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ON THE ISOPERIMETRIC PROBLEM WITH DOUBLE DENSITY

ALDO PRATELLI AND GIORGIO SARACCO

Abstract. In this paper we consider the isoperimetric problem with double density in Euclidean space;

that is, we study the minimisation of the perimeter among subsets of Rn with fixed volume, where

volume and perimeter are relative to two different densities. The case of a single density, or equivalently,

when the two densities coincide, has been well studied in the last years; nonetheless, the problem with

two different densities is an important generalisation, also in view of applications. We will prove the

existence of isoperimetric sets in this context, extending the known results for the case of single density.

1. Introduction

For any n ≥ 2, we consider the isoperimetric problem in Rn with double density. That is, two l.s.c.

and locally summable functions f : Rn → R+ and h : Rn × Sn−1 → R+ are given, and we measure the

volume and perimeter of any Borel set E ⊆ Rn according to the formulas

|E|f :=

∫
E

f(x) dx , Ph(E) :=

∫
∂∗E

h(x, ν(x)) dHn−1(x) ,

where as usual ∂∗E is the reduced boundary of E and for every x ∈ ∂∗E the vector ν(x) ∈ Sn−1 is the

outer normal at x, see for instance [1]. Of course, the standard Euclidean case corresponds to the situation

where f and h are constantly equal to 1. We will refer to the “single density” case when h(x, ν) = f(x)

for every x ∈ Rn, ν ∈ Sn−1.

In recent years, for different reasons, there was much attention on the study of problems in Rn

endowed with a single density, a non-exhaustive list of references is [2, 3, 4, 5, 6, 7, 8]. Nevertheless, as

already pointed out by several authors, the case of the double density is an important generalisation,

since many of the possible applications correspond to two different densities. The simplest example is

given by the Riemannian manifolds: of course they locally behave like Rn with double density, being

f the norm of the Riemannian metrics, and h their derivatives. In particular, it is important that the

density h relative to the perimeter depends not only on a point, but also on the direction of the tangent

space at that point. A preliminary study on an isoperimetric-like problem with double density is for

instance the paper [9].

When we refer to the “isoperimetric problem”, as always we mean that we are interested in minimising

the (relative) perimeter of sets with fixed (relative) volume. Hence, we define as usual the isoperimetric

profile as

J (V ) := inf {Ph(E) : |E|f = V } , (1.1)

and we are interested in studying the existence of isoperimetric sets E, that is, the sets realising the

infimum above. Let us immediately notice that the existence problem becomes interesting only when

f /∈ L1(Rn). Indeed, given any volume V > 0 we can always take a minimising sequence {Ek}k relative

to the volume V ; up to subsequences, the sequence locally converges in L1 to some set E, and by the

lower semicontinuity of h we immediately have that Ph(E) ≤ lim infk Ph(Ek) = J (V ). The set E is then

2010 Mathematics Subject Classification. Primary: 49Q10. Secondary: 58B20, 49Q20.

Key words and phrases. Isoperimetric problem; Anisotropic perimeter.

G. Saracco has been supported by the DFG Grant no. GZ:PR 1687/1-1.

1



2 ALDO PRATELLI AND GIORGIO SARACCO

obviously an isoperimetric set of volume V as soon as its volume is V ; when f ∈ L1(Rn) this is always

true, so the existence issue is always trivial. Instead, if f /∈ L1(Rn), it is only true that |E|f ≤ V , but

some mass could have “escaped at infinity”. It is easy to see that, in general, the existence of isoperimetric

sets fails, and it is interesting to understand under which conditions this is true.

For the case of the single density much is known. More precisely, since as noticed above there is

no existence issue when the volume of Rn is finite, the main point is to study the behaviour of not L1

densities at infinity. Roughly speaking in order to minimise the perimeter, the sets “prefer” the zones

where the density is low. It is then reasonable to expect that minimising sequences remain bounded if

the density explodes at infinity, which leads to no loss of volume, hence to existence; on the other hand,

one expects that such sequences escape at infinity if the density goes to 0 at infinity, which leads to

non-existence as J would be identically 0 and no set has zero perimeter, at least for strictly positive

densities. In fact, in [7] it was proved that existence is true for the case of radial densities which explode

at infinity (the radial assumption is not needed if n = 2, but necessary if n ≥ 3 as counterexamples show).

Moreover, existence generally fails for densities going to 0 at infinity, unless they belong to L1(Rn), as

previously noticed. Hence, the case when the (single) density goes to 0 or explodes at infinity is more or

less known. Additionally, simple examples show that existence may fail if the lim inf and the lim sup of

the density at infinity are different. Then, the only interesting case which remains to describe is when the

density goes to a non-zero limit at infinity. The final answer about this point was given in [5]: there, the

existence of isoperimetric sets of any volume was proved under the assumption that the density converges

to its limit from below in the sense of Definition 1.1, see Theorem 1.2. On the other hand, easy examples

show that existence is generally false if the density does not converge from below, hence we can say that

the interesting issues about existence in the single density case are all solved.

Definition 1.1. Let σ : Rn → R+ be a l.s.c. function. We say that σ converges from below to ` > 0 if

σ(x)→ ` when |x| → ∞, and there exists M ∈ R such that σ(x) ≤ ` whenever |x| > M . Analogously, we

say that σ converges from above to ` > 0 if σ(x) → ` when |x| → ∞ and there exists M ∈ R such that

σ(x) ≥ ` whenever |x| > M .

Theorem 1.2. Let f : Rn → R+ be a l.s.c., locally integrable function, converging from below to a

non-zero limit. Then, for every positive volume V > 0 there exist isoperimetric sets, that is, Borel sets

E ⊆ Rn which minimise Pf (E) among all the sets satisfying |E|f = V .

Let us now pass to discuss the general case of double densities. Arguing similarly as before, one can

see that the most interesting case is when both f and h converge to a non-zero limit at infinity. Up to

a reparametrisation and for ease of notations, we will assume that they both converge to 1. Let us then

define the functions h+, f̃ , h̃ : Rn → R+ as

h+(x) = sup
ν∈Sn−1

h(x, ν) , f̃(x) = |f(x)− 1| , h̃(x) = |h+(x)− 1| , (1.2)

and notice that f̃ and h̃ converge to zero at infinity. It is easy to see that isoperimetric sets always exist if

f converges to 1 from above and h+ from below, while existence generally fails if f converges from below

and h+ from above. We are thus led to consider the case when both f and h+ converge from below, or

they both converge from above. Our main result is the following.

Theorem A (Isoperimetric sets in Rn with double density). Let f : Rn → R+ and h : Rn × Sn−1 → R+

be two l.s.c. and locally integrable functions, both converging to 1 at infinity. There exist isoperimetric

sets of any volume in the following two cases:



3

• both f and h+ converge from below to 1, and

inf
{
C ≥ 0 : f̃(x) ≤ Ch̃(x) for |x| � 1

}
<

n

n− 1
; (1.3)

• both f and h+ converge from above to 1,

sup
{
C ≥ 0 : f̃(x) ≥ Ch̃(x) for |x| � 1

}
>

n

n− 1
, (1.4)

and for any R� 1 one has
∫∞
R
h̃r(t) dt = +∞, where the subscript r denotes the radial average,

i.e.

h̃r(t) :=

∫
∂B|t|

h̃(x) dHn−1(x) . (1.5)

A couple of comments are in order. First of all, as already pointed out above, the very same result

is true if f and h converge to two limits a, b > 0; in fact, one can always reduce to the case a = b = 1

up to a multiplication of f and h by a constant, which obviously does not change isoperimetric sets.

Moreover, notice that Theorem A generalises Theorem 1.2: in fact, in the case of the single density one

has f̃/h̃ = 1 < n/(n − 1), so according with the result of Theorem 1.2 one gets existence for the case

of convergence from below, and not for the case of convergence from above. It is then interesting that

existence is obtained also in some cases when the convergence is from above, unlike the case of the single

density. Observe also that the convergence to 1 from below or from above is required for h+, not for

h. However, if h+ converges from below to 1, then in particular h(x, ν) ≤ 1 for every x with |x| � 1

and every ν ∈ Sn−1; on the other hand, if h+ converges from above to 1, then h(x, ν) < 1 is possible

for infinitely large |x| and some directions ν ∈ Sn−1. Finally, notice the additional assumption about the

non-summability of h̃r in the case of convergence from above: surprisingly enough, this assumption is

really needed, as our example in Section 4 shows.

The plan of the paper is very simple; in Section 2 we collect a couple of technical properties, which

are well-known for the case of single densities and that we generalise to the case of double density. Then,

in Section 3 we present the proof of Theorem A, which is a careful extension of the argument already

used in [5] to prove Theorem 1.2. Finally, in Section 4 we show an example in which existence fails for

the case of two radial densities f, h = h+ which converge from above to 1 and for which (1.4) holds true,

but for which h̃r is summable.

2. Preliminary properties

In this section, we present the definition of “mean density” and a couple of basic results: both

the definition and the results are well-known for the case of a single density (for the definition, see for

instance [7], for the results, see for instance [5, Lemma 2.1,2.3]); here, we generalise them to the case of

double density. In the following, f : Rn → R+ and h : Rn × Sn−1 → R+ always denote a double density,

that is, two l.s.c. and locally summable functions. Moreover, for the sake of brevity, whenever a function

g : Rn × Sn−1 → R+ and a (n− 1)-dimensional oriented surface Γ are given, we write

Hn−1
g (Γ) =

∫
x∈Γ

g(x, ν(x)) dHn−1(x) ,

where ν(x) ∈ Sn−1 is the outer (in the sense of the orientation of Γ) normal vector to Γ at x.

Definition 2.1. Let F ⊆ Rn be a set of finite perimeter. We define the (f, h)-mean density of F as the

number ρ ∈ R+ such that

Ph(F ) = n(ωnρ)
1
n |F |

n−1
n

f .
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It is important to realise the meaning of the “mean density”. Namely, the (f, h)-mean density of F

is the unique number a ∈ R+ such that, for the case of f ≡ h ≡ a, a ball with volume |F |f has precisely

perimeter Pf (F ).

Lemma 2.2. Suppose that, far enough from the origin, h is locally bounded from above and h+ ≤ λf for

some λ > 0. Let V > 0 be given, and let {Ej}j be an isoperimetric sequence corresponding to volume V ,

which converges in L1
loc(Rn) to E ⊆ Rn. Then, E is isoperimetric for the volume |E|f . Moreover, if f

and h pointwise converge to some a > 0 at infinity, then

J (V ) = Ph(E) + n(aωn)
1
n (V − |E|f )

n−1
n . (2.1)

Proof. Notice that, since f and h are l.s.c., then

|E|f ≤ V , Ph(E) ≤ lim inf
j

Ph(Ej) = J (V ) . (2.2)

We divide the proof in two parts.

Step 1. The set E is isoperimetric for its volume.

We have to prove that Ph(E) = J (|E|f ). This is emptily true if |E|f = 0, and it is given by (2.2) if

|E|f = V . We are then left to consider the case 0 < |E|f < V , and we assume by contradiction the

existence of a set F with |F |f = |E|f and Ph(F ) < Ph(E). For simplicity of notation, we define

η :=
Ph(E)− Ph(F )

5
. (2.3)

Choose x ∈ Rn a Lebesgue point for the set F and for both the functions f and h: such a point exists as

|F |f = |E|f > 0. As a consequence, we can find r � 1 such that

1

2
ωnf(x)rn ≤ |Br(x) ∩ F |f ≤ 2ωnf(x)rn , Ph(Rn \Br(x)) ≤ 2nωnh

+(x)rn−1 . (2.4)

In particular, the first estimate is true for every r � 1, and the second for almost every r � 1.

Similarly, let y ∈ Rn be a Lebesgue point for the set Rn \F and the functions f and h; observe that

such a point surely exists because the fact that |F |f < |E|f implies in particular f /∈ L1(Rn); moreover,

y can be taken arbitrarily far from the origin, so that in particular, for some M > 0, one has h < M in

a neighbourhood of y. In particular, there exists ρ̄� |y − x| such that, for every ρ < ρ̄, one has

|Bρ(y) \ F |f ≥
1

2
ωnf(y)ρn , Ph(Bρ(y)) ≤Mnωnρ

n−1 < η . (2.5)

Let us now take ε < η in such a way that

ωnf(y)ρ̄n > 2ε . (2.6)

We claim the existence of a set F ′ and of a big radius R > |y|+ ρ̄ such that

F ′ ∩Bρ̄(y) = F ∩Bρ̄(y) , F ′ ⊆ BR , Ph(F ′) < Ph(E)− 4η , 0 < ε′ := |E|f − |F ′|f < ε . (2.7)

In fact, if F is bounded then it is enough to define F ′ = F \ Br(x) for a suitably small r, keeping in

mind (2.4) and the fact that Ph(F \Br(x)) ≤ Ph(F ) + Ph(Rn \Br(x)). Otherwise, if F is not bounded,

we set F ′ = F ∩BR for some R� 1. The set equality and the inclusion in (2.7) are true by construction,

as well as the inequalities about the volume if R ≥ R1 for some R1 big enough. So, we have to prove the

inequality about the perimeters. Since R1 is an arbitrarily large constant, we can assume that h+ ≤ λf

on Rn \BR1
. Suppose then for a moment that it is false for every R ≥ R1, so that

Ph(F ∩BR) > Ph(F ) + η .
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Then, since for almost every R ≥ R1 we have

Ph(F ∩BR) = Ph(F ) +

∫
F∩∂BR

h(x, x/|x|) dHn−1(x)−
∫
∂F\BR

h(x, ν(x)) dHn−1(x) ,

and we deduce

V > |F |f > |F \BR1
|f =

∫ ∞
R1

∫
F∩∂BR

f(x) dHn−1(x) dR ≥ 1

λ

∫ ∞
R1

∫
F∩∂BR

h(x, x/|x|) dHn−1(x) dR

≥ 1

λ

∫ ∞
R1

η dR =∞ ,

which is a contradiction. The existence of a constant R and a set F ′ satisfying (2.7) is then established.

Let us now consider the set E. It is clearly possible to fix some R′ > R such that

|E \BR′ |f <
ε′

2λ
,

∫
∂∗E\BR′

h(x, ν(x)) dHn−1 < η . (2.8)

Keep in mind that, since Ej converges in L1
loc(Rn) to E, then Ej ∩ BR′ and Ej ∩ BR′+1 converge in L1

to E ∩BR′ and E ∩BR′+1 respectively. Therefore, by (2.8), recalling also the lower semicontinuity of h,

for every sufficiently large index j we have

|E|f −
ε′

1 + 2λ
< |Ej ∩BR′ |f ≤ |Ej ∩BR′+1|f < |E|f +

ε′

1 + 2λ
, (2.9)

Ph(E) <

∫
∂∗Ej∩BR′

h(x, νj(x)) dHn−1 + η , (2.10)

where by νj(x) we denote the outer direction of the boundary ∂∗Ej at x ∈ ∂∗Ej . By (2.9), we get

ε

λ
>
ε′

λ
≥ |Ej ∩ (BR′+1 \BR′)|f =

∫ R′+1

R′
Hn−1
f (Ej ∩ ∂BR) dR ,

from which we deduce the existence of some radius Rj ∈ (R′, R′ + 1) such that

Hn−1
h+ (Ej ∩ ∂BRj ) ≤ λHn−1

f (Ej ∩ ∂BRj ) < ε . (2.11)

Next, we define the set Gj = F ′ ∪ (Ej \ BRj ); keeping in mind that Rj > R′ > R, (2.7), (2.9) and the

fact that |Ej |f = |E|f = V by definition, we estimate the volume of Gj by

|Gj |f = |F ′|f + |Ej \BRj |f = |E|f − ε′ + |Ej \BRj |f ∈ (V − ε, V ) , (2.12)

and its perimeter, thanks to (2.7), (2.11) and (2.10) and the fact that Rj > R′, by

Ph(Gj) = Ph(F ′) + Ph(Ej \BRj ) < Ph(E)− 4η +

∫
∂∗Ej\BRj

h(x, νj(x)) dHn−1 +Hn−1
h+ (Ej ∩ ∂BRj )

< Ph(E)− 4η + Ph(Ej)−
∫
∂∗Ej∩BR′

h(x, νj(x)) dHn−1 + ε < Ph(Ej)− 3η + ε < Ph(Ej)− 2η .

Finally, let us take ρj < ρ̄ in such a way that the set Dj = Gj ∪ Bρj (y) satisfies |Dj |f = V , which is

possible by (2.12), (2.5), (2.7) and (2.6). Putting together the last estimate and again (2.5), we get

Ph(Dj) ≤ Ph(Gj) + Ph(Bρj (y)) < Ph(Ej)− η .

Since {Ej} is a minimising sequence for J (V ), we deduce that Ph(Dj) < J (V ) for j � 1, which is a

contradiction. This concludes the first part of the claim.

Step 2. The validity of (2.1).

We now assume that f and h converge to some a > 0 at infinity, and we have to prove the validity
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of (2.1). We can assume that |E|f < V , since otherwise the claim is emptily true. Arguing as in the first

step, for every ε� 1 we can find a big radius R and a set F ⊆ BR such that

|F |f ≥ |E|f − ε , Ph(F ) ≤ Ph(E) + ε .

Now, take a ball B = B(x, r) having volume |B|f = V − |F |f and very far from the origin. In particular,

we can assume that B ∩BR = ∅, and that the values of f and h in a neighbourhood of B are all between

a− ε and a+ ε. Hence,

(a− ε)ωnrn ≤ |B|f ≤ V − |E|f + ε ,

which, since by construction G = F ∪B has f -volume equal to V , yields

J (V ) ≤ Ph(G) = Ph(F ) + Ph(B) ≤ Ph(E) + ε+ nωn(a+ ε)rn−1

≤ Ph(E) + ε+
nω

1
n
n (a+ ε)

(a− ε)n−1
n

(V − |E|f + ε)
n−1
n .

By letting ε→ 0 we obtain the first inequality in (2.1).

To show the opposite inequality, for every ε > 0 we can argue as usual to pick a large R so that

|E ∩BR|f > |E|f − ε , Ph(E \BR) < ε .

As in the first step, for every j � 1 we can find some Rj ∈ (R,R+ 1) such that

|Ej ∩BRj |f < |E|f + ε , Hn−1
h+ (Ej ∩ ∂BRj ) < ε , Ph(E) < Ph(Ej ∩BRj ) + ε ,

keeping in mind that both f and h are arbitrarily close to a outside of BR, up to taking a sufficiently

large R. Then, calling P (·) and | · | the standard Euclidean perimeter and volume, by the standard

isoperimetric inequality we can estimate

Ph(Ej \BRj ) > (a− ε)P (Ej \BRj ) ≥ (a− ε)nω
1
n
n |Ej \BRj |

n−1
n

>
(a− ε)nω

1
n
n

(a+ ε)
n−1
n

|Ej \BRj |
n−1
n

f >
(a− ε)nω

1
n
n

(a+ ε)
n−1
n

(
V − |E|f − ε

)n−1
n .

As a consequence, we deduce

Ph(Ej) ≥ Ph(Ej ∩BRj ) + Ph(Ej \BRj )− 2Hn−1
h+ (Ej ∩ ∂BRj )

≥ Ph(E)− 3ε+
(a− ε)nω

1
n
n

(a+ ε)
n−1
n

(
V − |E|f − ε

)n−1
n .

Since Ej is an isoperimetric sequence for volume V , thus Ph(Ej) → J (V ), by letting ε → 0 we get the

second inequality in (2.1), so the thesis is concluded. �

Lemma 2.3. Assume that the densities f and h pointwise converge to a > 0 at infinity, let {Ej}j be a

minimising sequence for some volume V > 0 converging in L1
loc(Rn) to a set E. If |E|f < V , then E is

bounded.

Proof. For every t > 0, we define m(t) the mass of E outside the ball Bt, that is,

m(t) = |E \Bt|f =

∫ ∞
t

Hn−1
f (E ∩ ∂Br) dr .

Now, we pick a ball B of volume equal to V − |E|f +m(t) arbitrarily far from the origin. Then, the set

E ∩Bt ∪B has volume exactly V , thus J (V ) ≤ Ph(E ∩Bt) + Ph(B). Since f and h are arbitrarily close

to a in a neighbourhood of B, arguing as in the second step of last lemma we deduce

J (V ) ≤ Ph(E ∩Bt) + n(aωn)
1
n (V − |E|f +m(t))

n−1
n .



7

Comparing this inequality with (2.1), and keeping in mind that |E|f < V , we obtain

Ph(E) ≤ Ph(E ∩Bt) + c1m(t)

for some geometrical constant c1, only depending on a, V, |E|f and n. Let now ε� 1 be fixed; as soon as

t is large enough, using again that f and h are arbitrarily close to a outside of Bt, applying the standard

isoperimetric inequality to E \Bt, and keeping in mind that m′(t) = −Hn−1
f (E ∩ ∂Bt), we have then

c1m(t) ≥ Ph(E)− Ph(E ∩Bt) = Ph(E \Bt)−
∫
E∩∂Bt

h(x, x/|x|) + h(x,−x/|x|) dHn−1(x)

≥ (a− ε)nω
1
n
n

(a+ ε)
n−1
n

|E \Bt|
n−1
n

f − 3Hn−1
f (E ∩ ∂Bt) ≥ c2m(t)

n−1
n + 3m′(t) ,

where c2 is any constant smaller than n(aωn)1/n. Since by definition m(t)↘ 0 for t→∞, we deduce

−m′(t) ≥ c2
4
m(t)

n−1
n

for t big enough. Since every positive solution m of this inequality vanishes in a finite time, we obtain

m(t) = 0 for every t� 1, that is, the set E is bounded as required. �

3. Existence of isoperimetric sets

This section is devoted to show our main result, Theorem A. The key point is to get the existence of

a set F arbitrarily far from the origin with (f, h)-mean density (see Definition 2.1) smaller than 1. More

precisely, we will show the following two facts.

Proposition 3.1. Let f and h be densities converging from below to 1 satisfying (1.3). Then, for every

m > 0 there exists a set F with volume m and (f, h)-mean density smaller than 1 arbitrarily far from the

origin.

Proposition 3.2. Let f and h be densities converging to 1 and satisfying (1.4) such that f and h+

converge from above to 1 and
∫∞
R
h̃r(t) dt = +∞ for every R � 1. Then, for every m > 0 there exists a

set F with volume m and (f, h)-mean density smaller than 1 arbitrarily far from the origin.

We can immediately see that our main result is a very simple consequence of the above facts.

Proof of Theorem A. Let V > 0 be given, and let {Ek}k∈N be a minimising sequence for the isoperimetric

problem with volume V . Up to a subsequence, the sets Ek converge to some set E ⊆ Rn in the L1
loc sense.

Thanks to Lemma 2.2, we know that E is an isoperimetric set for volume |E|f ≤ V , and that (2.1) holds.

If |E|f = V , there is nothing to prove, otherwise by Lemma 2.3 we also know that E is bounded. By

Proposition 3.1 or 3.2, we find a set F with volume |F |f = V − |E|f > 0 which has (f, h)-mean density

smaller than 1; by Definition 2.1, this means

Ph(F ) ≤ nω
1
n
n (V − |E|f )

n−1
n . (3.1)

Since F can be taken arbitrarily far from the origin and E is bounded, we can assume without loss of

generality that E and F are a strictly positive distance apart. As a consequence, the set G = E ∪ F has

exactly volume V , and Ph(G) = Ph(E) + Ph(F ): in virtue of (2.1) and (3.1), this means that G is an

isoperimetric set for volume V , which concludes the proof. �



8 ALDO PRATELLI AND GIORGIO SARACCO

The plan of the section is simple. Firstly, we introduce some notation which will be useful later.

Then, in Section 3.1 and 3.2 we prove respectively Proposition 3.1 and 3.2.

Given positive numbers R, δ and a direction θ ∈ Sn−1, we will denote by BRθδ the ball of radius δ

centred at Rθ, with Bδ = B0
δ . We will sometimes divide the ball B and its boundary ∂B into the “upper”

and “lower” halves B+ and ∂+B, and B− and ∂−B. That is, we shall fix some hyperplane H passing

through the origin and the point Rθ, call H± the two half-spaces having H as a boundary, and then write

B+ := B ∩H+ , B− := B ∩H− , ∂+B := ∂B ∩H+ , ∂−B := ∂B ∩H− . (3.2)

3.1. The case of densities converging from below. Let us start by finding a ball, arbitrarily far

from the origin, whose (1−h)-perimeter is controlled from below by a suitable constant times the (1−f)-

volume.

Lemma 3.3. Let us assume that the densities f and h converge from below to 1 and satisfy (1.3). Then,

for every ε� 1 there exists a ball B of radius 1 arbitrarily far from the origin such that

P1−h(B) ≥
(
n− 1 + 2εn

)
|B|1−f . (3.3)

Proof. Keeping in mind (1.3) and the fact that f and h converge to 1 from below, we can take ε > 0 so

small that, for x ∈ Rn far enough from the origin,

f̃(x) ≤
(

n

n− 1
− 8εn

)
h̃(x) ,

where we recall (1.2)

f̃(x) = 1− f(x) , h̃(x) = 1− h+(x) .

As a consequence, by (1.2), for any such x and for any ν ∈ Sn−1 we have

1− f(x) = f̃(x) ≤
(

n

n− 1
− 8εn

)
h̃(x) ≤

(
n

n− 1
− 8εn

)(
1− h(x, ν)

)
. (3.4)

Using again the fact that f ≤ 1 away from the origin, we can apply [5, Proposition 3.2] to get a ball with

radius 1, arbitrarily far from the origin, such that

P1−f (B) ≥ (n− ε)|B|1−f .

Together with (3.4), this readily gives

P1−h(B) ≥
(
n− 1

n
+ 2εn

)
P1−f (B) ≥

(
n− 1

n
+ 2εn

)
(n− ε)|B|1−f ,

which implies (3.3). �

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. First of all we notice that, up to a homothety, we can for simplicity assume

that m = ωn. Let then ε � 1 be a small constant, and apply Lemma 3.3 to get a ball B of radius 1

arbitrarily far from the origin and such that (3.3) holds. In particular, the ball is B = BRθ1 for some

R� n/ε and θ ∈ Sn−1 and, as soon as the ball is far enough from the origin, we have

1− ε ≤ f(x) ≤ 1 , 1− ε ≤ h(x, ν) ≤ 1 ∀ |x| ≥ R− 2, ∀ ν ∈ Sn−1 . (3.5)

As an obvious consequence of Definition 2.1, if a set F has weighted volume equal to ωn, then its (f, h)-

mean density is smaller than 1 if and only if its weighted perimeter is less than nωn. Since by definition

|B|f = ωn − |B|1−f ≤ ωn , Ph(B) = nωn − P1−h(B) ≤ nωn ,
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the proof is trivially concluded with F = B if |B|f = ωn. As a consequence, we can assume without loss

of generality that |B|f < ωn, or equivalently that |B|1−f > 0. Our strategy will be to obtain F slightly

enlarging B, in order to get a set whose volume is exactly ωn, but in such a way that its perimeter

remains smaller than nωn.

Step 1. The case of a radial density h.

Let us start assuming that the density h is radial, that is, for every x ∈ Rn, ν ∈ Sn−1 and for every

rotation ρ : Rn → Rn centred at the origin, one has h(x, ν) = h(ρ(x), ρ(ν)). Let us select a hyperplane H

passing through the origin and the centre Rθ of the ball B, let us call H± the two half-spaces in which

Rn is divided by H, and let B± and ∂±B be the two halves of B and of ∂B according to (3.2). Let us

now consider the circle S1 ⊆ Sn−1 which contains the direction θ and the direction orthogonal to H. For

every small angle σ ∈ S1, let us call ρσ : Rn → Rn the rotation of angle σ centred at the origin, and for

every small δ > 0, let us call Fδ the set given by

Fδ :=
⋃

0<σ<δ

ρσ(B) .

Thanks to (3.5), a simple integration ensures that

|Fδ|f − |B|f ≥ ωn−1(R− 1)(1− ε)δ .

Since again (3.5) implies that |B|1−f ≤ εωn, and since R � 1, by continuity there is some δ̄ � ε such

that |Fδ̄|f = ωn. In particular, the above estimate ensures that

δ̄ ≤ (1− ε)−1|B|1−f
ωn−1(R− 1)

. (3.6)

We set then F := Fδ̄, and to conclude the proof of this step we only have to check that Ph(F ) ≤ nωn.

Let us define the (n− 1)-dimensional set Γ so that

∂F = ∂−B ∪ ρδ̄(∂+B) ∪ Γ .

For every x ∈ ∂B and every y ∈ ∂F let us denote by ν(x) and ν(y) the normal vectors at x and y, with

respect to ∂B and to ∂F respectively. The radial assumption on h implies that∫
∂+B

h(x, ν(x)) dHn−1(x) =

∫
ρδ̄(∂+B)

h(y, ν(y)) dHn−1(y) ,

so that

Ph(F ) = Ph(B) + Ph(Γ) . (3.7)

However, since h ≤ 1, a trivial geometric argument, together with (3.6) and (3.3), ensures that

Hn−1
h (Γ) ≤ Hn−1(Γ) ≤ (R+ 1)(n− 1)ωn−1δ̄ ≤

R+ 1

R− 1
(n− 1)(1− ε)−1|B|1−f

≤ R+ 1

R− 1

(n− 1)(1− ε)−1

n− 1 + 2εn
P1−h(B) ≤ P1−h(B) ,

(3.8)

where the last inequality holds true because ε � 1 and R � n/ε. Together with (3.7), this implies

Ph(F ) ≤ Ph(B) + P1−h(B) = P1(B) = nωn and, as noticed before, this gives the thesis.

Step 2. The general case.

We now start showing the thesis removing the assumption that h is radial. We introduce the radial

averages fr and hr of f and h as follows,

fr(x) =

∫
α∈Sn−1

f(ρα(x)) dHn−1 , hr(x, ν) =

∫
α∈Sn−1

h(ρα(x), ρα(ν)) dHn−1 ,
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where for every α ∈ Sn−1 we denote again by ρα the rotation of angle α centred at the origin. Notice

that the densities fr and hr are radial by construction, and they also converge to 1 from below and

satisfy (1.3), since so do f and h. As a consequence, we can apply Lemma 3.3 to get a ball B, arbitrarily

far from the origin, such that

P1−hr (B) ≥
(
n− 1 + 2εn

)
|B|1−fr . (3.9)

Let us call R� 1 the distance of the centre of B from the origin; notice that, since hr is radial, for every

θ ∈ Sn−1 the ball BRθ1 satisfies P1−hr (B
Rθ
1 ) = P1−hr (B). We claim that, for every 1 ≤ k ≤ n− 1, there

exists a k-dimensional sphere Sk ≈ Sk contained in Sn−1 such that∫
Sk
P1−h(BRθ1 )− (n− 1 + 2εn)|BRθ1 |1−f dHk(θ) ≥ 0 . (3.10)

We can easily prove this claim by induction. In fact, for k = n− 1 it is an obvious consequence of (3.9)

with Sk = Sn−1, since∫
Sn−1

P1−h(BRθ1 ) dθ = P1−hr (B) ,

∫
Sn−1

|BRθ1 |1−f dθ = |B|1−fr .

Moreover, assume the property to be true for some k ≥ 2 and some k-dimensional sphere Sk ⊆ Sn−1.

Then, for every θ ∈ Sk let us call S(θ) ≈ Sk−1 the (k− 1)-dimensional sphere contained in Sk orthogonal

to θ. By homogeneity, we have∫
Sk

( ∫
S(θ)

P1−h(BRα1 ) dHk−1(α)

)
dHk(θ) =

∫
Sk
P1−h(BRθ1 ) dHk(θ) ,∫

Sk

( ∫
S(θ)

|BRα1 |1−f dHk−1(α)

)
dHk(θ) =

∫
Sk
|BRθ1 |1−f dHk(θ) ,

so the validity of (3.10) for dimension k and the sphere Sk immediately implies the existence of some

θ ∈ Sk such that (3.10) holds also for dimension k − 1 and the sphere Sk−1 = S(θ). The claim is then

established, in particular we will use a circle S1 ≈ S1 for which (3.10) holds true with k = 1. As in Step 1,

we fix θ ∈ S1 and, for every small δ > 0, we define

F θδ :=
⋃

0<σ<δ

ρσ(BRθ1 ) . (3.11)

Since we can assume that 1−ε ≤ f, h ≤ 1 around B up to have taken R large enough, we get the existence

of a unique δ̄ = δ̄(θ) such that |F (θ)|f = ωn, where for simplicity of notation we write F (θ) := F θ
δ̄(θ)

; in

addition, the analogous of estimate (3.6) holds, that is,

δ̄(θ) ≤ (1− ε)−1|BRθ1 |1−f
ωn−1(R− 1)

. (3.12)

Let us now define the map τ : S1 → S1 by τ(θ) = θ + δ̄(θ), which is by construction a strictly increasing

bijection of S1 onto itself (keep in mind that f ≥ 1− ε, so in particular f is strictly positive!).

Observe that, to conclude the thesis, it is enough to find some θ ∈ S1 such that the set F (θ) has

h-perimeter at most nωn, since each F (θ) has f -volume equal to ωn. In particular, if there exists θ ∈ S1

such that δ̄(θ) = 0, then the set F (θ) is exactly a ball of radius 1, so its h-perimeter is clearly at most

nωn, being h ≤ 1, and the proof is already concluded. We can then assume without loss of generality

that δ̄(θ) > 0 for every θ.

With a small abuse of notation, for every α ∈ S1 let us call ∂−B
α the “lower” half-sphere of ∂BRα1 ,

that is, the set of the points in ∂BRα1 whose direction, once projected onto the 2-dimensional plane

containing S1, is smaller than α (this makes sense since R � 1, so the directions of all the projections
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of the points in ∂BRα1 are almost exactly α). Similarly, we call ∂+B
α the “upper” half-sphere of ∂BRα1 .

Let us now fix some θ ∈ S1, and let ζ � δ̄(θ). We can define the sets

A := F (θ) \ F (θ + ζ) =
⋃

0<σ<ζ

∂−B
θ+σ , C := F (θ + ζ) \ F (θ) =

⋃
0<σ<τ(θ+ζ)−τ(θ)

∂+B
θ+δ̄(θ)+σ .

Since |F (θ)|f = |F (θ + ζ)|f , we deduce |A|f = |C|f . On the other hand, by immediate geometrical

arguments, for the Euclidean volume we have

|C|1
|A|1

=
τ(θ + ζ)− τ(θ)

ζ
,

and since 1− ε ≤ f ≤ 1 we deduce

1− ε ≤ τ(θ + ζ)− τ(θ)

ζ
≤ 1

1− ε
.

This implies that the function τ : S1 → S1 is bi-Lipschitz, with 1− ε ≤ τ ′ ≤ (1− ε)−1. A simple change

of variables yields∫
θ∈S1

Hn−1
1−h(∂+B

θ) dθ =

∫
α∈S1

Hn−1
1−h(∂+B

τ(α))τ ′(α) dα ≤ (1− ε)−1

∫
α∈S1

Hn−1
1−h(∂+B

τ(α))dα .

Keeping in mind (3.10) we get then

0 ≤
∫
S1

P1−h(BRθ1 )− (n− 1 + 2εn)|BRθ1 |1−f dθ

=

∫
S1

Hn−1
1−h(∂+B

θ) +Hn−1
1−h(∂−B

θ)−
(
n− 1 + 2εn

)
|BRθ1 |1−f dθ

≤
∫
S1

(1− ε)−1Hn−1
1−h(∂+B

τ(θ)) +Hn−1
1−h(∂−B

θ)−
(
n− 1 + 2εn

)
|BRθ1 |1−f dθ ,

hence we find some θ̄ ∈ S1 such that

Hn−1
1−h(∂+B

τ(θ̄)) +Hn−1
1−h(∂−B

θ̄) ≥ (1− ε)
(
n− 1 + 2εn

)
|BRθ̄1 |1−f . (3.13)

Let us then call F = F (θ̄), and let us write ∂F = ∂−B
θ̄ ∪ ∂+Bτ(θ̄) ∪ Γ. Keeping in mind (3.12), arguing

exactly as in (3.8) we get

Hn−1
h (Γ) ≤ R+ 1

R− 1
(n− 1)(1− ε)−1|BRθ̄1 |1−f ,

which by (3.13) gives

Ph(F ) = Hn−1
h (∂−B

θ̄) +Hn−1
h (∂+B

τ(θ̄)) +Hn−1
h (Γ)

= nωn −Hn−1
1−h(∂−B

θ̄)−Hn−1
1−h(∂+B

τ(θ̄)) +Hn−1
h (Γ)

≤ nωn − (1− ε)
(
n− 1 + 2εn

)
|BRθ̄1 |1−f +

R+ 1

R− 1
(n− 1)(1− ε)−1|BRθ̄1 |1−f ≤ nωn ,

where the last inequality holds true up to have taken ε � 1/n and R � n/ε. As noticed above, since

|F |f = ωn, this concludes the thesis. �
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3.2. The case of densities converging from above. Let us start this section by showing the existence

of a ball, far away from the origin, for which the perimeter can be controlled by the volume, where both

perimeter and volume are intended with respect to the density h̃ defined in (1.2).

Proposition 3.4. Let h be a function converging to 1 such that h+ converges from above to 1 and∫∞
R
h̃r(t) dt = +∞ for every R � 1. Then, for every ε > 0 there exists a ball B of radius 1 arbitrarily

far from the origin such that

Ph̃(B) ≤ (n+ ε)|B|h̃ . (3.14)

Moreover the same holds for the radial average h̃r of h̃.

Proof. Step 1. Reduction to the radial case.

Assume that the claim holds for radial densities. Recall the radial average h̃r of h̃ is

h̃r(t) =

∫
∂B|t|

h̃(x) dHn−1(x) .

By assumption, for any positive ε we can find a ball B arbitrarily far from the origin such that Ph̃r (B) ≤
(n+ ε)|B|h̃r . Let us call for a moment Bθ the ball obtained from B after a rotation of an angle θ ∈ Sn−1

around the origin. All these balls share the same perimeter and volume with respect to the radial density

h̃r, but not with respect to h̃. Since by definition

Ph̃r (B) =

∫
Sn−1

Ph̃(Bθ) dHn−1(θ) , |B|h̃r =

∫
Sn−1

|Bθ|h̃ dH
n−1(θ) ,

there obviously exists some angle θ̄ for which Ph̃(Bθ̄) ≤ (n+ ε)|Bθ̄|h̃.

Step 2. Proof of the radial case.

Thanks to Step 1, we can assume without loss of generality that h̃ is radial. As a consequence, we can

write the perimeter and the volume of a ball BR centred at distance R from the origin as

Ph̃(BR) =

∫ 1

−1

αR(t)h̃(t+R) dt , |BR|h̃ =

∫ 1

−1

βR(t)h̃(t+R) dt , (3.15)

where the exact value of αR and of βR can be computed. However, for our purposes it is sufficient to

observe that αR and βR uniformly converge, as R goes to infinity, to the functions α and β corresponding

to the flat layers, that is,

α(t) = (n− 1)ωn−1(1− t2)
n−3

2 , β(t) = ωn−1(1− t2)
n−1

2 .

Notice that
∫ 1

−1
α(t) − nβ(t) dt = 0. Let us argue now by contradiction and suppose that for every R

greater or equal than some R inequality (3.14) is false for the set BR. Integrating the opposite inequality

over (R1, R2) with R� R1 � R2 we get∫ R2

R1

Ph̃(BR) dR > (n+ ε)

∫ R2

R1

|BR|h̃ ,

which by (3.15) can be written as∫ R2

R1

∫ 1

−1

αR(t)h̃(t+R) dt dR > (n+ ε)

∫ R2

R1

∫ 1

−1

βR(t)h̃(t+R) dt dR .

Since αR/α→ 1 and β/βR → 1 uniformly as R→∞, up to have taken R big enough we deduce∫ R2

R1

∫ 1

−1

α(t)h̃(t+R) dt dR >
(
n+

ε

2

)∫ R2

R1

∫ 1

−1

β(t)h̃(t+R) dt dR . (3.16)
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Notice that the left-hand side equals∫ R1+1

R1−1

h̃(R)

∫ R−R1

−1

α(t) dt dR+

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

α(t) dt dR+

∫ R2+1

R2−1

h̃(R)

∫ 1

R−R2

α(t) dt dR ,

which is clearly smaller than

K +

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

α(t) dt dR ,

where K is a constant not depending on R1 and R2. Similarly, the right-hand side of (3.16) equals∫ R1+1

R1−1

h̃(R)

∫ R−R1

−1

β(t) dt dR+

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

β(t) dt dR+

∫ R2+1

R2−1

h̃(R)

∫ 1

R−R2

β(t) dt dR ,

hence it is bigger than

−K +

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

β(t) dt dR .

As a consequence, from (3.16) we derive that, for every R� R1 � R2 one has

K +

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

α(t) dt dR >

(
n+

ε

2

)(
−K +

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

β(t) dt dR

)
,

hence ∫ R2−1

R1+1

h̃(R)

∫ 1

−1

α(t)−
(
n+

ε

2

)
β(t) dt dR > −K̃

for some constant K̃, again not depending on R1 or R2. Keeping in mind that, as noticed above,∫ 1

−1
α− nβ = 0, the last inequality reduces itself to

−ε
2

∫ R2−1

R1+1

h̃(R)

∫ 1

−1

β(t) dt dR > −K̃ .

And finally, since
∫ 1

−1
β > 0, up to fixing a large R1 and then a much larger R2, we get a contradiction

with the assumption that
∫ +∞
R

h̃ = +∞. The thesis is then proved. �

Lemma 3.5. Let h converge to 1, and let f and h converge both from above to 1 and satisfy (1.4), and∫∞
R
h̃r(t) dt = +∞ for every R� 1. Then, there exists a small constant ε > 0 such that there is a ball B

of radius 1 arbitrarily far from the origin with

Ph̃(B) ≤
(
n− 1− ε

)
|B|f̃ . (3.17)

Moreover, the same holds for the radial averages h̃r and f̃r in place of h̃ and f̃ .

Proof. By (1.4), there exist a small positive constant δ and a large constant R such that, for every x ∈ Rn

with |x| > R, one has

f̃(x) ≥ n

n− 1
(1 + δ)2h̃ . (3.18)

Applying Proposition 3.4, we get a ball B with radius 1 and distance from the origin larger than R such

that Ph̃(B) ≤ n|B|h̃(1 + δ). As a consequence, for the same ball B we obtain

Ph̃(B) ≤ (n− 1)(1 + δ)−1|B|f̃ ≤
(
n− 1− ε

)
|B|f̃ ,

where the last inequality is true for a suitably small ε > 0, depending on δ, hence ultimately on the

inequality (1.4). Notice that the last inequality coincides with (3.17), which is then obtained.

The very same proof works with the radial averages h̃r and f̃r in place of h̃ and f̃ , since Proposition 3.4

is stated also with h̃r in place of h̃, and the inequality (3.18) clearly holds true also with f̃r and h̃r in

place of f̃ and h̃, as one obtains simply by an integration of (3.18) over Sn−1. �
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δ̄

F

θ

ν

Figure 1. The set F of Step 1 in Proposition 3.2.

We can now conclude this section by giving the proof of Proposition 3.2.

Proof of Proposition 3.2. First of all, as in the proof of Proposition 3.1, up to a homothety we can assume

that m = ωn. In other words, we are looking for a set F arbitrarily far from the origin with weighted

volume ωn, and weighted perimeter smaller or equal than nωn. Let us apply Lemma 3.5, so to get a

constant ε > 0. Let now η be a small positive constant, depending on ε and to be specified later. Since

f and h are converging to 1, there is R� 1 such that for every x ∈ Rn with |x| > R and every ν ∈ Sn−1

one has 1 − η ≤ h(x, ν) ≤ 1 + η and 1 ≤ f(x) ≤ 1 + η; in fact, keep in mind that f ≥ 1 because f is

converging to 1 from above, while it is not necessarily h ≥ 1 since h+, and not h, is converging to 1 from

above. Lemma 3.5 applied to h̃r and f̃r provides us with a ball B = BRθ, with radius 1 and centred at

Rθ, such that R > R+ 1 and

Ph̃r (B) ≤ (n− 1− ε)|B|f̃r . (3.19)

Our aim is to use the ball B to find the searched set F . The proof is split in three steps.

Step 1. The case of radial densities h and f .

We start with the assumption that the densities h and f are radial, hence h̃ = h̃r and f̃ = f̃r. Let us

select a hyperplane H passing through the origin and containing the centre Rθ of the ball B, and let

ν ∈ Sn−1 be the direction orthogonal to H, so in particular ν is orthogonal to θ. With a small abuse

of notation, for every δ ∈ R let us now denote by “θ + δ” the angle obtained by θ after a rotation of

angle δ in the circle contained in Sn−1 and containing θ and ν: formally speaking, we denote by θ+ δ the

direction θ cos δ+ν sin δ ∈ Sn−1. Writing for simplicity B in place of BRθ and Bδ in place of BR(θ+δ), we

observe that by continuity there exists a small positive number δ̄ such that the set F = B ∩Bδ̄ satisfies

|F |f = ωn (see Fig. 1). Keeping in mind that f ≤ 1 + η on B, by an immediate geometric argument we

have

|B|f̃ = |B|f − ωn = |B|f − |F |f ≤ (1 + η)ωn−1(R+ 1)δ̄ ,

which implies the following lower bound for δ̄,

δ̄ ≥ 1− 2η

ωn−1(R+ 1)
|B|f̃ . (3.20)

Let us now callH± the two half-spaces in which Rn is divided byH, the half-spaceH+ being the one which

contains R(θ+δ) for small positive δ. We can write ∂B = ∂+B∪∂−B, where ∂±B = ∂B∩H±. Similarly,

let us call Hδ̄ the hyperplane passing through the origin and orthogonal to the direction θ + (δ̄ + π/2),

and let H±
δ̄

be the two half-spaces in which Hδ̄ divides Rn, being H+
δ̄

the one containing R(θ + δ) for δ
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slightly bigger than δ̄. Notice that Hδ̄ passes through the centre of the ball Bδ̄, hence we can also split

∂Bδ̄ = ∂+Bδ̄ ∪ ∂−Bδ̄, where ∂±Bδ̄ = ∂Bδ̄ ∩H±δ̄ .

Let us now notice that ∂F = ∂(B ∩ Bδ̄) = (∂B ∩ Bδ̄) ∪ (B ∩ ∂Bδ̄) ⊆ ∂+B ∪ ∂−Bδ̄. More precisely,

we can write ∂F = ∂+B ∪ ∂−Bδ̄ \ Γ, and a simple geometric consideration, also by (3.20), ensures that

Hn−1(Γ) ≥ (n− 1)ωn−1δ̄(R− 1) ≥ (n− 1)(R− 1)
1− 2η

(R+ 1)
|B|f̃ .

Since h is radial, we have Hn−1
h (∂−B) = Hn−1

h (∂−Bδ̄). Therefore, being h ≥ 1− η on ∂F and by (3.19)

we can estimate

Ph(F ) = Hn−1
h (∂+B) +Hn−1

h (∂−Bδ̄)−Hn−1
h (Γ) = Ph(B)−Hn−1

h (Γ) ≤ P1+h̃(B)−Hn−1
h (Γ)

≤ nωn + Ph̃(B)− (1− η)
R− 1

R+ 1
(n− 1)(1− 2η)|B|f̃

≤ nωn +

(
n− 1− ε− R− 1

R+ 1
(n− 1)(1− 3η)

)
|B|f̃ ≤ nωn ,

where the last inequality is true up to have chosen first η small enough with respect to ε, and then R

big enough, also recalling that |B|f̃ ≥ 0. The set F is then the desired set, and the proof in this case is

concluded.

Step 2. The general case in dimension 2.

Let us now assume that n = 2. Then, as in Step 1, we notice that for every θ ∈ S1 the function

δ 7→ |BRθ ∩ BR(θ+δ)|f is strictly decreasing for small positive δ, and in particular there is a unique

δ̄ = δ̄(θ) such that the set F θ = BRθ ∩BR(θ+δ̄(θ)) satisfies |F θ|f = ωn. Moreover, exactly as in Step 1 we

have the analogous of the estimate (3.20) for any δ̄(θ), with θ ∈ S1, which now reads as

δ̄(θ) ≥ 1− 2η

ωn−1(R+ 1)
|BRθ|f̃ . (3.21)

We can assume without loss of generality that δ̄(θ) > 0 for every θ. Indeed, if for some θ we have

δ̄(θ) = 0, it means that |BRθ|f = ωn = |BRθ|1. Since f ≥ 1, this means that f ≡ 1 on B, hence by

lower semicontinuity and estimate (1.4) we get h̃ = 0 on ∂BRθ, thus h ≤ h+ = 1 on ∂BRθ, and finally

Ph(BRθ) ≤ nωn, thus the thesis is already obtained.

We now define the map τ : S1 → S1 as τ(θ) = θ+ δ̄(θ), and notice that by construction it is a strictly

increasing bijection. Let us now fix some θ ∈ S1, and any ζ � τ(θ)− θ = δ̄(θ), and call

A = F θ+ζ \BRθ , C = F θ \BRτ(θ+ζ) .

Notice now that, by definition, F θ+ζ = (F θ ∪ A) \ C and C ⊆ F θ while A ∩ F θ = ∅. As a consequence,

since F θ and F θ+ζ have the same weighted volume, we deduce |A|f = |C|f . On the other hand, a quick

geometrical observation ensures that

|C|1
|A|1

=
τ(θ + ζ)− τ(θ)

ζ
(1 + o(1)) .

Therefore, as 1 ≤ f ≤ 1 + η on both A and C, we get that the map τ is bi-Lipschitz with (1 + η)−1 ≤
τ ′ ≤ 1 + η. Since all the sets F θ := F θ

δ̄(θ)
have weighted volume equal to ωn, to conclude we just have to

find some angle θ̄ for which Ph(F θ̄) ≤ nωn.

For every θ, let us write ∂BRθ = ∂+Bθ ∪ ∂−Bθ, where a point x ∈ ∂BRθ is said to belong to ∂+Bθ

(resp., to ∂−Bθ) if its direction is larger (resp., smaller) than θ. Notice that this makes sense since the
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radius of BRθ equals 1 while R � 1, hence the directions of all the points of ∂BRθ are extremely close

to θ. A change of variables yields∫
S1

Hn−1

h̃
(∂−Bθ) dθ =

∫
S1

Hn−1

h̃
(∂−Bτ(ν))τ

′(ν) dν ≥ (1 + η)−1

∫
S1

Hn−1

h̃
(∂−Bτ(θ)) dθ .

Using (3.19) we find

0 ≥ Ph̃r (B)− (n− 1− ε)|B|f̃r =

∫
S1

Ph̃(BRθ)− (n− 1− ε)|BRθ|f̃ dθ

=

∫
S1

Hn−1

h̃
(∂+Bθ) dθ +

∫
S1

Hn−1

h̃
(∂−Bθ) dθ − (n− 1− ε)

∫
S1

|BRθ|f̃ dθ

≥
∫
S1

(1 + η)−1Hn−1

h̃
(∂+Bθ ∪ ∂−Bτ(θ))− (n− 1− ε)|BRθ|f̃ dθ .

(3.22)

Then, there exists an angle θ̄ such that

Hn−1

h̃

(
∂+Bθ̄ ∪ ∂−Bτ(θ̄)

)
≤ (1 + η)(n− 1− ε)|BRθ̄|f̃ . (3.23)

Let us now notice that ∂F θ̄ = ∂+Bθ̄ ∪ ∂−Bτ(θ̄) \ Γ, where Γ = ∂+Bθ̄ ∪ ∂−Bτ(θ̄) \ ∂F θ̄. Keeping in mind

that h ≥ 1− η, a simple geometrical argument gives

Hn−1
h (Γ) ≥ (1− η)Hn−1(Γ) ≥ (1− η)(n− 1)ωn−1δ̄(θ̄)(R− 1) .

As a consequence, by (3.23) and (3.21) we have

Ph(F θ̄) = Hn−1
h

(
∂+Bθ̄ ∪ ∂−Bτ(θ̄)

)
−Hn−1

h (Γ)

≤ nωn +Hn−1

h̃

(
∂+Bθ̄ ∪ ∂−Bτ(θ̄)

)
− (1− η)(n− 1)ωn−1δ̄(θ̄)(R− 1)

≤ nωn + (1 + η)(n− 1− ε)|BRθ̄|f̃ − (1− 3η)(n− 1)
R− 1

R+ 1
|BRθ̄|f̃ .

And finally, we deduce again the searched inequality Ph(F θ̄) ≤ nωn as soon as we choose first η small

enough depending on ε, and then R big enough. The proof is then concluded also in this case.

Step 3. The general case.

We conclude now the proof by considering the general case n ≥ 3. A quick look at Step 2 and in particular

at the key calculation (3.22) ensures that, whatever n ≥ 2 is, if there is some unit circle C ≈ S1 inside

Sn−1 such that ∫
C
Ph̃(BRθ) dH1(θ) ≤ (n− 1− ε)

∫
C
|BRθ|f̃ dH

1(θ) , (3.24)

then the very same proof as in Step 2 works (to make this check even simpler, in Step 2 we always used

the generic letter n even if we were assuming n = 2). And in fact, for a generic n the estimate (3.19) can

be written as ∫
Sn−1

Ph̃(BRθ) dHn−1(θ) ≤ (n− 1− ε)
∫
Sn−1

|BRθ|f̃ dH
n−1(θ) , (3.25)

which coincides with (3.24) when n = 2 with the only possible choice C = S1. As a consequence, we can

easily argue by induction. Fix n ≥ 3 and suppose that for some 2 ≤ k ≤ n − 1 there is a k-dimensional

sphere Sk ⊆ Sn−1 such that∫
Sk
Ph̃(BRθ) dHk(θ) ≤ (n− 1− ε)

∫
Sk
|BRθ|f̃ dH

k(θ) . (3.26)
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Then, for every θ ∈ Sk let us call S(θ) the set of those vectors in Sk which are orthogonal to θ. Notice

that every S(θ) is a (k−1)-dimensional sphere contained in Sn−1, and by the rotational invariance of the

Hausdorff measure one has∫
Sk
Ph̃(BRθ) dHk(θ) =

∫
Sk

∫
S(θ)

Ph̃(BRσ) dHk−1(σ) dHk(θ) ,∫
Sk
|BRθ|f̃ dH

k(θ) =

∫
Sk

∫
S(θ)

|BRσ|f̃ dH
k−1(σ) dHk(θ) .

Thus, then there exists some (k − 1)-dimensional sphere Sk−1 = S(θ) ⊆ Sk for which∫
Sk−1

Ph̃(BRθ) dHk−1(θ) ≤ (n− 1− ε)
∫
Sk−1

|BRθ|f̃ dH
k−1(θ)

holds. In other words, for every 2 ≤ k ≤ n − 1 the existence of a k-dimensional sphere satisfying (3.26)

implies the existence also of a (k− 1)-dimensional sphere satisfying (3.26) with k− 1 in place of k. Since

this property is true with k = n − 1 by (3.25), by induction we obtain the same property with k = 1

and some 1-dimensional sphere, that is, we have found a circle C satisfying (3.24). As noticed above, the

existence of a circle C satisfying (3.24) yields the thesis. �

4. A counterexample

In this last section we give an example showing that, in Theorem A, the assumption that
∫∞
R
h̃r = +∞

for the case of densities converging from above is really needed. This can be at first sight a bit surprising,

also considering that the analogous property is not needed for the case of densities converging from below.

Nevertheless, a careful look at the proof of the theorem allows to realise that the assumption is not just

useful for the proof, but actually essential.

In our example we consider the case n = 2 just for simplicity, but it appears clear that the very same

construction can be done also for a generic n ≥ 3. For every x ∈ R2 and ν ∈ S1, we set

f(x) = 1 + 3ϕ(|x|) , h(x, ν) = 1 + ϕ(|x|) ,

where the function ϕ : [0,+∞)→ (0,+∞) is given by

ϕ(t) = Me−M(t−1)+

for some M large enough to be precised later. Notice that f and h+ = h are converging from above to 1

and the assumption (1.4) is satisfied, but
∫∞
R
h̃r =

∫∞
R
ϕ < +∞. In particular, observe that ϕ(t) = M for

every t ≤ 1, while for t > 1 one has ϕ(t) = MeMe−Mt, hence f and h are converging to 1 at exponential

speed. We will show the following result.

Lemma 4.1. There exists no isoperimetric set of volume π for the densities f and h defined above.

Proof. Since both f and h are converging to 1, a unit “ball at infinity” has volume π and perimeter 2π,

hence J (π) ≤ 2π. As a consequence, it is enough to prove that Ph(E) > 2π for every set E ⊆ R2 such that

|E|f = π. Of course, without loss of generality, we can assume that E is smooth, and H1(∂E ∩ ∂B) = 0,

where B is the unit ball centred at the origin. Let then E be such a set, and let us write for brevity | · |
and P , in place of | · |1 and P1, to denote the Euclidean volume and perimeter. Since |E|f = |E|+ 3|E|ϕ,

one has |E| < π, hence the standard isoperimetric inequality gives

P (E) ≥ 2
√
π
√
|E| > 2|E| . (4.1)

We claim that

Pϕ(E) ≥ 6|E|ϕ . (4.2)
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Notice that, if this estimate holds, then by (4.1) we get

Ph(E) = P (E) + Pϕ(E) > 2|E|+ 2|E|3ϕ = 2|E|f = 2π ,

hence the thesis is obtained. Therefore, to conclude the proof it is enough to establish (4.2). We divide

the situation in two cases.

Step I. If E ∩B = ∅.
Let us first assume that E has empty intersection with the unit ball B. Hence, around E, the function

ϕ(t) coincides with e−Mt up to a multiplicative constant, which of course does not play any role in the

proof of (4.2). In order to deal later with the case of non-empty intersection, we will now show an estimate

stronger than (4.2), namely,

Pϕ(E) ≥ 12|E|ϕ if E ∩B = ∅ . (4.3)

For every s > 0, let us call τ(s) = H1(E ∩ ∂Bs). We can assume without loss of generality that

τ(s) ≤ 2π ∀ s > 0 . (4.4)

Indeed, if (4.4) fails, then we directly get Ph(E) > P (E) > 2π, so the thesis is already obtained without

any need of establishing (4.2) or (4.3).

We now define t1 = inf{t > 0 : τ(t) > 1/12} ∈ [1,+∞]. Observe that

|E ∩Bt1 |ϕ =

∫ t1

0

ϕ(s)τ(s) ds ≤ 1

12

∫
{s≤t1, τ(s)>0}

ϕ(s) ds ≤ 1

24
H1
ϕ

(
(∂E) ∩Bt1

)
.

If t1 = ∞, this estimate reads as Pϕ(E) ≥ 24|E|ϕ, so even stronger than (4.3). Hence, we can assume

that t1 <∞, which readily implies, since ϕ is decreasing,

Pϕ(E)− 12|E ∩Bt1 |ϕ ≥
H1
ϕ

(
(∂E) ∩Bt1

)
2

≥ ϕ(t1)

25
. (4.5)

Let us now write for brevity t+ = t1 + (1200π)−1. Keeping in mind (4.4) and again the fact that ϕ is

decreasing, we have∣∣E ∩ (Bt+ \Bt1)
∣∣
ϕ

=

∫ t+

t1

ϕ(s)τ(s) ds ≤ ϕ(t1)2π(t+ − t1) =
ϕ(t1)

600
,

while ∣∣E \Bt+ |ϕ ≤ ϕ(t+)|E \Bt+ | ≤ πϕ(t+) = πϕ(t1)e−
M

1200π ≤ ϕ(t1)

600
,

where the last estimate clearly holds as soon as M is big enough. The last two estimates, together

with (4.5), give

Pϕ(E) ≥ 12|E ∩Bt1 |ϕ +
ϕ(t1)

25
= 12

(
|E ∩Bt1 |ϕ +

ϕ(t1)

300

)
≥ 12|E|ϕ ,

hence (4.3) is obtained and this step is concluded. Notice that in this step we did not use the assumption

that |E|f = π. Therefore, (4.3) holds for every set E ⊆ R2 \B, regardless of its volume.

Step II. If E ∩B 6= ∅.
To finish the proof, let us assume now that E has a non-empty intersection with the unit ball B, and let

us call E+ = E \B and E− = E ∩B. Since ϕ ≡M in E−, we have

|E−| = |E
−|ϕ
M

≤ π

M
,

so that the standard isoperimetric inequality gives

P (E−) ≥ 2
√
π
√
|E−| ≥ 2

√
M |E−| . (4.6)
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Let us now call S = E ∩ ∂B. If M is big enough, then |E−| � |B|, hence we have

H1
(
(∂E) ∩B

)
≥ 3

4
H1(S) ,

which implies

H1
(
(∂E) ∩B

)
≥ 1

7
P (E−) +

1

2
H1(S) . (4.7)

Keep in mind that, as noticed at the end of Step I, the validity of (4.3) is true for every set without

intersection with B. As a consequence, by the fact that E+ ∩B = ∅, we get (4.3) with E+ in place of E.

Then, recalling that E is smooth and H1(∂E ∩ ∂B) = 0, using the fact that ϕ = M on the closure of B,

hence also on S, and by (4.7), (4.6) and (4.3) for E+, we get

Pϕ(E) = H1
ϕ

(
(∂E) ∩B

)
+H1

ϕ

(
(∂E) \B

)
= MH1

(
(∂E) ∩B

)
+H1

ϕ

(
(∂E) \B

)
≥ 1

7
M P (E−) +

1

2
H1
ϕ(S) +H1

ϕ

(
(∂E) \B

)
≥ 2

7
M
√
M |E−|+ 1

2
Pϕ(E+)

≥ 2

7

√
M |E−|ϕ + 6|E+|ϕ ≥ 6|E|ϕ ,

where again the last estimate holds if M is big enough. Summarising, we have established the validity

of (4.2), so the thesis is obtained. �
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[8] C. Rosales, A. Cañete, V. Bayle, and F. Morgan. On the isoperimetric problem in Euclidean space with density. Calc.

Var. Partial Differential Equations, 31(1), 2008.

[9] G. Saracco. Weighted Cheeger sets are domains of isoperimetry. Manuscripta Math., 2017.

https://doi.org/10.1007/s00229-017-0974-z

Department Mathematik, Universität Erlangen-Nürnberg, Cauerst. 11, 91058 Erlangen - Germany

E-mail address: pratelli@math.fau.de

Department Mathematik, Universität Erlangen-Nürnberg, Cauerst. 11, 91058 Erlangen - Germany

E-mail address: saracco@math.fau.de


