess their effect, because there is no simple
closed-form of Eq. (3.5) for triangular dipoles.

In all the following simulations, FEKO commercial software is used, and the
standard Method of Moments. To find suitable Rn values, the dipoles were modelled
isolated and placed over a PEC, while excited at a wire port of characteristic
impedance Z0 = 50 Ω connecting the triangular monopoles in their middle, with
a fixed voltage set to Vs = 1 V. The two other ports seen with a red/blue polarity
at the tip of the triangles are the loading positions. As an example, dipole 18 is
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Figure 3.3. Simulated dipole impedance magnitude for unloaded and RLC loaded dipoles
with an Rn = 10 Ω in the operating frequency range of SKALA4.1. 10 curves are plotted,
almost identical per 2, while the vertical lines indicate the fn;1 of Tab. 3.1.

depicted in Fig. 3.2b, with its primary and secondary resonant currents are also
plotted, while the x-axis values have been averaged for the corresponding mesh
elements of the two triangle sides. We note the non-zero current on the two edges
for the secondary resonance, as explained in Sec. 3.2. After assessing the impedance
and current response, we have chosen a value of Rn such that the secondary mode
no longer creates an impedance glitch, confirming that also for the gain pattern.
The resistor value that seems to first show insignificant impedance and gain anomaly
for all dipoles is Rn = 10 Ω.

We note that we did not further optimize the Qn, Rn values (which are indicative
more of the order of magnitude needed for the RLC circuits), since they were suitable
for our simulations; higher Q’s can also work but, as explained in Sec. 3.4, result
in L values whose implemented components were not suitable for our prototypes.
Higher R values might be needed for other antennas, but they would unavoidably
induce more losses.

We first present the isolated dipole absolute impedance, to ascertain its behavior
across the full frequency range when the load is added. Fig. 3.3 contains a plot of
all unloaded dipoles, and all loaded ones with an RLC of Rn = 10 Ω. The respective
unloaded/loaded curves are indistinguishable for this scale of values, such that the
load has a highly targeted effect; the glitches are highlighted in boxes. We have also
confirmed the validity of the transmission line model for the impedance of short
dipoles, since all of them have a strong reactive component and are close to the
cotangent shape of Eq. (3.1), up to frequency points close to the SKALA4.1 first
resonances (vertical lines, see Tab. 3.1). The exact cut-off point of this model would
have to result by a fit of the simulated data to the equation, which is out of our
scope. It is also remarked that |Zdip;n| is influenced by the infinite PEC which is in
some cases in the near field and thus interacting reactively.
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Figure 3.4. Calculated Q-factors of dipoles 15-19 (unloaded and loaded ones with an RLC
of Rn = 10 Ω) of the SKALA4.1 antenna at frequencies ωn;2 (top left) and zoomed
impedance glitches of (top right and the rest), whose color contour refers to the respective
box of Fig. 3.3.

In Fig. 3.4 (top left), we present the calculated Q-factors for the unloaded dipoles,
and the case of loaded ones with values Rn = 10 Ω. We use Eq. (3.4) for all cases
preceded by index n before r = 2, while also adding the loss resistance of Eq. (3.5)
for the loaded cases. All other subfigures zoom into the impedance glitch boxes
of Fig. 3.3 (color contours of Fig. 3.3 correspond to box colors) to emphasize the
desired mode suppresion. We can see from this plot that the calculated Q-factors
drop below 5 with the addition of a load. Also note the apparent degeneracy of the
calculated Q of dipole 19, which is low for all cases, along with the almost invisible
glitch peak in the unloaded case. This could be a result of the closer near-field
interaction of this dipole with the infinite ground plane.

The Q-factor calculation and impedance simulation serve mostly as an evaluation
of the technique; the RLC circuit response as a filter is a typical bandpass curve, so
relevant simulations are omitted (such a simulation curve can be found in Fig. 3.8b
of Sec. 3.3 for verification purposes during our laboratory experiments). Specific
antenna designs could require the choice of arbitrary resistors and Q-factors for
each dipole of the antenna; for SKALA4.1, these constant values perform quite well
without the need for further optimization. It is evident from the analysis of this
section that the secondary mode glitch is inherent to the dipoles.

3.3.2 SKALA4.1 simulations

In previous simulations of SKALA4.1 [9], dipoles 15 through 19 tested in the Sec. 3.3.1
were observed, first by means of their anomalous gain response, to be resonating with
secondary modes at the frequencies listed in Tab. 3.1 (with a maximum amplitude
of around 0.2 dB, as seen in Fig. 3.5, “original SKALA4.1" curve). Also included in
this table are the electric lengths of the dipoles at these frequencies, which are close
to λ, and the respective amounts for the primary resonances. These are defined as
local extrema of ℜ{Z} that satisfy ℑ{Z ′} > 0, as in [88], and have been extracted
from simulated data of the antenna. We note the high accuracy of the theoretical
approximations for both kinds of modes, with minor deviations for the primary
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Table 3.1. First and second dipole resonance frequencies and electric lengths for a SKALA4.1
antenna

Dipole n 15 16 17 18 19
fn,1 (MHz) 149 133 118 107 95
fn,2 (MHz) 318 284 255 229 206
ln/λn,1 0.477 0.473 0.464 0.462 0.456
ln/λn,2 1.02 1.01 1.00 0.99 0.99

modes as we anticipate in Sec. 3.2.2, due to dipole thickness and mutual coupling.
Further verification was made by examining the excited currents of the involved

dipoles, as in Fig. 3.2a for 229 MHz, where the full SKALA4.1 is displayed with a
first active region which includes dipoles 10-12, while dipole 18 forms the second
active region and is resonating with a secondary mode, which has a maximum current
at the farthest points from the boom. The dynamic range has been chosen according
to the maximum/minimum values, while the linear currents are shown in dBA to
better emphasize their difference (which is around 30 dB).
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Figure 3.5. Gain in dBi at zenith for the SKALA4.1 X-polarized antenna for 2 different
cases: unloaded (original SKALA4.1), RLC circuit loaded dipoles (Rn = 10 Ω). Dashed
boxes are used to highlight the narrow-band glitches.

We next incorporate the RLC circuits into the full SKALA4.1 antenna, and a
simulation is run with FEKO in the full operating frequency range. Fig. 3.5 shows
our results in terms of antenna gain at zenith. The “original" label refers to the gain
achieved with the unloaded antenna, while “RLC solution" label refers to our current
loaded dipole solution. All dipoles 15-19 have been loaded in their respective edge
(as in the ports of Fig. 3.2b). As can be seen, due to the adjusted 1-dB dynamic
range, we have managed to eradicate the anomalous feature.

We also present some results in other spherical directions for the gain pattern.
Fig. 3.6 shows the gain response in the band 200 MHz to 350 MHz for the same,
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Figure 3.6. Gain in dBi at various θ, ϕ for the SKALA4.1 X-polarized antenna for two
different cases: unloaded, original SKALA4.1 (left) and RLC circuit loaded dipoles
(right). Dashed boxes are used to highlight the narrow-band glitches.

’original’ (left plot) and ’RLC’ loaded (right plot) antenna cases, at θ = 15◦ for the
E- and H-plane (ϕ = 0◦ and ϕ = 90◦), as well as at θ = 30◦ for the H-plane. These
directions were chosen such that all the gain values are comparable to each other
and the glitches visible. It is concluded that, apart from a barely visible feature at
θ = 30◦, ϕ = 90◦ and at 206 MHz, all other glitches are eradicated and the response
appears smooth.

The cost on radiation efficiency is insignificant as well (less than 1%), as can
be seen in Fig. 3.7a for the ’RLC solution curve’. This is in any case visible in the
slightly lower gain values for the RLC solution throughout the full frequency band.
The real aluminum antenna would also induce some more losses due to the finite
conductivity [63], but those are additive with respect to the phenomenon we examine
here so we need not simulate that model too.

In the case of SKALA4.1 antenna, simplicity of design is also a critical factor,
and since the RLC load has optimized values for different dipoles, simpler solutions
were also pursued. For example, we can use only a resistor to achieve the same
performance in terms of glitch eradication, but we can directly see that this would
degrade the low frequency performance. If we consider a per unit length Rn as an
example for the losses of a short dipole transmission line model, and a loss factor of
αnln/2 = Rnln/(4Z0,n), the shunt load on the boom is such that:

ZL;n = Z0;n coth ((αn + jk)ln/2) =

Z0;n
coth(αnln/2)(1 + cot2(kln/2))
coth2(αnln/2) + cot2(kln/2)

(3.6)

+jZ0;n
cot(kln/2)(1− coth2(αnln/2))
coth2(αnln/2) + cot2(kln/2)

Irrespective of the constants into the hyperbolic cotangent term (which is not
exact since we assume distributed losses), numerical plots of the behaviour of
ℜ{ZL;n}, ℑ{ZL;n} in the limit ln → λ/4 have shown that the image term diminishes
more quickly than real one. At lengths reaching λ/4 the lossy ℜ{ZL;n} becomes
important, and this is the mechanism by which the antenna loses energy, which we
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Figure 3.7. (a): Radiation efficiency of SKALA4.1 antenna loaded at dipoles 15-19 with
RLC circuits and solely resistors R, respectively. The original efficiency is not added
since it is, given the PEC metal assumption, equal to 100%, (b): Gain at zenith glitch
at 161 MHz, for an unloaded SKALA4.1 antenna, as well as cases of RLC parallel loads
on dipoles 19, the bow-tie or both with R = 10 Ω or R = 25 Ω.

expect to see as a radiation efficiency reduction. These wavelengths for dipoles 15
to 19 (listed in Tab. 3.1) correspond to frequencies of 50 MHz-70 MHz, so this is
the most affected regime. Simulations have shown that indeed this solution has the
same performance with respect to the glitch supression, but induces a 10% loss in
radiation efficiency, as can be seen in Fig. 3.7a for the ’R solution’ curve.

Other types of spurious radiation

In this section, a problem specific to the SKALA4.1 antenna is addressed, which is
inherent to the addition of a bow-tie dipole at its bottom. Such phenomena may
also appear in similar modifications of LPDAs, whereby the dipole at one of the
antennas extremes has a different shape.

For SKALA4.1, since the bow-tie dipole (the 20-th dipole placed just above
the ground) has a different shape and resonance feature, and is closely spaced to
the triangular dipole 19, they interact strongly presenting mutual coupling related
modes [82, 55]. It was observed by means of the gain pattern smoothness, that this
mode is strong enough to create a glitch at around 161 MHz, which is visible in
Fig. 3.5. In this case, the correct placement of an RLC parallel load was found to
be at x ≈ ł20/4 (here l20 stands for the x-axis wire dimension) of the two dipoles
involved, by examining their maximum current at this resonant frequency. Fig. 3.7b
shows another close-up of the gain response by tuning the RLC at 161 MHz, using
QRLC = 10 and cases of R = 10 Ω and R = 25 Ω. Since R = 10 Ω was proven
inadequate, for R = 25 Ω we have placed the RLC loads on dipole 19, on the bow-tie,
and both of them; the latter case was proven to have the best effect. We can see
that the associated glitch is completely flattened when using R = 25 Ω on both
dipoles, while it is still visible for all other cases (it performs better though only on
the bow-tie than only on dipole 19). Due to the position of the RLC load being
away from the far end of the dipole, a sole resistor R = 25 Ω would not achieve an
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acceptable performance in lower frequencies, so such a solution is not applicable to
SKALA4.1 when all of its frequency coverage needs to be functional.

3.4 Experimental Verification

For the proposed RLC parallel circuit loading solution, we have attempted an
experimental verification using a SKALA4.1 and replacing the dipoles responsible for
the glitch phenomenon with new ones, designed in a custom way such that we could
attach this type of load. Sirio Antenne (https://www.sirioantenne.it/it/), the
contractor of antenna production for SKA-Low, has redesigned and manufactured
these new dipoles. The practical solution for soldering the RLC circuit is a PCB
element also designed by Sirio Antenne, a ≈ 2 cm long FR4 piece with conductive
paths shown in Fig. 3.8b, and also screwed on one of the dipoles in Fig. 3.8a with
its RLC components soldered.

3.4.1 RLC circuit measurement

To first measure and ascertain the performance of the RLC circuit as a 2-port device,
we used an interface such as that shown at the center left of Fig. 3.8b. Coaxial
cable segments, the inner conductors of which were extended via circular rings on
their free end (the other end containing their SMA), were used for compatibility
with the VNA interface. These rings were screwed on the PCB, while a short-circuit
connection of the outer conductors creates a virtual ground. We have also introduced
a modification of the values of the loading circuit in order for a feasible prototype to
be constructed. If one uses a resistor of Rn = 10 Ω that was found in the previous
section to be ideal, then the inductance values turn out to be very low (in the
order of 100’s of pH). This kind of component can only be implemented as a surface
mount, which is hard to integrate in a parallel circuit manually, as we planned to
do. We thus scaled the Ln values by one order of magnitude, which according to
Eqs. (3.3), (3.4) also means that Cn must be scaled down and Rn up by the same
factor. That still allows for practical RC values, while a Rn = 100 Ω resistor would
induce some minor losses in the range 140-200 MHz.

To add to that complexity, it was further realised that parasitic components were
inevitable in our manual RLC component integration on the PCB, which account
for a shift in resonance frequency. For example, with an initial market inductance of
L18 = 7.15 nH and a market capacitance of C18 = 47 pF used for constructing an
initial circuit for the 18-th dipole, a parasitic Lp;18 = 8.44 nH was calculated for a
shift from the designed (229 MHz) to the initially measured (338 MHz) resonance,
such that the actual inductance is L′

18 = L18+Lp;18 = 15.59 nH. We should emphasize
here that this PCB component was not optimized in its electric properties, and the
soldering/screwing interfaces were expected to induce parasitics. Using a new value
of C ′

18 = 33 pF, the new measured resonance, at 217.5 MHz, was the closest approach
we could obtain to target the design frequency of 229 MHz. The constraint is set by
C ′

18 as the closest standard market capacitance to the one obtained from Eq. (3.3)
by using L′

18, keeping the resonance fixed at the design frequency. Tab. 3.2 collects
the L(sim)

n , C
(sim)
n values that have been ideally used for each dipole in simulations

https://www.sirioantenne.it/it/
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Figure 3.8. (a) Redesigned triangular dipole by Sirio Antenne, adding a screwable PCB
on which RLC components are soldered, (b): RLC parallel circuit |S21| in dB, for a
simulated circuit using R = 100 Ω, L′

18 = 15.59 nH, C ′
18 = 33 pF and two measured

prototypes (one of them shown as constructed in the image at the center-left) using
the same values, which are observed to resonate at 217.5 MHz. A parasitic inductance
Lp;18 = 8.44 nH can account for an initially measured shift (not shown) from the designed
resonance frequency, while the amplitude is variable among our 2 prototypes.

in Sec. 3.3, the market inductances Ln used throughout, and the corrected market
capacitances C ′

n. These are the final values we used to construct the prototypes;
the values Cn, L

′
n are instead omitted since they are auxiliary for the correction

procedure described above. It is reminded that, Rn = 10 Ω and R′
n = 100 Ω

respectively, for all dipoles.

Table 3.2. Simulation and prototype construction L, C values. Ln and C ′
n are market

values. L16 and C ′
16 are omitted since an experimental verification was not possible for

this dipole.

Dipole n 15 16 17 18 19

L
(sim)
n (nH) 0.5 0.56 0.624 0.695 0.772

C
(sim)
n (pF) 500.5 560.4 624.1 695 772.6

Ln (nH) 2.55 - 7.15 7.15 7.15
C ′

n (pF) 20 - 24 33 44

The example effective circuit (considering the R′
18, L

′
18, C

′
18 values) was also

simulated. Viewing it as a 2-port network with the coaxial cables corresponding to
its ports, and a reference impedance of Z0 = 50 Ω, a simple Z-to-S transformation
results in S21 = (2Z0)/(ZRLC;18 + 2Z0), using Eq. (3.2) for ZRLC;18. The |S21| of the
simulated and measured RLC parallel load of 2 separate prototypes are presented
for two constructed prototypes (meas. #1, meas. #2) in Fig. 3.8b (design frequency
at the vertical line). The shape of the resonance features of the two curves is
in good agreement, while the amplitude varies at a level of ≈ 1 dB among the
constructed prototypes; despite that, these circuits turned out to be useful in the
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antenna measurements.

3.4.2 SKALA4.1 coupling measurement

The experimental test that we have conducted is essentially similar to that of [77],
a measurement of the coupling between a SKALA4.1 antenna and a transmitting
VHF antenna, in terms of the scattering parameters of the system. The VHF
antenna is a Yagi-Uda composed of 7 dipoles for receiving TV signals in the range
of 180-260 MHz, so we have focused our measurement on the 3 first glitches as
previously described, while the highest frequency one was also observed. A number
of anechoic chamber experimental campaigns took place at the Arcetri Astrophysical
Observatory in Florence, as can be seen in the photo of Fig. 3.9a. Due to the limited
dimensions of the anechoic chamber, the measurement is a near-field (reactive) one,
with a horizontal pointing of the VHF antenna. The chamber was filled with extra
absorbing panels on its floor, except for a cross-like area 1.6 m ×1.6 m that was
occupied by a 5 cm-spaced rectangular grid acting as a ground plane. SKALA4.1
was excited along its Y-polarized dipoles, parallel to the dipoles of the VHF antenna,
while its orthogonal polarization was terminated with a 50 Ω load, and an Agilent
VNA was used to perform the measurement and save the data. Importantly, despite
these differences from the simulations (non zenith pointing, non far-field regime),
the glitch phenomenon clearly appears in our data.

During the anechoic chamber measurements, we obtained two sets of results,
each of them an ensemble average of 10 frequency sweeps without changing any
measurement condition to reduce the random noise, since the horizon pointing
provides a low level of coupling more susceptible to it. A fine resolution of 0.25 MHz
was used. Firstly, a set of measurements with the original dipoles of SKALA4.1
was made, while the next one was made after screwing the new, RLC-circuit loaded
dipoles numbered 15, 17, 18 and 19. Intermediate measurements were also made
after each dipole substitution to check the consistency of the results.

We first show in Fig. 3.9b the measured |S22|, in the four frequency windows
around the primary resonances of the dipoles (as listed in Tab. 3.1), so as to test
the immunity of the response out of the frequency bands where the glitches occur.
It has to be emphasized that due to the anechoic chamber environment having a
close proximity to the antenna, imperferct absorption and scattering from the VHF
antenna, the measured reflection and log-periodic resonant frequencies do not closely
follow that of [9], which was a more precise measurement. However, it is evident
that in the first 3 cases the shape is almost identical. The last panel is in the range
of frequencies where the RLC load of dipole 19 should already attenuate and phase
shift at an adequate level as to account for the apparent differences between the 2
curves.

For the second resonances, we will demonstrate the narrow-band |S21| measure-
ment data in two ways: firstly, we show a zoom into a 5 MHz bandwidth to visually
confirm their amplitude mitigation, as in the top panels of Fig. 3.10. The features
are small in amplitude (as Fig. 3.4 has already suggested), but discernible from the
otherwise smooth trend (only the last panels are more noisy, due to the lower level
of coupling). As we have shown in previous results of this method of assessing the
glitches in S21 measurements [77], there are many differences between the anechoic
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Figure 3.9. (a) Measurement configuration of a SKALA4.1 antenna and a VHF Yagi-Uda
antenna at the Arcetri Astrophysical Observatory anechoic chamber, (b): |S22| VNA
measurement, where port 1 is connected to a VHF antenna and port 2 is connected to
a SKALA4.1 under two conditions: original, unloaded dipoles 19, 18, 17 and 15 (left
to right and top to bottom), and the corresponding redesigned, loaded ones. The 4
frequency windows chosen correspond to a 10 MHz range around the primary resonance
frequency of each dipole, listed in Tab. 3.1.

chamber environment and a free-space simulation that is the most obvious way of a
first approximation. We do not compare with simulation results here since it would
be extremely challenging to introduce in the simulator the real operative conditions
and reflection properties of the chamber walls. Therefore, the effectiveness of the
proposed technique is here demonstrated by 2-step comparative measurements con-
ducted on the antenna with and without the RLC load on the dipoles. A ’differential’
such analysis ensures that the reduction of the glitch could not have been produced
by the anechoic panel or by the VHF antenna whose contributions are identical in
the two consecutive measurements.
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Figure 3.10. Top panels: |S21| measurement data, bandlimited to selected windows around
each glitch of dipoles 19, 18, 17, 15 (top to bottom), Bottom panels: Residuals of the
curves of the left panels after subtracting a polynomial fit of second degree to isolate
the glitch from the smooth variation. Standard deviations are given on the lower left.
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Secondly, for each of the two curves of Fig. 3.10, we fit a second degree polynomial
and examine the residuals shown in the bottom panels of Fig. 3.10. This is a common
method used in the de-embedding of instrumental effects on real radioastronomical
data which, although different in our case (artificial source, coupling measurement
and not far-field gain), can offer an insight on the smoothness of the curves [90].
On the lower left corner of these panels we report the standard deviation over the
bandwidth for both the unloaded/loaded curves (σu/l). For this statistic measure
to be comparable among the cases, the window has been selected such that the
dynamic range of values does not change appreciably (≈ 0.01 for all cases), and the
number of frequency points is also the same. It is verified that in all cases the loaded
dipoles curve achieves a smoother trend with respect to the features resembling the
glitches present in the unloaded dipoles curve. The residuals are always lower, as
well as their standard deviation, a result which points to a smoother SKALA4.1
response under RLC dipole loading.

The problem of low-frequency dipole glitches eradication by RLC loading has
been published in the Radio Science Journal as “Suppresion of Log-Periodic Dipole
Antenna Spurious Radiation by Lumped Element loading for Radioastronomical
Application", by the author and collaborators [91].
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Chapter 4

Antenna platform effects on
SKA-Low

Log-periodic antennas belong to the class of frequency-independent antennas, that is,
constant characteristics in large frequency bands are approached. In practice though,
the gain response of a log-periodic antenna, especially at the extreme of its operating
band where the front-to-back (at 0◦ and 180◦) beam gain ratio can deteriorate, can
be enhanced by adding a ground plane that acts as a reflector. The presence of a
metallic ground plane produces distinct spectral features when illuminated by an
arbitrary antenna, due to the reflection from the backscattering of the antenna and
diffraction from the edges.

Our main objective in this chapter is to examine the effect of a ground plane
structure for a SKALA4.1 [9] array. While the principal reason for the employment of
such a ground plane in SKA-Low is the antenna gain enhancement in low-frequencies,
this choice also has to do with the soil which underlies the antennas, thus making
the observation more sensitive to the environmental parameters (moisture, mineral
content etc.) when it remains uncovered.

In the first and second engineering prototypes of SKA (AAVS 1& 2), certain
concerns have been explored specific to the spectral smoothness of the antenna
beam, in order to enable wide-band beamforming, as well as to fulfill the scientific
prerequisite of decoupling the instrumental response from the astronomical signal
of interest. On-site deployment and operation also demonstrated the calibration as
well as commissioning challenges relating to large low-frequency arrays [13, 92].

The numerical simulations of such prototypes [67] usually assume an infinite
ground plane in order to ease the computational burden, an approximation which is in
general valid for high frequencies (and thus electrically large structures). Simulations
including the finite ground plane, have only been performed in a pair of works [93]
[94], both with the limitation of examining the antenna pattern in certain selected
frequencies.

We focus here on the low-frequency (50-100 MHz) spectral response of both an
isolated SKALA4.1 antenna placed at various positions with respect to its finite
ground plane, as well as the Embedded Element Patterns (EEPs) of selected antennas
of the full-station layout, and compare the results to the infinite ground plane solution.
Two numerical solvers are used for initial verification, and the results are shown to
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be spectrally consistent with the far-field radiation by an arbitrarily illuminated
circular plane. A speed-up 3-step approximation is also outlined for one of the
solvers justifying its applicability on our problem.

4.1 Solid Ground plane

4.1.1 Theoretical approach (point source)

A circular plane of radius a illuminated by an azimuthally symmetric electric field
amplitude vector E⃗i(ρ) (i.e., no ϕ dependence), produces a radiated electric far-field
pattern [4]:

θ̂ · E⃗a(k, r, θ) = k cos(θ)
r

∫ a

0
ρ̂ · E⃗i(ρ)J0(kρsin(θ))ρdρ (4.1)

Here k = 2πf/c0 is the wavenumber, f the frequency, r the radial distance from
the reference (center of the ground plane) to the observation point while ρ⃗ = ρρ̂
is the planar radial distance vector from the reference to the source point on the
ground plane, θ̂ is the zenith angle unit vector and J0(·) the zero-th order bessel
function. This corresponds to a Hankel transform, but the finite upper limit means
that there is a rectangular window function of size equal to the radius of the circular
plane, which will cause the ground plane radiation wavenumbers to appear. We will
use an isotropic spherical wave source at z = 0.5 m, as a theoretic example for the
illumination of the ground plane, since the diffraction effect we want to examine is
in the far-field of the antenna where the illumination is roughly dependent on 1/ρ.
We also ignore its phase term for simplicity. Gain patterns at zenith of the total
radiated field E⃗t = E⃗i + E⃗a (taking also into account the direct isotropic radiation
by the spherical source on the upper hemisphere) were calculated for this theoretic
case.

4.1.2 Numerical simulations of SKALA4.1

For an antenna such as SKALA4.1, it is expected that when placed at a central
position and illuminating the ground plane, a ripple of the same periodicity as the
theoretic example will appear. For off-center antenna placement on the ground plane,
the illumination is more complex, the geometry is not azimuthally symmetric and
we cannot intuitively expect the presence of this wavenumber undistorted. We must
also note that SKALA4.1 has an electrical connection to the ground plane and does
not always illuminate in the far-field (see schematic of Fig. 4.1, left), which makes
the results of a full-wave solver different than if we attempted to use the SKALA4.1
far-field pattern as an illumination in Eq. (4.1).

As our first step in this numeric analysis, we simulate in Fig. 4.2, right, the
pattern of a SKALA4.1 placed on a finite a = 21 m and infinite radius ground
plane, and excite its Y-polarization. We use FEKO amd Galileo, and the Method
of Moments solver for both. Moreover, to test the position dependence, we choose
three positions, termed "center", "middle" and "edge", corresponding to the positions
of antennas #120, #132, #130, respectively, of the next section (see Fig. 4.1, right,
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Figure 4.1. (a): SKALA4.1 geometry, centrally placed on a 42m diameter ground plane,
which is colored differently at its intersection with the near-to-far field sphere (not at
scale), (b): AAVS2.0 two dimensional layout and ground plane perimeter, highlighted by
crosses are all the antennas, while the examined ones are colored red and their identifying
number is given.

but isolated on the ground plane for this section), and focus on 50-100 MHz with a
2 MHz step.

In Fig. 4.2 on the right, we first notice the gain at zenith results for the centrally
placed antenna of either solver (blue curves). We can recognize a qualitatively
similar ripple as in the theoretic spherical wave source case, as far as periodicity is
concerned, although it is seen here to have a larger amplitude (since SKALA4.1 is
more directional by design). There is again a negative slope owing to the reflection
phenomenon by the ground plane of the antenna backscattering, which has initially
been observed in the infinite ground plane simulations, as analysed in [9].

We then examine the gain response at zenith for all the antennas chosen, including
comparisons between the two solvers used. In Fig. 4.2, right, it can be observed that
all finite ground plane patterns exhibit more complex periodic deviations from the
infinite ground plane solution, indicating that the main contribution of the ground
plane across frequency is different than the zero-th order Hankel wavenumber. The
two solvers give similar results. It is also evident that the periodicity away from the
center is not the same, and not always centered around the infinite ground plane
curve (e.g., the edge antenna has a systematic offset).

To look for the existence of periodic characteristics, we will use a Discrete Fourier
Transform (DFT) on the data1. Since we are using a sampling rate of fs = 2 MHz
and N = 26 frequency points, the length-domain sampling will be ℓs = c0

Nfs
= 5.77 m.

By applying the DFT on real-number data as are the gain ratios between infinite and
finite ground plane solution data (R(G) on the Fig. 4.3 y-axis) we get a symmetric
discrete spectrum, so we keep only the one-sided result, as in Fig. 4.3. We then
normalize these amplitudes with respect to maximum so that the theoretic result of
Fig. 4.2 is comparable to the SKALA4.1 simulations.

1The most appropriate would be a Discrete Hankel Transform, but since the data is band-
limited, the complexity of this method to interpret such data is higher, so it will be the objective
of future studies. Our implementation here was based on the relevant Matlab function utility
https://ch.mathworks.com/help/signal/ug/discrete-fourier-transform.html

https://ch.mathworks.com/help/signal/ug/discrete-fourier-transform.html
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Figure 4.2. Left: Gain at zenith in dBi, radiation by a circular ground plane of infinite
and finite radius a = 21 m illuminated by an isotropic shperical wave source at height
z = 0.5 m, Right: Simulated gain at zenith in dBi, of a SKALA4.1 antenna placed on 3
positions of both infinite and finite ground plane cases, using FEKO ("F" in label) and
Galileo ("G" in label).

We can now assess how close the amplitude peaks of each case approach L =
23.07 m, which is the fundamental length that the point source solution peaks at (as
expected, close to our radial length a = 21 m highlighted in red), or what multiple of
this fundamental length they correspond to, by examining the discrete spectrums of
Fig. 4.3a. It can be seen that for the central antenna the highest peak is present at
0.75L, while the one which deviates the most is the edge antenna, whose fundamental
peak lengths seem to be 0.25L and 0.5L (descending order), indicating that the
distance from the edge is interpreted as the effective radius "seen" by the diffraction
integral. Finally, the middle antenna has 2 peaks at 0.5L and 0.25L (descending
order), leading to the same conclusion for its diffraction properties.

4.1.3 SKA-Low station: ground plane effect in a closely packed
array

Emdedded Element Patterns

As mentioned above, a SKA-Low station consists of 256 SKALA4.1 antennas,
arranged in a quasi-random configuration as in Fig. 4.1 on the right, which shows
the AAVS2.0 layout. The pattern of each antenna when excited, while all other
antennas are passive, is an Embedded Element Pattern (EEP) and differs from
others due to the antenna mutual coupling being irregular. We simulated 3 such
patterns in the same frequency range as before, exciting them with unit amplitude
and a 50 Ω source impedance while also terminating the passive antennas with 50 Ω.
Since the antenna station is large, the addition of a 42m ground plane makes the
problem computationally more expensive, so we use a 3-step approximate method
implemented in the Galileo solver already known to speed up the analysis of large
electromagnetic structures without compromising accuracy [94]. This method is
based on the approximation of decoupling the computation of currents between
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Figure 4.3. (a): DFT amplitudes of the gain ratio R(G) between infinite and finite ground
plane solution patterns, for all 3 isolated antennas of Fig. 4.1 and the theoretic source of
Fig. 4.2. The sampled lengths are ℓn = nℓs, and we also normalize the vertical axis to
its maximum, (b): Same as left panel, but for the embedded antenna patterns and the
same theoretic source data.

antennas and ground plane, and can be summarized as follows:

1. The currents on the array are computed with a full-wave solution of the MoM,
using an infinite ground plane through its reflection

2. These currents are then used to illuminate the finite ground plane, thus
decreasing the dimensionality of the problem to the unknowns of the now
meshed plane

3. The radiated electric field components of both structures are superimposed

Fig. 4.4a presents the selected EEP gains at zenith for the full-station with a
finite ground plane in comparison to the corresponding ones computed with an
infinite ground plane. We can see in this plot that the mutual coupling disturbs
the patterns across the whole frequency range, with a number of mutual coupling
related gain drops of 2-3 dB in magnitude. Usually, the EEP distortion is averaged
out when forming the beam from all of them, however there are frequency regions
where glitches of not random nature occur and therefore they are still present in the
station beam as investigated in [95]. The finite and infinite ground plane cases differ
by less than 1 dBi and this difference is fluctuating between positive and negative
values. To acquire an estimate of any periodicity on the ratio between finite and
infinite ground plane cases, we present the normalized DFT amplitudes as has been
done in the isolated case, in Fig. 4.3b. The central antenna, #120 in AAVS2.0 now
peaks at the fundamental length L, even with some slight peaks elsewhere. Antennas
#130 and #132, as with their isolated "middle" and "edge" counterparts, have a
more complex shape: notably, we identify that both of them have a much more
spread-out spectrum even if they mostly retain their peak components inherited
from the isolated antennas.
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Figure 4.4. (a): Simulated gain at zenith of EEPs in AAVS2.0 using Galileo, for all
3 antennas of Fig. 4.1, right panel. Included here are also the same quantities for
the infinite ground plane solution, (b): Envelope Correlation Coefficient (ECC) over
frequency for the same three AAVS2.0 embedded antennas.

Next we also present the Envelope Correlation Coefficient (ECC), calculated
between the infinite (E⃗1(θ, ϕ)) and finite (E⃗2(θ, ϕ)) ground plane solutions. This
coefficient is defined as:

ECC(E⃗1, E⃗2) =

∣∣∣∫ 2π
0
∫ π

0 E⃗1(θ, ϕ) · E⃗∗
2(θ, ϕ)dθdϕ

∣∣∣2∫ 2π
0
∫ π

0 |E⃗1(θ, ϕ)|2dθdϕ
∫ 2π

0
∫ π

0 |E⃗2(θ, ϕ)|2dθdϕ
(4.2)

and makes use of the full complex valued electric field patterns E⃗1, E⃗2 over the
3D sphere to evaluate their similarity. For the selected antennas of the AAVS2.0
station, we calculate this coefficient using both electric field Eθ and Eϕ quantities
and present the results in Fig. 4.4b. Antenna #120 seems to best follow its infinite
ground plane performance. In contrast, the middle and edge antennas have the
most disturbed coefficients. It is noteworthy though that all three EEC drops are
centered around the mutual coupling glitches identified at 55 MHz, 77 MHz in [95],
and 98 MHz, showing that this effect can be volatile depending on the ground plane
size. Due to the complexity of both the ground plane ripple and the mutual coupling
phenomena, they cannot be isolated and quantified separately in terms of the ECC,
but these values are always over 0.96 so the amplitude of each EEP beam volatility
with respect to the ground plane being finite or infinite should be limited.

Station beam

In this section, we will examine the station beam for some of the frequencies in the
50-100 MHz range. We will use the EEPs to construct the total weighted electric
field response, as well as the S parameters in order to calculate the input power.
The S-parameters used will be those of the infinite ground plane solution. We have
the station beam electric field expressed as:(

E
Zg

st,θ E
Zg

st,ϕ

)
= w̄T

g ·
(
Ē

Zg

θ Ē
Zg

ϕ

)
(4.3)
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where the overbar quantities are 256× 1 column vectors, the superscript is used
to indicate EEPs calculated with the Zg = 50 Ω termination and the voltage weights
are all unit, w⃗g = (1, . . . , 1). The radiated power PZg

rad is calculated by integrating
the far-field intensity over the 3D sphere as:

P
Zg

rad = 1
2η0

∫ 2π

0

∫ π

0
(|EZg

st,θ|
2 + |EZg

st,ϕ|
2)r2dθdϕ (4.4)

In Fig. 4.5, we present (in dBi) the station beam directivities at the E- and
H- plane of an AAVS2.0 layout station using the above approach and utilizing the
infinite ground and finite ground solutions at 55, 65 and 77 MHz. Another curve is
added for comparison, which presents the station beam by the simpler approach of
multiplying the electric field of an isolated antenna by the array factor and its input
power by the number of antennas, ignoring in such a way all mutual interactions.
This is presented only for the infinite ground plane solution. Even though this
method is close to the accurate EEP calculation, it can be seen that at the third side
lobe it starts to significantly deviate. As far as the maximum value is concerned,
at 55 MHz a deviation of 0.7 dB of the EEP solutions with respect to the array
factor method. This means that the station beam is not significantly compromised
by the mutual coupling at this glitch frequency, whereas at 77 MHz the deviation
is even less significant. The finite ground plane station beam gains are in excellent
agreement with those of the infinite ground plane solution. The lower panels present
the difference between finite and infinite ground plane solutions normalized to the
maximum of the infinite case, which fall off from a peak value of about 1% at zenith.

This work has been submitted by the author of this thesis and collaborators in
the “International Journal of Antennas and Propagation" and is currently under
review [96].

4.2 Discrete ground plane: a quantitative analysis

It is not hard to imagine that a solid circular surface of D = 42 m would have been
prohibitive to deploy in real conditions in terms of cost, installation and maintenance.
To reach a more realistic construction plan, SKA-Low considers employing a circular
grid instead designed to have a rectangular discretization step of 5 cm, corresponding
to an electrical size of almost λ/20 at the highest frequencies of operation of SKA-
Low (350 MHz), which was considered fine enough to reproduce the reflectivity of a
full solid plane. One should also bear in mind that while the spacing of the grid is
more crucial at high frequency, this is not the case for SKA-Low where the back
radiation of the SKALA4.1 antenna at high frequency is definitively smaller than at
low frequency, thus reducing the ground screen’s role. So far, all EM analysis has
been conducted, for the sake of running time, by assuming a solid plate. In this
section, we compare simulations of such a wire mesh with respect to that of a solid
surface, while we also attempt to sparsen the grid to 10cm and 30cm and assess
how this would impact the antenna performance. The choice of an appropriate grid
spacing, according to these results, might further reduce the cost of the ground plane
implementation, without significantly compromising the accuracy of electromagnetic
performance.



50 4. Antenna platform effects on SKA-Low

-80 -60 -40 -20 0 20 40 60 80

 (deg)

-20

-15

-10

-5

0

5

10

15

20

25

D
ir
e
c
ti
v
it
y
 (

d
B

i)

E-plane Station beam dirtectivity across elevation at 55 MHz

array factor

EEP sum (fin. gnd)

EEP sum (inf. gnd)

-80 -60 -40 -20 0 20 40 60 80

0

0.5

1

p
e
rc

e
n
ta

g
e
 %

(D
inf

-D
fin

)/max(D
fin

)  100%

-80 -60 -40 -20 0 20 40 60 80

 (deg)

-20

-15

-10

-5

0

5

10

15

20

25

D
ir
e
c
ti
v
it
y
 (

d
B

i)

H-plane Station beam directivity across elevation at 55 MHz

array factor

EEP sum (fin. gnd)

EEP sum (inf. gnd)

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1

p
e
rc

e
n
ta

g
e
 %

(D
inf

-D
fin

)/max(D
fin

)  100%

(a) 55 MHz
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Figure 4.5. Station beam directivity of an AAVS2.0 layout of SKALA4.1 antennas, at
55 MHz, 65 MHz and 77 MHz (top to bottom), for E-plane (left) and H-plane (right).
The full-wave EEP summed solutions of the finite and infinite ground plane cases are
presented, along with an array factor approach for the infinite ground plane solution.
The bottom panels show the percentage difference, normalized to the beam maximum,
of the finite and infinite ground plane beams.
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4.2.1 Ground plane simulations: solid surface and wire mesh

For the following simulation results, we have used the FEKO (from Altair) and
Galileo (from IDS) commercial software. A reference model was created which
consists of a solid circular surface and a SKALA4.1 antenna. In this section of the
analysis, we omit the soil underlying the antenna and ground plane; relevant work
on a previous model of the SKALA antenna has reported such results [97].

The wire mesh models are created with x-y crossing wires of radius rw = 2 mm.
All wire parts that are crossed by the circular circumference are deleted; we only
keep those that create squares. It is also desirable to approximate the area that
connects and grounds the bottom end of the boom of SKALA4.1 as a solid square
plate. The actual shape of such a plate, which serves in “hooking” the antenna
to the mesh on-site, is more complicated but does not impact the electromagnetic
problem. The radius of the ground plane circumference was set to R=5 m both
for the solid and the gridded scenarios. This is a compromise between the actual
size (21 m) and the size of grids that FEKO can unite as geometry parts; there is
no trivial way to connect the numerous crossing wires without intensive geometric
operations. Attempts to create the full grid by such operations resulted in waiting
times of more than a day, which were then terminated. An image of the 10 cm ×
10 cm wire mesh model is shown in Fig. 4.6. A zoom at the central point also shows
the touching part between antenna - ground mesh.

The wire grid models that were tested were of 3 discretization steps: 5 cm, 10 cm
and 30 cm, which we call small (λ/17 at 350 MHz), intermediate (λ/8 at 350 MHz)
and large (λ/3 at 350 MHz), respectively. The frequencies that were tested are: 60,
100, 200 and 350 MHz, that cover very sparsely the range applicable for SKA-LOW.
In more detail, 60 MHz is slightly higher than the lower extreme where the antenna
is badly matched, 100 MHz is about the limit of the dense regime, 200 MHz is
the middle of the SKA-Low band and 350 MHz its higher extreme. The quasi-90◦

symmetry of the antenna (and the perfect such symmetry of the ground plane)
allow us to examine the results testing only one of the examined polarisations and
terminating the orthogonal one at 50 Ω.

We present in Fig. 4.7 the results of gain (in dBi) of a SKALA4.1 antenna placed
on each of the ground planes (grids) and excited at its Y port, for the E-plane and
H-plane cuts. The results are with respect to the zenith angle θ (truncated at 70◦ to
compare the 2 planes in the same dynamic range) and at the 4 frequencies presented
above. It can be seen that the large spacing diverges in all cases (especially at
lower frequencies) from the ideal values; it is actually included as the “bad” case.
The small spacing (currently employed) performs excellent for all frequencies, while
the intermediate one presents minor differences. These are found at the highest
frequencies (200 and 350 MHz), where the grid spacing is also a multiple of more
wavelengths. The gain for angles closer to the zenith are affected more by the grid
spacing. At 60 MHz, the vicinity of the antenna active region (excited dipoles) to
the interface between antenna and ground plane likely makes the antenna patterns
more sensitive to the gridding/solid connection.

As a validation of the accuracy of the previous results, we present the comparison
of some of the FEKO gain results with the Galileo-computed corresponding ones.
We choose 100 MHz and 350 MHz; at 60 MHz, there were no results computed
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Figure 4.6. A SKALA4.1 antenna placed on a square grid of wires of radius re=2 mm,
and a circumference of radius R=5 m. Also shown in a zoomed window is the part at
z=0 m where the antenna and wire grid are touching.
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Figure 4.7. H-plane and E-plane cuts across zenith angle of the gain response in dBi, for a
SKALA4.1 antenna placed on 4 different kinds of ground planes (3 grids plus 1 solid).
The results are for 4 different frequencies.
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Figure 4.8. Differences in dB between results generated using FEKO and Galileo software,
across zenith angle for the H-plane and E-plane cuts.

with Galileo, while at 200 MHz the differences are always less than 0.1 dB, which is
insignificant. Fig. 4.8 presents the dB differences of patterns from the 2 solvers. We
note that E-plane differences are more acute and at 100 MHz, they diverge for high
zenith angles to -1 dB. However, some systematic agreement between the small and
intermediate grid step suggests that this is due to the slightly different SKALA4.1
models used in each solver, apart from their intrinsic differences in implementing
the Method of Moments.

4.2.2 Including the soil dielectric parameters: dry and wet condi-
tions

In this section, we will consider the semi-infinite soil volume beyond and under the
ground plane as described by some set of dielectric permittivities ϵr and conductivities
σ, for two cases of conditions representing dry and wet soil. Both of these sets
have been measured in 3 certain frequencies (50, 160 and 280 MHz) in [98], and
interpolated in the frequencies used in this study. These parameters are collected in
Tab. 4.1. As per FEKO’s requirements, the solid ground plane was elevated at a
minimum distance of 1 mm above the soil surface so that mesh triangles don’t touch
onto it; this ensures that currents can be impressed on an infinite surface, otherwise
surfaces touching to meshed parts cannot be treated with the standard impressed
current approach used by FEKO.

condition ↓ freq. → 50 MHz 160 MHz 280 MHz
dry (ϵr|σ) 3.9 0.0007 3.7 0.0018 3.7 0.0022
wet (ϵr|σ) 17.8 0.1 14.8 0.11 14.4 0.11

Table 4.1. Relative dielectric permittivity ϵr (dimensionless) and conductivity σ (in S/m) at
the 3 measured frequencies for dry and wet soil conditions. The values used to simulate
the frequencies examined in Fig. 4 are linear interpolations of the listed values.

We will present our results in the 4 frequencies examined also in Sec 4.2.1,
omitting the large spacing mesh since it has already been proven to be insufficient
for screening purposes. Fig. 4.9 contains these plots for both dry and wet conditions.
The level of gain at zenith is again affected the same way by increasing the spacing,
meaning that some of the power “leaks” to the soil (it is now considered in the losses,
though). Furthermore, at least at 200 MHz and higher, the antennas patterns are
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Figure 4.9. H-plane and E-plane cuts across zenith angle of the gain response in dBi, for a
SKALA4.1 antenna placed on the solid, small step and intermediate step grid acting as
a ground plane. The dry and wet conditions values are used to simulate the soil volume.

largely decoupled from the terrain conditions. What is important to distinguish
between dry and wet conditions are certain zenith angles where the curve presents
a “bend” (or saddle point). These features can vary in amplitude depending on
the dielectric parameters since they play a role in the diffraction phenomenon at
the transition from perfect to lossy conductor [94], [93]. We can see such features
at 100 MHz on 20◦, at 200 MHz on 20◦, 40◦, and at 350 MHz on 5◦, 10◦, 25◦, 40◦

(effect present on both planes).
Another useful comparison is between the patterns simulated in this section, with

the ones without the inclusion of soil. Since the wet conditions are the most divergent
ones in terms of dielectric parameters, we will compare the sets of wet soil patterns
with the free-space patterns of Sec. 4.2.1. Fig. 4.10 presents this comparison, in
which we see significant deviations, especially for the 2 lowest frequencies. It is worth
mentioning that the soil makes the ripple-like diffraction pattern less in amplitude,
which is a positive aspect for the smoothness of the curve and the instrumental
response as a whole, in all of the ground plane cases examined.

4.2.3 Gain response across SKA-Low frequency band

In this section, some results are presented focusing on specific pattern points of
the antenna and ground plane (or mesh) system examined in the previous sections.
We have selected the zenith (θ = 0◦), and the E-plane and H-plane cuts at zenith
angle θ = 45◦ (ϕ = 0◦, ϕ = 90◦ respectively), and tested the frequency response
from 60 MHz to 350 MHz using a 10 MHz step. The frequency point of 50 MHz
was excluded since it is degenerate in gain owing to the small size of the ground
plane. All the in-between points with a frequency step of 1 MHz, were filled using
a standard cubic interpolation to facilitate the visualisation; in general, the trend
observed in all curves agrees with the simulated gain of [9]. It is interesting to note
in this plot a couple of findings:
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Figure 4.10. H-plane and E-plane cuts across zenith angle of the gain response in dBi, for
a SKALA4.1 antenna placed on the solid, small step and intermediate step grid acting
as a ground plane. The wet-soil conditions is compared to the no-soil model of Sec. 3.

• The zenith response, when interpolated, presents faster variability with respect
to the E-plane and H-plane 45◦ points. Even though the interpolation might
not accurately represent the pattern, the ground plane is certain to affect the
zenith direction in a stronger way due to the diffraction [4].

• There are various frequency points where either the small or the intermediate
step grid better approximate the response of the antenna placed on a solid
ground plane. It can be concluded that differences on the level of 0.5 dB, as
are the higher ones seen here, are inevitable for any such mesh discretization
of the solid surface of D=5 m.

• The small step wire mesh model agrees at zenith and at 45◦ H-plane consistently
better with the solid plane, with respect to the intermediate step one.

Finally, we present in Tab 4.2 the RMS/Mean values calculated by the curve
data, along all 3 sets of pattern points, between small step wire mesh and solid plane,
as well as between intermediate step wire mesh and solid plane. These confirm the
last 2 points made above. Importantly, the H-plane seems to be reproduced by both
spacings.

This work has been published in a SKAO technical report by the author of this
thesis and collaborators [99].
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Figure 4.11. Frequency response of the gain (dBi) of a SKALA4.1 on the solid plane
model, as well as the small and intermediate step meshes, at 3 points corresponding
to the zenith and the E-plane and H-plane cuts at zenith angle θ = 45◦. The points
in-between the annotated (simulated) ones are filled using a cubic interpolation.

models ↓ direction → zenith θ = 45◦, ϕ = 0◦ θ = 45◦, ϕ = 90◦

small step wire - solid 0.025 0.031 0.04
interm. step wire - solid 0.055 0.073 0.033

Table 4.2. RMS/Mean value at different directions of the antenna gain pattern calculated
between small step wire mesh and solid plane, as well as between intermediate step wire
mesh and solid plane.
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Chapter 5

Array Mutual Coupling of
SKA-Low: lower frequency

“glitches"

5.1 SKALA4.1 array mutual coupling

5.1.1 Overview of array configuration modelling and optimization

Mutual coupling in antenna clusters or arrays is quite a well known phenomenon.
In applications such as massive Mutiple-Input-Multiple-Output (MIMO) systems,
it can even be harnessed to improve the channel throughput, i.e. the data rate of
a telecommunications link [100]. Usually, though, mutual coupling is ignored in
applications where a sparser array configuration is employed, or the full knowledge
of the antenna beam is not an impactful parameter in the design of the final system.
For low-frequency arrays used in radioastronomy, and particularly SKA-Low, both
these conditions are violated.

The problems that mutual coupling induces in such arrays are various. At a first
glance, one can confirm that if there is a systematic effect that cannot be randomized
out by a pseudo-random array configuration, the drop of gain within the field of
view - and subsequently the effective area of the array - leads to a decrease in its
sensitivity. The deterioration of the array matching properties can also contribute
to that, since the SEFD (System Equivalent Flux Density) depends on the antenna
multi-port impedance [101]. Preliminary sensitivity measurements in the AAVS2.0
prototype SKA-Low station have also highlighted the effect of mutual coupling [13].

Most importantly, mutual coupling features, which usually are sharp due to
spurious excitation of unwanted modes, disrupt the spectral smoothness of the
antenna patterns [102]. This is connected to the remarks in Ch. 3 for the narrow-
band glitches, but can, in the case of mutual coupling, hinder calibration in a much
more significant way, due to the features’ magnitude, as well as the wider bandwidths
affected. We note, for example, the complications of the spatial (or delay) power
spectrum measurement of the Cosmic Dawn - Epoch of Reionization when a beam
suffers first-order coupling effects [103], where computational simulations can assist in
such mock-measurement pipelines. Perturbed beam models due to mutual coupling
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can also result in larger calibration errors [104].
Recent efforts have been made to optimize the layout of the AAVS2.0 station

in an ad-hoc way, retaining its pseudo-random characteristics. Repositioning some
antennas according to exclusion zones surrounding their vicinities in a 16-element
array [95], as well as repositioning according to statistic measures of both the
interelement distances and alignment angles in the full-AAVS2.0 [105] have yielded
improvements. The need to avoid unwanted close spacings resulting from the
randomization process can also be tackled by other, more regular layouts e.g. the
Vogel layout [15]. The Voger layout, which ensures disalignment of the antennas on
the 2D plane, some improvements are seen in the effective area [106] and IXR of the
station [107], but other severe effects have emerged due to repeated intra-station
baselines [108]. The persistence of the problem and especially the immunity of
its central frequency hint to fundamental antenna properties as responsible for its
manifestation.

5.1.2 A baseline two-antenna configuration: simulation and experi-
mental results

In the following subsections of this chapter, we mainly focus on a configuration of
two antennas which we call baseline to showcase the mutual coupling phenomena.
We are keeping the two antennas on the same plane and their polarizations aligned
on a nominal coordinate system, which is a requirement set by both mechanical
constraints as well as easier polarimetric analysis. Such a configuration can be
parametrized by 3 non-trivial variables, in terms of its electromagnetic response:

1. The distance between the center of the antennas D0

2. the angle between this distance vector and the plane x-axis, ϕ0

3. the receiving and terminated polarizations

A geometric image of the baseline configuration is seen in Fig. 5.1a. Let us
define its FEKO model composed of two SKALA4.1 antennas laid over an infinite
perfect electric conductor, aligned in the x-axis. Since the instrument is used only
for reception, we prefer to label the elements as receiving and terminated element,
respectively. The simulation (in transmit) is conducted by exciting the port of the
receiving element, while the non-excited ports are terminated with 50 Ω loads.

Owing to the asymmetry of the excitation placement, the EEP is generally tilted
from the zenith direction; this is evident in Fig. 5.1b where the E-plane EEPs for
several frequencies between 67 MHz and 85 MHz are reported, when D0 = 1.5 m,
ϕ0 = 0◦. Moreover, while the curves are rather close to each other for most of the
reported frequencies (dashed lines), the trend is lost around 77 MHz where highly
perturbed patterns appear (solid lines), with also a deep null at zenith at 77 MHz
(about -13 dB with respect to the maximum). This picture highlights the sharp
nature of the resonance phenomenon. As described in [67], this is a systematic effect
which is not mitigated by the pseudo-random distribution of the antennas.

In Fig. 5.2a and 5.2b we also reproduce Fig. 2 of [95]. These plots show the
volatility of the configuration of Fig. 5.1a with respect to its two geometric parameters.
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Figure 5.1. (a): Ideal FEKO model of two SKALA4.1 antennas placed at a distance of
D0 = 1.5 m (center-to-center) on the x-axis (ϕ0 = 0◦). Ant.1 is the receiving (X-polarized
reception) and Ant.2 is the terminated antenna (50 Ω termination). Both are placed on
an infinite PEC ground plane, (b): E-plane EEPs of the two-antenna array, for a set of
frequencies. Negative zenith angles θ are towards the terminated antenna.

We can see that by increasing the distance D0 the amplitude of the features at 55
and 77 MHz is moderated, but the frequency is almost unaffected. On the other
hand, when ϕ0 is increased, a similar but slower trend is seen: in particular, some
angles can lead to worse spectral structure of the glitches. Again, the frequency
diversity is limited to 1-2 MHz. Since the system is almost symmetric by mirroring
(with minor deviation due to the cross-feeding by the boom), if Ant. 2 was receiving
and Ant. 1 was terminated we would observe similar phenomena; that extends to
both antennas as receiving due to their similar EEPs adding up to the total response.

For the experimental test describing this phenomenon, an array of two SKALA4.1
antennas 1.5 meters apart (center-to-center) was set up as shown in Fig. 5.3a. The
two SKALA4.1 antennas were mounted on two square-grid ground planes of similar
dimensions. Both the grids had a mesh size of 25 mm and were electrically connected
with each other. The Low-Noise Amplifier (LNA) on top of the antenna was
replaced by a passive connection to avoid non-linearity phenomena induced by radio
frequency interference in the outdoor measurement field. The receiving element
was connected to a Agilent E4402B Spectrum Analyzer (SA) through a 60 m long
LMR400 cable, whereas the remaining three ports were terminated with 50 Ω loads.
The measurement is focused in the second mutual coupling phenomenon, centered
at 77 MHz, since the hardware available was more robust in this range.

The measurements were performed with a quadcopter implementing Real-Time
Kinematic (RTK) positioning, with a high degree of accuracy. As far as the RF
transmitter is concerned, the UAV carried a 2 m long dipole fed by a Valon 5015
frequency synthesizer and a balun. The synthesizer produced a stepped swept-sine
signal within the range 66-85 MHz in 0.1 MHz steps with a duration of 1.5 seconds
each. The chosen parameters result in 191 frequency points and 5 minutes of sweep
duration. During this lapse, the UAV remains steady in the sky at 60 m altitude
above ground level at the zenith of the receiving element and a Spectrum Analyzer
measures the received power. The pattern was then computed following the approach
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Figure 5.2. (a): Gain at zenith (dBi) over frequency of the two-antenna system of Fig. 5.1a
for various D0 at ϕ = 0◦, (b) the same for various ϕ0 at D0 = 1.5 m.

of [109] based on the Friis equation. The resonant frequency of the transmitting
dipole is found within the chosen frequency range, and the impedance mismatch
factor has been simulated and compensated for.

Fig. 5.3b shows the measured (orange curve) and simulated (gray envelope)
zenith gain variation versus frequency. It should be pointed out that the EM model
was, for this plot, carefully refined to reproduce with high fidelity the real setup. In
particular, two solid, finite rectangles were now modeled as perfect electric conductors
and placed underneath the antennas and on the top of the surface of a semi-infinite
dielectric medium to simulate the soil. This soil volume was included in the solution
by means of the Sommerfeld integral equation, which, in FEKO, is hybridized with
the MoM used for the mesh parts. We then varied the soil complex permittivity
to account for the margin of error related to its approximate modeling. The gray
envelope of Fig. 5.3b shows the simulated results for 5 sets of relative permittivity
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Figure 5.3. (a): Two adjacent SKA-Low elements over mesh ground plane. Receiving
element on the left, terminated element on the right, (b): Measured (orange) curve and
simulated (gray envelope) zenith gain versus frequency. A number of 5 sets of (ϵr, σ)
was used for the simulations. The measured curve is normalized to the simulated one
(baseline model) at 66 MHz.

ϵr and conductivity σ, and is defined by the min/max of these 5 models at each
frequency. For our baseline model, we used a relative dielectric constant of ϵr = 4
and a conductivity of σ = 10−3 S/m, representing mainly dry moisture content of
sandy clay loam [110]. To test deviations from these conditions, the more volatile
conductivity was scaled by a factor of 5 (i.e., 5× 10−3 S/m and 2× 10−4 S/m) while
retaining ϵr = 4, whereas the dielectric constant was scaled by a factor of 2 (i.e., 2
and 8) while retaining σ = 10−3 S/m.

For further check of the simulated EEPs, Fig. 5.4a and 5.4b show the normalized
E-plane EEPs for a minimal set of two frequencies chosen within the unperturbed
frequency band (70 MHz) and where the mutual coupling effect is maximum (77 MHz).
The simulation envelope corresponding to the extremes of all sets of soil parameters
(gray area) covers all the zenith angles whereas the measured curve (orange) is
limited to the field of view covered by the UAV flight (±60◦). While the curves
almost perfectly agree in the unperturbed frequency of 70 MHz, an angular offset is
present at 77 MHz where the mutual coupling creates a dual lobe. The distribution
of radiated power showing a maximum in far off-zenith directions is a non-trivially
described phenomenon, which could lead to small inaccuracies between measurements
and simulations. Nevertheless, the perturbed EEP at 77 MHz is fully confirmed by
such measurements (similar error levels have been reported in previous works [111]).

This work has been co-authored by the author of this thesis and published in
IEEE Antennas and Wireless Propagation Letters [112].
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Figure 5.4. Measured (orange curve) and simulated (gray envelope) normalized EEPs at
70 MHz (a) and 77 MHz (b).

5.2 A CMA approach for the two-antenna system

5.2.1 Full CMA

We focus our analysis here in the baseline configuration of two SKALA4.1 antennas.
We consider the nominal placement at a distance of D0 = 1.5 m on the x-axis, since
we want to examine mutual coupling phenomena at the configuration corresponding
to their maximum effect, which is when they perfectly align in their E-plane. It
should be taken into account that, in this way, we approximately create another
geometric symmetry on the problem (that of mirroring with respect to the Oyz-
plane), which will certainly give rise to characteristic mode traces almost crossing,
that increase the difficulty of tracking [70]. The increased complexity and size of the
problem also result in FEKO’s tracking routine further lacking in accuracy [113].

The simulation procedure discussed in Sec. 2.3.2 has been repeated on the antenna
pair using a larger number of modes to achieve convergence. We first present in
Fig. 5.5a the same zenith far-field |eco|2 values, starting by M = 20 and converging
at M = 30 to the MoM solution. We note that the values of |eco|2 are lower than
that of Fig. 2.7a, meaning that the radiated power is also lower. As has been shown,
though, in [67], the gain remains relatively constant with respect to that of the single
antenna, at the frequencies where the mutual coupling is not significant. We observe
that the three distinct radiation peaks, a characteristic inherited from the active
antenna, are now disturbed; due to the poor tracking we were not able to directly
associate these features with their distinct modes. The CMA solutions could not be
sufficiently tracked even at a post-processing stage, since it requires sophisticated
algorithms [71].

As expected from Sec. 5.1.2, we identify the mutual coupling features, that
discontinuously alter the smooth response, at frequencies 56 and 78 MHz ([67]). A
better idea of the mechanism that drives the anomalies can be obtained by examining
the cross-polarized radiation as well. We have verified at various spherical angles that
the reconstruction by CMA is valid, and we show here the results for the maximum
|ecr|2 over frequency in Fig 5.5b. This occurs almost always around ϕ = 4◦ − 8◦,



5.2 A CMA approach for the two-antenna system 63

50 55 60 65 70 75 80 85 90 95 100

frequency (MHz)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

|e
c
o
|2

 (
V

2
)

CMA M=20

CMA M=25

CMA M=30

MoM

(a)

50 55 60 65 70 75 80 85 90 95 100

frequency (MHz)

0

0.5

1

1.5

2

2.5

3

m
a

x
(|

e
c
r|2

) 
(V

2
)

0

10

20

30

40

50

60

70

80

90

 (
d

e
g

)

CMA M=20

CMA M=25

CMA M=30

MoM

argmax(|e
cr

|2)

(b)

Figure 5.5. (a): Magnitude of co-polarized electric far-field values at zenith across frequency,
using MoM and CMA with M = 20, 25 and M = 30, (b): Magnitude of maximum
cross-polarized electric far-field values across frequency, for the same CMA modes, where
the elevation θmax = argmax(|ecr|2) is indicated with a dashed curve and values on the
right axis.

while the exact elevation is plotted with a dashed curve and values on the right
axes. A rather high value of cross-polarized radiation is seen in the mutual coupling
narrow-bands, which, as will further be explained, is responsible for the zenith
anomalies of |eco|2. The reconstruction is again accurate for M = 30.
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Figure 5.6. (a): |∆eco|2 difference, at zenith, of CMA solution excluding modes m =
4, m = 9, m = 22 from full MoM solution using (left legend), and the respective excluded
mode αm properly normalized to ≤ 1 (right legend), (b): |∆ecr(θmax)|2 difference of
CMA solution excluding modes m = 3, m = 5 from full MoM and excluded mode αm,
where the θmax is as in Fig. 5.5b.

Since the mutual coupling is narrow-band, we have tentatively adopted the
tracked solutions as shown in Fig. 5.6a with circle-dashed lines and values on the
right axis, which correspond to the αm/

√∑
α2

m (normalized to ≤ 1, in showing
that those are the dominant modes in the respective narrow bands). These can be
seen to correspond to spurious excitations in the respective narrow bands (m = 4
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constituting an exception, as will be seen in the next section). To enhance the
credibility of this result, we also show how the reconstructed CMA solution differs
from the MoM reference solution, when these certain modes are omitted (i.e., in
the sum of Eq. 2.15)). The resulting |∆eco|2 curves (labelled “excl. m=4”, “excl.
m=9”, “excl. m=22”) are presented with values on the left axis of Fig. 5.6a, resulting
in better continuity of the curve at each narrow frequency band by omitting the
respective mode. Since we already know that tracking outside of these bands might
not be accurate, |∆eco|2 deviations outside these bands could either be artefacts or
represent a contribution of the mode that does not interest us since it is obscured
by all the others being summed up to a smooth curve.

Finally, in Fig. 5.6b, the |∆ecr(θmax)|2 between CMA and MoM at the direction
of maximum (θmax) is presented, with a CMA reconstruction omitting modes
m = 3, m = 5. These are the highest contributions to the |ecr|2 at frequencies
78 and 56 MHz, respectively, as also seen by their MWC’s (the vicinity around
those frequencies should again be cautiously treated due to tracking). It is apparent
here that the modes describing the cross-polarized far-field glitches, are not the
same as those of the co-polarized far-field. Since though the two polarizations
have complementary spectral behaviour, when strong coupling is present, the pure
inheritance from geometrically orthogonal parts of the antenna for these modes and
in this specific case is set under question.

This work has appeared by the author and collaborators at the “European
Conference on Antennas and Propagation (EuCap2023)" in [114].

5.2.2 First-order coupled modes

We will now present the connection between modes of the single antenna and modes
of the system of two antennas, using the theory of coupled characteristic modes as
outlined in [57]. We are going to assume the first-order approximation by considering
the m-th coupled characteristic mode eigencurrent of interest as:

J̄m =
[
J̄m1

cJ̄m2

]
(5.1)

where J̄m1 , J̄m2 are the interacting m1-th, m2-th eigencurrents of each single
antenna, respectively, and c is a scalar coupling constant. It has to be emphasized
that by using the coupling coefficient it is implicitly assumed that Ant. 1 exerts a
perturbation on Ant. 2 [115]. This way, cαm1 could be thought of as a new factor
αm2,eff , quantifying the first order effect as an effective MWC of mode m2 on Ant. 2
by means of the applied excitation of mode m1 of Ant. 1. Of course, the mutual
coupling makes the interaction more complex; it cannot however result in c2-factored
excitation terms (with regard to amplitude). To better understand the far-field
behavior which is closely related to the radiated power, as well as the dynamics of
the system via the eigenvalues and eigencurrents, we will first focus our attention on
a simple mathematical description of the phenomenon.

Let us write the m-th mode complex power as:

Prad,m(1 + jλm) = 1
2
[
J̄T

m1 cJ̄T
m2

] [Z11 Z12
Z21 Z22

] [
J̄m1

cJ̄m2

]
(5.2)
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where we have block-partitioned the MoM impedance matrix Z in 4 blocks
considering the diagonal ones of Ant.1, Ant.2 (Z11, Z22), and the symmetric off-
diagonal ones (ZT

12 = Z21) corresponding to the antenna coupling1. The left hand
side are all known quantities from simulation, for all m. One can develop the right
hand side quadratic form and substitute for:

1
2 J̄

T
m1(2)

Z11(22)J̄m1(2) = Prad,m1(2)(1 + jλm1(2)) (5.3)

which are again known quantities for all m1 or m2. The unknown quantities
in this formulation, with respect to readily available simulation results, are the
quadratic forms:

1
2 J̄

T
m1Z12J̄m2 = 1

2
(
J̄T

m2Z21J̄m1

)T
= 1

2 J̄
T
m2Z21J̄m1 (5.4)

We will denote this term Pm1m2 = Prad;m1,m2 + jPst;m1m2 , where we have named
the real and imaginary parts as a coupled radiated (Prad,m1m2) and stored (Pst,m1m2)
power, respectively. The manipulation of FEKO results is quite lengthy to calculate
these parameters. In essence, even when currents are requested to the simulator,
those are tabulated in a form that corresponds to the total current on each triangle
after summing the RWG contributions from each edge2. Some technical details
on our method of retrieval of the RWG currents are given in App. A, in order to
emphasize the possible limitations of such an analysis based on a commercial solver,
but also how various numerical issues can be confronted.

The theoretical coupled system eigenvalue λCM ;m is derived from Eq. (5.2) (the
same as [57, Eq. (19)] in our notation) and is expressed as:

λCM ;ms = ℑ{Pms}
ℜ{Pms}

= λm1Prad;m1 + c2
sλm2Prad;m2 + 2csPst;m1m2

Prad;m1 + c2
sPrad;m2 + 2csPrad;m1m2

(5.5)

where cs = c+ or c− defines the duality of the solution and is also given in a more
complex expression [57, Eq. (17)]). We identify some special cases of this expression:

• When cs ≪ 1, then λCM ;ms ≈ λm1 , so there is a dominant mode in the system
which is almost the same as mode m1 (weak coupling)

• when cs ≫ 1, then λCM ;ms ≈ λm2 , so a single antenna mode is again dominating
the system but it is excited in the passive antenna (weak coupling)

• when cs ≲ 2Pst;m1m2/
√
λm2Prad;m2 , where the square term c2

s can be omitted
(strong coupling)

The first step in testing the first-order coupled modes theory is to pinpoint if
there exist modes m1, m2 that are close to modes of the coupled system. These
would cover the first two cases presented above and are mostly unaffected by the

1Instead of Hermitian matrices we can use transpose, since the eigencurrents are iso-phase and
we can refer them to phase zero.

2It is reminded that now the size of the single antenna problem is 15100 BF, while that of the
two-antenna problem is 30200 BF. In FEKO, it is impossible to get the full RWG vector J̄ from the
.str file, since it is not a supported option for CMA.
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Table 5.1. Left table: eigenvalues of single-antenna mode, two-antenna mode and relative
difference at 56 and 78 MHz, Right table: complex modal power of single-antenna mode,
two-antenna mode and relative difference at 56 and 78 MHz

f (MHz) λm1 λm

∣∣∣λm1 −λm

λm1

∣∣∣ Pm1 (mW) Pm (mW)
∣∣∣Pm1 −Pm

Pm

∣∣∣
56 -0.489 -0.608 24.3% 0.13-j0.06 1.98-j1.2 93.7%
78 1.854 1.849 0.2% 4.86+j9.01 5.62+j10.41 13.4%
78 1.022 1.104 7.43% 4.92+j5.03 5.86+j6.47 19.7%

mutual coupling complex power (or equivalently the Z12 matrix), but rather are
inherited from the single antenna. Examining the eigenvalues of both the single and
the two-antenna system at frequencies 56 and 78 MHz, where modes m(56 MHz) = 9
and m+(78 MHz) = 4, m−(78 MHz) = 22 respectively have been seen to largely
account for the coupling phenomenon, has resulted in the identification of the
dominant modes m1(56 MHz) = 2 and m1+(78 MHz) = 1, m1−(78 MHz) = 5 of
Ant.1 perturbed in the presence of Ant.2. The single-antenna eigenvalue λm1 along
with the two-antenna system eigenvalue λm and their percentage relative difference
|λm1−λm|/|λm1 | for both the examined frequencies are listed in Tab. 5.1. At 56 MHz,
the relative difference seems to be a quite larger perturbation of the single-antenna
eigenvalue, while a more reasonable such value is calculated at 78 MHz.

The last two columns of Tab. 5.1 present the values for Pm1 , as well as the
percentage relative difference |Pm1 − Pm|/|Pm| to test how much of the coupled
system mode complex power is "contained" in the power of the single antenna mode
that is exciting the system. At 56 MHz, there is now a clear discrepancy with 93.7%
of the power not being accounted for. This could mean that the perturbation of the
eigenvalue and eigenpower does result in a high c (that of the third case examined
above). We note a very high accuracy of 0.2% for the first eigenvalue at 78 MHz, and
a 7.43% for the second one. The complex eigenpower errors remain also at reasonable
values now, below 20%. The validity of the "weak coupling" was confirmed by also
checking Eq. (5.2); calculations show insignificant Pm1m2 values with respect to Pms

for both m+ = 4, m− = 22 at 78 MHz (see App. A for calculation details).
For the modes identified above, some more results can be examined to characterize

their behavior in a narrow-frequency band. In retrospect, even if it is not manifested
in the electric far-field response due to a low MWC for the single antenna case,
an “excited” mode might contribute to a strong coupling scenario with a proper
coefficient c. We will focus our attention for this task around 78 MHz, due to the
higher importance of that frequency [69] as well as the low errors with respect to
single antenna modes; examining non weakly-coupled modes through single antenna
results would be irrelevant. We have plotted ∥J̄m2∥, ∥J̄m1∥ in a frequency range
from 72 to 82 MHz; in comparison the eigenvalue traces λm1 , λm2 are also shown
with values on the right axis (the exact FEKO numbering m1 = 1, m2 = 5 is avoided
since it is arbitrary). For mode m1, there seems to be a tracking issue at 79 MHz
which appears in both curves with a high magnitude of current. On the contrary,
mode m2 at 78 MHz presents a spurious current change that is not due to tracking
issues. As mentioned before, the total response of the single antenna "suppresses"
this feature owing to a low αm2 .
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Figure 5.7. (a): Vector norm ∥J̄m1∥, over all wires (in A/m), of modal current m1 = 1 in
the narrow frequency band 72-82 MHz. In comparison, with values on the right axis,
the eigenvalue trace λm1 tracked in the same narrow band, (b) Same for mode m2 = 5.

In order to further check the possibility of the strong coupling at this frequency,
the comparison of simulated currents for one and two antennas can be performed,
in a vector-norm sense. We have not checked though all possible cases of m1, m2
since, according to the coupled modes theory, c is given by [57, Eq. (17)] and the
computational cost, along with normalization issues for calculating correctly all
Pm1m2 is still ongoing work. The straightforward approach is to try to minimize the
relative error ∥J̄m− [c1J̄m1 ; c2J̄m2 ]∥/∥J̄m∥ with all possible combinations of m1, m2,
constrained by a unique normalization factor such that ∥J̄m∥2 = c2

1∥J̄m1∥2+c2
2∥J̄m2∥2.

This problem is solved using the Lagrange multiplier minimization technique and
results in coefficients that achieve minimum when:

c1 =

√√√√ ∥J̄m∥2∥J̄m1∥2

∥J̄m2∥2(∥J̄m1∥2 + (γ/δ)2∥J̄m2∥2)

c2 =

√√√√ ∥J̄m∥2∥J̄m2∥2

∥J̄m1∥2(∥J̄m2∥2 + (δ/γ)2∥J̄m1∥2)
(5.6)

where γ = J̄T
m(Ω1) · J̄m1 , δ = J̄T

m(Ω2) · J̄m2 and the argument Ω1(2) means that
we only take the vector components that belong to the Ant.1(2) geometry. The
term c2/c1 = (γ∥J̄m2∥2)/(δ∥J̄m1∥2) is equivalent to the coupling coefficient c used
previously [115].

This approach is taking into account the simulated current data but ignores
the far-field transformation (by Eq. (2.9)). It turns out that mode m = 3, which
is mostly responsible for the cross-polarized off-zenith radiation (see Fig. 5.6b),
achieves the minimum error norm exactly for m1 = 1, m2 = 5 examined above with:

c =
{
−0.88 at f = 77 MHz
−0.82 at f = 78 MHz

(5.7)
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This minimum relative error though amounts to ≈ 70% for both cases, which
hints to more complex phenomena that would better describe the strong coupling.
A possible explanation is offered in the next subsection; concluding that there is at
least one mode per antenna that contributes to the cross-polarized field gives rise to
the question of whether the dual-polarized nature of the SKALA4.1 antenna can
add to this complexity.

Polarization partitioning of the first-order coupling

The potential implication of the single-antenna modes via the coupled-modes theory
in describing mutual coupling has provided useful insights on the two-antenna system.
We are going to expand the previous framework to show why the two antennas might
present irregular polarization characteristics with respect to the single antenna.

If the strong coupling power formulation can initially be approximated by the
first order coupling, with m = 3, m1 = 1, m2 = 5 as identified above, then the
expression in Eq. (5.2) can be written as follows:

Prad;m(1 + jλm) = 1
2
(
V̄ T

m1 · J̄m1 + V̄ T
m2 · J̄m2 + 2cV̄ T

m1m2 · J̄m1

)
(5.8)

This equation is seen from the point of view of the active antenna. The excitation
vector V̄m1m2 = J̄T

m2Z21 can be thought of as the perturbation added to V̄m1 . The off-
diagonal matrix Z21 though has a different structure with respect to the self matrices.
Since a MoM impedance matrix is constructed by Eq. (2.8) taking into account pairs
of basis functions, matrices Z11, Z22 are also sparse when split into polarization
components. That is because basis functions are symmetrically defined on the two
dipole arms of a certain polarization, so their effect on the orthogonal polarization
cancels out. On the other hand, matrix Z12 has polarization components which
present no symmetry with respect to each other. This has already been observed in
the equivalent current results in [67].

The schematic in Fig. 5.8 outlines this concept further by depicting the four
entries of matrix Z12 when split into polarizations. When Ant.1X dipoles are
active, both polarizations of the passive Ant.2 are affected in a non-symmetric
way: the two arms of each polarization stand at dissimilar distances from each
arm of Ant.1X. This means that the matrix Z1X2Y will be comprised by elements
of significant values, in contrast to the matrices Z1X1Y , Z1Y 2X etc. which are all
depicted as ϵ since they have resulted by symmetric operations3. In consequence,
V̄m1m2 = J̄T

m2Z21 will also lead to a non-trivial excitation term along Ant.1Y. What
is more, the V̄m1m2(Ω1X), V̄m1m2(Ω1Y ) parts of the vector might have different
phasing, triggering a mutual coupling resonance that is pointing away from zenith.
For completeness of the discussion, if polarization Ant.1Y was active, this would only
happen for the Ant.2X (in a symmetric way as before with Ant.1X and Ant.2Y).

It is evident from this observation that the apparent discrepancies in our first-
order coupling approach of Sec. 5.2.2 can be traced to polarization interactions. If
a pair of dual polarized antennas has non-negligible cross-polarization, then the

3In reality, ϵ might not be of low values per se, but would result in such values when multiplied
by a symmetric current vector with respect to two dipole arms, due to positive and negative
contributions adding up to ≈ 0
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orthogonal polarizations to those excited would present at least one significant mode
that we would have to take into account to describe the interaction. In such a case,
the first-order coupling of one dual-mode antenna to another, also treated in [115],
could be harnessed, but we have not extended the scope of this section in such
calculations.

Figure 5.8. Schematic representation of the interactions between the various polarization
components of Ant.1 and Ant.2, by inspection of its XY-split Z12 in conjuction with the
geometric parts of X (red color) and Y (green color) of each antenna.
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Figure 5.9. Directivity at zenith (in dBi) for a system of antennas truncated to one
polarization component each. The combinations (X, X), (Y, Y) and (X, Y) are tested,
where the first component refers to Ant.1 (active) and the second to Ant.2 (passive).

To quantify this in terms of far-field directivity of the two-antenna system, we
have simulated various pairs of the X and Y polarization of SKALA4.1, whereby each
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antenna was reduced to one of them while all the geometric parts of the orthogonal
polarization were removed. Fig. 5.9 shows the zenith-directivity curves (in dBi) for
the 3 combinations of Ant. 1 and Ant. 2: (X, X), (Y, Y) and (X, Y), respectively. We
observe that the previous break-down in terms of matrices is confirmed, in the sense
that only the curve pertaining to Ant.1Y, Ant.2Y is free of spurious features, with
a variation that is smoother. Both the combinations Ant.1X, Ant.2X and Ant.1X,
Ant.1Y present a mutual coupling resonance at 78, 79 MHz respectively, of about
the same magnitude (2.5 dB). At 54 MHz, the Ant.1X, Ant.2Y pair also presents
the mutual coupling feature observed in previous plots.

5.3 Coupling mitigation strategies
In this section, attempted solutions to the problem of mutual coupling induced
anomalies will be addressed, utilizing the observations of the previous sections. In
particular, dipole loading with reactive elements will help in understanding whether
the problem can be solved artificially by changing the radiation properties at the
affected frequency narrow bands without geometrical modifications, while such
modifications will then be applied for a more robust mitigation.

5.3.1 Dipole loading

As has generally been shown for log-periodic dipole antennas in [73], and for
SKALA4.1 in previously in Sec. 2.3.2, both using the Characteristic Modes Analy-
sis, such antennas have certain log-periodically spaced resonant features. For the
SKALA4.1 antenna, three resonant features reside in the frequency range 50-100 MHz.
Their mode tracking also hints to certain geometric characteristics independent of
the excitation. It is known though [73] that a symmetric boom in any log-periodic
antenna has little effect on its radiation properties, so these modes are due to single
or coupled dipoles resonant radiation. To put these radiation peaks into perspective,
we first examine the radiated power at zenith Prad in the full operating frequency
range of the antenna. A simulation using the FEKO software, and assuming a
constant voltage excitation of Vs = 1 V, results in the 50-350 MHz for a SKALA4.1
antenna shown in Fig. 5.10. The first peak (59 MHz) is at least four times larger
than the third (95 MHz), the second peak (75 MHz) at least two times the third,
while all the others are diminished.

Another way to see this is that the reflection coefficient referenced at Z0 = 50 Ω
has a high magnitude at lower frequencies. Graphically, we present these resonances
on the Smith chart at the upper right of Fig. 5.10. The outermost starting point
corresponds to 50 MHz, while the innermost ending point to 350 MHz. The 3 left
crossings (< 1) of the horizontal axis indicate these 3 resonances and show that the
input impedance is Zin = ℜ{Zin} < Z0, equivalent to the reflection coefficient being
S = ℜ{S} < 0 at the respective frequencies. From the definition of radiated power
and using Zin = Z0(1 + S)/(1− S) after calculations we get:

Prad = 1/2V 2
s ℜ{Z−1

in } = V 2
s

2Z0

1− |S|2
|1 + S|2

(5.9)

Looking into the monotony of this function though, we have the following cases:
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• when S is real and negative then S = −|S| so: Prad = V 2
s

2Z0
(1−|S|)(1+|S|)

(1−|S|)2 =
V 2

s
2Z0

1+|S|
1−|S| . This function is ascending so when |S| is maximum (or S minimum

in the negative axis), Prad is also maximum (resonance-red circles in Fig. 5.10).

• when S is real and positive then S = |S| and Prad = V 2
s

2Z0
1−|S|
1+|S| . This function

is descending so the conclusion is the opposite (maximum |S| means Prad

minimum or anti-resonance-purple circles in Fig. 5.10).

All higher frequency resonances can only be inferred as minima of |S|, since
the reactive component seen by each excited dipole, geometrically below itself, is
not cancelled (we do not have an exact self-resonance). The fact that at the first 3
resonances we have exactly ℑ{Zin} = 0 (or ℑ{S} = 0) also explains their sharpness.

Figure 5.10. Zenith Prad (mW ) of a X-polarization excited SKALA4.1, over 50-350 MHz.
Indented is a Smith chart of the transformation S = (Zin−Z0)/(Zin +Z0), showing the
SKALA4.1 reflection coefficient over the same frequency range (outer to inner points for
increasing frequency). Red (purple) circles highlight the (anti-)resonances.

Both the radiation peaks and troughs therefore stem in a defined way from the
S-parameters. The loading can better be understood by means of the S-parameters
because, as practiced in [116], a perturbational matrix inversion can yield the new
current vector MoM solution ĪL as a function of the load value and the nominal
solution Ī, and then trivially Zin;L = ZinIm/Im;L where Im(L) is the current at
the port instance m of the mesh for the two cases (unloaded and loaded). If a
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reaction compononent XL is used at port instance n, it can be further proven (via
the Sherman-Woodward-Morrison formula) that:

ĪL =
(

I− XL

1 +XL[Z−1]nn
colTn

(
Z−1

))
Ī (5.10)

Given only the mesh instance currents, we conclude that XL, stemming from
a complex relation involving the MoM admittance matrix column n, coln

(
Z−1),

cannot be directly solved in terms of their ratio Im;L/Im. Some heuristic approach
towards its determination must therefore be employed.

The goal of the dipole loading strategy is to turn a resonance into an anti-
resonance (or close to one), to then test how two such loaded antennas would
perform in a baseline configuration. We must also note that, from a computational
point of view, such a perturbation does not affect the MoM matrix Z12 of the
two-antenna configuration. In formulations such that of Eq. (5.8), the terms related
to the single antenna response perturb the right hand side more than those related
to mutual coupling, which means the antenna loading has to affect the appearence
of mutual coupling in a non-negligible way when we keep all other parameters of our
baseline two-antenna configuration constant.

We have subsequently experimented with reactively loading the low-frequency
resonant dipoles, to examine both the antenna matching and the electric field peak
behaviour. We focus our analysis here on the electric field peak at 75 MHz. An
examination of the antenna current distribution at this frequency reveals that the
3 longest dipoles (including the bow-tie) are in resonance or close to resonance.
To achieve resonant features with ℜ{S} < 0 and simultaneously non-zero ℑ{S}, a
reactive component on some of these dipoles can be placed on the wire position were
the current has a high value. We choose this position to be at ld/4 from the boom,
where ld is the semi-dipole length, since we would like to avoid directly loading the
boom.

The choice of inductor or capacitor values is made by finding a desired reactance
XL at this frequency, both as sign and magnitude. After experimentation, we have
chosen capacitors of CL = 6 pF , that result in XL = −353.6 Ω at 75 MHz. Such a
large value is needed because of the lumped element implementation of C on only
one mesh element, which is seen in that one column in the loaded inverted MoM
Z-matrix accounts for the perturbation in Eq. (5.10)4. In Fig. 5.11a we present the
electric field at zenith in the range of 50-100 MHz, for the case of loading the bow-tie
and the next longest dipole with CL. The real and imaginary parts of the reflection
coefficient are seen in Fig. 5.11b.

We conclude that the first peak has been shifted to lower than 50 MHz with
respect to the unloaded antenna, while the other 2 peaks shifted to lower frequencies
by about 8-12 MHz, with their overall amplitude comparable to each other. It is also
remarkable that the reflection coefficient seems to be almost the opposite sign that
of the unloaded antenna. The electric field peaks still correspond to a negative real
S, but at 75 MHz we now have a slightly positive ℜ{S} and non-zero ℑ{S}. The
directivity is shown with the dashed curve on Fig. 5.11a, and is mostly unaffected.

4If i is the loaded mesh element, then Zii;L = Zii + Xl2
i , where li is the mesh element length.

Using meshing data from FEKO, at 75 MHz we have Xl2
i /mean(ℑ{Z(wires)}) ≈ −0.5.
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Figure 5.11. (a): |eco|2 in (V 2) and gain in dBi, at zenith, over 50-100 MHz for unloaded
and capacitevely loaded cases of SKALA4.1 (with CL = 6 pF on dipoles 19, 20 and at
x = ld/4), (b): real and imaginary parts of S for both the above cases.

For two identical antennas, there is a susceptibility of the resonant region in
any scattering from the passive antenna on the active. As it has been shown in
[117] when S11 (the reflection coefficient of the active antenna) is real, there exists a
maximum coupling mechanism. In our case, two SKALA4.1’s present a spurious
mutual coupling mode close to the radiation mode of the single antenna at 75 MHz.
If we use the loaded antenna in our baseline two-antenna configuration of Sec. 5.1.2,
in a pair of an active and a passive one, the electric field and gain results are shown
in Fig. 5.12. The response is seen to have a more moderate null at 77-78 MHz for the
loaded antennas, but a new null is apparent at 84 MHz, possibly due to a degeneracy
of the loaded dipoles. The |eco|2 at zenith is seen to preserve the radiation peaks
of the single loaded antenna, but is nonetheless affected by the mutual coupling
perturbation, which appears to be inherent to the antenna characteristics as it is
fixed at 77-78 MHz.
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Figure 5.12. (a): Gain at zenith in dBi for the baseline two-antenna system, when both
antennas are unloaded and loaded with CL = 6 pF on their dipoles 19, 20 (at x = ld/4),
(b) |eco|2 at zenith in V 2 for the same cases.
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Part of this work has appeared in [118]; we were then led to consider geometric
modifications of the antenna in order to tackle mutual coupling.

5.3.2 Geometric modifications

In this section, the analysis of a slightly modified version of the SKALA4.1 antenna
is presented, such that the mutual coupling resulting by testing the two-antenna
configuration is mitigated. It is important to note that in our pursuit of such
modifications, we have to always make sure that the antenna performance be
perturbed at the minimum possible way. That is because a log-periodic design might
suffer from new unwanted phenomena if the progression of its resonances is interfered
with, and the antenna has to cover a large fractional bandwidth.

The essential idea of the proposed modification is to distance the polarizations of
the bow-tie dipoles, such that interaction of two adjacent antennas results in a better
|ecr|2 (or IXR) at the frequencies of strong mutual coupling. As we have seen in
Sec. 5.2.2, the two-antenna system scattering profits from the fact that the antennas’
polarizations are aligned, by allowing significant interaction of the cross-polarized
components of different antennas. In changing the shape of two orthogonal dipoles,
the cross-polarized radiation according to the 3rd Ludwig definition [66] is biased
according to the coordinate system chosen, which might not fully align with the new
dipoles (for non-straight shapes). For that reason, we will rely on the IXR in order
to assess the cross-polarization performance of the new antenna.

The new bow-tie dipole has the same principal length along each polarization, but
its arms are stretched in the orthogonal direction by means of an added rectangular
tube. The shape remains symmetric with respect to a 180◦ rotation. A screen
capture from CADFEKO is shown in Fig. 5.13, where the new antenna shape has
been parametrized by two new geometric lengths:

• the extension length le, across the x, y direction for the Y, X polarized dipoles,
respectively. This is the critical parameter that can rearrange the polarization
interactions by means of distancing the dipoles of adjacent antennas

• the taper width wt, across the z direction, which describes the filling along the
dipole shape of two horizontal cuts on the boom. This parameter can affect
the matching of the antenna at lower frequencies, given that it connects the
new bow-tie arms to the boom

A possible advantage of such a modification also appears to be of mechanical
nature; using the same antenna pieces and only adding new rectangular tubes to
connect them to a boom in a different way might be a readily applied solution,
if standard tubes are used. If we consider such segments as electrically short at
frequencies fu < 100 MHz, setting an upper limit le ≲ λu/8 = 0.375 m, then we
can safely assume that this tube does not radiate on its own, but rather works as a
transmission line for the radiation (seen as its termination) of the bow-tie dipole
arms. This is a complicated analysis, and its validity is still an ongoing work.

Since this antenna design was identified as a good candidate for reducing the
mutual coupling, initially with arbitrary parameters le, wt, refining of those was
directly probed with the baseline two-antenna configuration. Avoiding the alignment
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wt le

Figure 5.13. CADFEKO screen capture of a SKALA4.1 where its bow-tie dipoles have
been modified to stretch across the direction orthogonal to their polarization.

of dipole arms on the coordinate system x axis raises the question of whether an
offset ϕ0 > 0◦ might achieve a similar alignment between dipole arms. This actually
happens when ϕ0 = arctan ( 2le

D0
), which is another configuration that we test in

parallel, which we call offset; in this case, too, D0 = 1.5 m. Fig. 5.14 presents the
directivity at zenith for the baseline configuration when le is varied from 25 cm to
50 cm, while Fig. 5.15 presents the directivity at zenith for the same cases of le for
the offset configuration.

We first comment on the shift of the mutual coupling glitch frequency, seen here
centered at 72-73 MHz for the baseline configuration and around 68-69 MHz for
the offset configuration. This effect is brought about by the change in the bow-tie
geometry. It is also apparent that the distortion is now a drop of simpler profile
(possibly fit by some analytical approximation) for the baseline configurations, rather
than a more wideband and oscillating glitch. This more complex shape is the case
for the offset configuration, where alignment of dipole arms induces more severe
current imbalance. Interestingly, the exact position of the directivity minimum is
dependent on the length le for the offset configuration.

The moderation of the amplitude loss is the most significant result of this
antenna: a worst-case drop of ≈ 3.5 dB is singled out across the various curves.
This is consistently observed for all possible lengths and the two configurations,
indicating that sufficient distancing of the polarizations as well as the previously
aligned co-polar dipole arms of the bow-tie has compensated for the previously
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Figure 5.14. Directivity at zenith (dBi) in the frequency range 50-100 MHz, of two
SKALA4.1 antennas with the modified bow-tie dipole design and varying le from 25 cm
to 50 cm. The configuration is baseline, shown in an indented image.
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Figure 5.15. Directivity at zenith (dBi) in the frequency range 50-100 MHz, of two
SKALA4.1 antennas with the modified bow-tie dipole design and varying le from 25 cm
to 50 cm. The configuration is offset, shown in an indented image.

greater intensity of the phenomenon. Apart from the mutual coupling in the center
of this band, we can also observe the following facts:

• the lower frequency glitch at 55 MHz is now out of band. All of the curves
verify this finding, with the exception of that of le = 25 cm

• the higher frequency glitch, previously seen at around 95 MHz in Fig. 5.3a, is
more pronounced in the baseline configuration; a drop of 1.5-2 dB is observed
in all of the curves
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The parametric analysis of the two figures leads us to choose the length le of a
new, nominal design. It can be seen in Fig. 5.14 that adjacent frequencies, lower
than 70 MHz, are affected by a new glitch when excessively increasing le (>30 cm),
due to radiation of the new rectangular tubes. The best value for which we see a
mostly clear profile of the gain drop seems to be at exactly le = 30 cm. Various
array configurations, only instances of which will coincide with our two ’worst-case’
configurations, might now be able to further render mutual coupling mostly or
completely obsolete in the formed beam and thus aperture efficiency of a SKA-Low
station.

We are next going to compare the performance of this antenna to that of the
original SKALA4.1 design. In Fig. 5.16, the parameters are fixed at the values
le = 30 cm, wt = 10 cm. The gain response at zenith is shown, as well as that of |eco|2
for the Y-polarized dipoles. The co-polarized field |eco|2 is shown up to 125 MHz,
where the resonances of the antenna are seen to be affected by the modification. It
is clear that the bow-tie resonance has shifted lower at 54 MHz, while the resonance
at 75 MHz has increased in intensity; this explains the extra spectral ripple present
in the gain response, since no other spurious electric field features appear. In
having kept that resonance constant in frequency while changing the geometry of the
antenna, we are now effectively testing the alternate scenario of the mutual coupling
formalism of Eq. (5.8): that of mostly unperturbed single antenna terms (except for
maybe a scale factor), while the mutual coupling terms are now altered due to a
new Z12.
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Figure 5.16. (a): Directivity at zenith in dBi for the SKALA4.1 with its bow-tie modified
in a new geometry as in Fig. 5.13, compared to that of the original SKALA4.1 antenna
(b) |eco|2 (V 2) for the same antenna cases.

The reflection coefficient is presented in Fig. 5.17b and is also different at the
lower frequencies, while better matched at the lowest extreme of 50 MHz. The
antenna resonance at 75 MHz is now matched at a lower level to 50 Ω, as seen by the
peak of Fig. 5.16b combined with Eq. (5.9). The resonance at 95 MHz has shifted
to 102 MHz, while all others are closely following the original SKALA4.1.

Fig. 5.17a presents the minimum, maximum, and average IXR for the original
and modified antenna design, within a field of view defined by 0 ≤ θ ≤ 45◦ and
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Figure 5.17. (a): |SY Y |2 in dB for the same cases, (b) Minimum, maximum and average
of the IXR frequency response in dB, over the spherical field of view Ω = {0◦ ≤ θ ≤
45◦, 0◦ ≤ ϕ ≤ 360◦}, for the same antenna cases.

for frequencies lower than 100 MHz. There are some differences now between
the two antenna versions: while the minimum IXR is largely similar, the average
and maximum IXR present a smoother response less concurrent with the antenna
resonances. Apparently, the differences in dipole modes among the two polarizations,
which are geometrically slightly displaced (higher port along z for the X-polarized
dipoles), are in this new antenna more significant. We conclude though that the
IXR is still within the acceptable limits for polarimetry.

Lastly, for the antenna using le = 30 cm and wt = 10 cm, we return to the two
antenna baseline configuration to examine the full-sphere patterns at distinct frequen-
cies, as well as the IXR. Fig. 5.18 presents the directivity in dBi for 8 consecutive
frequencies, while Fig. 5.19 presents the IXR in dB for the same frequencies. These
are uv maps of the respective patterns, where u = sin (θ) cos (ϕ), v = sin (θ) sin (ϕ)
the orthographic projections from spherical coordinates. A common color scale is
used for all subplots, while black circles indicate the θ = 45◦ boundary.

We now see that apart from the zenith, the "inclination" of the beam lobe
results in lower directivity values in more areas of the field of view. At 72 and
73 MHz, the whole area 90◦ ≤ ϕ ≤ 270◦ has lower directivity values, while in
subsequent frequencies up to 77 MHz a null seems to enter the field of view at
ϕ ≈ 32◦. The beam remains though directive, in the sense that all dBi values apart
from this null are positive. As far as the IXR is concerned, the maps now show some
degradation of the polarization purity with the introduction of the second antenna
at close proximity, as has also been the case with the original SKALA4.1 antenna;
significant angular extents close to zenith though remain of high IXR. The rest of
the structure of this polarization performance leads to interesting conclusions: the
most affected frequency (73 MHz) has the most extensive spherical area of low values
but retains high IXR in a small patch around θ ≈ 35◦, whereas in the case of the
nominal SKALA4.1, the antenna pair had its worst Ludwig-III cross-polarization (see
Sec. 5.2.1). The asymmetry though propagates as low IXR to the higher frequencies
with a ring-like structure (−90◦ ≤ ϕ ≤ 90◦, where the gain is higher) presenting
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significantly entangled polarization components. More direct comparisons would
need to be made in order to assess whether this level of IXR is an improvement, for
this type of baseline configuration, to the same one employing the original SKALA4.1
antenna.

Figure 5.18. Directivity (dBi) across 70-77 MHz, as a uv map of the full upper hemisphere,
of two SKALA4.1 antennas with the modified bow-tie dipole design featuring le = 30 cm,
wt = 10 cm. Black circles indicate the θ = 45◦ boundary. The configuration is baseline.

Figure 5.19. IXR (dB) across 70-77 MHz, as a uv map of the full upper hemisphere, of
two SKALA4.1 antennas with the modified bow-tie dipole design featuring le = 30 cm,
wt = 10 cm. Black circles indicate the θ = 45◦ boundary. The configuration is baseline.
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Chapter 6

Conclusions and future
perspectives on SKA-Low
electromagnetic modelling

As it has been seen in the preceding chapters, electromagnetic analysis for low-
frequency arrays is a key tool in understanding both the performance of the isolated
element to be used in an array environment, as well as features emerging from the
array structure and its platform. Mutual coupling and ground plane diffraction,
respectively, are the main issues examined here.

In Ch. 2, an outline of the numerical methods used throughout the thesis is pre-
sented with an emphasis on their challenges for analysis of large arrays. The Method
of Moments and Characteristic Modes Analysis are both used in the computation of
the SKALA4.1 antenna properties such as Far-Field gain, S-parameters, Internal
Cross-Polarization Ratio as well as the Electric-Field intensity (co-polarized and
cross-polarized). Comparison with two commercial solvers reveals a good level of
agreement for these parameters, while the CMA decomposition points to the dipole-
mode properties of the antenna radiation, that will later be of interest in the mutual
coupling of two antennas. Finally, a simplified model of SKALA4.1 by substituting
the boom with passive transmission line segments is shown to well reproduce some of
the resonant behaviour of the antenna by fine-tuning the characteristic impedance of
such segments; use of this model is principally made to test antenna lumped loading
scenarios.

In Ch. 3, we have presented a new way of tackling the problem of spurious radia-
tion by a log-periodic dipole antenna owing to secondary modes of the constituent
dipoles. The addition of a properly placed RLC parallel load at the maximum current
position of these modes, has led to the dissipation of their energy on the resistor R,
with a subsequent reduction of the total Q-factor at the resonant frequencies. For a
full log-periodic antenna, the cost on radiation efficiency is negligible, since their
modal amplitude is already quite low. Application on a SKALA4.1 antenna led to
the dipole glitches being eradicated in the sense of achieving gain smoothness. Ex-
perimental verification of the method by means of anechoic chamber measurements
of the S-parameters of a two-antenna system with a VHF antenna and a SKALA4.1
as its 2 ports also strengthened this result. Our prototypes could in the future be
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optimized for industrial production of such dipole elements by implementing the
RLC loads integrated on the PCB screwable connecting piece.

A 256-antenna SKA-Low station presents certain spectral characteristics in the
50-100 MHz band owing to the 42 m circular ground plane placed under the antennas.
In Ch. 4, we identified and characterized this effect for isolated as well as embedded
antennas into a station of the AAVS2.0 layout, as being related to the principal
Hankel transform wavenumber of the radiating circular plane or certain multiples
of it. Both solvers used, FEKO and Galileo, are shown to agree and a numerical
approximation method by Galileo speeds up the simulation time for the array. We
also report the intertwining of this effect with the mutual coupling spectral glitches
already known to appear in certain frequencies using a DFT transform to identify
the fundamental length for isolated and embedded antenna gain pattern ratios, and
the ECC to quantify the level of the combined effect. For the EEPs, the DFT
components peak at different values of the sampled space of lengths, which are
generally lower the closer an antenna approaches the edge of the ground plane, while
their ECC penalty when calculated with respect to the infinite ground plane EEPs is
always less than 4% in the examined frequency range. For the station beam patterns,
the normalized difference between infinite and finite ground plane solution is limited
to 1% for uniform beamforming. The appearence of this diffraction phenomenon
in measured sky spectra is an expected future activity, using SKA-Low prototype
stations, in order to further verify its impact on real astronomical data.

In Ch. 5, antenna mutual coupling in pairs of antennas is tested with a baseline,
maximum coupling configuration. After presentation of some recent experimental
measurement of the phenomenon, we use the Characteristic Modes analysis: the
size of the our problem is challenging with respect to the interpretation of its
results, as tracking issues prevent us from fully understanding the behaviour of
each mode across the examined frequency range, but narrow-band mutual coupling
glitches are sufficiently localized at certain modal components. The theory of
coupled characteristic modes is used to connect the mutual coupling radiation modes
identified in the two-antenna system with a dominant mode of the active, single
antenna, while the strong coupling scenario is also probed. In order to ameliorate
the mutual coupling phenomena, an antenna loading strategy shifts the electric field
resonances away from the affected frequencies; although effective in reducing the loss
of sensitivity, the change in dipole reactance triggers new anomalies. More effective
is the modification of the bow-tie dipoles to further disentangle the two orthogonal
components, an ongoing work which shall be verified in (sub-)station simulations in
the future.

Other directions of future work in electromagnetic modelling of the SKA-Low
antennas include the inter-stational coupling between antennas of adjacent stations
in the core of SKA-Low. When some of the core SKA-Low stations need to be
characterized in terms of their EEPs, array simulations taking into accounts antennas,
and possibly the ground planes of more than one SKA-Low station are deemed
necessary to quantify unwanted effects due to mutual coupling. Such approaches,
due to the size of the problem, require either some geometrically driven reduction
of the model, and/or advanced acceleration methods to yield results in reasonable
simulation times.
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Addendum: The importance of
antenna platform and mutual
coupling effects on global 21cm
signal cosmology experiments

Cosmic Dawn, the onset of star formation in the early universe, can theoretically be
detected via the 21cm transition of neutral hydrogen, for which an absorption signal,
shifted down to the MHz frequencies, can be extracted from all-sky observations
averaged in radiometer data. This signal, in antenna temperature scales, is predicted
to be in the order of 101 − 102 mK. Any detection attempt therefore requires
separation of the 21cm signal from extremely bright and spectrally diverse foreground
emission due to our Galactic structure (reaching orders of 105 − 106 K, as well as
characterisation of how this signal couples to the instrumental response, which can
also be spectrally "chromatic".

The critical challenge of subtraction of the bright foregrounds from radiometric
data is normally attempted by modelling the spectrally smooth emission with an
N-term log-polynomial and performing Bayesian inference for both foreground and
background signals (e.g., [119], [120], [121]; [122]). The so-called "chromaticity",
quantified by different figures of merit is a key factor in antenna design (e.g., [123];
[124]; [125]) and these beam effects can limit the effectiveness of foreground subtrac-
tion (e.g. [126]). Accurate antenna beam pattern simulations, including realistic
ground plane and soil descriptions, are thus fundamental to process radiometric data.
Moreover, these models have to be tested in Bayesian-inference signal extraction
pipelines, since the eventual criterion of success is the bayesian evidence, which can
suffer from multiple factors relating to both the sky and the beam models.

Mahesh et al. [127] explored antenna beam modelling as a source of uncertainty
in global signal measurement, checking the stability of the signal reported by EDGES
[121] with respect to choice of numerical electromagnetic solver code. Bradley et
al. [128] instead investigated how a possible systematic artefact within the antenna
ground plane may produce broad absorption features in the spectra. Raghunathan
et al. [90] have described a conical monopole antenna with a high degree of spectral
clearness, which they use in their SARAS3 experiment placed on the surface of
a lake, in order to reduce the soil induced uncertainties. Recently collected and
analysed data have discredited the EDGES detection [129]; the detection of this
signal is, therefore, a hotly debated topic.
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on global 21cm signal cosmology experiments

Figure 6.1. LEDA antenna 3D view of geometry with the ground planes to be used in the
analysis. Dimensions are shown in meters.

I The case of LEDA

In this section we present an electromagnetic analysis and chromaticity calculations
for the antenna used in the Large-aperture Experiment to Detect the dark Ages
(LEDA). The experiment consists of an ensemble of two to five dual polarisation
dipole antennas within the Owens Valley Radio Observatory Long Wavelength Array
station (OVRO-LWA) and is deployed for precise radiometry, using custom RF and
digital signal processing to match the timing, calibration, and stability requirements.
It aims at the detection of the 21cm global cosmological signal by using all-sky drift
scan data and has started collecting data in 2018.

Driven by science requirements, the frequency range of interest is between 50
and 87 MHz (although some of the simulation results are shown in a larger frequency
range). We first present the antenna geometry, as-built, and the ground planes we
have considered, as well as an older beam approximation model. In Sec. I.I, we
review the analytic beam model used in previous analyses of LEDA data, while
the focus of Sec. I.II is incorporation of the soil permittivty data and alternate
ground-plane geometries.

I.I Antenna and ground plane description

We outline here the basic geometrical properties of the antennas used by LEDA for
radiometry, which excluding the ground plane are similar to those used in general
for construction of Long Wavelength Array stations ([130] and references therein)
and OVRO-LWA specifically.
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Table 6.1. Soil parameters for the one-layer and the multi-layer model, extracted from
measurements of soil at the LWA site during both dry and wet conditions at depths
zi, i = 1, 2, 3.

Soil layer parameters (σ in S/m, ϵr dimensionless)
σdry σwet ϵr,dry ϵr,wet

one layer 0.004 0.01 4.4 6.5
z1 = 10.16 cm 0.0013 0.005 3.73 8.09
z2 = 35.56 cm 0.004 0.0068 4.25 6.45
z3 = 53.34 cm 0.0187 0.0388 7.58 20.56

Each antenna comprises two pairs of triangular dipole arms 1.50 m long, angled
downward by 45◦ (Fig. 6.1). We focus our analysis on the east-west orientation. The
default OVRO-LWA antenna ground plane [131], [132] is a 3 m × 3 m galvanized
welded steel mesh with 2.51 mm wire diameter (12.5 gauge) and 10.2 cm spacing. In
this analysis, we modelled the beam for one antenna, numbered 252 [133], with three
ground plane configurations that corresponded to a series of test modifications made
in the field [134]. The 3 m × 3 m ground plane was replaced first by a 10 m × 10 m
patch of mesh comprising the same material but with a 3.06 mm wire diameter (11
gauge), and later by the same but with serrations as represented by four 5 m long,
1.25 m wide isosceles triangles positioned on each side (referred to as the serrated
ground plane). The arrangement is shown schematically in Fig. 6.1. As in [121],
peripheral serrations are sometimes added to ground planes to reduce coherence
among currents proximate to the edge discontinuity.

We summarise now the analytical beam model of the LWA dipole used in previous
works. For a more extensive description see [135], [130], [136]. Previous LEDA studies
[119], [137] used this beam modelling. This model allows the reconstruction of the
antenna beam pattern in every azimuth direction, using two principle antenna planes
(E and H, effectively taking into account the antenna symmetries) and is described
by:

A(θ, ϕ, f) =
√

[pE(θ, f) cosϕ]2 + [pH(θ, f) sinϕ]2.

The pattern in the E- and H-plane is given by:

pi(f, θ) =
[
1−

(
θ

π/2

)αi(f)]
(cos θ)βi(f) + γi(f)

(
θ

π/2

)
(cos θ)δi(f) (6.1)

where i = E,H and θ is the elevation angle. The behavior of the coefficients
[αi, βi, γi, δi] with respect to frequency is fitted with a polynomial of nth-order1 to
NEC4 simulations [138]. Note that for this simulation only the 3× 3 ground plane
case is available. It should be noted that the normalized patterns were the ones
to be analytically fitted, whereas absolute gain values are sparse in the existing
literature, which prompted the re-simulation of the NEC4 pattern in absolute values
and re-examination of its correct normalization.

1Different works throughout the years have used different values for the polynomial order.
[120, 137] used a 3rd order polynomial while [134] used a 13th order polynomial.
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Figure 6.2. A 2D schematic view of the multi-layer splitting of soil half-infinite space z < 0,
described this section. A number of different measurements were made at 3 specific
depths zi (10.16 cm, 35.56 cm and 53.34 cm) and then ensemble averaged. A numerical
EM driven multi-layer modelling is then constructed with an iterative sub-layering
scheme. See text and Alg. 1 for details.

I.II Improving the beam model

In this section, we incorporate the soil properties measured in-situ, describing more
realistically the environmental conditions in which the data have been collected.
Although not previously explored for the LEDA antennas, there are examples in the
literature of similar studies where the soil is analysed as an homogeneous dielectric
semi-infinite volume, discriminating only between dry and wet soil conditions [98],
or a combination of both, as in [128].

One layer baseline model. For our new simulation we use FEKO2. We model the
soil as a single half-infinite layer of constant complex permittivity and conductivity,
namely:

ϵ = ϵ0

(
ϵr + j

σ

2πfϵ0

)
(6.2)

where ϵ0 is the electrical permittivity of vacuum, ϵr is the dimensionless relative
permittivity, σ is the conductivity in S/m, and f is the frequency in Hz. This quantity
had been measured on site for different soil moisture condition corresponding to
both dry and wet soil (see Tab. 6.1). We use this one-layer model as our baseline
one since it is simple and relatively immune to numerical artefacts. We simulate the
three different ground planes - 3× 3, 10× 10 and serrated as seen in Fig. 6.1.

Measurement driven three-layer modelling. We update the modelling just
described adding the new available measurements for the soil complex permittivity.
In constructing our first layered geometrical model, we adopted values at the nominal
depths of Tab. 6.1. A thickness was also chosen for the simulated layers according
to the measurement depths, and we ensemble averaged the permittivities of the
available measurements. A full description of the measurement setup and campaign
conducted by L. Greenhill is included in [139].

Note that the thickness of these three consecutive layers does not match with
standard numerical accuracy criteria required by EM solvers. Despite this, we use

2https://altairhyperworks.com/feko/

https://altairhyperworks.com/feko/
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these measurements to construct a three-layer soil model for the FEKO simulation
(“measurements” column of Tab. 6.2).

Numerical EM driven multi-layer modelling. The thicknesses of the three-
layer model are imposed by the depth of the available measurements and might not
be sufficient for accurately representing a varying soil permittivity gradient. In order
to solve the possible numerical issues connected to the thicknesses of the three-layer
model we refine our electromagnetic simulations using more layers. Although the
separation between two consecutive layers is subject to different discretisation rules
according to each method, requesting a separation smaller than λ/10 is a widely
used criterion. The standard FEKO method for any multi-layer substrate is a
planar Green’s function analytical solution embedded in the MoM formalism. A
continuously varying permittivity is treated by means of properly discretising in
layers, and a Transmission Line Green’s Function (TLGF) approach is used by the
solver. Details for this can be found in [140].

When considering the λ/10 rule to discretise the half-infinite space, we have to
take into account the different phase velocity which implies a different wavelength
in each layer. For a low-loss medium, such as soil (σ ≪ 2πfϵ0 when considering
our available measurements), the phase velocity is cp = c0/ϵr, where c0 is the speed
of light in vacuum. We shall split each of the previous three layers into sub-layers
such that their thickness is less than or equal to λp/10, and then double these layers
iteratively until a certain convergence criterion is satisfied. The algorithm which
implements this iteration is presented in Alg. 1. In each iteration, we interpolate
linearly to compute the new values of complex permittivity (linInterp), we merge
them with the values of the previous iteration (merge), and we run a new FEKO
simulation to calculate the gain pattern (Gain).

This iteration is applied both for relative permittivity and for conductivity in a
square lattice fashion, and a maximum frequency fmax = 100 MHz is used which
provides a strong bound. By performing the first step of discretization, we conclude
that each of the previous three layers of the dry soil should be divided into one or
two sub-layers (see the grey dashed lines in Fig. 6.2). We then follow an iterative
splitting by doubling these sub-layers (red dotted-dash lines in Fig. 6.2), in order to
make an ever finer discretization. Wet soil conditions require a slightly finer splitting
and are not reported in the schematic figure. The number of sub-layers used in the
first iteration is reported in Tab. 6.2.

The iterative algorithm stops when a convergence threshold for the value of the
gain at zenith is satisfied. We choose 0.1 dB which should be roughly similar to the
numerical accuracy of FEKO. The number of layers needed for convergence are 40
and 56 layers for dry and wet conditions, respectively. The high number of layers
to reach convergence is needed only for the serrated case but we assume it for all
ground planes for convenience. We refer to this implementation as the converged
model. Fig. 6.2 summarises the different multi-layer approaches listing their number
of layers.

Fig. 6.3 shows the gain differences (in dB) between the converged case and the
solution obtained with a smaller number of layers at all previous iterations. The
analysis is repeated for all three different ground planes. We note the existence
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Figure 6.3. Gain at zenith dB difference of multi-layer implementations, calculated between
the converged solution with 40 and 56 layers for dry and wet soil conditions, respectively,
and solutions with fewer layers. Six cases are examined: different types of soil conditions
(dry, wet) and different types of ground plane 3 × 3,10 × 10, serrated). The vertical
dashed lines highlight the region where LEDA data are available.
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[ϵ]← [ϵ1, ϵ2, ϵ3];
[λp]← c0ϵ0

fmaxℜ{[ϵ]} ;
[∆ϵ]← [ϵ1, ϵ2 − ϵ1, ϵ3 − ϵ2];
[N ]← [1, 1, 1];
G0 ← Gain([ϵ]);
for i = 0, 1, 2 do

Ninit ←
⌈

|zi+1−zi|
[λp]i+1/10

⌉
;

[∆ϵ]i+1 ← [∆ϵ]i+1
Ninit

;
[N ]i+1 ← Ninit;
[ϵ]← merge([ϵ]1:i,linInterp([ϵ]i+1, [N ]i+1, [∆ϵ]i+1);

end
G1 ← Gain([ϵ]);
while |G1 −G0| > 0.1 dBi do

G0 ← G1;
for i = 0, 1, 2 do

[ϵ]← merge([ϵ]1:[N ]i−1, . . .

linInterp([ϵ][N ]i:[N ]i+1−1, 2[N ]i+1, [∆ϵ]i+1/2));

end
[∆ϵ]← [∆ϵ]

2 ;
[N ]← 2[N ];
G1 ← Gain([ϵ])

end
Algorithm 1: Sub-layer splitting algorithm (see also Fig. 6.2) to achieve gain at
zenith convergence of 0.1 dBi. [arg] indicates a vector-valued argument, while a
subscript is used to index these values (i1 : i2 also indicates parsing from initial
index i1 to final index i2). See text and appendix for details.

number of soil layers for multi-layer schemes
measurements λp/10 converged

dry 3 5 40
wet 3 7 56

Table 6.2. Number of soil layers that were used in each of our 3 multi-layer models: λp/10
is for the first iteration of the algorithm, and converged is the final step of doubling that
allows gain convergence to 0.1dB.
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Figure 6.4. Gain at zenith dB difference of ground plane implementations, calculated
between a reference model of an infinite PEC plane and the converged model of each
ground plane as reported in the legend, for dry and wet soil conditions, respectively.
An intermediate case of a 5 × 5 ground plane and a large 20 × 20 one, not examined
elsewhere, are also shown. The vertical dashed lines in each panel highlight the region
where LEDA data are available.

of periodic oscillations for the case of the 10 × 10 ground plane, with or without
serrations. This fact highlights that successive implementations of sub-layers differ
roughly by sinusoidal factors, which are still present when the ground plane gets
bigger. This is a counter-intuitive conclusion, which might originate from sharp
permittivity value transitions between consecutive layers (expressed in boundary
conditions of the TLGF). The 3× 3 ground plane performs better with respect to
the oscillation, apart from a low-frequency drift off.

Finite size of the ground plane. Oscillation effects are also observed when
comparing all finite sized ground planes with respect to an infinite Perfect Electric
Conductor (PEC) plane solution. To demonstrate this, in Fig. 6.4 we subtract from
the converged case the solution for an infinite PEC plane, for each of the considered
ground planes. We also include a 5×5 and a 20×20 ground plane, as an intermediate
and extreme case. The sinusoidal variations that can be seen imply that there are
finite-size truncation/diffraction effects which need long electrical distances (i.e.,
distances as multiples of λ) to diminish. The amplitude and periodicity of these
oscillations are different for each ground plane and depend on their size.

Having examined the effect of different ground planes, soil conditions as well
as soil layering options, a comparative plot of zenith gain can best illustrate their
effects before any chromaticity correction is calculated. For each ground plane and
soil conditions, we present in Fig. 6.6 the baseline one-layer, the three-layer, and the
converged multi-layer FEKO model. As expected, the 3x3 ground plane provides in
most cases a lower gain, since there are more losses related to the part of the soil not
covered by the ground plane. It is, however, the best one in terms of ground plane
induced ripple, which has a lower frequency due to its smaller dimension. Note that
concerns over the spectral structure of an underlying ground plane have already
been addressed in other experiments such as SARAS3 [141, 122] that moved the
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antenna on a lake to minimise the chromatic response. The MIST experiment has
opted instead for not deploying a ground plane and carefully characterise the ground
properties. For an antenna configuration less sensitive to the ground properties than
LEDA (which is facing downwards and is more coupled to any underlying structure),
a larger ground plane is also expected to alleviate the problem. The EDGES team,
for example, has used a 30× 30 ground plane for their results [121].

We include in Fig. 6.6 for comparison the 3× 3 ground plane solution obtained
with the NEC4 pattern used in previous analysis. The NEC4 patterns have been
scaled down using the radiation efficiency as calculated with FEKO data (see the
next paragraph) since the NEC4 model was overestimating the gain by omitting
the inclusion of soil losses in its gain calculation [142]. Despite this correction, the
FEKO and NEC4 models differ by a factor of up to 1 dB across the frequency range
of interest, a result that showcases the differences between numerical solvers.

Radiation efficiency. We present here the radiation efficiency ηrad as a function
of frequency, which takes into account losses over all of the 3D antenna pattern. The
radiation efficiency is calculated using the integral of the upper hemisphere far field
patterns and the input power at the antenna port, given by FEKO. In Fig. 6.5, ηrad
is shown for the three examined ground planes.
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η r
ad
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Figure 6.5. Radiation efficiency over frequency calculated for the three different cases
of ground plane, using the FEKO solution outputs. Dry (solid lines) and wet (dotted
lines) conditions for the baseline one-layer model are presented. The vertical dashed
lines highlight the region where LEDA data are available.

As expected, the 3×3 ground plane presents more losses, with a clearer frequency
dependence as well, since the efficiency is poorer at lower frequencies. A 10 × 10
ground plane with or without serrations is more appropriate to keep losses smaller
than 10% in most of the frequency band, and quite more stable at the extremes,
as they have a larger extent and allow for more power radiated below the horizon
(> 90◦) to be reflected back, contributing to the gain. The radiation efficiency is not
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constant and this affects the gain integral which is not 4π and varies with frequency.
The beam integral is expected to vary significantly in the case of 3×3 ground planes,
such that any normalisation of the beam pattern should be made separately for each
frequency.
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Figure 6.6. Gain at zenith of different multi-layer implementations, including the baseline
model, a three-layer model, and the converged multi-layer model (40 and 56 layers for
dry and wet soil conditions, respectively). Six cases are examined, as in Fig. 6.4. For
the 3× 3 ground plane, the NEC4 simulated model is also shown. The vertical dashed
lines in each panel highlight the region where LEDA data are available.

Beam gain variation. As another assessment of the radiation pattern spectral
robustness, we present a number of 2D colour-maps of the beam dB change in gain
with respect to frequency in Fig. 6.7, for 4 azimuth angles ϕ = 0◦, 30◦, 60◦,90◦, a
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criterion similar to that evaluated by [127]. This kind of plot is useful not only to
confirm the sinusoidal-factor spectral periodicity due to the ground plane structure,
but any other spatial effects which predominantly appear across zenith angle θ. It
can be seen from the figure that these spatial variations are significant even for
θ < 40◦, which compares with the Half-Power Beam Width of the antenna. Another
interesting phenomenon is that the “phase” of this sinusoidal-factor variation is
different for each elevation, which means that any analytic approach such as that of
Eq. (6.1) with θ×cos(θ) polynomial terms is not adequate to describe the complexity
of the beam pattern.

The amplitude in azimuth angle diminishes when we cross from the E-plane
(ϕ = 0◦) to the H-plane (ϕ = 90◦). The greatest variation both in terms of amplitude
and number of complete cycles in the frequency range of interest is found for the
serrated ground plane, which reaches as high as 0.2 dB/MHz in many f − θ sample
points.

Beam chromaticity correction factor. Assuming a well-behaved beam with
a small degree of chromaticity, the resulting spectra are expected to be smooth in
frequency. Although not visible by eye in observed Tant spectra, realistic beam shapes
induce a non-smooth frequency structure in the measured sky temperature that
complicates the signal reconstruction. As discussed in other works [143, 144, 145]
a possible approach to alleviate the effect of the chromatic beam on the measured
spectra is to correct the original spectra using the following factor:

Bc(f,LST) =
∫

Ω Tsky(f0,LST, n̂′)B(f, n̂′)dn̂′∫
Ω Tsky(f0,LST, n̂′)B(f0, n̂′)dn̂′

∫
ΩB(f0, n̂′)dn̂′∫
ΩB(f, n̂′)dn̂′ (6.3)

where Tsky(f,LST, n̂′) is a function of frequency f , LST and solid angle normal
n̂′ representing the sky brightness temperature drifting with time over the antenna.
We choose f0 = 75 MHz as a reference frequency [143] since it is approximately
central in our range. In this formulation the beam pattern B(f, n̂′) used is gain,
so the second term on the right hand side of the equation can be proven to equal
ηrad(f)/ηrad(f0).

We compute the beam chromaticity correction using the various beam models
presented throughout Sec. I.II. In this computation, the Haslam 408 MHz full-sky
map TH(n̂) [146] is used and scaled to different frequencies assuming a constant
spectral index β:

TH;sky(f, n̂) = [TH(n̂)− Tcmb]
(

f

408 MHz

)β

+ Tcmb. (6.4)

where Tcmb = 2.725 K and β = −2.5. We also consider LST bins of 10 minutes
and the full 24 h range for completeness when computing the correction.

It is interesting to first evaluate, as shown in Fig. 6.6, the difference between
the analytic beam model previously used and the new FEKO baseline simulation,
computing the chromaticity correction. This is reported in Fig. 6.8a. Differences
reach a few percent especially around LST∼ 18 when the Galactic center is transiting.
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Figure 6.7. Beam gain change per unit frequency as a function of the angle θ and for four
selected ϕ values (0, 30,60 and 90 degrees). We show here the one-layer model for dry
soil condition.
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We repeat the same exercise for the various FEKO beam models computed for
this analysis. We show in Fig. 6.8 b-d, the difference between the dry and wet
soil conditions for the three different ground planes. Differences are a fractional of
percent but their structure presents different patterns for different ground plane
shapes (see Fig. 6.3 and Fig. 6.6). The same structure of periodic peaks/troughs
across frequency is seen in each constant LST line, as was observed for the dry/wet
layer simulation, as well as the sub-layer convergence study. There is additionally
a variation along LSTs in constant frequency lines that has to do with the beam
coupling to a fainter/brighter sky.

(a) (b)

(c) (d)

Figure 6.8. Percentage difference between the chromaticity correction factor Bc (Eq.( 6.3))
computed for (a): the new baseline beam model and the analytic beam used in previous
analyses, (b): for dry and wet soil conditions where we consider the one-layer FEKO
model and the 3 m× 3 m ground plane, (c) the 10 m× 10 m ground plane and (d) the
serrated ground plane. The dashed vertical lines highlight the LST range preferred for
LEDA data analysis.

The continuation of this analysis included applying the chromaticity correction
factor to mock-generated observational sky brightness temperature data which have
certain levels of noise, and test the pipeline of bayesian signal extraction with respect
to its accuracy, both in the foreground log-polynomial representation as well as
finding the signal statistical characteristics. This further analysis was carried by
collaborators of the author of this thesis and is included in a joint publication at the
Monthly Notices of the Royal Astronomic Society [139].
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The case of LWA
The detection of the aforementioned 21 cm global signal is not only possible with
simple radiometer antennas, but also with arrays of such antennas using proper
beamforming techniques. As outlined in [147], an important issue to be addressed
in such approaches is the correct characterization of both the primary beam and
the sidelobes of a beamforming array, so as to result in more realistic priors. We
are going to explore in this section the spectral response of the LWA-OVRO station
employing full-wave simulations, both at EEP level and at station beam. The results
of previous analyses are corroborated, while some mutual coupling effects of the
beam are shown. These results are preliminary but still show the importance of
incorporating full-scattering into the signal extraction pipelines.

The Long Wavelength Array 1 (LWA1), located at the OVRO Valley in New
Mexico, in USA, is a low-frequency radiotelescope operating at approximately 10-
88 MHz, and is comprised of 256+2 antennas pseudorandomly distributed within a
circular area of a 55 m radius. The antennas are the same ones examined in Sec. I,
while the 2 extra antennas are outrigger ones, outside the station radius. Details
on the operation of LWA can be found in [148], [136]; even though the shape of the
antenna is the same, a different and simpler front-end is used for these antennas
with respect to the outrigger ones used for LEDA.

A 256 LWA element array was simulated exciting the X-polarized port of each
antenna and terminating the Y-polarized port with a 100 Ω load. All inactive elements
were also loaded with 100 Ω in their X- and Y-polarized ports, so the Embedded
Element Patterns (EEPs) computed have a Zg reference. We also computed the
antenna S-parameters of the full array. The ground plane of each antenna was
modelled as a 3 m× 3 m solid rectangle. It is important in this case to model the
soil, since the antenna ground planes sparsely cover the area in-between and so soil
effects should not only affect the lateral antennas (as in the case of SKA-Low); this
was modelled using the one-layer, dry condition parameters reported in Sec. I.II.
The configuration of the array is shown in Fig. 6.9.

Figure 6.9. LWA array geometry configuration on the XY plane
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Embedded Element Patterns. The array was simulated in FEKO using a
32-core processor system in parallel, with 503GB of RAM. Low-frequency MoM
stabilisation was also enabled in FEKO, since there were warnings issued concerning
the loss power calculated on the passive terminations being higher than the input
power. Some further investigation confirmed that this was the effect of some pairs of
antennas approaching a parallel configuration from their parallel-in-echelon, which
ensues from the random nature of their distribution. Some details of our computation
and handling of data are also provided in Appendix B.

We first present some plots of the Zg-EEPs as directivity at zenith (in dB), in
a number of frequencies: 20, 38 and 74 MHz, in a scatter form (all data points
shown). As a reference, an isolated element pattern and the mean of all EEPs are
also plotted, with dashed lines and rectangles respectively. We notice that the mean
values are lower, higher and almost equal to the isolated element pattern, the higher
the frequency goes. The scatter around this mean is higher at 38 MHz, lower at
20 MHz and somewhat skewed at 74 MHz.

Figure 6.10. Zg-EEP Gain scatter plot (3 frequencies)

Next we present the Zg-EEPs as directivities, normalized by the directivity of
the isolated element pattern (in dB), as a function of elevation angle θ, at the same
frequencies, along with the mean EEP. Both H-plane (ϕ = 0◦) as well as E-plane
(ϕ = 90◦) are presented. Our findings here agree qualitatively with previously
reported results by Ellingson [148]. More specifically:

• at 20 MHz the behaviour across elevation seems to fall off for the E-plane,
while it is relatively constant for the H-plane. Too high or low values close to
the horizon (practically when θ > 60◦) are unreliable since both the nominator
and denominator are low.

• at 38 MHz the E-plane the results are similar, with a more rapid fall-off of the
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E-plane curve and less numerical artefacts close to the horizon. The H-plane
is also similar but the scattering of EEPs seems to have more outliers.

• at 74 MHz the mean value changes behaviour in both planes, and it does not
present a maximum at zenith. Low elevation angles seem to have a smaller
dynamic range of scattering, especially in the H-plane, while it becomes more
unpredictable at higher elevations.

(a) 20 MHz E-plane (b) 20 MHz H-plane

(c) 38 MHz E-plane (d) 38 MHz H-plane

(e) 74 MHz E-plane (f) 74 MHz H-plane

Figure 6.11. Normalized gain E-plane (left) and H-plane (right) scatter across θ
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(a) |Sii| of all 256 antennas (b) |Sij(Dij)| at 20 MHz

(c) |Sij(Dij)| at 38 MHz (d) |Sij(Dij)| at 74 MHz

Figure 6.12. S-parameters (dB) of a full X-polarized LWA array

S parameters of a full array and EEP transformation. In this section
we present the S-parameter results for a full X-polarized LWA array. At every
iteration the Y-polarized ports were terminated at 100 Ω. The reflection coefficients
|Sii|, i ∈ {1, . . . , 256}, in dB, are presented in Fig. 6.12a, at the 3 examined
frequencies, along with their mean value and the isolated element reflection values
(annotated). All the other 3 subfigures are scatter plots of all the 256 · (256− 1)/2
transmission coefficients |Sij |, i < j, at the 3 same frequencies, as functions of the
distance Dij between the 2 elements i, j. As expected, as the distance increases, the
mutual coupling and thus the |Sij | drops. It is also interesting to confirm the stronger
mutual coupling at 38 MHz, which for small distances can reach around -12 dB. Same
values are also visible for 74 MHz, where the electric distance (distance/wavelength)
is higher for the same distance values. In general, the closer the examined frequency
is to the resonances of the LWA antenna [138], the more susceptible it is to mutual
coupling phenomena. As for the reflections, we note a larger deviation from the
isolated pattern at 74 MHz. The poor matching at 20 MHz explains the unstable
results of EEPs at that frequency; we again deem these results unreliable. The
extremes of the |Sij | values serve as useful bounds in array reception models which
include mutual coupling, such as [103],[101].
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Figure 6.13. Station beam zenith directivity over a 6 MHz sampled range of 7 points,
comparing 3 different methods.

Station beam. In this paragraph, a calculation of the station beam is performed
using the Zg-EEPs and the S-parameter results. We are going to use the Zg = 100 Ω
terminated ports, and a unit excitation for all ports without phasing, that is
V̄g =

(
1 · · · 1

)T
. Then the station beam electric field pattern is for this excitation:(

E⃗
Zg

st,θ E⃗
Zg

st,ϕ

)
=
∑

k

(
E⃗

Zg

k,θ E⃗
Zg

k,ϕ

)
(6.5)

Note that in this formulation the phasing factor ej2π( xk
λ

cos θ cos ϕ+ yk
λ

cos θ sin ϕ) is
embedded in the EEPs. We will also consider a simpler approach using the array
factor, which is just summing all these exponentials and multiplying the absolute
value of the sum with the isolated element electric field pattern.

First, and similar to Fig. 6.10, a frequency response of the station beam in
more sampled points, with a frequency step of 6 MHz, between 38 and 74 MHz, is
presented in Fig. 6.13. The curve of the EEP calculated station beam is compared
with the array factor method using the isolated element pattern (dashed line), as
well as using the mean of the EEPs, while the extremes are added as red bars
on the EEP-calculated station beam points. These extremes are again an array
factor approach using the EEP minimum and maximum. Importantly, the spectral
smoothness of the zenith beam response is altered by taking into account all the
mutual coupling phenomena, and is not well captured by the mean-EEP array factor
approach which is also a complex spectral variation. Such spectral variations can
also be quantified by the joint foreground and 21 cm bayesian estimation techniques
we have used in [139].
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Finally, Fig. 6.14 shows the H-plane and E-plane cuts of the station beam at the
3 chosen frequencies. We also include here a direct simulation of the station beam
using FEKO and defining unit sources in all of the X-polarized ports, to confirm
the computed results using the EEPs. We notice that the EEP summation and
direct FEKO simulation agree excellently at all frequencies. Apart from confirming
the zenith trend observed in Fig. 6.10, the sidelobe structure seems to be well
approximated by the array factor technique, even though mutual coupling effects
are ignored. Differences in the sidelobe maximum level are important to determine
whether excess noise can impact on the 21 cm signal detection.

Discussion and future work. The beamforming technique of detecting the global
21 cm cosmological signal is a topic under recent investigation. It is important that
the uncertainty here comes from the spectral contamination induced by means of the
sidelobe noisy reception of the sky signal, while the primary beam can be modelled
with good accuracy by a gaussian [147], [149]. The added advantage of this approach
is that the system is more versatile in drift-scan observations, since steering the
beam can lead to different patches of the sky accounting for the signal integration
at a specified LST range. Redundant elements can also be considered dormant in
steering the beam and deciding its optimal shape.

Quite an interesting topic for future studies is the inclusion of priors known
from the accurate beam modelling of such arrays, using full-wave solvers. In this
framework, our presented results could be used in order to approximate the beam
with parametrized analytic models, whereby the parameters can be extracted by
optimization strategies [149], [150]. Furthermore, the calculated set of EEPs is also
used in novel beamforming techniques, such as in [150], [21, Ch. 10], [27]. This
means that the optimization problem of controlling both the primary beam and the
sidelobes can accurately be solved by setting certain constraints and calculating
the desired weights. For example, the Minimum Variance Distortionless Response
(MVDR) with linear constraints (LC) is a promising method of creating low-sidelobe,
spectrally pure beams. Interesting work has also been done by Di Lullo et al. in
[151], [152] to create an achromatic beamforming in a custom way for the LWA-SV
array.

Finally, the bayesian framework of detection can also be revisited to account
for the complexity of the different parameters affecting the spectral response of the
observational data. In preparation for future data analysis, the REACH project has
developed a software pipeline that incorporates the beam effects more thoroughly,
coupled with a non-trivial scaling in frequency of the foreground [145]. This strategy,
although computationally costly, leads to robust 21 cm global signal extraction in
simulations and can thus enable better informed optimisation of antenna design
[125], [153].
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(a) E-plane Gst − θ at 20 MHz (b) H-plane Gst − θ at 20 MHz

(c) E-plane Gst − θ at 38 MHz (d) H-plane Gst − θ at 38 MHz

(e) E-plane Gst − θ at 74 MHz (f) H-plane Gst − θ at 74 MHz

Figure 6.14. Station beam gain across across elevation for 3 frequencies, in the E-plane
(left) and H-plane (right), for the case of synthesis using the array pattern, summing the
Zg-EEPs, and direct simulation with FEKO.
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Appendix A

Current vector of full RWG
discretization in FEKO CMA

Let J̄RGW be the NRW G × 1 RWG element discretization current vector and J̄ME

the NME × 1 current vector per mesh element (ME) rather than per basis function.
These two vectors are connected by a constant NME ×NRW G matrix L for a given
mesh:

J̄ME = LJ̄RW G (A.1)

Let us consider the case of wires, where any wire current entry JME;n is only
the result of a linear combination of two RWG functions of the wire vertices, so
two entries JRW G;n1 , JRW G;n2 weighted as: JME;n = Lnn1JRW G;n1 + Lnn2JRW G;n2 .
All the other entries of row n of L are then zero. For the case of a standard MoM
analysis, one can have both the vectors available from the FEKO output files (J̄ME

is given in its output .os file and J̄RW G in its .str file). The problem faced when
using the Characteristic Modes Analysis is that the modal J̄RW G vectors are not
available in any output file, so any reconstruction would require the knowledge of L.
If we wish to use the same mesh for both analyses, then the 2NME real non-zero
entries of the L matrix can uniquely be determined by using the known results (at
any one frequency) of the complex vectors JRW G, JME in the 2NME equations that
Eq. (A.1) represents, when taking into account both real and imaginary part.

Another important input in order to calculate the unkwnown CMA J̄RW G

eigenvectors is the NRW G × NRW G MoM impedance matrix Z. This can also be
obtained in the form of a .mat file by FEKO when running any simulation. If
the matrix L is then known for our mesh, the next steps to determine any modal
eigenvector J̄RW G which corresponds to an eigevalue λ, from its respective known
J̄ME are as follows:

1. calculate, using the Matlab function null, the null space of ℑ{Z} − λℜ{Z}
at a given tolerance (by default NRW G · ϵ(∥Z∥), where ϵ is the floating point
relative accuracy at order of magnitude ∥Z∥). This will result in a multitude
of vectors J̄RW G that are all possible eigenvectors according to the tolerance

2. among all the J̄RW G eigenvectors of the previous step, choose that which mini-
mizes the relative error ∥J̄ME−rLJ̄RW G∥/∥J̄ME∥, where r = ∥J̄ME∥/∥LJ̄RW G∥.
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This step will result in the RWG eigenvector which is numerically closer, when
transformed by matrix L, to the ME eigenvector available by the FEKO results.

It is mentioned in Sec. 5.2 that this procedure is needed only for the cross-
product quadratic forms J̄m1Z12J̄

T
m2 , which are written in the RWG vector sense.

In fact, for reasons of consistent normalization of the various such quadratic forms,
and since it was easy to further apply this method to them, it has been used
also in calculating the self-product quadratic forms J̄m1(2)Z11(22)J̄

T
m1(2)

. A final
useful check that the calculations are correct is also performed by checking the
condition J̄m1Z12J̄

T
m2 = J̄m2Z21J̄

T
m1 that has been ideally stated in Sec. 5.2.2. Our

results showed that many of the eigenvectors that Matlab null calculates, although
respecting the given tolerance, do not conform to that condition.

Furthermore, the eigenvectors of Matlab are actually unit, while the actual
eigenvectors should have a magnitude such that the quadratic forms mentioned
above (with a 1/2 factor) are equal to the modal power P = Prad;m(1 + jλ),
whether that is indexed by m of the coupled antenna system or by m1, m2 of the
single antenna. Some multiplicative factors should therefore appear in each of the
equated sides of Eq. (5.2), namely Prad,m1/(J̄m1Z11J̄

T
m1) on the right-hand-side and

Prad,m/(J̄mZJ̄
T
m) on the left-hand-side.
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Appendix B

Efficient data storage for EEP
simulations using array network
power computations

We will outline here an interesting use of the array network theory formulation to
calculate the input (or radiation) power, which is defined as the active power minus
the losses and is used as the denominator in the directivity definition. The radiated
power usually needs the full 3D pattern to be calculated at a good sampling rate,
which for a lot of antennas and frequencies becomes intensive to store.

If we have the antenna S-parameter data available, denoted SA, we can transform
our short-circuit EEPs to whatever port termination we want. Let’s denote the
θ, ϕ components of the short-circuited termination EEPs as Ēsc

θ , Ē
sc
ϕ , 256 vector

elements. Then according to [1] we can transform to a Zg = 100 Ω, which is the
LNA input impedance and our antenna reference impedance, as:(

E
Zg

θ E
Zg

ϕ

)
= (ZA + ZgIn)−1 · ZA ·

(
Ēsc

θ Ēsc
ϕ

)
(B.1)

where ZA = Zg · (I256 − SA)−1 · (I256 + SA) is the antenna matrix. To transform
to directivities, we need to calculate for each pattern n:

DZg
n =

4π · 1
2η0

(|EZg

n,θ|2 + |EZg

n,ϕ|2)

P
Zg

n,in

(B.2)

In this equation, PZg

n,in = V 2
g

2 · ℜ
{
Y

Zg

n,in

}
is the input power (in W) calculated

using the source excitation (Vg = 1 V in our case) and the input impedance of
antenna n when all other port terminations are Zg. In this case it can be computed
as Y Zg

n,in = [(ZA + ZgIn)−1 · ZA · (ZA + ZgIn)−H ]nn and [·]mn means the m-th row,
n-th column element of a matrix. In our scheme, therefore, we only need to store
one set of EEPs as a FEKO .ffe file containing Ēsc

θ , Ē
sc
ϕ , D̄

sc, and a .s256p file
containing SA. Last, if we want to obtain such an input power calculation for the
station beams, we need to reformulate the formula derived from [21, Ch. 4] as:

P
Zg

in,st = 1
2 · V̄

T
g · ℜ{(ZA + ZgIn)−1 · ZA · (ZA + ZgIn)−H} · V̄g (B.3)
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